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1. Introduction

The purpose of this work is developing a grey box model of a three link robot
manipulator. Next step will be to improve its behaviour by means of design a
new controller.

An ABB IRB-2000 will be used, which is located in the Robotics Labora-
tory of the Department of Automatic Control of Lund Institute of Technology.
As it was said before, only the main three links will be taken into account,
considering the third link length as the sum of the upper arm and the wrist
stretched ones.

In order to do that, the Dymola simulation software1 [1] will be used. This
software is based on Modelica language [2], and permits to build models easily
using Drag and Drop, and simulate them as well as other many possibilities
that will be seen later.

After a short description of the robot; its physical characteristics and its
operation modes, it will see how to work with a set of tools included in the
used software in order to be able to estimate the parameters of the grey box
model.

The modeling and the experiments performed to do that will be explained
with more detail, and after that it will see how to improve the robot behaviour
by means of a new controller.

Finally, some conclusions and optional ways of continuing this work will
be exposed.

1Dymola Version 6 was used
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2. Robot description and
control

2.1 The IRB-2000

The robot is formed by a base attached to the floor, where the engine unit
and the gear box of the first joint are included. This degree of freedom lets
the first link move with respect a vertical axis.

Above that, it has the first link, where the engine units and gear boxes of
the second and third link are.

The second joint is directly actuated by the gear box, and allows the second
joint to move with respect to an horizontal axis. That is, the robot moves
forward or backward.

However, the third link is actuated by mean of a gravity compensation arm,
which is connected between the gear box in the second link, and the third link.
This is the reason because of when the second joint is moving, and not the
third, this link stays horizontal with the same torque applied, since the third
engine is stopped. It is just hanging the gravity effect of link three.

2.2 The Control

Because of security reasons, it is not possible to do the parameter estimation
in an usual way, it means, in open loop. Therefore, we will implement the real
controller in the model, and the estimation will be done in close loop. The
controller consists of two cascade PID’s, as we can see in [3].

Actually the control is working only with the proportional effect in the
position loop, and the proportional and integrative effects in the velocity loop,
as it could be read in the C code1.

The Excitation Handler

In order to move one or more joints of the robot, an interface in rbmatlab
was developed[4]. Thanks to it, it is possible to create an input signal easily,
and use it as a position, velocity o torque reference. After that, the interface
receive the position signals from de sensors in the robot.

The basic steps to move the robot with the Excitation Handler are:

1. Execute “irb2000boot” in a terminal.

2. Wait until the control program starts.Rbmatlab can be executed at the
same time.

3. Execute “Exc handler” in rbmatlab.

4. Create the trajectory in either rbmatlab or Exc handler and put it in the
channel which it is gone to be used as a reference.

1See Appendix A
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2.2 The Control

5. It is suitable to “plot” the data and ensure that any error exist.

6. Select the signals to be recorded.

7. If it is the first time in the session that the robot is going to be moved,
it is necessary to “open” the connection in the menu.

8. Select “define” and wait for “Define done” message in the control menu.

9. Make sure that all the safety switches connected to the doors are off(if
not, there is an opened door), the red emergency buttons are released,
and switch on the Run-mode button on the cabinet.

10. While pressing the yellow handler, and keeping in its middle position,
execute “Start”.

11. Once the robot is stopped, execute “Receive” to get the data from the
robot.

After that, the received data can be plotted, or saved to be used later.
If the save option is chosen, a new mat file will be created. When this file
is open in Matlab four new variables are created; the input data is stored in
“EXC INP” and the output in “EXC RESP”.

The order in which the data, corresponding to the variables selected in the
“signal selection” menu in the Exc handler, is saved in the variable, is from
the first link to the last one and: “uv, p, u, v” for the “EXC INP”. Only the
position output is saved in “EXC RESP”. It means that, for instance, if the
signals wanted to save are satured torque, position and speed for links one, two
and three, the first three columns in the “EXC INP” variable will be “uv1”,
“uv2” and “uv3”. Then “p1”,“p2” and “p3” and finally “v1”, “v2” and “v3”.
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3. Modeling and Parameter
Estimation

3.1 Introduction

In this chapter we will see how the model is made using the Dymola Multibody
Library, and what are the available tools in the same software to calibrate de
model parameters and try to get the same response in the robot and in the
model, when the same input is used.

The modeling and identification task were not done separately but an initial
model was build and tested, and starting with it, new elements were added
and other were removed taking care the calibration results, in order to do it
more accurate.

3.2 Parameter Estimation Tools

Dymola includes a library called Design Library, that is composed by some
different functions to perform the parameter estimation. These are: calibrate,
validate, checkCalibrationSensitivity, sweepParameter and sweepTwoParame-
ter. A manual about how to use them with some examples can be found in
[5]. We will summarize briefly the basic options that will be used in the next
section.

All the functions included in this library have a similar way of use. Because
of that, the calibrate function will be taken as a reference, and the differences
with the other functions will be explain separately.

Once the desired function has been found in the Dymola tree browser, the
“Call Function. . . ” option has to be selected in the “right click menu”. Then
the main window of the function pops.

If the model that is going to be used has not been compiled before, it will
be necessary to select it here (see fig. 3.1).

Next, the file containing the data from the robot has to be specified in the
cases menu (see fig. 3.2), as well as the simulation time, and if a calibration

Figure 3.1 Model selection
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3.2 Parameter Estimation Tools

Figure 3.2 Data file selection

Figure 3.3 Calibration parameters selection

or validation task is going to be executed. This file can be a mat or a cvs file.
The main advantage of cvs file is that it can contain text to know what data
is put in each column. However it needs to be processed and converted to that
kind of file in Matlab. A script was developed to do this easily depending on
what sets of data was needed. The code can be seen in the B Appendix. In
addition to that, Microsoft Excel was used to name the columns.

In this menu is also possible to specify the initial conditions to be used in
the model, if they are different respect to the ones in the experiment. Unfor-
tunately, it does not work as well as it could be desired. One of the biggest
problems is that an initial position has to be specified in degrees, while the
rest of the time Dymola works in radians. If the fact that the robot works
in motor-radians is added, the time that is lost with that simple, but tedious
operations does not worth so that this option was slightly used. Moreover, the
parameter tuning is being done in close loop so that there would be a lot of
variables that need to be initialized to start the simulation with the robot in
a particular position.

The calibration parameters are selected in the parameters menu (see fig. 3.3).
In the “validate” function it is not necessary to select any parameter, although
it is in the “sweepParameter”, “sweepTwoParameters” and “checkCalibra-
tionSensitivity”.

After the selection is done, the parameters appears in fig. 3.4 where it is
possible to assign the initial value which one the calibration will starts, and the
limits between the value can be modified. This is important, because if some
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Chapter 3. Modeling and Parameter Estimation

Figure 3.4 Calibration parameters selection

Figure 3.5 Couple data selection

parameters are being tuned at the same time, it is possible that the program
assigns wrong values because of they are coupled.

The sections inputCouplings and resultCouplings are related to the inputs
and outputs of the model. It is possible to use the data contained in the csv
file as an input, when in the model the inputs have been defined as connectors.
Other possible inputs could be any of the Sources blocks, or Tables. To use
an external input, it is necessary to go to inputCoupling and select Couple file
data and then assign the inputs with the data stored in the file (see fig. 3.5).

In the resultCouplings menu is where the calibration criterion is defined.
That is, here is where the desired output and the model output are specified.
The operation mode is similar to the previous one, except that here it is
possible to use different signals to calibrate the model, and a weight column
allows the user to give them different weights (see fig. 3.6).

Using the checkCalibrationSensitivity only the function output differs on
what has been said before. This function analyses the sensitivities and depen-
dencies between the parameters selected, since it is possible that two or more
of them have not a significative influence in the output, or only a linear com-
bination of these parameters can influence the criterion, so that they could
not be estimated individually.

Another chance to observe how a parameter influence in some output,
the sweepParameter and sweepTwoParameters functions can be used. These
function simulates a model giving different values to one or two parameters,

10



3.2 Parameter Estimation Tools

Figure 3.6 resultCoupling menu

Figure 3.7 sweepParameter menu

Figure 3.8 sweepTwoParameters menu

and plotting the results in a two or three dimension graph respectively. The
“modus operandi” is the same, but it is necessary to define which parameter
or parameters will be swept, and which values will be given (see figs. 3.7 and
3.8).
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Chapter 3. Modeling and Parameter Estimation

3.3 The Robot Model and Parameter Estimation

The first model of the robot body was built as a simple set of Body Shapes1

connected by means of Revolute Joints2, using the data referred to the arm
lengths from [6] (see fig. 3.9). The element between the joint three and the
last Body Shape was supposed without mass.

In the first model the gravity compensation arm was not included, the
actuated revolute joint for the third link was put between the second and
the third link. The position and speed signals were measured in radians with
sensors3.

Next step was the design of the engines and gear boxes model. This class,
named Gears and Engines connect the controller and the body. Only the
Torque and the Gear Box4 classes were included here, although in next works,
flexibilities or gear loss could be introduced (see fig. 3.10).

At first, the torque signal got from the real robot data was used as the
input in order to perform the parameter estimation in open loop, but because
of the noise, and the instability of the system, any good result was obtained.
Then, the controller was added, and a close loop identification was carried out.

The controller in fig. 3.11 was modeled using the Continuous and Non-

1Included in Modelica.Mechanics.Multibody.Parts
2Included in Modelica.Mechanics.Multibody.Joints
3Included in Modelica.Mechanics.Rotational.Sensors
4Included in Modelica.Mechanics.Rotational

Figure 3.9 First model of the robot body

12



3.3 The Robot Model and Parameter Estimation

Figure 3.10 Engines and gear boxes model

Figure 3.11 Controller

linear Blocks5 following the scheme presented in [3].
Then, instead of using the torque signal as reference, the position signal

was used as the main criterion with the torque one as a secundary reference,
and therefore, different robot trajectories would be design to perform the cali-
bration. This choice has been done this way just because, as the identification
is carried out in close loop, and the system is supposed to be stable, different
values for the robot parameters could be found that make it follows the de-
sired trajectories with very different torque values, and the model would not
correspond with the real robot.

5Included in Modelica.Blocks
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Chapter 3. Modeling and Parameter Estimation

Figure 3.12 Mass estimation for the third link

Some authors suggest several ways to design optimal trajectories, to collect
the data and use it to estimate parameters. Some of them [7] get the excitation
signal as the result of an optimization problem, in which the dynamic equations
and different constraints are involved. Others [8, 9] use multi-sine signals or
triangle signals as reference speed. With that trajectories it is possible to
estimate several parameter at the same time.

In our case, the trajectories were chosen according with the general dy-
namic equation of a robot [10], and simple experiments were performed in
order to calibrate just few parameters at the same time, or even only one. The
more parameter to be tuned at the same time, the more time it takes to the
program to finish the estimation, and sometimes the computer hangs.

According to the equation 3.1, of the motion for an open-chain manipula-
tor, there are terms depending on the position, speed, or acceleration valules:

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ (3.1)

Where M is the manipulator inertia matrix, C is the Coriolis matrix and N
includes gravity and friction terms. Since the gear ratios are known and quite
hight, we can consider the links uncoupled, and we can discard the Coriolis
terms.

According with the above-mentioned, we used different static configura-
tions of the robot to get the terms related with the gravity forces. The robot
was moved at different velocities to get the bearing friction values, and finally,
sinusoidal signals with different amplitude and frequency were applied in each
link to fit the inertia tensor values while all the links were moving at the same
time.

The first experiment tried to get the mass values by means of keeping the
robot without moving. The mass of the third link was the first to be tuned;
as it was related in the previous section, the calibration function was used.
The initial position of the centers of masses was the middle of the arm. The
robot was stopped in its home position, and then the data were stored. Using
that, and selecting the mass as the parameter to be calibrated,the position and
torque signals as calibration criterion, the funcion was executed. The result of
that is shown in fig. 3.12.
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3.3 The Robot Model and Parameter Estimation

Figure 3.13 Joint 2 torque in the model

Figure 3.14 Joint 2 position in the model

The calibration returns a value for the mass equal to 2.18 kg. which is
impossible. Also, as it is seen in the graph, the torque reference is quite bigger
than the torque applied in the model. Checking the values of the torque and
position in the second joint (fig. 3.13 and 3.14), it can be appreciated than the
system becames almost unstable, even with small values of mass like 1 kg. in
the second link. Moreover, it is seen in fig. 3.15 that the torque in the joint
two should be constant and near zero.

Even moving the third link with a considerable speed, it is possible to prove
that the torque in joint two is very small (see fig. 3.16), and therefore, it looks
like the necessary torque applied in the respective joint to move the links two
and three were almost independent, what it is not show in the model.

After some similar experiments, keeping the second link in different posi-
tions and moving the third, that idea was proved. The torque in the second
joint is mainly used to hang the second link, and the conclusion reached was
that what was able to supply that was the gravity compensation arm. The im-
portance of this part at the back of the robot was noticed and it was included
although the complexity of the model increased as well. The first consequence
of this, was that the simulation times became longer. Notice that it is nec-
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Chapter 3. Modeling and Parameter Estimation

Figure 3.15 Joint 2 torque in the real robot

Figure 3.16 Torques in joint 2 and 3 moving the third link

essary to define one revolution joint as a planar cut joint, in the planar loop
made up by the four joints. If not, a simulation error will be displayed. This
option is included in one of the tabs in the joint properties menu.

Refering to equation 3.1, instead of include a spring and a damper to
simulate de frictions, a Bearing Friction class was used in each one of the
revolution joints. It consists of a table with speed values in the horizontal
axis, and the resistive torque values on the vertical. The rest of the values are
lineary interpolated.

To complete the new model, the conectors for the torque signals and the
sensors were included. Because of the real sensors output is measured in motor-
radians, a gain block was included to convert the model sensor output to the
appropiate value, and then work with the model in the same way as in the
real robot is done. After that, a new body model was created, as can be seen
in fig. 3.17.

Another consequence of adding the new part in the model was a greater
stability of the system, making possible to perform some simulations with
reasonable random values, because of that the calibration task was taken up

16



3.3 The Robot Model and Parameter Estimation

Figure 3.17 Body model

again.
In order to see the influence that the values of the masses and centers of

gravity of the second and third link has in the torque signal, the sweepParam-
eter function was employed. Four different experiment were done; selecting as
variable parameter the masses and the position of the center of mass for each
link and the saturated torques as the criterion(see figs. 3.18 to 3.21).

By means of these tests, it was proved that both of the masses and the
possition of the center of mass in the second link had a significative influence
on the torque applied to joint two, being the center of mass of the third link
indepent of it. That and the third link mass, as it is obvious, had influence on
the third joint torque.

It is also possible to execute the sweepTwoParameters function with the
mass and the center of mass as tuner parameters, and the torque on second
joint as criterion to chech that the center of mass has not any influence on
it(see fig. 3.22.)

With this, the next step was to perform a calibration of the three parame-
ters related to the second joint torque, using the saturated torque signal from
the second engine of the robot as criterion, and once these parameters were
tuned, calibrate the possition of the center of mass in the third link in a si-
miliar way. The trajectory used to do that, was trapezium in the second link
reference with which the robot reach a fixed possition, and stays there for a
while, and after that, it comes back to the home position. The third link stays

17



Chapter 3. Modeling and Parameter Estimation

Figure 3.18 Influence of the second link mass in the uv2 and uv3 torques

Figure 3.19 Influence of the third link mass in the uv2 and uv3 torques

Figure 3.20 Influence of the center of mass of the second link in the uv2 and uv3
torques

Figure 3.21 Influence of the center of mass of the third link in the uv2 and uv3
torques
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3.3 The Robot Model and Parameter Estimation

Figure 3.22 sweepTwoParameters output

Figure 3.23 Calibration result for the second joint torque

all the time horizontal. The results are shown in figs. 3.23 and 3.24, and de-
spite the noise coming from the torque sensors, it is noticeable that the torque
signal from the model is similar to the real values, regarding that the model
is being built, and there are some other influences(inertias, frictions) that are
not included on it yet.

Perhaps it would be easier to move the robot to that position, and keep it
there. Then, record only the data corresponding to the interval in which the
robot is stopped, but to implement that in the model is too hard because of the
initial conditions definition, so that the other way was chosen thinking about
performing an initial calibration to get the first values, and if the validation
result was not quite good, try to perform the calibration in other way.

With regard to the parameters of the first link, it is of supposing that as
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Chapter 3. Modeling and Parameter Estimation

Figure 3.24 Calibration result for the third joint torque

the rotational axis is vertical, the inertia parameters6 will be more significant
than the mass. This can be observed by means of: executing the checkCalibra-
tionSensitivity function with the inertia tensor parameters as tuners, and the
torque and position signals as criterions, which concludes that:

Sensitivity Checking.

The calibration criteria are insensitive for small variations
around the nominal values in the following parameters:

new_plant1.new_body_3_links1.BodyShape2.I_11
new_plant1.new_body_3_links1.BodyShape2.I_22
new_plant1.new_body_3_links1.BodyShape2.I_21
new_plant1.new_body_3_links1.BodyShape2.I_31
new_plant1.new_body_3_links1.BodyShape2.I_32

Therefore only the “I 33” parameter will be used. Next, using the sweepT-
woParameters function, choosing the mass and the inertia element as tuners,
the same criterion, and an sinusoidal input trajectory(acceleration non equal
to zero), we can see how these parameters influence on it(see fig. 3.25), and
prove that the mass has not any influence on the torque. Because of the inertia
parameters are related to the acceleration, we tuned all the other parameters
for the links leaving the inertia tensor to be calibrated with a simultaneous
movement of the three links at the end.

As it was said before, the bearing friction model is composed of Coulomb
friction and viscous friction together [11]. Some experiments at different speeds
were carried out, in order to fill the table of the Bearing Friction class, always
taking care about the torque saturation limits so that not to put in a risk the
robot.

Once more, the calibrate function was executed with an triangular input
position reference(constant velocity in absolute values), the corresponding pa-
rameter in the Bearing Friction table as tuner, and the output position and

6The inertia tensor of each Body Shape is composed of: I11, I22, I33, I21, I31 and I32

20



3.3 The Robot Model and Parameter Estimation

Figure 3.25 The mass of the link 1 has not any influence on the torque

Figure 3.26 Bearing Friction Calibration

torques signals as criterions, giving two times more weight to the position(see
fig. 3.26). This kind of experiment was repeated with different speeds in each
link in order to get the friction curves shown in figs. 3.27 to 3.29.

Now, there are only the inertia tensor parameters left to be estimated. Since
they are directly linked with the acceleration values, three different sinusoidal
trajectories were applied to all the joints to move all the links at the same time.
As it was saif before, the inertia tensor of each Body Shape is made by six ele-
ments so that we selected all of them as tuner parameters, the output position
and torque signal as criterions and then, checked if all of them are significative
in the model. In order to do that, the checkCalibrationSensitivity function was
used with the three links individually, before calibrate the parameters. The
output of this function was, for link two and three respectively7:

7This function was executed previously with link 1 in pag. 20
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Chapter 3. Modeling and Parameter Estimation

Figure 3.27 Bearing Friction Curve in Joint 1

Figure 3.28 Bearing Friction Curve in Joint 2

Figure 3.29 Bearing Friction Curve in Joint 3
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3.3 The Robot Model and Parameter Estimation

Sensitivity Checking.

The calibration criteria are insensitive for small variations
around the nominal values in the following parameters:

new_plant1.new_body_3_links1.BodyShape3.I_21
new_plant1.new_body_3_links1.BodyShape3.I_31
new_plant1.new_body_3_links1.BodyShape3.I_32

in the following linear parameter combinations:

-new_plant1.new_body_3_links1.BodyShape3.I_32-
0.5550*new_plant1.new_body_3_links1.BodyShape3.I_11-
0.3026*new_plant1.new_body_3_links1.BodyShape3.I_31

-new_plant1.new_body_3_links1.BodyShape3.I_21+
0.0065*new_plant1.new_body_3_links1.BodyShape3.I_11-
1.0400*new_plant1.new_body_3_links1.BodyShape3.I_31

-new_plant1.new_body_3_links1.BodyShape3.I_22-
0.6795*new_plant1.new_body_3_links1.BodyShape3.I_11-
0.8898*new_plant1.new_body_3_links1.BodyShape3.I_31

-new_plant1.new_body_3_links1.BodyShape3.I_33+
3.2853*new_plant1.new_body_3_links1.BodyShape3.I_11-
20.6474*new_plant1.new_body_3_links1.BodyShape3.I_31

Sensitivity Checking.

The calibration criteria are insensitive for small variations
around the nominal values in the following parameters:

new_plant1.new_body_3_links1.BodyShape5.I_11
new_plant1.new_body_3_links1.BodyShape5.I_22
new_plant1.new_body_3_links1.BodyShape5.I_21
new_plant1.new_body_3_links1.BodyShape5.I_31
new_plant1.new_body_3_links1.BodyShape5.I_32

in the following linear parameter combinations:

-new_plant1.new_body_3_links1.BodyShape5.I_31-
1.1031*new_plant1.new_body_3_links1.BodyShape5.I_32-
1.0848*new_plant1.new_body_3_links1.BodyShape5.I_22

-new_plant1.new_body_3_links1.BodyShape5.I_33-
0.4947*new_plant1.new_body_3_links1.BodyShape5.I_32-
0.3504*new_plant1.new_body_3_links1.BodyShape5.I_22

-new_plant1.new_body_3_links1.BodyShape5.I_21+
0.0138*new_plant1.new_body_3_links1.BodyShape5.I_32+
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Chapter 3. Modeling and Parameter Estimation

Figure 3.30 Inertia tensor calibration for link 1

0.0194*new_plant1.new_body_3_links1.BodyShape5.I_22

-new_plant1.new_body_3_links1.BodyShape5.I_11+
0.5737*new_plant1.new_body_3_links1.BodyShape5.I_32+
0.4146*new_plant1.new_body_3_links1.BodyShape5.I_22

In this case this function gave us besides the parameters that had not any
influence on the criterion, the linear combinations that some of the tuners
formed. Since some of them are the ones that do not affect the criterion, they
were removed as calibration parameters, and the function was executed again.
Then the new output was:

Sensitivity Checking.

The calibration criteria are sensitive for small variations
around the nominal values in all tuner parameters and in all
their linear combinations

Therefore, those parameters were used as tuners, with the same inputs
and the position output and torque signals from the robot as criterion and the
calibrate function was executed to get the last parameters for the links. See
figs. 3.30 to 3.33 to see final results of the calibration task in the three links.
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3.3 The Robot Model and Parameter Estimation

Figure 3.31 Detail of the torque in link 1

Figure 3.32 Inertia tensor calibration for link 2
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Chapter 3. Modeling and Parameter Estimation

Figure 3.33 Inertia tensor calibration for link 3
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4. Control Design

The goal of this chapter is to show how a controller can be designed using some
tools included in the Dymola Design library1, as Overshoot, Settling Time or
Rise Time blocks. An exhaustive description of their operation mode can be
found on [12].

Basically, these blocks are conected to the signal that is wanted to be
optimized, and the specifications are set in their own setup windows. In this
case, the criterion are imposed by the blocks used, and setting a weight for each
one. After that, a similar process to the calibration one is followed, executing
the Optimization function, and selecting as tuners parameters the controller
constants.

The initial implementation of the controller was kept, and two additional
feedforward loops were added, one for the speed, and one using the inverse
model of the one developed before. The idea is with the desired trajectories
and the inverse model, generate the suitable torque to be applied in the real
robot(in this case, the model), and therefore, avoid waiting for the error in the
position loop, which is slower, and introduce a delay.

The implementation of the new controller is shown in fig. 4.1. On the top
it is possible to see the how the inverse model is inserted; it has been flipped
horizontal, and the Two Inputs and Two Outputs blocks2 have been used to
be able to connect two inputs and two outputs respectively.

In figs. 4.2 to 4.4, are displayed the difference between the reference position
and the real output from the sensors in the real robot in the laboratory and in

1This library was include since Dymola 6
2Included in Modelica.Blocks.Math

Figure 4.1 New Feedforward Controller
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Chapter 4. Control Design

Figure 4.2 Real Input and Output for link 1

Figure 4.3 Real Input and Output for the link 2

figs. 4.5 to 4.7 the same signals are plotted when the new controller is working
in the model. Since the previous controller had a good design, it was not
necessary to change any value of its constants to get an good result, altough it
is obvious that is an ideal one since it is not affected by noise and the inverse
model is being used with the direct model. In fig. 4.8 it is possible to appreciate
an initial transient error, that vanish quickly thanks to the feedforward loops.
Only the error in one link has been displayed, altough similar errors and a
similar behaviour appeared in the other links.
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Figure 4.4 Real Input and Output for the link 3

Figure 4.5 Theoretical Response for the Model with the Feedforward Controller
in link 1

Figure 4.6 Theoretical Response for the Model with the Feedforward Controller
in link 2
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Figure 4.7 Theoretical Response for the Model with the Feedforward Controller
in link 3

Figure 4.8 Initial error in the model with the Feedforward Controller
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5. Conclusions and Future
Work

During this paper, a different way of modeling and parameter estimation task
has been introduced.

Dymola is a very powerful software to perform simulations, and thanks to
the new features introduced in the new version (Dymola 6), it is also possible
to work in indentification and optimization task in an confortable enviroment
on an easy way.

Although it is not compulsory to have any previous knowledge about Mod-
elica language, sometimes it is good to find out a problem, which is quite
difficult when you are working with a big model and something is wrong.

Personally, I have not found a lot of problems using this sofware, except
the usual ones that appear when someone starts to work with a new program.
Perhaps the help guide could be better.

Regarding to the main goal of this Master Thesis, a good model of a three
links robot has been developed, taking care of the space restriction in the
laboratory to move the robot in other possibilities, and the risk of forcing it
moving at higher speeds or frequencies.

But at least the main steps about how to build a grey-box model, and
calibrate its parameters with Dymola have been presented, and in a future
work, another things could be added.

For instance, it could be possible to increase the degrees of freedom, check
the effect of flexibilities in the position tracking when the robot is subjected to
very quick direction changes, or the influence of different tools with different
center of mass.

With regard to the control design, given the possibilities, it was not nec-
essary to introduce a lot of changes, and was really easy to check the im-
provement of the robot behavior, at least theoretically, with the use of the
feedforward and the inverse model. But of course, using the design tools de-
scribed before, the control design becomes a easy task, with a basic knowledge
in control theory and avoiding the hard mathematical calculations.
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A. Controller values

Two cascaded PID-controllers (Pos and Vel)

# {joint1 joint2 .... joint6}

IrbKinematics_JointType RegParDefault_KPosDefault = {
10.0, 12.5, 17.5, 10.0, 15.0, 10.0

};

IrbKinematics_JointType RegParDefault_KVelDefault = {
/* From DSP era: 0.3, 0.75, 0.75, 0.03, 0.05, 0.03 */
0.3/2, 0.75/2, 0.75/2, 0.03/2, 0.05/2, 0.03/2

};
IrbKinematics_JointType RegParDefault_TiVelDefault = {

0.1, 0.05, 0.05, 0.02, 0.01, 0.01
};
IrbKinematics_JointType RegParDefault_TiPosDefault = {

0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};
IrbKinematics_JointType RegParDefault_TdDefault = {

0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

// filter gains for derivative part sTd/(sTd/N+1)
IrbKinematics_JointType RegParDefault_NDefault = {

10.01, 10.02, 10.03, 10.04, 10.05, 10.06
};

IrbKinematics_JointType RegParDefault_TauMaxDefault = {
6.0, 10.5, 6.8, 1.5, 1.8, 0.9
/* 6.3, 10.9, 7.0, 1.54, 1.93, 1.0 */
/* 3.0, 6.0, 4.0, 0.7, 1.0, 0.6 */

};

// some problems with offset at start...
IrbKinematics_JointType RegParDefault_ImaxVelDefault = {

3.5, 6.0, 4.0, 0.8, 1.2, 0.6
/* Disable I-parts where possible due to friction/noise problems: */
/* 0.0, 6.0, 4.0, 0.0, 0.0, 0.0 */

};
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B. Matlab Code For Data
Processing

function parameters=trtparamtrs(exc_inp,exc_resp,sim_time,file_name)
%Given the outputs and inputs froma Exec_handler, the function trtparamtrs
%mofify them in order to create the correct *csv file to be used in
%Dymola.
%
%parameters=trtparamtrs(exc_inp,exc_resp,sim_time,file_name)
%
%exc_inp and exc_resp are the output files of Exec_handler, sim_time is the
%simulation time, and file_name is a string which is used to create de csv
%file in the Dymola work folder.
%
%Index to be added in Excel.
%for three links or:
%time,uv1,uv2,uv3,u1,u2,u3,p1,p2,p3,q1,q2,q3
% 1 2 3 4 5 6 7 8 9 10 11 12 13

disp(’ ’);
disp(’ ’);
disp(’WARNING!’);
disp(’ ’);
disp(’Make sure that the input sim_time and the sample time values are right’);
disp(’ ’);
num_data=length(exc_inp);
sample_time=0.005
time=[0:sample_time:sim_time]’;
limit=num_data-2; %Due to the diff function

uv1=exc_inp(1,:)’;
uv2=exc_inp(2,:)’;
uv3=exc_inp(3,:)’;
uv=[uv1 uv2 uv3];

u1=exc_inp(7,:)’;
u2=exc_inp(8,:)’;
u3=exc_inp(9,:)’;
u=[u1 u2 u3];

p1=exc_inp(4,:)’; %Used with the model in motor_rad.
p2=exc_inp(5,:)’;
p3=exc_inp(6,:)’ + p2;
p=[p1 p2 p3];

v1=(1/sample_time).*diff(p1);
v2=(1/sample_time).*diff(p2);
v3=(1/sample_time).*diff(p3);
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Appendix B. Matlab Code For Data Processing

v=[v1 v2 v3];

q1=exc_resp(1,:)’; %Used with the model in motor_rad.
q2=exc_resp(2,:)’;
q3=exc_resp(3,:)’ + q2;
q=[q1 q2 q3];

% dq1=(1/sample_time).*diff(q1); Not used because of the noise.
% dq2=(1/sample_time).*diff(q2);
% dq3=(1/sample_time).*diff(q3);
% dq=[dq1 dq2 dq3];

parameters=[time(1:limit,:) uv(1:limit,:) u(1:limit,:) p(1:limit,:) q(1:limit,:)];

if isa(file_name,’char’)
cd C:\Documents and Settings\’Luis\’Mis documentos\’Dymola\
csvwrite(file_name,parameters);

% csvwrite([’tau1_’ file_name],parameters(:,[1 2]));
% csvwrite([’tau2_’ file_name],parameters(:,[1 3]));
% csvwrite([’tau3_’ file_name],parameters(:,[1 4]));

cd C:\MATLAB7\work
end
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C. Calibration Results

FIRST LINK DATA

mass irrelevant
center of mass irrelevant
I11 0 kg.·m2

I22 0 kg.·m2

I33 16.69833 kg.·m2

I21 0 kg.·m2

I31 0 kg.·m2

I32 0 kg.·m2

SECOND LINK DATA

mass 15.8036 kg.
center of mass {0,0,0.71}
I11 0.00026 kg.·m2

I22 10.84756 kg.·m2

I33 0.013 kg.·m2

I21 0 kg.·m2

I31 0 kg.·m2

I32 0 kg.·m2

THIRD LINK DATA

mass 37.8274 kg.
center of mass {0.55936,0,0}
I11 0 kg.·m2

I22 0 kg.·m2

I33 0.00328 kg.·m2

I21 0 kg.·m2

I31 0 kg.·m2

I32 0 kg.·m2
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Appendix C. Calibration Results

BEARING FRICTION VALUES IN JOINT 1

Speed(rad/seg.) τ(N · m)

0.001 0.952422
0.004 9.90996
0.007 13.226781
0.014 14.147392
0.028 12.788362
0.056 13.415834
0.084 12.684469
0.112 12.878753
0.14 12.951634
0.21 13.033332
0.28 13.271714
0.35 13.395182
0.42 13.689285
0.49 14.801288
0.56 15.766499
0.63 15.86827

BEARING FRICTION VALUES IN JOINT 2

Speed(rad/seg.) τ(N · m)

0.007 1.177682
0.014 0
0.028 0
0.056 0
0.084 0
0.112 0
0.14 0
0.21 0
0.28 1.617848
0.35 2.629839
0.42 8.696505

36



Appendix C. Calibration Results

BEARING FRICTION VALUES IN JOINT 3

Speed(rad/seg.) τ(N · m)

0.007 25.996664
0.014 25.914174
0.028 25.898918
0.056 23.455017
0.084 21.736233
0.112 21.153204
0.14 18.785745
0.21 14.792344
0.28 10.864357
0.35 6.1032148
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