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Abstract

The SMErobot is an EU project aiming at giving small and medium en-
terprises the benefits of robotic automation. This thesis tries to solve the
problem of teaching a robot how to grind a surface. The algorithm presented
in this thesis reconstructs a surface by triangulating a point cloud. From this
surface a path, covering the whole surface, is computed and translated into a
RAPID program. The algorithm is integrated into the ABB Lead-Through
Server.
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Notations

Sets, vectors and scalars
X = {p

1
, ..., p

n
} A set of coordinates

XB = {p
1
, ..., p

n
} A set of bucket coordinates

s A scalar
p A coordinate or point
v A vector
v A vertex
G(V,E) A graph
M(V,E) A mesh
V = {p

1
, ..., p

n
} A set of vertices

E = {{v,w}1, ..., {x, y}n} A set of edges

Operators
D(p, r) The discretization operator
D(B) The bucket index operator
NX(p, r) Neighborhood operator
NX(B) Bucket vertex neighborhood operator.
NXB

(p) Bucket index neighborhood operator
Nadj(p) Adjacency operator
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Chapter 1

Introduction

A short introduction of this thesis and its place within the SMErobot project
is presented in this chapter. First a brief description of the SMErobot project
will be made. This is followed by the reasons for incorporating the grinding
process into the project. Finally an overview of the developed algorithm will
be given.
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16 Introduction

1.1 SMErobot

The SMErobot project is an Integrated Project within the 6th Framework
Program of the European Union. The aim of the project is to grant small
and medium sized enterprises the benefits of robotic automation.

The SMErobot project is split into three parts.

• Shop-floor-suitable devices for intuitive robot interaction.

• Task and motion definition without explicit programming.

• Physically harmless and low-cost robot mechanic design.

The intended user is a worker without any previous programming knowledge
thus the target platform should be a system capable of understanding human-
like instructions e.g. voice commands, manual guidance of robot etc. The
setup of the system should be done by an experienced operator.

This thesis focuses on the second part of the SMErobot project and utilizes
the concept of Lead-Through Programming to achieve the defined goals.

1.2 Grinding in SMErobot

The process of grinding a metal casting is today a hard and unhealthy job.
The vibrations damage the blood vessels in the hand and this result in a
condition called white fingers. Because of this a worker is not allowed to
work more than 90 minutes without a break.

The time it takes to finish the grinding of a casting varies but in average it is
around 30 minutes. This in combination with the health restrictions creates
a bottleneck in the workshop process.

Automating the grinding would lead to a better situation for the workers
and higher efficiency of the workshop.

1.3 Problem Description

Before automating the grinding process there are several issues to take into
consideration. A grinding algorithm should be able to work for most situa-
tions a worker can handle today.

The most important factors concerning the grinding process is the surface
geometry and the size of the contact area of the grinding disc.



1.4 Algorithm Description 17

It is assumed in this thesis that the surface geometry is simple. The surfaces
under consideration are planar or slightly curved. They are also free from
fine details such as edges and holes.

The area of the contact area of the grinding disc is important to know. This
is to assert that the surface of grinding will be completely covered by the
grinder. It is also useful for minimizing overlapping strokes.

Both the disc angle towards the surface and the disc radius influence the
size of the contact area. The disc radius decreases during operation and the
angle varies between 30◦ and 45◦.

In this thesis the aim is to consider the dynamic properties of the grinding
disc. It is not, however, in the scope of this thesis to construct a model of
the changing contact area.

A final issue is that the material to be removed is not uniformly distributed
on the surface. This problem is only briefly covered in this thesis.

1.4 Algorithm Description

The main idea behind the grinding algorithm is to reconstruct a grinding
surface from a point cloud. A path, visiting all mesh vertices exactly once,
is then generated and converted into robot coordinates.

The treating of the reconstructed surface as a graph is due to the work in
[11]. They present an algorithm for covering a surface by splitting the surface
into a grid, which is easily converted into a graph. It is assumed that by
visiting all nodes in the graph the complete surface will be covered.

The assumption holds when the size of the contact area of the grinding disc
is sufficiently large. The algorithm developed in this thesis will cover the
surface if the tool used does not change its contact area during operation.

The grinding algorithm developed in this thesis can be split up in four signifi-
cant steps: surface recording, surface reconstruction, path planning and path
execution, see Figure 1.1. The main focus of this thesis is on the second, third
and fourth part. These three steps will be presented first and the remaining
two steps are presented together with the Lead-Through Programming.

Surface recording, or point sampling, is a simple step that should only be
run once, for each surface. It records the robot position and tool orientation
and makes the data available for the surface reconstruction step.

Surface reconstruction together with surface optimization is the most impor-
tant steps of the algorithm. Several parameters determine the result and it
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Record 
Surface 

Reconstruct 
Surface 

Optimize 
Surface 

Plan Path 

Grind 

Figure 1.1: A schematic flowchart of the algorithm developed in this thesis.

is important for the operator to be familiar with the influence theses param-
eters have on the outcome. The surface optimization depends on the disc
diameter which means that when the disc diameter changes the optimization
has to be redone.

The path planner calculates a path, covering the whole surface, from the
reconstructed surface. This step can fail. If the path planner cannot find a
path one or more of the previous steps has to be done again, with different
settings.

Path execution converts the generated path into a sequence of robot coordi-
nates that is passed to the robot. It also considers the setting of robot pa-
rameters, e.g. speed, tool and zone, and the correct handling of the grinder.

The different steps of the algorithm are implemented with C# on the .NET
platform, version 3.0.



Chapter 2

Surface Reconstruction

The problem of reconstructing a surface from a point cloud has attracted a
lot of attention the past few years. Several different techniques have been
developed, focusing on different aspects of the mesh construction.

When considering an algorithm for surface reconstruction one has to analyze
the problem at hand to see which aspects the meshing algorithm should op-
timize. The surface reconstruction problem considered in this thesis has two
significant properties: the collection of points is done previous to the mesh-
ing and the meshing is repeated several times with different optimization
parameters.

The algorithm in this thesis is a modified version of the algorithm proposed
in [1] whereas that algorithm is an online algorithm the one developed in this
thesis is running offline. Online in this context means that the collection of
points is done simultaneously with the meshing. Offline means that all points
are collected prior to the meshing.

In the following sections the different steps of the meshing algorithm will be
described in more detail. Emphasis will be laid on the difference between
the algorithm in [1] and the one developed in this thesis.

Section 2.1 describes the data structure containing the point cloud, Section
2.2 covers the normal estimation, Section 2.3 covers the triangulation and
Section 2.4 deals with the final optimization of the mesh.

19



20 Surface Reconstruction

2.1 Data Acquisition and Representation

The meshing algorithm developed in this thesis relies on the underlying data
structure, containing the collected points, to be fast and efficient at finding
local point sets close to a given point. The reason for this is that the meshing
is done locally: each meshing step is only affecting a set of points close to
each other, also called neighborhoods. A data structure that fulfills this
requirement is the bucket space, see [7] or [1]. This data structure will be
used for all set of points in the surface reconstruction algorithm.

2.1.1 Neighborhood

The spherical neighborhood of a point p = (px, py, pz)T in a point set X
is defined as all points in X that are inside a sphere of radius R and with
center at p.

NX(p,R) = {q ∈ X| ||q − p||2 ≤ R} (2.1)

R is called the neighborhood radius.

2.1.2 Bucket Space

The main idea behind the data structure is to divide the point space into a
grid with a fixed resolution r. Each grid point corresponds to a cube with
side length r. The cubes are called buckets. The bucket space is visualized
in Figure 2.1.
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Figure 2.1: A point set divided into buckets.
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To determine which bucket a point belongs to it is divided by r and rounded
towards negative infinity. The operator D(p, r) is the discretization operator
and is defined as,

D(p, r) =
⌊ p

r

⌋
(2.2)

where � � is the floor operator, rounding the components of p towards the
integer closest to negative infinity. The discretization operator is also defined
for a bucket B, with side resolution r, as,

D(B) = D(p, r), p ∈ B (2.3)

when B �= ∅. It is also called the (bucket) index operator. This operator is
used in the following definitions of the bucket neighborhoods.

Similar to the definition of the point neighborhood, the bucket neighborhood,
of a bucket B, is defined as:

NXB
(B) = {q ∈ XB | ||q −D(B)||2 ≤

√
3} (2.4)

where XB is the set of bucket indices. In words the definition can be ex-
pressed as: the bucket neighborhood of B is all buckets whose index has no
component that differs more than 1 from the corresponding component in
B:s index.

In this thesis the use of the term bucket neighborhood will be used both for
describing the set of discrete indices of the buckets and the volume defined
by the indices and the resolution r. The set of vertices in the bucket neigh-
borhood of B is defined in (2.5), where X is the set of points in the bucket
space.

NX(B) = {q ∈ X| D(q, r) ∈ NXB
(B)} (2.5)

Implementation

Each bucket has a binary tree containing the points which is inside the
volume of the bucket. The bucket also contains a list of its neighboring
buckets, determined by (2.4). The definition of the bucket neighborhood in
(2.4) says that there can only be 26 bucket neighbours to a bucket B.

The buckets are inserted into a binary tree and sorted by their discrete
coordinates. The binary tree assures good insertion and search speed. The
time complexity for both operations are O(log(n)).
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When inserting a new point, into the bucket space, the corresponding bucket
is retrieved and the point is inserted in it. If there is no bucket corresponding
to the discretized point coordinate a new one is created. The new point is
inserted into the bucket, see Algorithm 2.1 for the source code.

Algorithm 2.1: Insertion of a new coordinate into a bucket space.
void I n s e r t (TValue value ) {

Vector key = this . BucketKey ( value ) ;
Bucket<TValue> bucket ;
this . count++;
i f ( this . buckets . TryGetValue ( key , out bucket ) ) {

bucket .Add( value ) ;
} else {

bucket = new Bucket<TValue>(this . neighborhoodRadius , key ) ;
bucket .Add( value ) ;

// Adds the new bucke t to the neighborhood of the o ld bucke t s
and them to i t .

foreach (Bucket<TValue> neighbour in this . BucketNeighborhood (
key ) ) {
bucket .Add( neighbour ) ;
ne ighbour .Add( bucket ) ;

}
this . buckets .Add( key , bucket ) ;

}
}

2.1.3 Neighborhood Search

Conducting a neighborhood search or retrieving the neighborhood of a point,
p, shows the power of the bucket space. The neighborhood search builds on
the assumption that all neighbors of p are inside the bucket neighborhood
of its associated bucket, B. This means that only the bucket neighborhood
of B, NX(B), needs to be searched for neighbors. In Figure 2.2 the relevant
sets of vertices can be seen.

Implementation

The search is done by retrieving the bucket, B, corresponding to the dis-
cretized coordinate of p, see Algorithm 2.2. As previously assumed all neigh-
bors are inside the neighborhood of B. Retrieving the neighbors of B can
be done in constant time. This is because that each bucket contains a list
of its neighbors. If a point in the bucket neighborhood fulfills the criteria in
(2.1) it is a neighbor.
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Figure 2.2: A two dimensional neighborhood search. The light grey area is
the white points neighborhood. The dark grey squares are the buckets that
will be checked in the neighborhood search, of containing a neighbor.

Algorithm 2.2: Discretizing of a point coordinate.
Vector BucketKey (TValue value ) {

double x = Math . Floor ( value . Point [ 0 ] / this . neighborhoodRadius ) ;
double y = Math . Floor ( value . Point [ 1 ] / this . neighborhoodRadius ) ;
double z = Math . Floor ( value . Point [ 2 ] / this . neighborhoodRadius ) ;
return new Vector (x , y , z ) ;

}

By setting the grid resolution to R, see (2.1), the search is time optimal and
the previous assumption is valid. The search is time optimal because R is the
smallest r for which the assumption is valid. If the resolution is smaller than
the neighborhood radius then the assumption is invalid, because a neighbor
could be in a bucket outside the bucket neighborhood. If the resolution is
greater than the neighborhood radius the assumption is valid, but it also
means that a larger volume has to be tested. This means that several more
unnecessary neighbor checks will be conducted than if the neighborhood
radius is used. This results in a less than optimal search.

The implementation of the search is straight forward and can be seen in
Algorithm 2.3. Note that the center point is in the neighborhood if it is
inserted into the bucket space.
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Algorithm 2.3: Neighborhood search and neighborhood criteria.
List<TValue> Neighborhood (TValue center , double rad ius ) {

IL i s t<Bucket<TValue>> buckets = this . BucketNeighborhood ( center ) ;
L i st<TValue> va lues = new List<TValue>() ;

foreach (Bucket<TValue> bucket in buckets ) {
foreach (TValue value in bucket ) {

i f ( this . I sNeighbour ( center , radius , value ) ) {
va lues .Add( value ) ;

}
}

}
return va lues ;

}

bool IsNeighbour (TValue center , double radius , TValue value ) {
return center . DistanceTo ( value ) <= rad ius ;

}

2.2 Normal Estimation

The remeshing algorithm, presented later, relies on the correct estimation
of the surface normal in each point. Estimating the normal of a point, p, is
done by fitting a tangent plane through the point neighborhood of p

By treating the point cloud as a distribution of three random variables the
problem of calculating the normal of the tangent plane is the same as find-
ing the direction where the distribution has the smallest variance. A small
variance corresponds to a small separation of points.

Two different cross sections of the same neighborhood are shown in Figure
2.3 and Figure 2.4, with vectors pointing in the direction of largest variance.

2.2.1 Estimation

Finding the variance of the distribution is done by calculating the covariance
matrix. The standard definition of the covariance matrix and the mean value
can be seen below,

ci,j =
N∑
k

(xk,j − μi)(xk,j − μj) (2.6)

μi =
1
N

N∑
k

xk,i (2.7)
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where ci,j corresponds to the matrix element with row index i and column
index j, xk,j is the k:th point and j:th component and μi is the mean value,
see (2.7), of the i:th component.
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Figure 2.3: A couple of points
taken from the same surface seen
at a small variance cross section.
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Figure 2.4: Same points as in Fig-
ure 2.3 but seen from angle with a
high variance cross section.

Diagonalizing the covariance matrix of the point distribution gives the eigen-
vectors and eigenvalues which correspond to the variance and direction of
the variance respectively. The eigenvector belonging to the largest eigenvalue
points in the direction of the largest variance, the second eigenvector points
in the direction with the largest variance orthogonal to the first eigenvector
and so on.

The smallest eigenvalue, λmin, corresponds to the eigenvector pointing in the
direction of the smallest variance, emin, of the distribution. This direction
is taken as the normal of the tangent plane.

The normal of the tangent plane can be directed in the opposite direction
of the actual surface. To avoid this the normal is multiplied with the tool
orientation, o, at the point, so that the correct sign can be obtained.

n = eminsign
(
eT

mino
)

(2.8)

Implementation

The estimation of the surface normals in the algorithm proposed in [1] is
done continuously. For each new recorded point the normal is estimated
and its neighbor’s normals are reestimated. As described in the overview,
see Figure 1.1, the surface recording, in this thesis, is done before surface
reconstruction. This makes it possible to estimate the normal for all vertices
in one step hence reducing calculation time.

The normal estimation method in Algorithm 2.4 is executed for all points
once.

Special care has to be taken when a point has less than two neighbors, it
is impossible to fit a plane through two points. The normal will not be
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estimated for such a vertex and the vertex will be removed after the normal
estimation of all vertices is completed.

Algorithm 2.4: Normal estimation of a point cloud
void EstimateNormal ( Sur f acePo int point ) {

List<SurfacePoint > po ints = this . va lues . Neighbourhood ( point ) ;
i f ( po ints . Count > 2) { // can ’ t e s t imate the normal wi th l e s s

than three poin t s .
double [ , ] covMat = this . CovarianceMatrix ( po ints ) ;
Vector normal = this . Eigen ( covMat ) ;
point . Normal = normal ∗ ( normal ∗ point . Orient < 0 ? −1 : 1) ;

}
}

The method used to calculate the eigenvalues and eigenvectors is based on
applying several transformations to a symmetric matrix with the aim of
reducing it to diagonal form. The transformation used is the Jacobi rotation
which applied to a matrix strives to eliminate one of the off diagonal elements.

The convergence of this method is quadratic and its time complexity is O(n3),
for n = 3 this is approximately constant time. See [4] for theory and detailed
implementation in C.

2.3 Meshing

The idea behind the algorithm developed in this thesis is to reconstruct
the surface of grinding and then apply a path planning algorithm to this
surface. The reasoning behind this approach is that, although it rises the
level of complexity, it is a very flexible solution. It clearly separates the
problem of physically teaching the surface of grinding and the subsequent
path planning step.

An alternative approach is the so called brute force method. The idea behind
that approach is to simply record the motion of the robot and then replay
the recorded path. This is not a flexible solution and it is hard to apply later
modifications to the path. The requirement of adjusting the path planning to
the changing disc diameter was the strongest argument against this approach.

The meshing step can be divided into four sub-steps: data representation,
neighborhood projection, edge intersection and edge insertion. This leads to
the question of which data structures should be used to represent the mesh?
Mainly two approaches have been considered and will be discussed in Section
2.3.1

Inserting a vertex into the mesh is described by simple rules. An overview
of theses rules and the steps required to insert a new vertex is described in
Section 2.3.2.
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When inserting a new vertex, vnew, in the mesh it is required to project its
neighborhood onto the plane defined by its normal and coordinate. Care has
to be taken so that all endpoints of edges that can intersect the new edges
will be projected. This is described in Section 2.3.3. Determining if two line
segments intersect is described in Section 2.3.4

2.3.1 Mesh Representation

Several data structures exist that can be used for representing a mesh. The
simplest is the undirected edge. A mesh described by undirected edges stores
information of its vertices and which vertices that are connected to which.
It is easy to implement a representation based on the undirected edge. No
special care has to be taken considering the ordering of edges.

The drawback is that no information about the triangles, or faces, of the
mesh is stored. It is also hard to define the boundary of the mesh with the
undirected edge representation. These drawbacks are important enough to
consider alternatives to the undirected edge. The approach chosen is the
half-edge data structure, which is also used in the meshing algorithm in [1].

An edge in a mesh represented by half-edges consists of a pair of half-edges.
These half-edges are directed and connected in such a way that face and
border information is available. This additional information comes with a
price in additional computation time and implementation complexity.

The meshing step does not require the additional information provided by
the half-edge and is implemented with the undirected edge. This is not the
case when considering the optimization step. Before optimizing the mesh it
is converted into a mesh represented by half-edges. The tradeoff between
the different representations has some drawbacks which are discussed at the
end of this chapter.

Definitions

A mesh, M(V,E) is defined as a set of vertices, V = {v1, ..., vn}, connected
by a set of edges, E = {{v,w}1, ..., {x, y}m}, v, w, x, y ∈ V . A vertex
correspond to a point in the point cloud and an edge connects two vertices.
A vertex is said to be adjacent to another vertex if they are connected. This
can be extended to the adjacency neighborhood of a vertex v defined in (2.9),

Nadj(v) = {w ∈ V |{v,w} ∈ E} (2.9)

where V is the set of vertices in the mesh and E is the set of vertex pairs
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corresponding to the edges. The degree of a vertex is the number of edges
connected to it.

Considering the half-edge data structure a face is defined as the surface
between three counterclockwise connected half-edges, see Figure 2.5. The
border of a mesh is defined as the vertices with half-edges not belonging to
a face.

 

F3 

F2 

F1 

Border 

Figure 2.5: Graphical interpretation of a simple mesh with a half-edge data
structure.

Implementation

Representing the mesh with undirected edges is straightforward. Each vertex
correspond to a point in the point cloud, represented by a robtarget, see
Appendix C for a definition. Each vertex also contains a list of vertices that is
their adjacency neighborhood. Inserting and removing a vertex from the list
corresponds to inserting and removing an edge. The edges can be retrieved
by creating temporary edges from the vertex and its adjacent vertices, see
Algorithm 2.5.

Algorithm 2.5: Retrives the edges of a vertex.
List<Vertex> neighbours ;
IL i s t<Edge> Edges {

get {
List<Edge> l i s t = new List<Edge>(this . Degree ) ;
foreach ( Vertex neighbour in this . ne ighbours ) {

l i s t .Add(new Edge ( this , ne ighbour ) ) ;
}
return l i s t ; }}

The half-edge data structure is more complex. Different implementations
exist and the one used in this thesis can be seen in Algorithm 2.6. Only the
most important attributes have been included.
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Algorithm 2.6: Attributes of the half-edge data structure used in this thesis.
class HalfEdge : IComparable<HalfEdge> {

// . . . //
Vertex ta rg e t ;
HalfEdge next ;
HalfEdge prev i ous ;
HalfEdge mirror ;
Face f a c e ;
// . . . //

}

An edge consists of two half-edges referenced by each other with the mirror
pointer. The target of a half-edge, he, is the vertex where he is incident to.
The next pointer points at the next counterclockwise outbound half-edge at
the target of he. The previous pointer is pointing to the half-edge with its
next pointer pointing to he. If the half-edge belongs to a face it is stored in
face, see Figure 2.6 for a graphical interpretation of the references.

mirror 

next 

next 

previous 

previous 

target 

target 

he1 he2 face 
face 

Figure 2.6: Graphical interpretation of the half edge data structure. Blue
arrows correspond to pointers and the arrow points at the target of the
pointer.

Switching representation

In the beginning of this section it is stated that a conversion between the
two mesh representations is needed. The conversion is conducted by replac-
ing all edges with half-edge pairs. Then for each vertex, v ∈ V , and its
adjacency neighborhood is projected onto the plane defined by v:s normal.
The half-edges are then sorted according to their angle from the positive
x-axis. Finally the next and previous pointers are adjusted according to
the sorting. The source code can be seen in Algorithm 2.7
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Algorithm 2.7: Converts the undirected edge representation into a half-edge
representation
void ConstructFaces ( ) {

// removes prev ious face informat ion and s o r t s the ha l f −edges f o r
each v e r t e x

foreach ( Vertex vertex in this . va lues ) {
vertex . ClearFaces ( ) ;
ver tex . Adjust ( ) ;

}

// Creates the f ac e s and i d e n t i f i e s the border //
}

Algorithm 2.8: Sorts the vertex’ half edges counterclockwise according to
the vertex’ projection.
void Adjust ( ) {

i f ( this . Degree > 0) {
List<HalfEdge> hal fEdges = new List<HalfEdge>(this . Degree ) ;
hal fEdges . AddRange( this . Hal fEdges ) ;
i f ( hal fEdges . Count == 1) {

hal fEdges [ 0 ] . Mirror . Next = hal fEdges [ 0 ] ;
} else i f ( hal fEdges . Count == 2) {

hal fEdges [ 0 ] . Mirror . Next = hal fEdges [ 1 ] ;
hal fEdges [ 1 ] . Mirror . Next = hal fEdges [ 0 ] ;

} else {
// pro j e c t t he neighborhood
double [ , ] rotMat = this . MakeRotationMatrix ( ) ;
this . Project2D ( rotMat , this . Point ) ;
foreach ( HalfEdge edge in hal fEdges ) {

edge . Target . Project2D ( rotMat , this . Point ) ;
}
// Sort edges and ad j u s t t he po in t e r r e f e r enc e s .
hal fEdges . Sort (new AngleComparer ( ) ) ;
hal fEdges .Add( hal fEdges [ 0 ] ) ;
for ( int i = 1 ; i < hal fEdges . Count ; i++) {

hal fEdges [ i ] . Mirror . Next = hal fEdges [ i − 1 ] ;
}}}}

After the half-edges are constructed, and correctly connected, the faces and
the border can be constructed. It is done by going through all half-edges and
checking wether they belong to a face. A half-edge, he, belongs to a face if
the following condition hold he.next.next.next = he, if not the half-edge
belongs to the border, see Algorithm 2.9 for the face construction source
code.

Algorithm 2.9: Constructs the faces in a halfedge mesh.
void ConstructFaces ( ) {

// . . . //
foreach ( Vertex vertex in this . Vertexes ) {

foreach ( HalfEdge edge in vertex . HalfEdges ) {

i f ( edge . Face == null && edge . Next . Next . Next == edge ) {
Face f a c e = new Face ( edge ) ;

edge . Face = f ac e ;
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edge . Next . Face = f ac e ;
edge . Next . Next . Face = f ac e ;

f a c e s . AddLast ( f a c e ) ;
} else {

edge . Target . OnBorder = true ;
edge . Orig in . OnBorder = true ;
edge . Face = Face . Outside ;
border . AddLast ( edge . Target ) ;

}
}

}
// . . . //

}

2.3.2 Insertion

When a new vertex, vnew, is inserted into the mesh its neighborhood has
to be remeshed. This is done by first projecting the neighborhood onto
the plane defined by vnew:s normal nvnew . This is followed by constructing
new edges between the neighbours and vnew. These new edges are sorted
according to length. Beginning with the shortest, the new edges are tested
for insertion according to the following two rules.

• The new edge is inserted if no old edges intersect the new edge.

• The new edge is inserted if all intersecting edges are longer than the
new edge.

Rn 

Figure 2.7: A new vertex is inserted. Candidate edges are drawn in red if
they are invalid and in green if they are valid.The circle is the neighborhood
radius of the mesh.

Figure 2.7 shows the insertion of a new vertex. The red edges will not be
inserted. The green edges will be inserted and all black edges that inter-
sects with them will be removed from the mesh. Pay especially attention
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to the case when a green edge intersects an edge originating from inside the
neighborhood but ending outside, see Figure 2.8 for the result.

Rn 

Figure 2.8: The result of the remeshing around a newly inserted vertex.
Green edges are inserted reds removed.

Implementation

The method for inserting a new vertex is presented in Algorithm 2.10. The
current implementation removes all old edges from the mesh prior to the
insertion test. The insertion criteria concerns properties of edges and it
is thus better to use edges instead of pairs of vertices. By removing the
connections and storing them as edges locally it is also guaranteed that the
local set of old edges will be unique.

Algorithm 2.10: This method inserts a new vertex into a mesh.
public bool Add( Vertex newVertex ) {

i f ( this . va lues . I s I n s e r t a b l e ( newVertex ) ) {
// r e t r i e v e the v e r t e x neighborhood , wi thout the

newVertex .
List<Vertex> neighbourhood = this . va lues . Neighborhood (

newVertex ) ;
// add the v e r t e x to the under ly ing bucke t space ,

wi thout any v i c i n i t y check .
this . va lues . I n s e r t ( newVertex ) ;
newVertex . Id = Vertex . current Id ++;

// pro j e c t t he neighbourhood .
this . RotateVertexes ( newVertex , neighbourhood ) ;

Li st<Edge> candidateEdges = new List<Edge>() ;
Li st<Edge> oldEdges = new List<Edge>() ;

// remove o ld edges from the mesh and create new
candidate edges .

foreach ( Vertex vertex in neighbourhood ) {
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candidateEdges .Add(new Edge ( newVertex , vertex ) ) ;
IL i s t<Edge> edges = vertex . Edges ;
oldEdges . AddRange( edges ) ;
this . Remove ( edges ) ;

}

// i n s e r t t he new edges and remove o ld i n t e r s e c t i n g
edges .

this . I n s e r t ( candidateEdges , oldEdges ) ;
return true ;

} else {
return fa l se ;

}
}

The insertion method can be seen in Algorithm 2.11. Given a list of new
edges and the old edges from the neighborhood of vnew the new edges are
tested for insertion. After all new valid edges are inserted the remaining old
edges are reinserted into the mesh.

Algorithm 2.11: Insertion and testing of new edges.
private void I n s e r t ( Li st<Edge> candidateEdges , Li st<Edge> oldEdges ) {

foreach (Edge candidateEdge in candidateEdges ) {
List<Edge> in t e r s e c t i ngEdge s = new List<Edge>() ;
bool va l i d = true ;
foreach (Edge oldEdge in oldEdges ) {

i f ( candidateEdge . Inters ect s 2D ( oldEdge ) ) {
i f ( oldEdge . Length < candidateEdge . Length ) {

va l i d = fa l se ;
break ;

} else {
i n t e r s e c t i ngEdge s .Add( ( Edge ) oldEdge ) ;

}
}

}
i f ( va l i d ) {

foreach (Edge edge in i n t e r s e c t i ngEdge s ) {
oldEdges . Remove ( edge ) ;

}
this . I n s e r t ( candidateEdge ) ;

}
}
this . I n s e r t ( oldEdges ) ;

}

2.3.3 Projection

When a new vertex, vnew, is inserted into the mesh the neighborhood of
vnew has to be remeshed. The first step of remeshing is to project the
neighborhood onto the plane defined by vnew and its normal, nvnew . The
normal of vnew defines a rotation matrix used in the projection.

Rvnew =
(
nx ny nnew

)
(2.10)
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The column vectors, in (2.10), nx and ny are orthogonal to nnew and each
other. A good choice is to use the eigenvectors from the normal estimation
step, see Section 2.2. The projection of a vertex, vi is defined as follows.

v′i =
(

1 0 0
0 1 0

)
(Rvnewvi + vnew) (2.11)

Shown in Figure 2.7, edges, connecting vertices inside the neighborhood of
vnew with vertices outside the neighborhood, also needs to be tested if they
intersect a new edge. This means that the outside vertices, connected to
neighborhood vertices, must be projected too. This extended set of vertices
is called the extended neighborhood of vnew, or the projection neighborhood.

Implementation

Projecting the extended neighborhood of a new vertex, vnew, is done by the
method seen in Algorithm 2.12. Checking if a vertex is in the neighborhood
is a O(Dmax ∗ ninside ∗ 2 + n2

outside) operation, where Dmax is the maximum
degree of the neighborhood vertices. ninside and noutside is the number of
vertices inside and outside the neighborhood.

Algorithm 2.12: Method projecting the extended neighborhood of vnew.
void RotateVertexes ( Vertex newVertex , Li st<Vertex> neighbourhood ) {

double [ , ] rotMat = newVertex . MakeRotationMatrix ( ) ;
Vector o f f s e t = newVertex . Point ;

newVertex . Project2D ( rotMat , o f f s e t ) ;
Li st<Vertex> outs ideVertexe s = new List<Vertex >() ;

foreach ( Vertex oldVertex in neighbourhood ) {
oldVertex . Project2D ( rotMat , o f f s e t ) ;

foreach ( Vertex neighbour in oldVertex . Neighbours ) {
i f ( ! neighbourhood . Contains ( neighbour ) &&

! outs ideVertexes . Contains ( neighbour ) ) {
neighbour . Project2D ( rotMat , o f f s e t ) ;
outs ideVertexes .Add( neighbour ) ;

}}}}

2.3.4 Intersection

The insertion criteria build on the ability to check if two edges intersect. An
edge can be considered as a segment of a line and the problem hence trans-
lates into checking if two line segments intersect. The intersection method
described in this section uses the lines corresponding to the edges and check
whether they intersect and if so determines if the intersection point is on
both edges.
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Figure 2.9: A graphical overview of the different vectors in the intersection
algorithm.

Because both lines and segments will be used, in the intersection algorithm,
a parametric representation is chosen. The parametric equation for a line
is defined in (2.12). An edge is described by setting p

0
and p

1
to the edges

endpoints and restricting s to [0, 1].

p(s) = p
0
+ s(p

1
− p

0
) = p

0
+ su, s ∈ R (2.12)

Two lines, p(s) = p0 + su, q(t) = q0 + tv, can either be parallel or intersect.
The lines are parallel only if their directions are collinear, v = cu, c ∈ R.
This means that the fractions of the components of the direction vectors
must be the same.

uk

vk
=

u1

v1

In two dimensional space this translates into the perp product condition in
(2.13).

u⊥v = u1v2 − u2v1 = 0 (2.13)

The perp product condition in (2.13) states that two lines are parallel in
Euclidian space if they are both perpendicular to the same direction u⊥.

The easiest way to check if two parallel lines coincide is to test if a point on
one line also lies on the other. When both lines are line segments, as in the
edge case, they may or may not overlap. The solution is to solve, for two
values of t, t0 and t1, the following equations.
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p
0

= q(t0) (2.14)

p
1

= q(t1) (2.15)

If the parameters fulfills the requirement in (2.16) then the line segments
overlap.

[t0, t1] ∩ [0, 1] �= ∅ (2.16)

In the case where the lines are not parallel they will always intersect at one
point, in two dimensional space. The aim is to calculate the intersection
point pi = p(si) = q(ti). The parameters can be calculated as

si = −v⊥w
v⊥u

=
v2w1 − v1w2

v1u2 − v2u1
(2.17)

ti = −u⊥w
u⊥v

=
u1w2 − u2w1

u1v2 − u2v1
(2.18)

where w = p0 − q0. Two line segments intersects if,

si ∈ [0, 1] (2.19)

ti ∈ [0, 1] (2.20)

For a graphical interpretation of the vectors see Figure 2.9.

Implementation

The implementation presented in this section will give a positive answer if
two edges share the same end vertex. This is not desirable because it would
result in that no edges could be connected to a common vertex. This has to
be changed if the intersection algorithm is to be used to construct a mesh.

The first thing the intersection algorithm checks is whether the lines inter-
sect. This is done by calculating the dot product of the vectors u⊥ and
v, see Algorithm 2.13, and subsequently checking if the product obeys the
criteria in (2.13).
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Algorithm 2.13: Outline of the intersection method.
bool In t e r s e c tTe s t (Edge other ) {

Vector u = this . Point2 − this . Point1 ;
Vector v = other . Point2 − other . Point1 ;
Vector w = this . Point1 − other . Point1 ;
double D = u . Perp2D(v ) ;
i f (D == 0) {

// the l i n e s are p a r a l l e l , check i f t he segments over lap
// . . . //

} else {
// the two l i n e s i n t e r s e c t s , check i f t he segments i n t e r s e c t s .
// . . . //

}

double Perp2D( Vector other ) {
return this . data [ 0 ] ∗ other . data [ 1 ] − this . data [ 1 ] ∗ other . data

[ 0 ] ;
}

If the lines are parallel the code in Algorithm 2.14 will be executed. First it
checks if the lines overlap. If they overlap, the overlapping is determined by
calculating the parametric values t0 and t1, according to (2.14) and (2.15).
The parameters are then checked if they obey the criteria in (2.16). If they
do the line segments also overlap except in the special case, when only two
endpoints overlap.

Algorithm 2.14: The following code is executed if two lines are parallel.
i f (u . Perp2D(w) != 0 | | v . Perp2D(w) != 0) {

return fa l se ;
} else {

Vector w2 = this . Point2 − other . Point1 ;
double t0 = 0 ;
double t1 = 0 ;
i f ( v [ 0 ] != 0) {

t0 = w[ 0 ] / v [ 0 ] ;
t1 = w2 [ 0 ] / v [ 0 ] ;

} else {
t0 = w[ 1 ] / v [ 1 ] ;
t1 = w2 [ 1 ] / v [ 1 ] ;

}
i f ( t0 > t1 ) {

double t = t0 ; t0 = t1 ; t1 = t ;
}
// not i ce the >= and <= operators .
i f ( t0 >= 1 | | t1 <= 0) {

return fa l se ;
}
return true ;

}
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In the case where two lines are not parallel the parametric values of the
intersection point is calculated according to (2.17) and (2.18). If both pa-
rameters obeys the criterion in (2.19) and (2.20) the line segments intersects,
see Algorithm 2.15. Before the parameter values are calculated the special
case, when the intersection point is an endpoint, is taken care of.

Algorithm 2.15: If two lines are not parallel this code will be executed.
// c a l c u l a t e the i n t e r s e c t i on poin t
double s i = v . Perp2D(w) / D;
i f ( s i < 0 | | s i > 1) {

return fa l se ;
}
double t i = u . Perp2D(w) / D;
i f ( t i < 0 | | t i > 1) {

return fa l se ;
}
// i f t he i n t e r s e c t i on poin t i s an endpoint , re turn f a l s e .
i f ( this . Point22D == other . Point22D | | this . Point22D == other .

Point12D | |
this . Point12D == other . Point22D | | this . Point12D == other .

Point12D ) {
return fa l se ;

}
return true ;

2.4 Mesh Optimization

The aim of this step is to make the mesh more regular and to make the
edges the same length as the diameter of the contact area of the grinding
disc. The reason for doing this is that the algorithm assumes that by visiting
all vertices exactly once the whole surface will be covered. Making all edges
shorter than the disc diameter will accomplish this.

Two articles [8] and [10] propose ways of optimizing a triangular mesh. Both
have good results but the first one is much faster than the second.

This section will describe a simple mesh optimization algorithm using one
of the local operations presented in the previous articles. The section starts
with a brief explanation of the edge and vertex operations used in mesh
optimization. This is followed by the description of the algorithm.
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2.4.1 Edge and Vertex Operations

The most commonly used operations in mesh optimization are: edge split,
edge collapse, edge flip and vertex relocation. The edge operations are fun-
damental to changing the properties of a mesh.

Figure 2.10: The edge split operation.

The edge split operation splits an edge into two and inserts up to two new
edges between the middle point of the old edge and the opposite vertices in
the two faces connected by the old edge.

Figure 2.11: The edge collapse operation.

This edge collapse replaces an edge and its two endpoints with one vertex.
This can be done in two ways. If both endpoints are inside the mesh then
they are replaced by the center point of the edge. The new vertex is con-
nected to the old edges endpoints neighbors that are still in the mesh. If one
endpoint is on the border of the mesh then they collapse into that vertex.
The reason for this is that the border geometry should not be changed due
to an optimization operation.

If an edge is common to two faces then that edge can be flipped. The
flipping operation removes the edge and inserts a new between the vertices
not common to the two faces connected by the edge.

The vertex relocation is a more complex step and can be accomplished in
several different ways. The idea is to move a vertex, inside its adjacency
area, thereby making the mesh more regular.
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Figure 2.12: The edge flip operation.

2.4.2 Implementation

In the approach presented here only the edge split operation is used. Fig-
ure 2.13 shows an optimized mesh constructed by only using the edge split
operation. The result is sufficient for the goals of this thesis.
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Figure 2.13: Optimized mesh after applying the edge split operation. All
edges are shorter than the maximum optimization edge length.

The algorithm is simple. For each edge check if it is longer than the radius
of the grinding disc. If true split the edge. Repeat this until all edges in
the mesh are shorter or equal to the disc radius. See Algorithm 2.16 for the
algorithm.

Algorithm 2.16: Optimizing the mesh.
void Optimize (double maximumOptimizationEdgeLength) {

bool modi f i ed = true ;
while ( modi f i ed ) {

modi f i ed = fa l se ;
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foreach (Edge edge in this . Edges ) {
i f ( edge . Length > 2 ∗ maximumOptimizationEdgeLength) {

this . S p l i t ( edge ) ;
modi f i ed = true ;
break ;

}}}}

Splitting an edge is performed by first creating a new vertex at the center
of the splitting edge. The center vertex is the linear interpolation of the
endpoints of the splitting edge. This is followed by retrieving the vertices that
belongs to the face(s) the splitting edge belongs to. Finally the splitting edge
is removed and new edges from the center vertex to the vertices retrieved in
the previous step are inserted. The edge split code can be seen in Algorithm
2.17.

Algorithm 2.17: Splitting an edge.
private void S p l i t (Edge edge ) {

Vertex center = edge . MiddlePoint ;

Li st<Vertex> ends = new List<Vertex >(2) ;
foreach (Edge edge1 in edge . Vertex1 . Edges ) {

Vertex ta rg e t1 = edge1 . Vertex1 == edge . Vertex1 ? edge1 . Vertex2
: edge1 . Vertex1 ;

foreach (Edge edge2 in edge . Vertex2 . Edges ) {
Vertex ta rg e t2 = edge2 . Vertex1 == edge . Vertex2 ? edge2 .

Vertex2 : edge2 . Vertex1 ;
i f ( t a rg e t1 == targe t2 ) {

ends .Add( ta rg e t1 ) ;
}

}
}

List<Edge> newEdges = new List<Edge>(4) ;
newEdges .Add(new Edge ( center , edge . Vertex1 ) ) ;
newEdges .Add(new Edge ( center , edge . Vertex2 ) ) ;
foreach ( Vertex ta rg e t in ends ) {

newEdges .Add(new Edge ( center , t a rg e t ) ) ;
}

this . Remove ( edge ) ;
this . va lues . I n s e r t ( center ) ;
this . I n s e r t ( newEdges ) ;

}

The algorithm runs in O(n2), no formal proof is given only a short justifi-
cation. Consider a mesh where all edges have the maximum allowed length.
Assume that the desired edge length is a third of the maximum edge length
1. Consider a mesh of two faces with edges at maximum length. After ap-
plying the optimization scheme a finite number of splits are done and that it
is only the relation between the maximum edge length and the desired that
determines the number of edge splits.

1This is the relation between the minimum edge length and the maximum edge length.
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This implies that by splitting the edges an additional C ∗ n number of oper-
ations has to be done, where C is a constant. This justifies the assumption
that the algorithm runs in O(n2).

2.5 Conclusions

In the current implementation of the surface reconstruction it is necessary to
be careful when choosing the parameters. As reported in [1] their algorithm
can construct holes and invalid triangles. This also applies to the algorithm
in this thesis due to the fact that it is closely modeled on that algorithm.

The effect of the invalid triangles are only seen when the mesh is optimized,
due to the conversion to the half-edge mesh representation. Splitting an
edge belonging to an invalid triangle will result in edges crossing each other,
creating even more invalid triangles.

A solution to this problem could be to abandon the half-edge representa-
tion. This will significantly make the algorithm slower. The reason is the
additional effort required to construct the faces from undirected edges.

To construct the faces, of a mesh represented with undirected edges, the
following algorithm could be used. For each vertex, v, check if its neighbors
are connected to each other. A pair of connected adjacent vertices will form
a triangle with v. This method in N (vi), vi ∈ N (v) a comparison has to
be made for every vertex in N (v). This results in a time complexity of
O(|N (v)| ∗ (max(|N (vi)|) ∗ |N (v)|)).
The optimal degree is six for interior vertices and four for border vertices
[8]. Because of the point density restrictions it can be assumed that the
average degree will be close to the optimal. This means that the number of
comparisons is of the same order as the mesh size in the examples considered
in this thesis resulting in a O(n2) time complexity. Compared to the one
implemented which has O(n) time complexity.

The current implementation, with two different ways of representing the
mesh, is a preliminary solution. Future development should only consider
one way of representing the mesh. A suitable data structure is the half-edge,
due to its ability to represent all aspects of a mesh that are important in
this thesis.
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Optimization

The results of the optimization are sufficient for this thesis. The regularity
of the optimized mesh is good and the lengths of the edges are close to the
desired length. The aim was to have edges with the same length but this is
not possible with the current optimization algorithm.

The criterion for splitting an edge is that it is longer than the desired edge
length. This creates edges with lengths between half the desired edge length
and the edge length. This must be taken into consideration when setting
the desired edge length. If edges are shorter than the desired edge length,
which is the disc radius of the contact area of the grinding disc, the grinding
strokes will overlap. This means that to much material is removed.

More complex optimization algorithms are presented in [8] and [10]. They
use the full range of mesh operations, described in Section 2.4.1 and produces
meshes of high quality.
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Chapter 3

Path Planning

In Chapter 1 it was mentioned that the main idea behind the algorithm is
to transform the surface mesh into a graph and find a path in the graph
that visits all vertices exactly once. This problem belongs to the class of NP
hard problems and is a special case of the traveling salesman problem. For
an arbitrary graph there is no guarantee that there exist such a path, this
requires special attention when searching for a path.

This chapter describes an algorithm for constructing the above mentioned
path, also called a Hamiltonian path. The first section describes the under-
lying path construction algorithm. The second section explains the angle
minimizing scheme which is used to increase the quality of the path. The
third section introduces a timeout criteria which makes the algorithm more
robust. Finally the conclusions are presented with some thoughts for future
development.

45
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3.1 Path Construction

Several different approaches exists for finding a Hamiltonian path, see [9] for
a detailed survey. There exist two kinds of algorithms, heuristic and back-
tracking. The heuristic algorithms are based on a set of rules or techniques
that solves the problem. The backtracking algorithms evaluate all possible
solutions in a recursive manner. In general the heuristic algorithms are faster
than the backtracking algorithms. The backtracking algorithm will always
find the solution if it exists, which is not the case with heuristic algorithms.

In this thesis the Posá algorithm was chosen. The algorithm is a heuristic
algorithm that is the result of the work of Posá in [5]. It was chosen because
of its simplicity and extendability. Several additional heuristics was added,
to the original algorithm, to improve the execution speed and path quality.
One of these heuristics is the distance transform described in [11].

3.1.1 Definitions

Before delving any further into the path construction some basic definitions
has to be made. A graph, G(V,E), is defined in the same way as a mesh
in the previous chapter, see Section 2.3.1. In this chapter there will be no
distinction between a mesh, as defined in the previous chapter, and a graph.
This is because only the connection information, which vertices are connected
to which in the mesh, is used in the path planning step.

A path is defined as a sequence of vertices,

P = {v1, ..., vn} (3.1)

where vi ∈ V, i = 1, ..., n. A vertex in the path must be adjacent to its
predecessor and successor. Given a vertex, vi, this can be expressed as
vi−1, vi+1 ∈ Nadj(vi), the adjacency operator Nadj(vi) was defined in (2.9).
The size of a path, |P |, is the number of vertices in the path.

A path is said to be partial if not all vertices in V are in P .

A loop is a subsequence, of a path, that starts and ends at the same path ver-
tex. The path {v1, v2, v3, v4, v2, v5} contains a loop, which is {v2, v3, v4, v2}.
When a path contains all vertices in a graph and is without any loops it is
said to be a Hamiltonian path e.g. each vertex is only present once in the
path. In this chapter only Hamiltonian paths and partial paths without any
vertex appearing more than once will be considered. Whenever a reference
is made in this chapter to a path it is a Hamiltonian path if nothing else is
stated.
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3.1.2 Posás Algorithm

Posá’s algorithm is a random heuristic algorithm that uses a rotation trans-
formation to extend a partial path. It is straight forward to implement but
suffers from the lack of a structured way of finding the path. It is guaranteed
to find a path if it exists according to [5], but because it is a random search
it could take a considerably amount of time to find a solution.

Starting at a random vertex the Posá algorithm construct the path by select-
ing a random vertex adjacent to the end vertex of the path. The algorithm
only selects vertices that are not in the path. If no such vertices exist then
the path is either finished or stuck. If the path is stuck the Posá transform
is applied.

The transform creates a loop by connecting the endpoint, vn, to a random
path vertex called the pivot vertex, p

p
. The next step is to break the path

at the vpvp+1 transition, thus breaking the cycle. Reversing the order of the
cycle vertices completes the transform, so that the last path vertex is vp+1.
See Figure 3.1 for a graphical interpretation of the transform.

(a) First rotation. (b) Second rotation.

(c) Third rotation. (d) Path found.

Figure 3.1: Illustrating the use of the rotation transform in the Posá algo-
rithm. A blue point is a tested end point at the current path length. When
all neighbors of the end vertex are in the path a loop is created. This is shown
with a blue dotted line. By splitting the loop a new endpoint is acquired.
The slitting is shown with a green dotted line.
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The algorithm keeps track of the endpoints of the current path length. If
an endpoint only has path vertices adjacent to it and these vertices have all
been endpoints for the current path, then the algorithm fails and no path
exists.

Implementation

The implementation of the Posá algorithm can be seen in Algorithm 3.1.
The GetRandomNeighbour method will be described in more detail later in
this chapter because it is heavily modified from the original Posá algorithm.

Algorithm 3.1: The Posá algorithm.
GrindingPath GeneratePath ( ) {

// . . . //
path = new GrindingPath ( this . s ta r t , this . mesh . NumberOfVertexes ) ;
do {

Vertex neighbour = this . GetRandomNeighbour( path , path . End) ;
i f ( neighbour == null ) {

this . i n t e r rup t ed = true ;
} else i f ( path . Contains ( neighbour ) ) {

path . Rotate ( neighbour ) ;
} else {

path .Add( neighbour ) ;
}

} while ( path . Count < this . mesh . NumberOfVertexes && ! this .
i n t e r rup t ed ) ;

// . . . //
return path ;

}

The rotational transform is executed on the path and can be seen in Algo-
rithm 3.2. The rotation is performed as a reordering of the path vertices.
Starting with the path vertices not in the loop they are reinserted in the path
in their current order. When the pivot vertex is reached the remaining path
vertices is inserted, in reverse order. This is an O(n + log n) = O(n) opera-
tion. The log n factor comes from the retrieval of the list element containing
the pivot vertex.

Algorithm 3.2: The Posá rotational transform.
void Rotate ( Vertex vertex ) {

LinkedListNode<Vertex> pivot = this . nodes [ vertex ] ;

i f ( p ivot == path . F i r s t ) {
this . path . RemoveFirst ( ) ;
this . path . AddLast ( p ivot ) ;
this . endPoints .Add( vertex , vertex ) ;

} else i f ( p ivot != path . Last && pivot != path . Last . Previous ) {
LinkedListNode<Vertex> f i r s t = this . path . F i r s t ;
LinkedListNode<Vertex> l a s t = this . path . Last ;
LinkedListNode<Vertex> current ;
do {

current = this . path . F i r s t ;
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this . path . RemoveFirst ( ) ;
this . path . AddLast ( current ) ;

} while ( current != pivot ) ;
current = l a s t ;
LinkedListNode<Vertex> prev ;
while ( current != null ) {

prev = current . Previous ;
this . path . Remove ( current ) ;
this . path . AddLast ( current ) ;
current = prev ;

}}// . . . //}

3.1.3 The Distance Transform

The basic version of the Posá algorithm is based on the random selection
of neighbors, as previously explained. This has some drawbacks concerning
the quality of the path and the execution speed. The problem is that the
random selection creates an unstructured path with many turns and without
regard to the surface geometry.

There is also a problem of the algorithm getting stuck. This problem arises
when there is no path in the graph. Even if there is a path from the start
vertex the algorithm can be very slow. When few paths exist it is a high
possibility that the algorithm will try partial paths that are not in a Hamil-
tonian path. If there are many of these false tries the algorithm will be
considerably slowed down.

To address these issues a heuristic based on the distance transform described
in [11] was added to the Posá algorithm. The distance transform forms
the basis for an algorithm, also presented in the article, that calculates a
structured path covering a surface. That algorithm will produce a path that
is not Hamiltonian thus making it useless for this thesis. Combining the
distance transform with the Posá transform gives an algorithm that retains
the structured properties of the distance transform and the ability to find
Hamiltonian paths of the Posá algorithm.

The distance transform calculates the distance for each vertex, where the
distance is the minimum number of edges between a vertex and a selected
goal vertex, see Figure 3.2.

Implementation

The distance transform is performed by picking a random vertex from the
border and then performing a width first search in the graph. For each new
level of the search the distance is incremented and is assigned to the vertices
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Figure 3.2: Figure showing the distance transform. The vertex with distance
zero is the goal vertex.

at that level. The breath first search is sometimes referred to as a wave
propagating through the graph.

Algorithm 3.3: Propagating a wave through the mesh by using the direction
properties of half-edges.
private void PropagateWave ( ) {

// . . . //
current . Enqueue ( goa l ) ;

while ( ! f i n i s h ed ) {
i f ( current . Count == 0) {

i f ( next . Count == 0) {
f i n i s h e d = true ;

} else {
d i s t ance++;
current = next ;
next = new Queue<Vertex >() ;

}
} else {

Vertex vertex = current . Dequeue ( ) ;
ver tex . Distance = d i s t ance ;
foreach ( HalfEdge edge in vertex . HalfEdges ) {

i f ( edge . Target . Distance == Vertex . Nul lD i s tance ) {
next . Enqueue ( edge . Target ) ;

}
i f ( edge . Mirror . Target . Distance == Vertex . Nul lD i s tance

) {
next . Enqueue ( edge . Mirror . Target ) ;

}}}}}
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The GetRandomNeighbour method in Algorithm 3.1 is modified to use the
distance in the selection process. Instead of picking a vertex from the set
of all adjacent vertices it picks a vertex from the adjacent vertices with the
highest distance.

Algorithm 3.4: The neighbor selection method with emphasis on the distance
transform.
Vertex GetRandomNeighbour( GrindingPath path , Vertex end ) {

// . . . //
foreach ( Vertex vertex in end . Neighbours ) {

i f ( path . Contains ( vertex ) ) {
i f ( path . I sVa l i d ( vertex ) ) {

i f ( vertex . OnBorder ) {
onBorder .Add( vertex ) ;

} else {
inPath .Add( vertex ) ;

}
}

} else {
i f ( vertex . Distance > maxDistance ) {

f r e e . Clear ( ) ;
f r e e .Add( vertex ) ;
maxDistance = vertex . Distance ;

} else i f ( vertex . Distance == maxDistance ) {
f r e e .Add( vertex ) ;

}
}

}
i f ( f r e e . Count != 0) {

return this . GetRandomNeighbour( f r e e ) ;
} else i f ( inPath . Count != 0) {

return this . RandomElement ( inPath ) ;
} else i f ( onBorder . Count != 0) {

return this . RandomElement ( onBorder ) ;
}else {

return null ;
}

}

3.1.4 Smooth Border Heuristics

The border of the surface should be as smooth as possible. Until now this has
not been addressed by the path algorithm. A path, generated by the current
algorithm, will have a zigzag border which poorly reflects the real surface
border. Two changes to the GetRandomNieghbour method is introduced to
make the path follow the border.

The first technique is to choose the vertices with the lowest degree. The idea
behind this is that vertices on the border generally have lower degrees than
the interior vertices, thus forcing the path towards the border. It also leaves
high degree vertices until later in the path construction. Having high degree
vertices in the later stages of the path construction gives more possibilities,
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thus enhancing the success rate of the algorithm. The second technique is to
prioritize border vertices over other vertices. In Figure 3.3 the path finding
algorithm is illustrated.

Figure 3.3: The path finding algorithm starting from the vertex with distance
one. The path is constructed by moving in the direction of greatest distance.
Secondly the vertex with lowest degree is chosen. The blue colored vertices
is the border vertices.

Implementation

The implementation of the minimum degree heuristic can be seen in Al-
gorithm 3.5. Each vertex, from the set of adjacent vertices with largest
distance (neighbours), is added to a list if their degree is equal to the cur-
rent minimum degree. If a vertex has a degree that is lower than the current
minimum degree the list is cleared and the vertex is inserted in the empty
list. A random vertex in the list is returned.

Algorithm 3.5: The modified random neighbor selection of the Posá algo-
rithm.
Vertex GetRandomNeighbour( List<Vertex> neighbours ) {

// . . . //
double minDegree = neighbours [ 0 ] . Degree ;
double tempDegree = minDegree ;
l i s t .Add( neighbours [ 0 ] ) ;
for ( int i = 1 ; i < neighbours . Count ; i++) {

tempDegree = neighbours [ i ] . Degree ;
i f ( tempDegree == minDegree ) {

l i s t .Add( neighbours [ i ] ) ;
} else i f ( tempDegree < minDegree ) {

l i s t . Clear ( ) ;
minDegree = tempDegree ;
l i s t .Add( neighbours [ i ] ) ;

}// . . . //}
return this . RandomElement ( l i s t ) ;

}
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In Algorithm 3.4 the border following is shown. It is only used when picking
a random pivot vertex for the rotational transform.

3.2 Angle Minimizing

A problem with the Posá algorithm and with the extended version devel-
oped in this thesis is that it does not produce smooth paths. The previous
heuristics tried to eliminate this problem by improving the vertex selection
step. Another approach is to calculate some kind of path energy and then
minimize this energy.

Minimizing this function can be done in different ways, for example by using
some kind of genetic algorithm. This requires a method for constructing a
Hamiltonian path from two existing Hamiltonian paths. This was deemed
too hard a problem to solve so a simpler approach was pursued. The ap-
proach is to generate a couple of paths and pick the path with lowest energy.

Designing the energy function is the most important step. The goal is to
minimize frequent turns, so called zigzag patterns, in the path and promote
long and straight path segments. A suitable energy function can be seen in
(3.2). It heavily penalize turning by having a quadratic factor of the turning
angle at the current vertex. The function further penalize turning by having
a trailing factor from the previous turning angle.

E =
n−1∑
i=1

(α2
i + αi−1) (3.2)

αi = arccos
uiui+1

|ui||ui+1| (3.3)

ui = p
i−1

− p
i

(3.4)

In Figure 3.4 the indexing and the defined properties used in (3.2) can be
seen.

Implementation

The minimization scheme generates a sequence of random paths. Each time a
path is generated it is compared to the current path with lowest energy. Each
time a new path has lower energy than the current path the current path is
updated. The algorithm terminates after it generates a specified number of
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Figure 3.4: Showing a path and the numbering of the components used in
the energy function.

paths in sequence which does not result in an update of the current path.
The implementation can be seen in Algorithm 3.6.

Algorithm 3.6: The path generation method showing the energy minimizing
scheme.
GrindingPath GeneratePath (Mesh mesh , int generat i ons , long timeout ) {

// . . . //
while ( ( path = f i n d e r . GeneratePath ( ) ) == null ) { }
double energy = path . Energy ;
while ( generat i on++ < gene ra t i on s ) {

temp = f i nd e r . GeneratePath ( ) ;
i f ( temp . Energy < energy ) {

energy = temp . Energy ;
path = temp ;
generat i on = 0 ;

}
}
return path ;

}

The energy function is computed according to (3.2). The implementation
can be seen in Algorithm 3.7. Note that special care has to be taken before
passing a value to the Acos method, this is due to roundoff errors.
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Algorithm 3.7: Implementation of the energy function.
private void CalculateEnergy ( ) {

// . . . //
for ( int i = 1 ; i < p . Count − 1 ; i++) {

Vector u = p [ i ] . Point − p [ i − 1 ] . Point ;
Vector v = p [ i + 1 ] . Point − p [ i ] . Point ;
i f (u . Length == 0 | | v . Length == 0) {

continue ;
}

double an = (u ∗ v ) / (u . Length ∗ v . Length ) ;
an = an > 1.0 ? 1 . 0 : an ;
an = an < 0.0 ? 0 . 0 : an ;
current = Math . Acos ( an ) ;
this . energy += current ∗ current + l a s t ;
l a s t = current ;

}
}

3.3 Timeout Criteria

In Section 3.1.3 it was mentioned that the algorithm could get stuck when
there was no Hamiltonian path in the grid graph. It was also stated that it
could seem like it got stuck when there only exists few Hamiltonian paths,
due to the long execution time. In that section the distance transform was
introduced to minimize the impact of the latter problem of to few Hamil-
tonian paths. In this section another approach to the second problem is
introduced but it also handles the case when there is no Hamiltonian path
in the grid graph.

The approach is to introduce a timeout criteria. After a specified amount of
time the algorithm will terminate and restart, if it has not found a Hamilto-
nian path. Restarting gives the algorithm a new start vertex thus increasing
the probability of finding a path.

If there is no path this approach would not be enough to handle the problem.
A second criterion is introduced to handle the case where no paths exist. It
simply states that if a fixed amount of restarts has not generated a path
then the algorithm is terminated. When this happens the meshing has to be
redone with different parameters. In the worst case the point cloud has to
be resampled.
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Implementation

The timeout functionality is implemented as a timer that raises an interrupt
whenever the specified time limit is reached. The time limit is either set to a
user defined value or the execution time of the meshing step. Setting it to the
execution time of the meshing step is motivated by that the time complexity
of the meshing step is of the same order as the average time complexity of
the path finding algorithm. The GeneratePath method with timeout can be
seen in Algorithm 3.8.

Algorithm 3.8: The path generation method showing the timeout implemen-
tation.
public GrindingPath GeneratePath ( ) {

// . . . //
this . i n t e r rup t ed = true ;
while ( this . i n t e r rup t ed ) {

this . Reset ( ) ;
this . i n t e r rup t ed = fa l se ;
using (new Timer ( this . Inte r rupt , this , this . timeout , Timeout .

I n f i n i t e ) ) {
// . . . //
do {

Vertex neighbour = this . GetRandomNeighbour( path , path .
End) ;

// . . . //
} while ( path . Count < this . mesh . NumberOfVertexes && ! this .

i n t e r rup t ed ) ;
// . . . //

}
}
// . . . //
return path ;

}

private void In t e r rup t ( object f i n d e r ) {
this . i n t e r rup t ed = true ;

}

3.4 Conclusions

During simulations and real tests the path planning algorithm shows good
results. The algorithm is able to generate a path even when the mesh quality
is poor e.g. contain many holes. It is very fast, considering the number of
vertices in the grid mesh. The execution time is around ten seconds for a
grid with 500 vertices.

The path planning algorithm has not been tested for larger graphs than a
few hundred vertices. If larger graphs are required it could be of interest to
consider using another algorithm, with documented performance for larger
graphs. Several algorithms for finding hamiltonian paths are covered in [9].
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In [2] an algorithm designed for triangular grids is presented. It is a linear
time heuristic algorithm that shows some promising results.

The angle minimizing algorithm reduces the number of turns in the general
case. It is dependent on the quality of the generated paths which means that
if only paths with high energy are generated then the angle minimizing will
return a path with many turns.

It is not known whether the border following heuristics contribute signifi-
cantly to the result.
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Chapter 4

Intuitive Lead-Through
Programming

The previous chapters have described the algorithm developed in this thesis.
This chapter will introduce the Lead-Through Programming concept and
the integration of the algorithm into the Lead-Through server developed at
ABB Corporate Research Germany. A detailed description of the server can
be found in [6].

The chapter begins with a brief introduction to the Lead-Through Program-
ming and the Lead-Through server. This is followed by a description of the
instructions developed for the server. This is then followed by an explanation
of the system setup and finally the conclusions are presented.

59
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4.1 Lead-Through Programming

Lead-Through Programming is a concept intended to make the teaching of
a robot simple. The programming is done by teaching the robot a task by
manually guiding it through each step of the task. A taught task is then
executed when needed. Each task has an associated instruction set that is
used to structure the programming. These instructions are called intuitive
instructions and should be easy to use, by an ordinary worker.

Physically guiding the robot through the teaching step is accomplished by
the use of force-torque-sensors. This makes it possible to reorient and move
the robot as an ordinary tool. A task suitable guiding device should be used
during teaching. In this thesis this means that the guiding device enables
the user to access all surfaces on a casting.

Communication with the system is an important aspect of the Lead-Through
Programming concept. It can be done in many different ways, see [3] for a
detailed analysis. The report concludes that voice commands should be used.
It is also suggested that a PDA or a Flex Pendant1 could be used for hot
editing a program.

Safety is paramount to the Lead-Through Programming concept. It has been
treated extensively in both [6] and [3]. Safety issues have not been treated
extensively in this thesis, although some basic guidelines have influenced the
work. The algorithm was developed with the requirement that differences in
logic and behavior of computers and humans should not lead to dangerous
behavior of the robot. It should thus be possible for a worker to predict the
outcome of any action.

At this point it is relevant to introduce a Developer-Consultant-Operator
model. It describes the three different actors in the Lead-Through process.
The first actor, the developer, is concerned with the development of the
instructions. The second is the consultant who has expert knowledge of the
task and knows how the template instructions are configured. The operator
is the intended user.

4.1.1 Lead-Through Server

The Lead-Through server is a XML based server running on Windows XP c©.
It is possible to save the current states of the server. Starting the server will
load the previously saved states. This thesis is concerned with two parts of
the server: the template instructions and the instruction modes.

1The Flex Pendant is a robot remote control unit used by ABB.
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A template instruction is a class describing a type of action for example set
speed. The template instructions are the domain of the developer, in the
Developer-Consultant-Operator model. An intuitive instruction, which was
previously mentioned, is an instantiation of a template instruction. These
intuitive instructions have usually one or more parameters that need to be
specified. An intuitive instruction modeled on the set speed template in-
struction could for example be set slow speed. The modes are the intuitive
instruction sets specific to a task.

The different modes are constructed by the consultant. The consultant uses
the server’s user interface to build the modes. It is done by dragging the
appropriate template instructions to a mode and specifies their parameters.
The interface can be seen in Appendix B.

Execution of the instructions is done by the operator from the client. The
operator communicates with the client with voice commands. The name of
an intuitive instruction is also its associated voice command. When finishing
a teaching step a compile instruction should be issued. This instruction
creates a RAPID2 program from the instructions and the variables stored
in the server. The generated program is then run on the robot by issuing a
play instruction.

The server context is a space where global data are stored. An instruction
can have several dependencies which are variables that need to be in the
context before the instruction can be executed. These variables can either be
specified by the consultant directly in the context or by issuing an instruction
which sets the necessary variables.

A detailed explanation of the client-server architecture and implementation
can be found in [6].

4.2 The Instruction Set

This section will describe the three template instructions developed for the
grinding task. The RecordSurface and StopRecordSurface instructions
will be presented first, followed by the GeneratePathinstruction.

4.2.1 Surface Recording

The two instructions concerned with surface recording are the RecordSurface
and StopRecordSurface instructions. Between the invocations of these two

2RAPID is the robot programming language used by ABB.
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instructions, which have to be invoked in series, the robot position data, is
recorded.

To be able to issue the RecordSurface instruction the server context need
to contain a variable with the sampling interval, which is called Grinding
.Interval. The instruction starts a timer that each interval stores the
position data in a context variable called Grinding.Surface. The timer
belongs to a context variable called, Grinding.Timer. To guarantee that the
instructions are executed in sequence the StopRecordSurface is dependent
on the Grinding.Timer variable.

In Figure 4.1 a simple flowchart of the instruction execution is displayed, it
also includes the path generation instruction.

Stop Record Surface 

Record Surface Grinding.Interval 

Grinding.Timer 

Speed 

Grinding.Surface 

Zone 

Tool 

Generate Path 

Figure 4.1: The flowchart describe the calling order of the grinding instruc-
tions. A dotted line marks a dependency. A solid line is either showing
the creation of a variable or the order of the instruction calls. A rectangle
represents an instruction a skew rectangle represents a variable.

4.2.2 Path Generation

The GeneratePath template instruction contains the algorithm described in
the previous chapters. All steps from surface reconstruction to path planning
is executed when this instruction is called. It is dependant on the context
variable Grinding.Surface. The instruction also requires that the robot
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speed, zone data3 and tool data are specified.

Several parameters influence the instruction and they are summarized below.

MaximumPointDistance The neighborhood radius in the normal estima-
tion step.

MinimumPointDistance The reduction radius in the normal estimation
step. A point that is closer to another point than this value is dis-
carded.

MaximumEdgeLength The neighborhood radius in the meshing step. Re-
stricts the edge length and influences the curvature of the mesh border.

MinimumEdgeLength The reduction radius in the meshing step. A point
that is closer to another point than this value is discarded. An edge
can not be smaller than this value.

DiscRadius This is the length of the radius of the contact area of the grind-
ing disc. During optimizing edges that are longer than this minimum
length are split by the optimization algorithm.

Timeout The time limit of finding a path. A restart is made when the limit
is reached.

Generations The number of random paths that will be generated before
the angle minimizing is terminated.

Optimize Tells the algorithm to optimize the mesh or not.

RepeatNumber Number of times the robot should follow the path.

NormalShift The distance between each shift layer.

NubmerOfShiftLayers Number of normal shifts that will be generated.

The last three parameters govern some functionality that has not been cov-
ered before. It was mentioned in Chapter 1 that the distribution of material
which is to be removed was uneven. An approach to this problem is to
sweep repeated times over the surface, gradually descending towards the de-
sired level. By shifting the path along the surface normal of its vertices this
can be accomplished.

4.3 System Setup

The server is run on an ordinary PC running Windows XP c©. It is connected
to an industrial robot, the ABB IRB140, through the Lead-Through server.

3The zone data is a radius defining a sphere around each point. If a robot has been
inside a points sphere it is considered to have visited the point.
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Manual guidance is used together with the grinding instruction mode to
teach the robot to grind a surface.

Figure 4.2: This picture shows the metal casting and the robot. The robot
has the cleaning tool and guiding device attached.

Instead of a grinder a soft cleaning tool is used. Its properties differ signifi-
cantly from a grinder. It is elastic in the tip, it has a constant contact area
and it does not remove any material. It was chosen as a substitute because
the IRB140 is too weak to handle a grinder. The cleaner is sufficient to
demonstrate that the algorithm works.

In Figure 4.2 the robot can be seen hovering above the target metal casting.
The grinding tool is attached to a simple guiding device on the robot flange4.

Communication with the robot is either done by voice commands or by
directly controlling the client from the computer.

4.3.1 Grinding Mode

The grinding mode is made from some basic instructions and those described
in Section 4.2. The different instructions are described below. Those instruc-
tions that are not covered in this thesis are described in [6].

DefaultValue A collection of instructions that sets the speed, zone and
tool data of the grinding process.

4The flange is the tip of the robot arm.
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MainMode Instruction that switches to the main instruction mode.

Stop Instruction that stops the manual guidance of the robot.

Start Instruction that starts the manual guidance of the robot.

LoadProgram A collection of instructions that compiles the taught pro-
gram and loads it into the robot.

Replay Instruction that executes the previously loaded program on the
robot.

StopRecord Instruction that stops the sampling of surface points.

Record Instruction that starts the sampling of surface points.

GeneratePath Instruction that reconstructs the surface and generates a
path.

CompileLog Instruction that compiles the taught program without loading
it to the robot.

OptimizePath Instruction that reconstructs the surface, optimizes it and
generates a path.

Move Instruction that marks a position the robot has to visit.

The graphical user interface of the server can be seen in Appendix B. It shows
the grinding mode and the properties of the GeneratePath instruction.

4.4 Conclusions

A known issue, with the server, is that it is not possible to define the tool
in the point recording and the path execution steps, with one instruction.
The problem is that the tool, used when recording the points, can not be
set from the server. The solution is to manually load the correct tool before
record time to the robot. At execution time the same tool data is loaded
into the program by an instruction.

To tune the parameters of a GeneratePath instruction the console version
of the grinding algorithm is used, see Appendix D for the user manual. The
robtargets in the Grinding.Surface variable are copied to a text file and
used as input to the console application.

The console version generates the same mesh and path as the server instruc-
tion. The output from the console program are two files that contains the
path and mesh. These files can be loaded in Matlab c© making it possible to
have a visual feedback of the surface mesh and the grinding path showing
the result of different parameter settings.
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Future development should consider integrating visual feedback into the
Lead-Through system. An integrated visual feedback would make the tuning
process much simpler and save the effort of going through Matlab c© every
time a new grinding instruction is configured. This would simplify the task
of the consultant. It would also help the operator in choosing the correct
configured grinding instruction.



Chapter 5

Results and Conclusions

The algorithm has been tested on the system described in the previous chap-
ter. Some promising results have been obtained and will be presented in this
chapter. The chapter is concluded with some conclusions of the overall per-
formance of the algorithm and suggestions of the direction of future work.
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5.1 Results

The results of the algorithm are good. It is able to generate a path that
covers a whole surface, this can be seen in Figure 5.1. In the figures a
powder is used to show that the cleaner covers the whole surface.

(a) Before grinding. (b) After grinding.

Figure 5.1: The images shows the surface before and after the cleaning tool
is used on it. The intention is to show that the cleaner is able to cover the
whole surface.

5.2 Conclusions

The results demonstrate that the approach in this thesis works. The goals
defined in the beginning are accomplished and a lot of experience with the
grinding problem has been gained. The algorithm developed in this thesis
forms a good basis for future development.

Although the promising results there are some unsolved issues and problems
with the algorithm and the server. One issue is that the robot reorients
the tool more than 180◦ thus forcing an emergency stop. The origin of this
problem is unknown but possible sources are the use of different tools during
teaching and path execution. It is also possible that the axis configuration
of the robot position is corrupted during one of the steps of the algorithm.

Another orientation problem is originating from the construction of the cen-
ter vertex in the edge split operation. Interpolating the position data and
the tool orientation is simple this is not the case with the axis configuration,
which needs special treatment. If the endpoints of the edge have different
axis configuration it is not possible to determine the correct axis configura-
tion of the center vertex.

Because of this problem the optimization is currently not working properly.
If all points in the reconstructed surface have the same axis configuration
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then the optimization works. It is possible to calculate the axis configuration
from the joint angles. These are currently not available in the algorithm.

When calibrating the tool it is important to define the z-axis of the tool so
that it is directed out from the surface. If the z-axis is pointing into the
surface problems will arise when shifting the path. This is because the sign
of the surface normal is determined by the tool orientation. A surface normal
that points in the wrong direction will result in a path shift that starts inside
the surface and gradually moves upward.

It was reported in the meshing chapter that the meshing creates invalid
triangles and holes. This can be seen in Figure 5.2 and Figure 5.3. It was
stated that this affects the coverage of the surface. It also affects the success
of the path planner. A poorly constructed mesh will result in many holes
and so called cut vertices which makes it impossible to find a Hamiltonian
path in the mesh. A cut vertex is a vertex that splits a graph into two
unconnected parts, if it is removed.

Figure 5.2: An optimized mesh
featuring a hole.

Figure 5.3: An optimized mesh
showing the effect of splitting il-
legal faces.

The distribution of cut vertices indicates the possibility of finding a Hamil-
tonian path in a graph. A future algorithm should feature some way of
detecting the distribution of cut vertices and force a remesh if it is deemed
impossible to find a Hamiltonian path. The existence of cut vertices also
indicates that there are holes in the mesh.
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Appendix A

Eigenvalue Estimation

The source code of the eigenvalue and eigenvector calculations, used in the
normal estimation step, is presented in this appendix.
Vector Eigen (double [ , ] a ) {

int n = a . GetLength (0) ;
int i , j , iq , ip , nrot ;
double t r e s h = 0 . 0 , theta = 0 . 0 , tau = 0 . 0 ;
double t = 0 . 0 , sm = 0 . 0 , s = 0 . 0 , h = 0 . 0 , g = 0 . 0 , c = 0 . 0 ;
double [ ] b = new double [ n ] , z = new double [ n ] ;
double [ ] d = new double [ n ] ;
double [ , ] v = new double [ n , n ] ;

for ( i = 0 ; i < n ; i++) {
for ( j = i ; j < n ; j++) {

v [ i , j ] = 0 . 0 ;
v [ j , i ] = 0 . 0 ;

}
v [ i , i ] = 1 . 0 ;
b [ i ] = d [ i ] = a [ i , i ] ;
z [ i ] = 0 . 0 ;

}

nrot = 0 ;
for ( i = 0 ; i < 50 ; i++) {

sm = 0 . 0 ;
for ( ip = 0 ; ip < n − 1 ; ip++) {

for ( i q = ip + 1 ; i q < n ; i q++) {
sm += Math . Abs( a [ ip , i q ] ) ;

}
}
i f ( i > 40 && sm == 0 . 0 ) {

// the e i g enva l ue s and e i g env e c t o r s are passed to a
func t ion t ha t s o r t s them and re turns the e i g env e c t o r
corresponding to the sma l l e s t e i g enva l ue .

return this . Normal (d , v ) ;
}

i f ( i < 3) {
t r e sh = 0.2 ∗ sm / (n ∗ n) ;

} else {
t r e sh = 0 . 0 ;
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}

for ( ip = 0 ; ip < n − 1 ; ip++) {
for ( i q = ip + 1 ; i q < n ; i q++) {

g = 100.0 ∗ Math . Abs( a [ ip , i q ] ) ;

i f ( i > 3 && (Math . Abs(d [ i p ] ) + g ) == Math . Abs(d [ i p ] )
&&
(Math . Abs(d [ i q ] ) + g ) == Math . Abs(d [ i q ] ) ) {
a [ ip , i q ] = 0 . 0 ;

} else i f (Math . Abs( a [ ip , i q ] ) > t r e sh ) {
h = d [ i q ] − d [ ip ] ;

i f ( (Math . Abs(h) + g ) == Math . Abs(h) ) {
t = a [ ip , i q ] / h ;

} else {
theta = 0.5 ∗ h / a [ ip , i q ] ;
t = 1 .0 / (Math . Abs( theta ) + Math . Sqrt ( 1 . 0 +

theta ∗ theta ) ) ;
i f ( theta < 0 . 0 ) { t = −t ; }

}

c = 1.0 / Math . Sqrt ( 1 . 0 + t ∗ t ) ;
s = t ∗ c ;
tau = s / (1 . 0 + c ) ;
h = t ∗ a [ ip , i q ] ;
z [ i p ] −= h ;
z [ i q ] += h ;
d [ ip ] −= h ;
d [ i q ] += h ;
a [ ip , i q ] = 0 . 0 ;

for ( j = 0 ; j <= ip − 1 ; j++) {
g = a [ j , i p ] ;
h = a [ j , i q ] ;
a [ j , i p ] = g − s ∗ (h + g ∗ tau ) ;
a [ j , i q ] = h + s ∗ ( g − h ∗ tau ) ;

}

for ( j = ip + 1 ; j <= iq − 1 ; j++) {
g = a [ ip , j ] ;
h = a [ j , i q ] ;
a [ ip , j ] = g − s ∗ (h + g ∗ tau ) ;
a [ j , i q ] = h + s ∗ ( g − h ∗ tau ) ;

}

for ( j = iq + 1 ; j < n ; j++) {
g = a [ ip , j ] ;
h = a [ iq , j ] ;
a [ ip , j ] = g − s ∗ (h + g ∗ tau ) ;
a [ iq , j ] = h + s ∗ ( g − h ∗ tau ) ;

}

for ( j = 0 ; j < n ; j++) {
g = v [ j , i p ] ;
h = v [ j , i q ] ;
v [ j , i p ] = g − s ∗ (h + g ∗ tau ) ;
v [ j , i q ] = h + s ∗ ( g − h ∗ tau ) ;

}
nrot++;

}
}
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}
for ( ip = 0 ; ip < n ; ip++) {

b [ ip ] += z [ ip ] ;
d [ i p ] = b [ ip ] ;
z [ i p ] = 0 . 0 ;

}
}
throw new Exception ( "Too␣many␣ i t e r a t i o n s ␣ in ␣ rou t i n e ␣Eigen ! " ) ;

}



74 Eigenvalue Estimation



Appendix B

The Lead-Through Server GUI

This appendix contains an image of the Lead-Through servers graphical user
interface.
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Appendix C

Robtarget

The robtarget is a data structure used by the RAPID language. RAPID
is the robot language used by ABB. It is used to represent a robot position
in cartesian coordinates and its tool orientation. Additional data concerning
the axis configuration is also provided which is important to identify the
position in the robot work space.

robtarge t := [ po s i t i on , o r i en ta t i on , ax i s con f , ex tax i s con f ]

The different elements of the robtarget will be explained further.

position The robot position in cartesian coordinates.

orientation The robot tool orientation expressed as a quaternion.

axisconf The current axis configuration of the robot.

extaxisconf The configuration of some external axis.
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Appendix D

Grinding Algorithm: User
Manual

This user manual gives a short introduction of how to use the executable
ABBGrinding.exe. It is the executable version of the grinding library ABBGrinding
.dll. The program accepts two optional flags and a file containing predefined
parameters and a file containing robtargets.

Program Execution

Running the program is done by typing the following in the console.

. \ LTPGrinding . exe [−opt ] [−path ] <paramte r f i l e> <pointdata f i l e >

Running the program without any flags results in a reconstructed mesh from
the points in the point data file. Adding the -opt tells the program to also
generate an optimized mesh. The -path option turns on the path planner
which generates a path for the non optimized mesh and the optimized, if the
-opt flag is specified.

During the program execution there will be printed some information to the
console, telling which step is currently executing and how long the last step
took to run. When running the path planner there will be printed some
additional information, concerning the timeout and restarting of the path
planner.
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File Formats

The parameter file and point data file should be formatted as pure text.
The parameter file must contain the following lines with specified values, the
order of the lines is not important.

SELECT_NEIGHBORHOOD_RADIUS=<double value>
SELECT_REDUCTION_RADIUS=<double value>
MESH_NEIGHBORHOOD_RADIUS=<double value>
MESH_REDUCTION_RADIUS=<double value>
MESH_ANGLE_DIFFERENCE_TRESHOLD=<double value>
MESH_OPTIMIZATION_MAX_EDGE_LENGTH=<double value>

Each line in the point data file must contain one robtarget. Each robtarget
should match the following regular expression or it wont be correctly parsed
by the program.

robtarge t = @".*\[␣*[.*\] ,\[.*\] ,\[.*\] ,\[.*\] ␣*\].*" ;

Output

The program generates one or two files, two if -opt is set. They are named
mesh_<surfacedata>.m and optmesh_<surfacedata>.m. Each file contains
the points, edges and paths of the non optimized and the optimized meshes
and some additional information for debugging purposes.

The files contains the following variables with specified row formatting. The
names corresponds to the vertex attributes with same name, id is a scalar,
point, orientation and normal are three dimensional vectors.
Mesh_Points : {[< id >] [<point >] [< or i en ta t i on >] [<normal >]}
Mesh_Edges : [< id1> <id2 >]
Mesh_HalfEdges : [< id1> <id2 >]
Mesh_Faces : [< id1> <id2> <id3> <point1> <point2> <point3 ><]
Path<Number> : [<id >]
PathExt<Number> : [<point >]
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Matlab Scripts

Reading the output can be done with the Matlab c©-script plotsurface.m.
Typing help plotsurface at the command line will generate the following
printout. It describes the use of the function togehter with the variables in
the generated Matlab files.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PLOTSURFACE p l o t s data from the gr ind ing algor i thm "ABBGrinding " .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PLOTSURFACE(Edges , Points , Path , vararg in ) p l o t s the edges , point
data and

path accord ing to the f l a g s in vararg in .

The input v a r i a b l e s must have the f o l l ow i ng format .
Edges n x 2 matrix conta inn ing ver tex id : s .
Points n x 10 c e l l array with the f o l l ow i ng formatt ing .

{ [ i d ] [ point (1 x 3) ] [ normal (1 x 3) ] [ o r i e n t (1
x 3) ] }

Path 1 x n array conta in ing vertex id : s OR n x 3 matrix
conta in ing coord inate po ints . When the l a t t e r i s

used
the ExtPath f l a g must be s p e c i f i e d .

The f o l l ow i ng f l a g s are a v a i l a b l e .
PointColor f o l l owed by a co l o r string e . g . ’ r ’ s e t s the co l o r

o f the
po ints .

NoEdges h ides the edges .
Degree d i s p l ay s the degree o f each vertex .
NoPoints h ides the point data .
VertexNbr d i s p l ay s the id o f the vertex .
Normals d i s p l ay s the normals o f the v e r t i c e s .
Or i entat i ons d i s p l ay s the too l o r i e n t a t i o n at the v e r t i c e s .
NoPath h ides the path .
PathNbr d i s p l ay s the path nodes id : s .
SoftPath d i s p l ay s the path with smooth ang l e s ( second order

Bez i e r
curves ) .

ExtPath t e l l s the algor i thm that Path i s an extended path .

I t i s a l s o p o s s i b l e to supply a string conta in ing p l o t
f o rmatt ing

cha ra c t e r s . This a f f e c t the edges appearance .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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