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Kurzfassung

Im Rahmen des EU FP-6 Projektes SMErobotTM wurde von ABB Robotics, dem Robotics

Lab der Universität Lund und der Güdel AG, Schweiz ein neuartiger Robotertyp entwik-

kelt. Das Konzept basiert auf einer parallelen Anordnung der Gelenke des Roboters.

Diese vollständig neue parallelkinematische Struktur ermöglicht es, alle Vorteile paralleler

Kinematiken in Bezug auf Leistung und Kosten, wie z.B. lediglich axiale Kräfte in den

Armgliedern und gleichzeitig großem verfügbarem Arbeitsraumvolumen, auszuschöpfen.

Somit ist der Roboter für viele verschiedene Anwendungsbereiche, wie z.B. Laser-, Wasser-

strahl- und Plasmaschneiden, Kleben, sowie Montage- oder Bearbeitungsvorgänge, hochin-

teressant.

Die Antriebsanlage basiert jedoch auf dem Prinzip des “Zahnstangenantriebs”. Dies

führt zu Schwierigkeiten bei der Positionsgenauigkeit und der Steifigkeit des Systems, da

sowohl im Getriebe als auch in der mechanischen Verbindung zur Schiene mechanisches

Spiel und insbesonder Zahnradspiel vorhanden ist. Diese Effekte müssen unterdrückt wer-

den, um die hohen Ansprüche an den Roboter erfüllen zu können.

Der Ansatz der vorliegenden Arbeit beabsichtigt hierzu zwei Motoren pro Cart, statt

wie herkömmlich nur einen Motor, einzusetzen. Desweiteren sollen Messungen der trans-

latorischen Position des Carts auf der Schiene zusätzlich zu den Motorpositionen zur

Verfügung stehen. Für diesen Aufbau wird ein nichtlineares Modell hergeleitet und die

Auswirkungen des zusätzlichen Motors auf die Systemleistung und -stabilität werden un-

tersucht. Ferner werden verschiedene nichtlineare, glatt schaltende Regelungskonzepte für

den Betrieb des Systems eingeführt. Die theoretischen Ergebnisse werden an einem Ver-

suchsaufbau, der eine vereinfachte Implementierung des zweimotorigen Roboters darstellt,

getestet.
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Chapter 1

Introduction

1.1 Parallel kinematic robots

Within the EU FP6-project SMErobotTM [1] a new type of a high-performance robot has

been developed by ABB Robotics, the Robotics Lab at Lund University and Güdel AG,

Switzerland.

The new design is based on the parallel configuration of the robot´s joints (parallel

robots), see Fig. 1.1. The main novelty of that concept is its completely new parallel

kinematic structure, which allows to exploit all the advantages in terms of performance

and cost of parallel kinematics, e.g. having only axial forces in the arm links.

The robot has a large open workspace, is modular and easy to scale. Additionally it has

the benefit of very low inertias of the moving robot parts. These characteristics, combined

with the high stiffness of joints and arms, allow to build high-performance robots in terms

of speed, mechanical bandwidth, accuracy and stiffness. The high mechanical bandwidth

of the robot makes it much more suitable for stiff contact force control tasks than ordinary

serial manipulators.

Further features are low actuator power and energy consumption, due to the low inertia

and the non-redundancy of the robot, which makes it easy to assemble and disassemble

without the need of complicated mechanical adjustment procedures. However, there need

to be efficient calibration methods to guarantee the absolute accuracy of the manipulator

1



2 1 Introduction

Figure 1.1: New parallel kinematic robot concept developed within the SMErobotTM -project. The carts

(red) are controlled in a coordinated way along three rails to move the tool/end-plate along a desired

trajectory.

after the assembly. The design of the robot allows the wrist to be moved by three high

performance linear actuators via six links. These three base joints can then be enhanced

with a serial or parallel wrist to extend the robot´s range of motion to six DOFs.

Consequently, this new type of robot can be used in many applications, such as laser,

water and plasma jet cutting, gluing, assembly and machining. Therefore, it is interesting

for many industrial small and medium enterprises (SME).

1.2 Problem formulation

The actuator and drive-line of the robot is based on the “Rack-and-pinion principle”,

see Fig. 1.2. This leads to some difficulties concerning the positioning accuracy and the

stiffness, as flexibility and backlash will occur in both the ordinary gearbox and in the

mechanical connection to the rail. To fulfill the demands on the robot, these effects need

to be eliminated.
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Figure 1.2: Rack-and-pinion for converting rotational into translational motion

There has already been done a lot of research on backlash-effects in mechanical systems,

but in most cases the achieved performance is not good enough for the present case. A

good overview of available publications about this topic can be found in [2] and [3]. A

more extensive work is [4].

The approach of the present work is to use two motors for each cart instead of the

conventional use of only one motor. Furthermore also position measurements along the

rails are used in addition to the motor angle positions. In this way, it may be possible

to use both motors for improved acceleration, but more important to let them work in

opposite directions for improved positioning and stiffness. One motor can act as spring

and brake to reduce the backlash, as can be seen in Fig. 1.3.

This idea has been developed within the SMErobotTM project and is currently tested

by Güdel AG in Switzerland. Some previous work can be found in [5]. Besides, there

are only a few papers, which report on similar implementations for antennas [8], tracking

platforms [9] and servo-systems [11].
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Figure 1.3: Backlash in gearbox and rails by using two motors, which work in opposite directions for

improved positioning and stiffness. One motor can act as spring and brake to reduce the backlash.

1.3 Outline of the thesis

At first, the described problem is simplified in Chapter 2 by substituting one motor by a

constant torque acting directly on the load. This leads to a nonlinear two-mass system

exhibiting backlash. A linear controller for the cart position is designed and the resulting

closed-loop system is analyzed regarding its equilibrium points and their stability char-

acteristics under the influence of the constant torque input. Further, several operating

strategies for the constant torque based on a switching variable are introduced and tested

in simulations.

In Chapter 3, the theoretical results obtained before are studied on an experimental

setup representing a two-mass system.

Subsequently, the model of Chapter 2 is extended to a three-mass system in Chapter 4.

This system is analyzed regarding local and global stability assuming a constant input on

one of the motors. Different nonlinear control and switching strategies for the operation

of the system are presented and tested in Matlab/Simulink as well as in the modeling and

simulation tool Dymola. As consequence of an additional switching between the driving

roles of both motors, a nonlinear MIMO controller is presented. The aim is to define a

hybrid control law based on switching variable, which has to be determined. Additionally

a coordinated control of the motors for optimal performance is derived.



Chapter 2

Dual motor control of a nonlinear

two-mass system

In a first step, the complexity of the problem is reduced by considering a system which

consists of only two masses, one representing a load and one representing a motor.

This kind of system has been well-studied in literature since the 1940s, due to the fact

that in most cases the considered plants which exhibit backlash-effects may be modeled as

such a two-mass system. As in the present case, commonly, the first mass represents the

motor, while the second mass represents the load. Both masses are typically considered to

be connected by a mass or inertia free shaft. Some older and more recent research on this

standard plant can be found in [4], [13].

Additionally it is assumed, that the system has a second motor which acts directly on

the load. This second motor may generally be used to simulate load-disturbance effects.

But in the present case, it will be used to simulate the second motor of the desired dual-

motor-drive aiming to close the backlash gap with a torque acting in opposite direction of

the driving torque.

The chapter is structured as follows: First a nonlinear model of a two-mass system

with its respective parameters is derived in Section 2.1. In Section 2.2 a linear cascaded

controller for the position of the load is designed. The controller consists of a PID-controller

for the absolute translational position xpos in the outer-loop and a PI-controller for the

5



6 2 Dual motor control of a nonlinear two-mass system

motor velocity ωl. Subsequently, an analysis of the system´s equilibrium points and their

stability characteristics is provided in Section 2.3, assuming a constant torque acting on

the load side. For the analysis, a dead-zone is used to represent the backlash. In Section 2.5

the system performance is then evaluated in simulations and related to the results of the

previous analysis. In order to improve the system performance different strategies for the

operation of the second motor are presented and tested in simulations.

2.1 Modeling of a nonlinear two-mass system

A model describing the simplified process can be formulated as follows

Jmω̇m = −cmωm − Ts + Tm1

Jlω̇l = −clωl + Ts + Tm2

xpos = rlΘl (2.1)

ωd = ωm − ωl

with

Θ̇m = ωm, Θ̇l = ωl, Θ̇d = ωd,

Ts =







ks(Θd −Θb) + csωd, contact

0, backlash
(2.2)

and

Θ̇b =







max(0,∆Θ̇d + ks
cs

(Θd −Θb)), Θb = (−α)

Θ̇d + ks
cs

(Θd −Θb), |Θb| < α

min(0,∆Θ̇d + ks
cs

(Θd −Θb)), Θb = α.

(2.3)
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Figure 2.1: Schematic representation of a nonlinear two-mass system with backlash

Jm [kgm2] represents the motor moment of inertia, cm [Nm/(rad/s)] the viscous motor

friction and Jl and cl the equivalent parameters on the load side. Tm1 [Nm] is the driving

motor torque, whereas Tm2 [Nm] is an additional controllable torque acting on the load. A

schematic representation of a two-mass system exhibiting backlash is shown in Fig. 2.1.

The shaft is considered to be an inertia free spring with internal damping. The parame-

ters ks [Nm/rad] and cs [Nm/(rad/sec)] represent the shaft elasticity and its inner damping

respectively. Ts [Nm] is the shaft torque between motor and load. The shaft torque Ts is

a function of the relative position angle Θd [rad] and the relative velocity ωd [rad/sec], as

well as the backlash angle Θb [rad], which is denoted with 2α. The gear ratio is assumed

to be 1.

To establish a connection to the intrinsically considered process, namely the dual motor

control of a parallel kinematic robot, it is additionally assumed, that the two-mass system

moves in translational direction with xpos = rlΘl [m] describing its translational position.

The absolute position of the load is denominated as xpos [m], while the radius of the load

is rl [m].

The used state-space representation of the backlash angle was developed by Nordin

et.al [4]. In [4] respectively [7] different models for an elastic free shaft with backlash

are analyzed with the result that the commonly used modified dead-zone model does not

always reflect the real physical behavior of the system e.g., it can lead to obtain a pull

force for the shaft torque at the side of the backlash, where physically only a push force is

possible.
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In [7] a further modification of the modified dead-zone model is introduced and an-

alyzed, but no improvement can be achieved. In the same paper another model for the

backlash is presented and named exact model, which is the one used in the present model-

ing. It is shown that the behavior of that model is then closer to the real physical process.

However, following the analysis in [7] both models are an exact description of the backlash

if the shaft is modeled as a pure spring without damping, that is cs = 0.

For the presented simulations the following set of parameters is used

Jm = 0.4 [kgm2]

cm = 0.1 [Nm/(rad/s)]

Jl = 5.6 [kgm2]

cl = 1 [Nm/(rad(s)]

ks = 3300 [Nm/rad]

cs = 1 [Nm/(rad/s)]

rl = 0.01 [m]

α = 5 [deg].

This set has been mostly taken out of [2] and will be used as example for a nominal

case study in this chapter.

According to equation (2.2) the operation modes of the system are distinguished be-

tween the two cases: system in contact and system in backlash.

When the system is in contact, torque transmission between the motor and the load is

possible, whereas there is no torque transmission in the backlash case. The conditions for

the backlash case, can be summarized as follows

backlash =







Θb = (−α) ∧ ωb > 0

|Θb| < α

Θb = α ∧ ωb < 0.

(2.4)
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For all other cases the system is in contact mode, that is

contact =







Θb = α ∧ ωb ≥ 0

Θb = (−α) ∧ ωb ≤ 0.

(2.5)

Note that the impact when the backlash gap closes is assumed to be inelastic, [7].

2.1.1 Matlab/Simulink model

The implemented model is shown in Fig. 2.2. The model has two inputs, which are the

torques of the driving motors and several outputs including the angle positions of motor

and load and its respective velocities. Additionally the shaft torque and the absolute

position are available.

Nevertheless, only the absolute position of the load (xpos), the motor and load angle

positions (Θm, Θl) and the motor velocity ωm are considered to be measurable, as this

represents the given situation on the real robot.

Figure 2.2: Nonlinear two-mass system of Eq. 2.1 in Simulink.
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2.2 Linear position control of a nonlinear two-mass

system

In this section a linear controller for the absolute position xpos of the considered system

is designed. The design is carried out formulating some rather weak requirements on the

step response of the system, which does not reflect the commonly used input references

in robotics. However, it might be valid in the present case, as the control-design task

is regarded as a minor point compared to the analysis of the system performance under

backlash effects.

2.2.1 Controller design

For the design of the linear controller, the nonlinear two-mass system described in Sec-

tion 2.1 is reduced to a linear system, that is the backlash is neglected. Thus, the model

reduces to

Jmω̇m = −cmωm − Ts + Tm1

Jlω̇l = −clωl + Ts + Tm2

xpos = rlΘl (2.6)

ωd = ωm − ωl

with

Θ̇m = ωm, Θ̇l = ωl, Θ̇d = ωd

and

Ts = ksΘd + csωd (2.7)

where the variables and parameters have the same physical meaning as in Section 2.1.

A schematic view of the system is given in Fig. 2.3. This linear model is equal to the case
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’System in contact’ of the nonlinear model. The measured outputs of the system are the

absolute position of the cart xpos, the motor position angle Θm and the motor velocity ωm.

A state space realization of the system can be formulated as:

ẋ = Ax+Bu+HTm2 (2.8)

y = Cx,

where

x =
[

Θl Θm ωl ωm

]T

, (2.9)

u = Tm1, (2.10)

A =













0 0 1 0

0 0 0 1

−ks
Jl

ks
Jl
− cs+cl
Jl

− cs
Jl

0 0 0 − cm
Jm













, (2.11)

B =













0

0

0

1
Jm













, (2.12)

H =













0

0

1
Jl

0













, (2.13)

C =










rl 0 0 0

0 1 0 0

0 0 1 0










. (2.14)

With this representation it can be easily shown that the system has three poles in the

LHP and one pole on the origin. Furthermore, the system is fully controllable as well as

observable.
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Figure 2.3: Schematic representation of a linear two-mass system.

The desired controller should fulfill the following requirements:

• No overshoot

• Fast response (rise time <5 [s]).

In order to achieve these aims, a cascade structure is implemented. The inner loop

controller is a PI-controller and its control variable is the motor velocity ωm, whereas the

outer loop controller is a PID-controller with the absolute position xpos as control variable.

The implemented controller structure is shown in Fig. 2.4. The corresponding control

laws in the Laplace domain are

Uh(s) =KP,out((βoutYref(s)− Ymeas(s)) +
1

Ti,outs
E(s) (2.15)

+
Td,outs

1 +
Td,outs

N

(γoutYref(s)− Ymeas(s))),

where

KP,out = 200 (2.16)

βout = 0 (2.17)

Ti,out = 1.5 (2.18)

Td,out = 0.05 (2.19)

γout = 0 (2.20)

N = 20 (2.21)
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Figure 2.4: Control structure of the linear two-mass system. The controller includes modifications on

the setpoint weighting and the limitation of the derivative gain.

and

U1(s) = KP,in((βinYref(s)− Ymeas(s)) +
1

Ti,ins
E(s)), (2.22)

where

KP,in = 50 (2.23)

βin = 0 (2.24)

Ti,in = 0.3. (2.25)

It holds that E(s) = Yref(s)− Ymeas(s). The inner loop controller as well as the outer

loop controller are formulated including a setpoint weighting in the P-part, expressed with

the parameter β ∈ [0, 1]. Setting β < 1 helps to avoid an overshoot in the step response,

this holds especially for β = 0 as implemented in both cases. Furthermore, the D-part of

KPID,xpos is modified in a similar manner, including also a weighting parameter γout ∈ [0, 1]

for the setpoint weighting, which is set to γout = 0 and a limitation of the derivative gain.

The latter is formulated as a low-pass filter, which prevents of applying the derivation to

high frequency measurement-noise. The parameter N represents the maximum derivative

gain and is set to N = 20 (see [12]).

This design leads to the step response shown in Fig. 2.5. The step height is set to

0.1 [m]. The design requirements are fulfilled and the controller gives a stable closed-loop

performance. Furthermore the closed-loop system is fully controllable.
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Figure 2.5: Step response of the linear two-mass system using the designed controller in Section 2.2.

2.2.2 State-space representation of the control structure

A state-space representation for the outer-loop PID controller is

ẋ =






− N
Td,out

0

0 0




 x+






γout
N2

Td,out
− N2

Td,out

1
Ti,out

− 1
Ti,out











xpos,ref

xpos,meas




 (2.26)

uh =
[

−Kp,out Kp,out

]

x+






Kp,out(Nγout + βout)

−Kp,out(N + 1)






T 




xpos,ref

xpos,meas




 .

The states are defined as

x1 = PIDD (2.27)

x2 = PIDI .



2.2 Linear position control of a nonlinear two-mass system 15

The inner-loop PI controller can be represented in the state-space in the following way

ẋ3 = 0 x3 +
[

1
Ti,in

− 1
Ti,in

]






ωm

uh




 (2.28)

u1 = Kp,inx3 +
[

Kp,inβin −Kp,in

]






ωm

uh




 .

The state x is defined as

x3 = PII . (2.29)

The overall control structure can be formulated in state-space representation as follows









ẋ1

ẋ2

ẋ3










=










− N
Td,out

0 0

0 0 0

−Kp,out
Ti,in

Kp,out
Ti,in










x (2.30)

+










γout
N2

Td,out
− N2

Td,out
0

1
Ti,out

− 1
Ti,out

0

Kp,out(Nγout+βout)
Ti,out

−Kp,out(N+1)
Ti,in

− 1
Ti,in



















xpos,ref

xpos,meas

ωm










u1 =
[

−Kp,inKp,outβin Kp,inKp,outβin Kp,in

]

x (2.31)

+










Kp,inKp,outβin(βout +Nγout)

−Kp,inKp,outβin(N + 1)

−Kp,in










T 








xpos,ref

xpos,meas

ωm










,

where the state vector x represents

x1 = PIDD

x2 = PIDI (2.32)

x3 = PII .
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Figure 2.6: Step response of the nonlinear two-mass system using a cascade control structure. As

expected the system undergoes limit cycles after some time as consequence of the backlash element.

2.2.3 Control performance on a nonlinear two-mass system

Now the control structure is tested on a nonlinear two-mass system including backlash. The

step height is set to 0.1 [m] and the system is assumed to be in contact in the beginning

of the motion, that is Θd(t = 0) = α. This setup will be used in most of the further

simulations as it corresponds to the estimated starting position in the real application.

As expected the system undergoes limit cycles after some time as consequence of the

backlash element, see step response in Fig. 2.6. The beginning of the limit cycles can be

influenced by the size of the backlash angle. For instance a larger backlash angle leads to

a faster generation of limit cycles.
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2.3 Stability analysis of a two-mass system containing

a dead-zone nonlinearity

This section analyzes the existence of equilibrium points and the stability of a nonlinear

system containing a dead-zone nonlinearity. As derived in the previous sections, the sys-

tem consists of a two-mass system exhibiting backlash and a cascaded control structure

containing PID- and PI-control. Additionally, the system has a constant, but controllable

torque acting directly on the load.

Note that in the following analysis, the exact backlash model is substituted with a

dead-zone, which according to [2], [3] is a common way to model backlash. The shaft

twist is then denoted with Θs = Θd−Θb [rad]. In the present analysis, no shaft-damping is

considered. Thus, the shaft torque reduces to a function of Θd and Θb. However, neglecting

the shaft-damping does not represent a change for the analysis, as for a possible equilibrium

point of the system it must hold ωm = ωl = 0.

In [2] it is stated, that the dead-zone model does not reflect the exact physical behavior

of the backlash. However, for the analysis of equilibrium points and stability the difference

between the exact model proposed in [2] and the dead-zone model is negligible, as their

main difference lays in the fact that the dead-zone model can predict physically impossible

shaft torques. But this is not crucial in the following remarks.

The analysis is structured as follows: In Subsection 2.3.1 a state-space model is pre-

sented. In Subsection 2.3.2 a controllable canonical form of the system is derived, which

is used in 2.3.3 to determine the equilibrium points of the system. In Subsection 2.3.4 the

stability of the equilibrium points is analyzed. At last, some physical aspects concerning

the model and its equilibrium points are discussed in Subsection 2.3.5.
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2.3.1 State-space model

A model describing the closed-loop system can be formulated as follows

ẋ = Ax+Bdz2α(y) +Hu2, x(t = 0) = x0 (2.33)

y = Cx,

where

Θs = dz2α(Θd) =







Θd − α, Θd > α,

0, |Θd| < α,

Θd + α, Θd < −α

(2.34)

and

x =
[

Θl ωl Θm ωm PII PIDD PIDI

]T

,

u2 = Tm2, (2.35)

y = Θd = Θm −Θl.

The states PII , PIDD and PIDI correspond to the state-space representation in Sec-

tion 2.2. The system matrices are given as
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Figure 2.7: Block diagram of the dead-zone-based backlash model with G(s) = C(sI − A)−1B and u2

as constant input on the load side.

A =
























0 0.1786 0 0 0 0 0

0 −0.1786 0 0 0 0 0

0 0 0 2.5 0 0 0

0 0 0 −125.3 50 0 0

−105 0 0 −6.25 0 −2 · 104 2.5

−2 0 0 0 0 −400 0

−1.333 0 0 0 0 0 0
























,

B =
























0

3300

0

−3300

0

0

0
























, (2.36)

H =
























0

1

0

0

0

0

0
























,

C =
[

−1 0 1 0 0 0 0

]

.
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2.3.2 Transformation into controllable canonical form

Now, the system (A,B,H,C) is transformed into a controllable canonical form via a trans-

formation matrix T , [14]. The new system description is given as

x =Tx,

A =TAT−1,

B =TB, (2.37)

H =TH,

C =CT−1.

Thus, the system matrices have the form:

A =













0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

−a0 −a1 · · · −an−1













,

B =













0
...

0

1













, (2.38)

H =










h0

...

hn−1










,

C =
[

c0 c1 . . . cn−1

]

.
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2.3.3 Equilibrium points

The equilibrium points for the original, untransformed system are given as

ẋ = 0 = Ax+Bdz2α(y) +Hu2. (2.39)

As this nonlinear set of equations is difficult to solve, equally the following set can be

considered

y = −CA
−1

(BΘs +Hu2) (2.40)

Θs = dz2α(y).

In the present case, A is not invertible. Thus, we make use of the transformed system

equations in controllable canonical form obtained before. In the following the transformed

system will be again denoted as (A,B,H,C). The equilibria of the system have then the

form

0 = ẋ =













0 1 · · · 0
...

... · · ·
...

0 0 · · · 1

−a0 −a1 · · · −an−1













x+













0
...

0

1













dz2α(y) +










h0

...

hn−1










u2 (2.41)

y =
[

c0 c1 . . . cn−1

]

x.

In this representation, one can see that the equilibrium states x2 . . . xn only depend on

the constant input u2, whereas x1 depends on all other states, the constant input u2 and

the system output y.

In explicit form the equilibrium conditions can be written as
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ẋ1 = 0 = x2 + h0u2 ⇒ x2 = −h0u2

... (2.42)

ẋn−1 = 0 = xn + hn−2u2 ⇒ xn = −hn−2u2

ẋn = 0 = −a0x1 − . . .− an−1xn − hn−1u2 + dz2α(y).

The equation for ẋn = 0 can be formulated in dependency of x1 and u2 as

ẋn = 0 = −a0x1 + a1h0u2 + . . .+ an−1hn−2u2 − hn−1u2 + dz2α(Cx)

ẋn = 0 = −a0x1 + a1h0u2 + . . . (2.43)

+ an−1hn−2u2 − hn−1u2 + dz2α(c0x1 − c1h0u2 . . .− cn−1hn−2u2).

Next, we introduce two constants K1 and K2

K1 = a1h0 + . . .+ an−1hn−2 − hn−1, (2.44)

K2 = −c1h0 − . . .− cn−1hn−2. (2.45)

Assume, that there is at least one pair aihi−1 6= 0 and one pair cihi−1 6= 0.

So we can write

ẋn = 0 = −a0x1 +K1u2 + dz2α(c0x1 +K2u2). (2.46)

The equilibria of the system depend only on x1 and u2, as well as the dead-zone width

α. Now, assume u2 = const. In the present case it is furthermore a0 = 0, thus the last

equation reduces to

ẋn = 0 = K1u2 + dz2α(c0x1 +K2u2). (2.47)

Summarizing, the equilibrium equations are given as
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ẋn = 0 = K1u2 + dz2α(c0x1 +K2u2) (2.48)

xi = −hi−2u2, i = 2 . . . 6.

For the determination of the equilibria, we can distinguish two main cases:

• Case 1: u2 = 0.

• Case 2: u2 6= 0.

Equilibrium points for u2 = 0

Then equation (2.47) reduces to

0 = dz2α(c0x1), (2.49)

where the only possible solution is |x1

c0
| < α. Then all possible equilibria of x1 lay inside

the dead-zone. If we solve this inequality, we have to consider:

1. x1

c0
< α. Then for x1 it holds

x1 <
α

c0
. (2.50)

All other states become 0, as they depend only on u2 and u2 = 0. Thus, we can

express the system output y as

y = c0x1. (2.51)

From equation (2.50) it follows that y < α. Thus, the system output lays inside the

dead-zone for all possible equilibria.

2. x1

c0
> −α. According to the previous discussed case, obviously it is y > −α and

therefor all possible equilibrium points lay again inside the dead-zone.

Summarizing, in case u2 = 0 there exist numerous equilibrium points for −α < y < α.
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Equilibrium points for u2 6= 0

In the case u2 6= 0 solutions of (2.47) exist for:

1. c0x1 +K2u2 < −α. In this case equation (2.47) leads to

ẋn = 0 = K1u2 + c0x1 +K2u2 + α (2.52)

and

x1 =
−(K2 +K1)u2 − α

c0
. (2.53)

Thus, there is only one possible equilibrium point for a fixed value of u2.

Inserting the result in

dz2α(c0x1 +K2u2), (2.54)

gives the condition

−K1u2 − α < −α ≡ −K1u2 < 0. (2.55)

An interpretation of the latter equation is that an equilibrium point on the left

contact side only exists if u2 > 0 and K1 > 0 or if u2 < 0 and K1 < 0.

2. c0x1 +K2u2 > α. In this case equation (2.47) leads to

ẋn = 0 = K1u2 + c0x1 +K2u2 − α (2.56)

and

x1 =
−(K2 +K1)u2 + α

c0
. (2.57)
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Inserting the result in

dz2α(c0x1 +K2u2), (2.58)

gives the condition

−K1u2 + α > α ≡ −K1u2 > 0. (2.59)

Thus, there exists only one possible equilibrium point for a fixed u2 and it can only

lay on the right contact side for u2 > 0 and K1 < 0 or u2 < 0 and K1 > 0.

Consequently, an equilibrium point outside the dead-zone can be achieved by setting

u2 6= 0. By choosing the sign of u2 one can even determine on which contact side, the

equilibrium lays. For every u2 6= 0 there exists only one equilibrium point.

An interesting observation can be made, when transforming the equilibrium point ob-

tained for (A,B,H,C) and u2 6= 0 into the original coordinates. The state vector has then

only entries unequal 0 on the states representing the motor position and the integrator of

the inner-loop PI-controller, that is

xeq =
[

0 0 Θm,eq 0 PII,eq 0 0

]T

. (2.60)

Furthermore, reconstructing the state vector in the original variables at an equilibrium

point obtained for u2 6= 0 leads to

xeq = T (:, 1)−1x(1) + T (:, 2 : 7)−1x(2 : 7). (2.61)

By inserting the equations holding at an equilibrium one obtains

xeq = −T (:, 1)−1K1 +K2

c0
u2 + T (:, 1)−1 α

c0
sign(u2)− T (:, 2 : 7)−1H(1 : 6)u2. (2.62)

Inserting the numerical values, one obtains
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xeq =
























0

0

−0.0155

0

0

0

0
























u2 +
























0

0

0.0873

0

0

0

0
























sign(u2) +
























0

0

0.0161

0

−0.0200

0

0
























u2. (2.63)

Thus, in an equilibrium point only the values of Θm and PII are different from 0 and

are directly influenced by the choice of u2. All the other states remain 0, which is physically

traceable, as in an equilibrium the angular velocities should be 0. Additionally, the load

position should be 0, as no input reference is considered and therefore PIDD = 0 and

PIDI = 0.

The system output y is given as

y = Cx. (2.64)

Remember, in the present case C has the form

C =
[

−1 0 1 0 0 0 0

]

. (2.65)

Making use of equation (2.63), we can write the stationary value of y as a function of u2

y = c2x3 = −0.0155u2 + 0.0873sign(u2) + 0.0161u2. (2.66)

Thus, as the used nominal parameters give K1 < 0, for every u2 > 0 the equilibrium

point lays on the right side of the dead-zone and y becomes

y = K3u2 + α. (2.67)

Whereas for every u2 < 0, the equilibrium point lays on the left side of the dead-zone

and y becomes
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y = K3u2 − α, (2.68)

where K3 is a constant with K3 = 0.0006.

2.3.4 Stability analysis

In the previous subsection, the existence of equilibrium points in the system was shown.

Now, their local stability is analyzed. The analysis is carried out in the original system

representation A,B,H,C. This is possible as there exists an unique transformation T from

x to x and therefor also from x to x with x = T−1x.

Local stability for u2 = 0

We have shown, that for u2 = 0 there exist multiple equilibria inside the dead-zone. If

we linearize the system around one arbitrary chosen equilibrium point, which satisfies the

above condition, e.g. y = α
2
, we obtain

ẋ = Ax (2.69)

y = Cx.

As A has several eigenvalues with Re(λ) = 0, the system is unstable. This statement

holds for all possible equilibrium points obtained when u2 = 0.

Local stability for u2 6= 0

For every u2 6= 0 an equilibrium point is defined. If we linearize the system around the

equilibrium obtained by choosing an arbitrary value of u2 6= 0, we obtain

ẋ = Ax+B(y ± α) +Hu2 (2.70)

y = Cx.
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So we can write

ẋ = (A+BC)x+B(±α) +Hu2 (2.71)

y = Cx.

Let us denote Acl = A+BC. All poles of Acl lay in the LHP, with being max(Reλi) =

−0.9317, i = 1 . . . 7. Thus the system is local asymptotically stable.

The analysis shows that local stability can be achieved by any u2 6= 0. However, for

making sure the stable performance around the equilibrium point some |u2| > |δ| > 0 is

required. This is emphasized by simulations, which show that u2 has to have a certain

magnitude for stabilizing the system. An interpretation would be, that the region of

attraction of the equilibrium point increases with increasing magnitude of |u2|.

2.3.5 Physical aspects to consider

In the previous lines, it was shown that there exists a locally stable equilibrium point for

every u2 6= 0. A remarkable point, is that every equilibrium point obtained with some

u2 6= 0 leads to a relative position angle |Θd| > α. The higher the magnitude of u2, the

higher the difference |Θd| − α.

This is explainable by considering again the formula defining the shaft torque

Ts = ks(Θm −Θl). (2.72)

In the present case, ks and Θl are constant, as the latter is the control variable and is set

to a desired but fixed value. Thus for increasing the shaft torque, the only possibility is to

increase Θm. Even for the ’normal’ case, where Θl 6= const the relative position angle has

to increase in order to increase the transmitted shaft torque.

This observation can also be made in simulations with a Simulink model, which includes

a more sophisticated backlash-model, proposed by Nordin et. al e.g., in [2]. A gratifying

fact is that the equilibrium points obtained by simulations with this model correspond

quite precisely with these of the analytical analysis based on the dead-zone model.
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For relatively small differences |Θd| − α < ǫ this fact is physically logical, as one

could interpret the additional deformation Θs = Θd − Θb = Θd − α as a consequence

of the shaft-elasticity. For higher differences, it must be noted that the model does not

completely reflect the real physical behavior of the system, as there is no constrained

on Θd = Θm − Θl which represents the blocking/braking of the shaft after its maximum

deformation. However, this is a minor aspect as it does not query the results of the analysis.

2.4 Dual motor control with constant load torque

Now, simulations with the nonlinear two-mass model are presented to verify the results

of Section 2.3. Thus, the limit cycles are intended to be avoided and the system to be

stabilized by applying a constant torque Tm2 on the load side. In a first step, this can be

carried out in two different ways: Either using a constant torque from the beginning of

the motion on, that is t = 0 or to apply the constant torque not until a to defining point

in time on with t > 0. An example for the selection of such a point in time would be the

beginning of oscillations in the system, when no torque at all is applied.

The sign of the torque, which should be opposite to the main driving direction of the

system is defined by the following function

v = sign(xref,old − xref,new). (2.73)

The torque can then be defined as

u2 = |Tm2|sign(v). (2.74)

The remaining parameter to choose is the magnitude of the constant torque Tm2. In

Fig. 2.8 simulation results for different magnitudes of Tm2 applied at t = 0 [s] are presented.

One can observe, that for low values of Tm2 the backlash effect cannot be avoided completely

and there still exist limit cycles. A low torque even speeds up their appearance.

On the other side, one can see that high values of Tm2 lead to a negative response

behavior of the system, since in the beginning Tm2 > Tm1. But for certain values of
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Figure 2.8: Performance of the nonlinear two-mass system for different magnitudes of Tm2 applied at

t = 0 [s]. The limit cycles can be oppressed with a torque magnitude of Tm2 ≥ −2.5 [Nm].

intermediate magnitude the limit cycles can be completely eliminated without a strong

negative response behavior. For the considered nominal system, e.g. a constant torque of

Tm2 = −5 [Nm] leads to satisfactory results.

In Fig. 2.9 the torque is not applied until t = 65 [s], that is when limit cycles already

exist. The behavior of the system is similar to the one described before, but no negative

response behavior can be observed.

Another parameter to define is the sign of the torque, which should be opposite to the

main driving direction of the system. A function achieving this is given by

v = sign(xref,old − xref,new). (2.75)

Two simulation results for a constant torque starting at t = 0[s] with Tm2 = −5[Nm]

and t = 60[s] with Tm2 = −5[Nm] are shown in Fig. 2.10 and Fig. 2.11 respectively. As
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Figure 2.9: Performance of the nonlinear three-mass system for different magnitudes of Tm2 applied at

t = 65 [s]. The limit cycles can again be oppressed with a torque magnitude of Tm2 ≥ −2.5 [Nm] and no

negative response behavior is observed.

before, the step height is set to 0.01 [m] and the system is assumed to be in contact in the

beginning of the motion, that is Θd(t = 0) = α.

Concluding, the results obtained in Section 2.3 are verified in the simulations. The sys-

tem is stabilizable by acting with an additional constant torque on the load side. However,

as this operation mode only influences the equilibrium point of the system and thus its

local stability, a certain magnitude of the torque is required for a stable performance. This

also corresponds to the remarks made in Section 2.3, where an increasing torque magnitude

is interpreted as an increasing region of attraction of the equilibrium point.

Thus, the approach of using a dual motor control strategy to reduce the backlash

effects in a robot actuator seems feasible. Applying a torque from t = 0[s] on, leads to a

smoother response of the system, but requires a higher controller output. Additionally, a
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Figure 2.10: Dual motor control with constant torque Tm2 = −5 [Nm] at t = 0 [s]. As consequence of

the constant torque, no limit cycles appear and the system reaches its desired final position.

negative response behavior can be observed in the beginning of the motion. When applying

the torque on a later point in time, the already existing limit cycles are also eliminated

and no negative response behavior is observed. The latter observation, leads to the idea

of developing strategies to control the operation of the constant torque Tm2 in order to

reduce the required input energy. One way to achieving this, is by trying to act only with

Tm2 when limit cycles would occur in the system for Tm2 = 0.
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Figure 2.11: Dual motor control with constant torque Tm2 = −5 [Nm] at t = 60 [s].The limit cycles

appear approximately after 60 [s] and can be oppressed by a constant torque, which starts acting after 60 [s].

2.5 Nonlinear dual motor control of a two-mass sys-

tem

For improving the performance and energy consumption of the system it is desirable, to use

the constant torque opposite to the driving direction only when the system would undergo

limit cycles without it.

As can be seen in the simulations in Subsection 2.2.3, this is mainly the case, when

the load reaches its final desired position. Then the second motor should be used to act in

the opposite direction of the driving motor in order to close the backlash gap. But before

one can operate without it and obtains a comparably good performance.
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As consequence of these facts, more sophisticated operating strategies are developed in

order to reduce the required total input power of the system. The aim is to use the second

motor for fast closing the backlash gap and avoiding limit cycles, but only when the system

gets into backlash.

All strategies have the following characteristics in common:

• For determining Tm2 the following function is defined:

u2 = KTconstv = 5v, (2.76)

where v ∈ [0, 1] is the respective switching variable. This implementation follows an

approach for a switched controller given in [4], but with a varied determination of

v. Different definitions for v are given in equations (2.75), (2.77), (2.78) and (2.79).

The gain is chosen according to the results of Section 2.4.

The first function for v determines Tm2 regarding the relative position angle Θd,

whereas the second function does the same but depending on the relative error eabs.

The third and last approach represents a combination of the first and the second

option. All implementations lead to a nonlinear, smooth switching mode for Tm2.

As the torque is not constantly applied from the beginning on in all cases a magnitude

of |Tm2| = 5 may be sufficiently high according to the simulation results shown of

Section 2.4. That is why KTconst is set to u2 = KTconstv = 5v for the upcoming

operating strategies, where v represents the switching variable.

• The values xref,old and xref,new refer to the actual and to the desired final position.

Their difference allows to determine whether the motion occurs in positive or negative

direction, as xref,old < xref,new means a motion in positive direction and xref,old >

xref,new means a motion in negative direction. The sign of the torque of the second

motor should always be opposite to the motion direction.

The step height is set to 0.1 [m] and the system is assumed to be in contact in the

beginning of the motion, that is Θd(t = 0) = α. The plots for illustrating the simulation
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results do normally not cover the same time period as the one for demonstrating the arise

of limit cycles in the nonlinear system of the previous section(t = [0, 70] [s]), but a shorter

one. This is due, to a better presentation of the performance of each switching strategy.

Of course, all strategies are tested for longer time periods up to 500 [s].

2.5.1 Switching-strategy for dual motor control depending on Θd

The proposed control strategy in this section is based on the relative position angle between

then motor and the load Θd = Θm−Θl, as this is an indicator whether the system is actually

operating in backlash mode or not. If the system is not in backlash, that is |Θd| > α, no

opposite torque should be used. But if the system is in backlash, that is |Θd| < α, the

second motor on the load side should act in opposite direction of the motion, as presented

in Section 2.4.

The switching variable v is defined as

v =







0, |Θd1| > α

sign(xref,old − xref,new)α−|Θd|α
2

, α
2
≤ |Θd| ≤ α

sign(xref,old − xref,new), |Θd| <
α
2
.

(2.77)

The function is illustrated in Fig. 2.12. This strategy leads to the result presented

in Fig. 2.13. One can observe, that the result is not satisfactory as there show up some

outliers. This might be mainly due to a sporadic switching between the backlash and

non-backlash case. Additionally, no constant torque is continuously applied in the final

position what makes the system sensible to disturbances and referring to the stability

analysis carried out in Section 2.3 no local stability can be stated. However, this strategy

might be hard to apply in practice as normally measuring of Θl is not possible.

Conclusions:

• No elimination of limit cycles, when disturbances are present.

• Advantage: Closing backlash gap when existing, even in the beginning.
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Figure 2.12: Switching function v = f(Θd). |v| takes the value 1, when |Θd| <
α

2
. If |Θd| > α, v takes

the value 0 and for all other cases v ∈ [0, 1].

• Disadvantage: Negative response behavior can occur, information about backlash

gap size needed.

• Requirements cannot be fulfilled.

• No local stability guaranteed according to the analysis of Section 2.3.

2.5.2 Switching-strategy for dual motor control depending on eabs

Now, the switching-strategy is oriented on the relative error eabs =
|xref,new−xmeas|

|xref,new−xref,old|
. This

option utilizes the knowledge, that the main influence of the backlash angle occurs when

the cart is reaching its final position. This is manifested by the arise of limit cycles. Thus,

the relative error may be used as an indicator, when the second motor should act with a

constant torque. The function v = f(eabs) is implemented as follows

v =







0, eabs > emax

sign(xref,old − xref,new) eabs−emax
emin−emax

, emin ≤ eabs ≤ emax

sign(xref,old − xref,new), eabs < emin,

(2.78)

with the free parameters emax, emin.
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Figure 2.13: Dual motor control with v = f(Θd). No constant torque is continuously applied in the final

position which makes the system sensible to disturbances and referring to the stability analysis carried out

in Section 2.3 no local stability can be stated.

The function is illustrated in Fig. 2.14 and the performance of this set is shown in

Fig. 2.15. The parameters were set to: emax = 0.25 and emin = 0.01. The limit cycles are

oppressed and a smooth response is obtained.

Using this strategy, a constant torque is continuously applied in the final position what

makes the system robust against disturbances and referring to the stability analysis carried

out in Section 2.3 local stability can be stated.

One important aspect to consider is the system performance for position changes with

a path length lpath ≤ αrl. In such cases no stable performance is achieved as the desired

positioning inside the backlash gap leads to a continuous on/off-switching of Tm2.

This can be avoided by operating with a constant pretorque on the second motor for

reference trajectories with lpath ≤ αrl.
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Figure 2.14: Switching function v = f(eabs). |v| takes the value 1, when eabs < emin. If eabs > emax, v

takes the value 0 and for all other cases v ∈ [0, 1].

Another solution for that problem could be to completely avoid small values of lpath by

artificially increasing the trajectory path for position changes, which are too close together.

This can be achieved e.g. by changing the trajectory path from xpos,old = 0 → xpos,new =

0.001 into xpos,old = 0→ xpos,artificial = −0.1→ xpos,new = 0.001. Then, the positioning can

be effectuated in a satisfactory manner, as the implementation has no problem regarding

the accuracy for high resoluted reference values, but for trajectory paths lpath ≤ αrl.

Conclusions:

• Strategy fulfills requirements.

• Local stability can be stated referring to the analysis of Section 2.3.

• Switching dependent on relative error with respect to final position, not on backlash.

• Therefore, no reaction if system is in backlash while eabs < emax.

• Strategy is robust against load disturbances and does not lead to negative response

behavior.
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Figure 2.15: Control strategy with v = f(eabs). Here, the limit cycles are oppressed. Furthermore a

smooth response is obtained and the strategy is robust against disturbances. Referring to the stability

analysis carried out in Section 2.3 local stability can be stated as a constant torque is continuously applied

in the final position.

2.5.3 Switching-strategy for dual motor control depending on Θd

and eabs

The last switching-version is a combination of the first and the second. It aims to join

both switching reference values Θd and eabs in order to be able to react to backlash-

situations during the motion and especially avoid limit cycles when reaching the final

position. Therefore v is defined as



40 2 Dual motor control of a nonlinear two-mass system

v =







0, |Θd1| > α and eabs > emax

sign(xref,old − xref,new)α−|Θd|α
2

, α
2
≤ |Θd| ≤ α and eabs > emax

sign(xref,old − xref,new), |Θd| <
α
2
and eabs > emax

sign(xref,old − xref,new) eabs−emax
emin−emax

, emin ≤ eabs ≤ emax

sign(xref,old − xref,new), eabs < emin,

(2.79)

with emax, emin to be chosen appropriately.

This strategy leads to the behavior presented in Fig. 2.16. It shows a satisfactory

behavior, similar to the case when v = f(eabs). But it could possibly lead to an inverse

response behavior, when the system is in backlash at the beginning of the motion. For this

strategy, local stability in the final position can be achieved.

Conclusions:

• Satisfactory behavior, similar to case when v = f(eabs).

• Local stability can be stated referring to the analysis of Section 2.3.

• Closing of eventual backlash gaps during transition.

• Robust against load disturbances.

• Possibly inverse response behavior.

• Information about backlash gap size needed.
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Figure 2.16: Control strategy with v = f(Θd, eabs). This alternative shows a satisfactory behavior,

similar to the case when v = f(eabs). However, it could eventually lead to an inverse response behavior.

2.6 Summary

In this chapter a model of a nonlinear two-mass system has been introduced and analyzed

regarding its characteristics when operating with a control structure for the load position

and an additional constant torque acting directly on the load.

For this setup, equilibrium points and local stability criteria have been presented, show-

ing that the system is locally stabilizable by introducing this additional constant torque.

Subsequently, different operating modes for the system have been presented and an-

alyzed in simulations in order to improve the system performance. Of these, defining

v = f(eabs) seems to achieve the best performance in meanings of a smooth and efficient

motion, as well as stability. Determining the action of the torque Tm2 via v = f(Θd) does

not lead to satisfactory results. Additionally it might be difficult to estimate the size of
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the backlash gap in practice.

Operating with a switching-function based on both variables (eabs and Θd), also leads

to a less advantageous performance as determining v only depending on the relative error

eabs. The main disadvantages of the combination are higher input and shaft torques, which

might be provoked by the intention of closing the backlash gap in the beginning of a

position change. In that situation, the motors are forced to act against each other.

In conclusion, the most promising strategy seems to be the one based on v = f(eabs).

Another advantage of this variant is that measuring the position angles Θm of motor and

Θl of the load becomes unnecessary.



Chapter 3

Experimental tests on a nonlinear

two-mass system exhibiting backlash

In this chapter, the proposed ideas to reduce and control the backlash-effect in the robot

actuators, which have been presented in Chapter 2, are investigated on an experimental

plant representing a nonlinear two-mass system exhibiting backlash.

The outline of the chapter is as follows: In the first section ( 3.1), the laboratory setup

is described and a model of the process is derived. Subsequently, the required transfer

functions are identified. Afterwards, a position control for the load position Θl is designed

in Section 3.2 based on a linear model neglecting the backlash. In Section 3.3 the different

strategies for defining the torque on the second motor are implemented according to the

ones presented in Chapter 2. The control structure is enhanced with the defined functions

and subsequently the resulting configurations are tested on the real plant with the backlash

element.

3.1 Laboratory setup and modeling

The present laboratory setup could represent e.g., [13] an automotive power-train system.

It consists of two equal rotating masses, the backlash element and two equal DC motors of

which one is used as driving motor and the other one is used on the load side. The shaft

43
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is rather stiff and does not include a spring element e.g., unlike in [13]. The backlash gap

size α is approximately 30◦. Furthermore the system features two encoders for position

and velocity measurements. The measured values are the motor position Θm, the motor

velocity ωm, the load position Θl and the load velocity ωl.

As already stated in Chapter 2, the second motor on the load side may generally be

used to simulate load-disturbance effects. But in our case, it will be used to simulate

the second motor of the desired dual-motor-drive aiming to close the backlash gap with a

torque acting in opposite direction of the driving torque.

No shaft damping nor shaft elasticity is present in the laboratory setup, thus a nonlinear

model describing the process is given as

• System in backlash: |Θd| < α

L
di

dt
= kuu1 − kGωm −Ri

Jmωm = −cmωm + kmi (3.1)

Jlωl = −clωl − TL

• System in contact: |Θd| > α and thus Θl = Θm ± α

L
di

dt
= kuu1 − kGω −Ri (3.2)

(Jm + Jl)ω = −(cm + cl)ω + kmi− TL,

where

Θd = Θm −Θl (3.3)

and

TL = kmkIu2. (3.4)
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The first equation models the electrical circuit and the second and third model the

mechanical part of the process. The latter two are reduced to one equation in the contact-

case. Fig. 3.1 shows a picture of the setup.

According to [23], u1 [V] represents the input voltage of the driving motor, i [A] the

resulting current, ωm [rad] the motor velocity, ωl [rad] the load velocity and TL [Nm] an

input torque on the load side. The parameter L [Vs/A] reflects the inductivity, R [V/A]

the resistance, ku [-] the power amplifier amplifying coefficient, kG [Vs/rad] the electro-

motor feedback coefficient, Jm [kgm2/rad] and Jl [kgm2/rad] the inertias of the masses, cm

[Nm/rad/s] and cl [Nm/rad/s] the viscous friction on the load and motor side, kI [A/V]

and km [Nm/V] the load motor current amplifying factor and the moment of inertia of the

servo and load motor respectively.

3.1.1 Stiction analysis

For the purpose of parameter identification the system is first analyzed concerning its

stiction and friction, while performing in the different operating conditions mentioned

above. The results are shown in Fig. 3.2. As input signals sawtooth-sequences of relatively

low amplitudes were used.

One can observe that the stiction differs significantly in all operating points. Sometimes

it can be overcome quite easily by low input signals, while other times the process does

not move at all even with the highest input signal. As expected the stiction is higher

when operating with both masses instead of using just one mass, because of the higher

inertia. Furthermore when using both masses, the stiction is higher when the system is

stiffly connected than when it operates including the backlash element.

3.1.2 Transfer function identification

For the purpose of controller design a first order model for the linear relation Gu1ωl between

the input u1 and the load velocity wl is identified.

For the identification procedure, the system is stiffly connected and operated with
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Figure 3.1: Experimental setup with the mass representing the motor on the right and the load on the

left side. The backlash element is situated in the middle.

a constant input torque as offset to overcome static influences like stiction. From this

configuration on, the system is excited with steps between [0, 0.3] [V]. The obtained data

is evaluated using the Matlab-function pem.

As result of the identification procedure, a transfer function describing the desired

relation is given as

Gu1ωl =
0.7345

s+ 0.04091
. (3.5)

Furthermore, the transfer function describing the relation between u1 and the load

position Θl is obtained by enhancing Gu1ωl with an integrator, what gives

Gu1Θl =
1

s
Gu1ωl. (3.6)
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Figure 3.2: The stiction differs significantly in all operating points. Sometimes it can be overcome quite

easy by low input signals, while other times the process does not move at all even with the highest input

signal.

The first order relation between u1 and the velocity ωm of the first mass corresponding

to the motor is identified as

Gu1ωm =
0.8113

s+ 0.3492
. (3.7)

One can observe, how the pole of Gu1ωl changes due to the additional mass representing

the load in comparison to the pole of Gu1ωm .

An indicator for the matching between the model and the real plant is the correlation

between measured and simulated data. Fig. 3.3 shows a step response of both, the experi-

mental plant and the identified transfer function as stated in Eq.( 3.5) for a reference step

height of 0.1 [V]. The correlation of the error between the measured and simulated data is

shown in Fig. 3.4. One can conclude, that the model seems to fit the real system behavior

in a quite accurate way.
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This is supported by looking at the correlation coefficient, which is defined as [20]

rX,Y =
cov(X, Y )

σXσY
. (3.8)

Figure 3.3: Step response of experimental plant and identified transfer function of Eq.(3.5) for a step

height of 0.1 [V].

The correlation coefficient gives an indication about the relationship of data columns

e.g., values close to 1 suggest a positive linear relationship, values close to -1 suggest

a negative linear relationship, whereas values around 0 indicate that there is no linear

relationship between the data or random variables.

In the present case rX,Y = 0.9945, thus there seems to be a high linear relationship

between the measured and simulated data, which underlines the validity of the model.
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Figure 3.4: Autocorrelation of the error between the step response of experimental plant and identified

transfer function of Eq.(3.5) for a step height of 0.1 [V].

3.2 Linear position controller design

Now, a controller for the load position Θl is designed. Therefore, at first the identified

transfer function Gu1Θl for the stiff connected system is used for a linear controller design

with the following requirements:

• No overshoot

• Fast response (rise time< 5[s]).
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The chosen structure and parameters are

U(s) = KP ((βYref(s)− Ymeas(s)) +
1

Tis
E(s) +

Tds

1 + Tds
N

(γYref(s)− Ymeas(s))), (3.9)

and

KP = 100 (3.10)

β = 0 (3.11)

Ti = 0.8[s] (3.12)

Td = 0.15[s] (3.13)

γ = 0 (3.14)

N = 20. (3.15)

For the same reasons as stated in Chapter 2, the controller includes modifications on

the setpoint weighting and the limitation of the derivative gain. Furthermore, the control

structure includes an anti-windup, as the input voltage is limited to ±15V , see Fig. 3.5.

To compensate part of the measurement noise, a low-pass filter Glow is added at the

process output. The filter time constant has been determined by analyzing the Fourier

spectrum of measurements obtained of the process output Θl. The filter corresponds to

the transfer function

Glow =
1

1 + 1
20
s
. (3.16)

In Fig. 3.6 and Fig. 3.7 experimental results for the performance of the designed con-

troller on the real linear and nonlinear system are shown. One can clearly appreciate how

the backlash element makes the system undergo limit cycles. Therefore, the control action

should be supported and improved by using the second motor to avoid this behavior.
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Figure 3.5: Control structure for experimental plant. The controller includes modifications on the

setpoint weighting and the limitation of the derivative gain. Furthermore, the control structure includes

an anti-windup, as the input voltage is limited to ±15V .

3.3 Operating strategies for the second motor

In this section, four different approaches to define the torque on the second motor are pre-

sented and experimentally tested. Mainly, the approaches are equal to the ones presented

in Chapter 2 except the function KconstTorque, which is replaced by Ku2 and defined as

Ku2 = 2v, (3.17)

where v ∈ [0, 1] is the respective switching variable, which is defined in different manners

in equations (3.18), (3.19), (3.20) and (3.21).

The following examples were obtained with a reference step yref,new = Θl,new = 2[V ] ≡

41.8879 [rad] and the starting position yref,old = 0. The backlash angle is estimated exper-

imentally to α = 0.42 [rad], which is equivalent to α = 24 [deg]. Thus, the backlash gap

is quite large relatively to the one used previously in the simulations in Chapter 2. yref,old

refers to the previous final position and yref,new refers to the actual desired final position.

The difference of the latter two values allows again to determine whether the motion occurs

in positive or negative direction. Furthermore is eabs =
|yref,new−ymeas|

|yref,new−yref,old|
.
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Figure 3.6: Experimental step response of the linear system of Section 3.2.

3.3.1 Constant load torque

The first and most simple approach is to operate from the beginning of the motion on with

a constant torque in opposite direction of the desired motion. In this case v is defined as

v = sign(yref,old − yref,new). (3.18)

Numerous experiments have shown, that on this system a reasonable torque TL to avoid

limit cycles is achieved by setting u2 = ±2 [V] depending on the direction of the motion.

A lower torque cannot yield to a satisfactory performance as it is to weak to close the

backlash gap effectively. Whereas a too high torque forces a high control action, which

also does not lead to the desired result. Furthermore, it is not desired to apply a higher

torque than necessary in order to keep the required energy as low as possible. This is
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Figure 3.7: Experimental step response of the nonlinear system of Section 3.2. The backlash element

makes the system undergo limit cycles.

concordant with the results of Chapter 2, in which the need of a certain magnitude of the

constant torque is stated in order to stabilize the system.

In Fig. 3.8 a step response of the system for an input reference Θl = 2[V ] ≡ 41.8879

[rad] and a constant torque TL with u2 = −2 [V] is shown. Effectively, the limit cycles

disappear and the system behaves as desired. But due to TL the input power of the first

motor increases in comparison to the case with TL = 0. The performance applying the

same constant torque from a point in time t = 5[s] on is illustrated in Fig. 3.9.



54 3 Experimental tests on a nonlinear two-mass system exhibiting backlash

Figure 3.8: Experimental step response applying a constant torque TL with u2 = −2 [V] at t = 0 [s].

Effectively, the limit cycles disappear and the system behaves as desired.

Conclusions:

• Applying a constant torque in opposite direction of motion allows to avoid limit

cycles.

• By applying TL from the beginning on, a higher control signal is needed and it may

lead to a negative response behavior if the system is not in backlash at t = 0.

• Applying TL from a time in point later than t = 0 leads to more jitter.
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Figure 3.9: Experimental step response applying a constant torque TL with u2 = −2 [V] at t = 5 [s].

Also in this case the limit cycles are oppressed.

3.3.2 Load torque determination using Θd

This approach aims to use the relative position angle Θd to determine the action of the

second motor. Therefore the following function is defined according to Subsection 2.5.1

v =







0, |Θd| > α

sign(yref,old − yref,new)α−|Θd|α
2

, α
2
≤ |Θd| ≤ α

sign(yref,old − yref,new), |Θd| <
α
2
.

(3.19)

The performance of this approach can be seen in Fig. 3.10. As already observed in the

simulations in Subsection 2.5.1, the constant torque tends to be 0 in the final position. This

might lead to problems when disturbances appear. Furthermore, an accurate estimate and
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Figure 3.10: Experimental step response with TL = f(Θd). The performance of this approach does not

fulfill the requirements.

calibration of the process is essential for a right performance of the switching. Particularly,

the calibration, that is positioning motor and load exactly in the middle of the backlash

gap at the beginning of the experiment, is quite hard.

Conclusions:

• The theoretical and simulated results of Chapter 2 concerning the performance of

this strategy are confirmed.

• In practice, a good estimation of α might be difficult or not accurate enough.
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3.3.3 Load torque determination using eabs

Now the relative error difference between the reference value and the actually measured

value eabs is taken in consideration. Therefore the following function is implemented (see

also Subsection 2.5.2)

v =







0, eabs > emax

sign(yref,old − yref,new) eabs−emax
emin−emax

, emin ≤ eabs ≤ emax

sign(yref,old − yref,new), eabs < emin,

(3.20)

with emax = 0.1, emin = 0.001.

This strategy leads to the performance of Fig. 3.11.

Conclusions:

• No limit cycles, no negative response behavior.

• The strategy is not based on whether the system is in backlash or not, but it is based

on the knowledge that the worst effects will occur, when reaching the final reference

value.

• Small jitter appear when entering the error-bound.

• Less control power needed than in first case.

3.3.4 Load torque determination using Θd and eabs

This last option intends to combine the advantages of the previous approaches, by using

Θd to determine TL, when the system is not close to the desired reference value and eabs,

when the system is reaching the final reference position. According to Subsection 2.5.3,

this can be achieved by defining v as
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Figure 3.11: Experimental step response with TL = f(eabs). The strategy is not based on whether

the system is in backlash or not, but it is based on the knowledge that the worst effects will occur, when

reaching the final reference value. Actually, it conduces to oppress the limit cycles and maintain the desired

step-response behavior.

v =







0, |Θd| > α and eabs > emax

sign(yref,old − yref,new)α−|Θd|α
2

, α
2
≤ |Θd| ≤ α and eabs > emax

sign(yref,old − yref,new), |Θd| <
α
2
and eabs > emax

sign(yref,old − yref,new) eabs−emax
emin−emax

, emin ≤ eabs ≤ emax

sign(yref,old − yref,new), eabs < emin,

(3.21)

with emax = 0.1, emin = 0.001.

The experimental results with this strategy, lead to the results presented in Fig. 3.12.
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Figure 3.12: Experimental step response with TL = f(Θd, eabs). Here, the strategy is more dependent

on eabs than on backlash/non-backlash situation of the system. Thus, the accuracy of the estimate of α is

not that relevant as when using only Θd.

Conclusions:

• No limit cycles. No jitter.

• Accuracy of estimate of α not that relevant as when using only Θd.

• Higher energy input required than with v = f(eabs).

• Strategy more dependent on eabs than on backlash/non-backlash situation of the

system.
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3.4 Further observations

The following topics have been additionally investigated:

• System behavior in steady-state neighborhood

No limit cycles could be detected even by long experimenting times.

Stable behavior.

• Switching between different controllers depending on operation point

A similar switching strategy for the controller was used for the controller as for the

load torque depending on eabs. It is based on the same function for determining v,

only the boundaries emax ans emin are different. The control strategy can be expressed

as follows:

Gcon = Gfast + v(Gslow −Gfast), (3.22)

where Gfast is a PID-controller with the nominal integral part and Gslow a PID-

controller with a slower integral part with respect to the nominal controller.

Results were not satisfactory. It seems due to two main reasons:

– If emax−emin is chosen too large, the lower time constant of the second controller

leads to a slow steady-state-reaching.

– If emax − emin is chosen too small the switching is continuous and the region,

where 0 < v < 1 is overcrossed quite frequently and will cause many switches

between the controllers.
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3.5 Summary

This chapter evaluates the theoretical results of the previous Chapter 2 on an experimental

setup. A model of the process and a control structure with the load position Θl as main

control variable are presented. The different operating modes developed in Chapter 2 are

picked up and tested.

In general, the results obtained in the previous Chapter 2 are confirmed in experiments.

The nonlinear system can be stabilized with a constant torque acting in opposite driving

direction. The different strategies lead to similar performances in the experiments as in

simulations.

Thus, by defining v = f(eabs) one achieves the best performance in meanings of a

smooth and efficient motion, as well as stability.

Determining the action of the constant torque via v = f(Θd) does not lead to satisfac-

tory results. Additionally it is difficult to estimate the size of the backlash gap in practice

and to position the motor and load masses exactly in the middle of the backlash gap in

the beginning of the experiments.

Operating with a switching-function based on both variables (eabs and Θd), also leads

to a less advantageous performance as determining v only depending on the relative error

eabs. The main disadvantages of the combination are again higher input and shaft torques.
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Chapter 4

Dual motor control of a nonlinear

three-mass system

In this chapter the treated model is extended to a nonlinear three-mass system representing

two driving motors and one load. The load represents the cart of the robot actuator and

therefore its absolute position is the main control variable.

The modeling is carried out according to the common two-mass models which can be

found in literature [4] and have already been discussed in Chapter 2 and Chapter 3. The

additional motor will be used to decrease the backlash-effects, namely limit cycles, by

acting in opposite direction of the main driving motor.

This extension of the setup is necessary, as in the case of the parallel-kinematic robot

it is not possible to have a motor which is directly acting on the load as it was assumed in

the previous Chapter 2. However, it is aimed to use the additional motor to support the

main driving motor in the forward motion and only to counteract, when the system is in

backlash.

The chapter is structured in a similar way to the previous ones:

In Section 4.1 a model of the process with its respective parameters is introduced. Next,

a control structure for a linear three-mass model, which is equivalent to the contact-case

of the nonlinear one, is designed (Section 4.2).

In Section 4.3 the equilibrium points and stability characteristics of the system are

63
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analyzed, assuming one motor to operate with the designed control law, whereas the other

one acts with a constant torque. Hereby, is the backlash again modeled by a dead-zone.

As consequence of the setup extension, now two dead-zones are incorporated to represent

the backlash gaps between each motor and the load. Furthermore, the stability analysis

is extended to global stability in Section 4.4 and conditions for the constant input under

which the system is globally stable are derived.

Subsequently, the system behavior is analyzed in simulations in Matlab/Simulink (Sec-

tion 4.5). In the following Section 4.6 switching strategies for the operating of the second

motor are presented in analogy to Chapter 2. But now, they lead to nonlinear, smooth

switching control laws for the additional motor. The different approaches are tested and

compared based on simulations in Matlab/Simulink.

In Section 4.7 the different approaches are implemented and tested in Dymola in order

to recheck the results obtained in Matlab/Simulink. Then the controller and switching

parameters for the best switching control strategy are optimized in Section 4.8. Finally,

in Section 4.9 a nonlinear, switching MIMO control law is introduced by including an

additional switching between the master/slave-assignment of the motors.

4.1 Modeling of a nonlinear three-mass system

In analogy to Chapter 2 a model describing the extended process can be formulated as

follows

Jm1ω̇m1 = −cm1ωm1 − Ts1 + Tm1

Jm2ω̇m2 = −cm2ωm2 − Ts2 + Tm2

Jlω̇l = −clωl + Ts1 + Ts2 − Td (4.1)

xpos = rlΘl

ωd1 = ωm1 − ωl

ωd2 = ωm2 − ωl
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with

Θ̇mi = ωmi, Θ̇l = ωl, Θ̇di = ωdi,

Tsi =







ks(Θdi −Θbi) + csωdi, contact

0, backlash
(4.2)

and

Θ̇bi =







max(0,∆Θ̇di +
ks
cs

(Θdi −Θbi)), Θbi = −α

Θ̇di +
ks
cs

(Θdi −Θbi), |Θbi| < α

min(0,∆Θ̇di +
ks
cs

(Θdi −Θbi)), Θbi = α,

(4.3)

where i = {1, 2}.

Thus, the main difference of the model with respect to the one presented in Chapter 2,

is the additional ODE representing the dynamics of the second motor. As consequence,

an additional shaft torque is acting on the load and to describe the physical behavior the

following variables are needed:

• The position of the second motor Θm2 [rad], with ωm2 = Θ̇m2 and Θd2 = Θm2 −Θl.

• The shaft torque Ts2 [Nm] between Motor2 and the load.

• The backlash angle Θb2 [rad] between Motor2 and the load.
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In the present case, both motors are considered to be equal. Thus, according to Chap-

ter 2 the used set of parameters is

Jm1 = Jm2 = 0.4 [kgm2]

cm1 = cm2 = 0.1 [Nm/(rad/s)]

Jl = 5.6 [kgm2]

cl = 1 [Nm/(rad(s)]

ks = 3300 [Nm/rad]

cs = 1 [Nm/(rad/s)]

rl = 0.01 [m]

α = 5 [deg].

Now, the distinction between the operation modes of the system is a bit more compli-

cated (see equation (4.2)): When the system is in contact, torque transmission between at

least one motor and the load is possible, whereas there is no torque transmission in the

backlash case. The conditions for the backlash case, can be summarized as follows

backlash =







Θbi = (−α) ∧ ωbi > 0

|Θbi| < α

Θbi = α ∧ ωbi < 0,

(4.4)

where i = {1, 2}.

For all other cases at least one part of the system is in contact mode, that is

contact =







Θbi = α ∧ ωbi ≥ 0

Θbi = (−α) ∧ ωbi ≤ 0,

(4.5)

where i = {1, 2}.

The impact when the backlash gap closes is again assumed to be inelastic, [7].
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Figure 4.1: Schematic representation of a three-mass system exhibiting backlash or gear-play between

the motors and the load.

The model will be studied in two different simulation environments: Matlab/Simulink

and Dymola. The first one will mainly be used for controller design, whereas the Dymola

model should reflect the real physical behavior of the process in a more accurate way and

is used to verify the results obtained with Matlab/Simulink.

4.1.1 Matlab/Simulink model

The implemented model is shown in Fig. 4.2. The model has two inputs, which are the

torques of the driving motors and several outputs including the angle positions of motors

and load and its respective velocities. Additionally the shaft torques and the absolute

position are available.

Nevertheless, only the absolute position of the load (xpos), the motor and load an-

gle positions (Θm1, Θm2, Θl) and the motor velocities (ωm1, ωm2) are considered to be

measurable, as this represents the given situation on the real robot.
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Figure 4.2: Three-mass system in Simulink as described in Eq.(4.1).

4.2 Linear dual motor position control of a nonlinear

three-mass system

In this section a linear controller for the absolute position xpos of the considered process

is designed. Therefore, at first the controller for the linear two-mass system of Chapter 2

is added on the master motor of the three-mass system. For the slave motor a separate

controller is designed.

Again the design is carried out formulating some rather weak requirements on the step

response of the system, which does not reflect the commonly used input references in

robotics. But as before the control-design task is regarded as a minor point compared to

the analysis of the system performance under backlash effects.
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4.2.1 Controller design

In the linear case, the three-mass model presented in Section 4.1 reduces to

Jm1ω̇m1 = −cm1ωm1 − Ts1 + Tm1 (4.6)

Jm2ω̇m2 = −cm2ωm2 − Ts2 + Tm2 (4.7)

Jlω̇l = −clωl + Ts1 + Ts2 − Td (4.8)

xpos = rlΘl (4.9)

ωd1 = ωm1 − ωl (4.10)

ωd2 = ωm2 − ωl (4.11)

with

Θ̇mi = ωmi, Θ̇l = ωl, Θ̇di = ωdi,

and

Tsi = ksΘdi + csωdi (4.12)

The meaning and nominal values of the parameters are equal to those in Section 4.1.

The measured variables are xpos, Θm1, Θm2, ωm1 and ωm2.

At first, the characteristics of the linear system are analyzed. Therefore, the following

six dimensional state-space representation is derived

ẋ = Ax+Bu+Gd (4.13)

y = Cx, (4.14)

where
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x =
[

Θl Θm1 Θm2 ωl ωm1 ωm2

]T

, (4.15)

u =
[

Tm1 Tm2

]T

, (4.16)

d = Td, (4.17)

A =




















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−2ks
Jl

ks
Jl

ks
Jl
− cs+cl
Jl

− cs
Jl
− cs
Jl

0 0 0 0 − cm1

Jm1

0

0 0 0 0 0 − cm2

Jm2




















, (4.18)

B =




















0

0

0

0

1
Jm1

1
Jm2




















, (4.19)

G =




















0

0

0

1
Jl

0

0




















, (4.20)

C =
[

rl 1 1 0 1 1

]

. (4.21)

Now it can be easily shown, that the system has 5 poles in the LHP, but two poles

at the origin. It is controllable and observable. Thus, a control law, which stabilizes the

system is desired. A logical approach would be to implement the designed controller for

the two-mass system on the linear three-mass system by implementing the same control
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law on both input motors.

Regarding simulations, the system seems to behave equal to the two-mass system,

unless the fact that the generated control signal on each motor is half of the value of the

two-mass system with only one motor. But analyzing its characteristics, it turns out to be

unstable. This is a result of the chosen control structure, which locates to integral parts

in parallel.

The present case, which models a linear drive system connected in parallel is discussed

in [12]. As main difficulties, which may arise when using parallel integral action, the arise

of unstable subsystems as well as loss of observability and controllability in the system are

stated. One loses controllability on the integrators, as they cannot be influenced indepen-

dently from the control error. For instance, they may not go to zero after a disturbance,

but drift away from each other, which cannot be detected. As possible solutions, the au-

thors propose to use only one integrator in the control strategy. Its output might then be

distributed among all available motors. An alternative is to provide only one motor with

an integral part and the others just with proportional controllers.

Latter is the alternative chosen for the inner-loop controllers in the present case, as

there is no common variable, which might be used as control variable for the inner loop

control of both motors. If we would just deal with linear systems, the velocities of the

motors could be considered to be equal and therefore used as common control variable,

see [12]. But when introducing the nonlinearity represented by the backlash elements, this

equality cannot be guaranteed.

For the outer-loop controller the same statements apply, if we would connect the outer

PID controllers in parallel. But differently from the inner-loop, the outer-loop has a com-

mon control variable, which is xpos. Consequently, the output signal of the PID controller

is used as reference input signal on both inner-loop controllers.

Thus, in order to achieve stability and controllability the inner-loop PI-controller of

Motor2 is redesigned into a pure P-controller. This may reduce the control performance

on the second motor, but is reasonable as idem is regarded as slave-motor and additionally

the main control variable is the absolute position of the cart xpos and not the veloci-
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Figure 4.3: Schematic representation of dual motor control for a linear three-mass system. On both

sides a cascade structure is implemented, but for stability reasons only one inner-loop controller contains

an integrator-part.

ties of the motors.

Besides the performance of the speed control of wm2, the overall performance of the

whole closed-loop system is analyzed. It would be desirable to have an equal power distri-

bution on both motors. Including this aspect, the P-control needs to be adapted reducing

its gain. The used structure for the inner-loop controller of Motor2 is then

U2(s) = KP,in2E(s), (4.22)

with

KP,in2 = 10.3. (4.23)

With this configuration the closed-loop system is stable, as for all eigenvalues λi it holds

Re(λi) < 0. Its realization is minimal and all modes are controllable. The controllability

is analyzed using the Hautus-criteria. A schematic overview of the implemented structure

is shown in Fig. 4.3. The step response of the linear three-mass system using the designed

cascade control structure on both motors is shown in Fig 4.4. The generated control signal

on each motor is rather equally distributed and half of the value of the two-mass system

with only one motor, which was analyzed in Chapter 2.



4.2 Linear dual motor position control of a nonlinear three-mass system 73

0 10 20 30 40 50 60
−20

−10

0

10

20

30

40

Input torques [Nm]

Time t [s]

 

 

T
m1

T
m2

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

Absolute position [m]

Time t [s]

 

 

x
pos

x
ref

0 10 20 30 40 50 60
−4

−2

0

2

4

6

8

10
x 10

−3 Relative position angle [rad]

Time t [s]

 

 

Θ
d1

Θ
d2

0 10 20 30 40 50 60
−20

−10

0

10

20

30

Shaft torques [Nm]

Time t [s]

 

 

T
s1

T
s2

Figure 4.4: Step response of the linear three-mass system using a cascade control structure on both

motors. The generated control signal on each motor is rather equally distributed and half of the value of

the two-mass system with only one motor.

4.2.2 Control performance on a nonlinear three-mass system

Now the same control structure is tested on a nonlinear three-mass system including a

backlash gap between each motor and the load. The step height is set to 0.1 [m] and the

system is assumed to be in contact in the beginning of the motion, that is Θd1(t = 0) = α

and Θd2(t = 0) = −α.

As expected the system undergoes limit cycles after some time as consequence of the

backlash element, see step response in Fig. 4.5. The beginning of the limit cycles can be

influenced by the size of the backlash angle.

For instance a bigger backlash angle leads to a faster generation of limit cycles. For

the nonlinear system the reduction on the magnitudes of the input torques is not as high

as on the linear system, but it still exists.
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Figure 4.5: Step response of the nonlinear three-mass system using a cascade control structure on both

motors. As expected the system undergoes limit cycles after some time as consequence of the backlash

element.

4.3 Stability analysis of a three-mass system contain-

ing two dead-zone nonlinearities

This section analyzes the existence of equilibrium points and the stability of a nonlinear

system containing two dead-zone nonlinearities. The system consists of a three-mass system

exhibiting backlash and a cascaded control structure containing PID- and PI-control acting

on the input of the first motor, as it was developed in Sections 4.1 and 4.2. The PID-design

includes a low-pass filter for high-frequencies in the derivative part. Additionally, the

system has a constant, but controllable torque acting directly on the input of the second

motor. The system structure is shown in Fig. 4.6.

The proceeding is analogue to the one of the analysis in Chapter 2. Thus, the structure
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Figure 4.6: Schematic representation of dual motor control with constant torque. The first motor is the

main driving motor, whereas the second motor acts as a brake in order to close the backlash gap.

is as follows: In Subsection 4.3.1 a state-space model is presented. In Subsection 4.3.2 a

controllable canonical form of the system is derived, which is used in Subsection 4.3.3 to

determine the equilibrium points of the system. In Subsection 4.3.4 the stability of the

equilibrium points is analyzed.

4.3.1 State-space model

A state-space model describing the closed-loop system can be formulated as follows

ẋ = Ax+B






u1

u2




+Hu3, x(t = 0) = x0 (4.24)

y = Cx,

where

x =
[

Θl ωl Θm1 ωm1 Θm2 ωm2 PII PIDD PIDI

]T

,

u1 = dz2α(y1),

u2 = dz2α(y2),

u3 = Tm2, (4.25)

y =
[

Θd1 Θd2

]T

.
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and

Θs = dz2α(Θd) =







Θd − α, Θd > α,

0, |Θd| < α,

Θd + α, Θd < −α.

(4.26)

The states PII , PIDD and PIDI refer to the states of the cascaded control structure

given in Eq.( 2.30) in Subsection 2.2.2.

A schematic representation of the system is given in Fig. 4.3.1. The system matrices

are given in Eq.(4.27).

Figure 4.7: Schematic representation of a three mass system with backlash represented by the two

dead-zones.



4.3 Stability analysis of a three-mass system containing two dead-zone nonlinearities 77

A =































0 0.1786 0 0 0 0 0 0 0

0 −0.1786 0 0 0 0 0 0 0

0 0 0 2.5 0 0 0 0 0

0 0 0 −125.3 0 0 50 0 0

0 0 0 0 0 2.5 0 0 0

0 0 0 0 0 −0.25 0 0 0

−105 0 0 −6.25 0 0 0 −2 · 104 2.5

−2 0 0 0 0 0 0 −400 0

−1.333 0 0 0 0 0 0 0 0































,

B =



































0 0

−3300 −3300

0 0

3300 0

0 0

0 3300

0 0

0 0

0 0

0 0



































, (4.27)

H =































0

0

0

0

0

−1

0

0

0































,

C =






−1 0 1 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 0




 .
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4.3.2 Transformation into controllable canonical form

Now, the system (A,B,H,C) is transformed into a controllable canonical form via a trans-

formation matrix T . The new system description is given as

x =Tx,

A =TAT−1,

B =TB, (4.28)

H =TH,

C =CT−1.

For MIMO systems the controllable canonical form is generally not unique, but its

structure can be influenced by the engineer, [16]. As in the SISO case, the system is

required to be controllable in order to be transformable into a controllable canonical form.

The canonical form used in the present case, is the one called ’second type of canonical

form’ in [16]. The transformation matrix T is obtained via the Matlab-function MI\_ctrb

[15].

Note, that this representation is only obtained when inserting the given numerical

values for the parameters. Therefore, the analysis in this section is more specific as the

one described in Chapter 2, which can be seen as a more general approach for determining

equilibrium points of nonlinear systems.

The system matrices have the form
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A =































0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 a53 a54 a55 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 a92 a93 a94 0 0 a97 a98 a99































,

B =































0 0

0 0

0 0

0 0

1 1

0 0

0 0

0 0

0 1































, (4.29)

H =































0

0

0

0

0

h6

h7

h8

h9































,

C =






c11 c12 c13 c14 0 0 c17 c18 0

c11 c12 c13 c14 0 c16 c17 c18 0




 .
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4.3.3 Equilibrium points

The equilibrium points for the original, untransformed system are given as

ẋ = 0 = Ax+B






u1

u2




+Hu3. (4.30)

As this nonlinear set of equations is difficult to solve, equally the following set can be

considered

y = −CA
−1

(B






Θs1

Θs2




+Hu3) (4.31)

Θs1,2 = dz2α(y1,2).

In the present case, A is not invertible. Thus, we make use of the transformed system

equations in controllable canonical form obtained before. In the following the transformed

system will be again denoted as (A,B,H,C). The equilibria of the system have then the

form

0 = ẋ = Ax+B






u1

u2




+Hu3 (4.32)

y = Cx.

This representation, gives a set of equations which is easier to solve. Indeed, the set can

be divided in the following subsets of equations for the equilibrium points of the system:



4.3 Stability analysis of a three-mass system containing two dead-zone nonlinearities 81

1. Subset 1: Conditions for x2 to x5

ẋ1 = 0 ⇒ x2 = 0,

ẋ2 = 0 ⇒ x3 = 0,

ẋ3 = 0 ⇒ x4 = 0,

ẋ4 = 0 ⇒ x5 = 0,

(4.33)

2. Subset 2: Conditions for x7 to x9

ẋ6 = 0 ⇒ x7 = −h6u3,

ẋ7 = 0 ⇒ x8 = −h7u3,

ẋ8 = 0 ⇒ x9 = −h8u3,

(4.34)

3. Subset 3: Condition for u1 and u2. The equilibrium condition for ẋ5 is

ẋ5 = 0 = a53x3 + a54x4 + a55x5 + u1 + u2

From this equation and making use of subset 1 we obtain the equilibrium condition

for the shaft torques u1 and u2

u1 + u2 = 0. (4.35)

4. Subset 4: Condition for ẋ9

ẋ9 = 0 = a92x2 + a93x3 + a94x4 + a97x7 + a98x8 + a99x9 + u2 + h9u3.

Using subset 1 and 2, this equation can be expressed as follows

0 = (−a97h6 − a98h7 − a99h8 + h9)u3 + u2. (4.36)

5. Subset 5: Explicit representation for the determination of u1 and u2

u1 = dz2α(C(1, :)x),

u2 = dz2α(C(2, :)x).
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Making use of subset 1 and subset 2, latter equations can be rewritten as

u1 = dz2α(c11x1 + (−c17h6 − c18h7 − c19h8)u3), (4.37)

u2 = dz2α(c21x1 + c26x6 + (−c27h6 − c28h7 − c29h8)u3).

Note that u1 only depends on x1 and u3, whereas u2 contains a dependency of x6,

too.

For simplification, we introduce three constants K1, K2 and K3

K1 = −c17h6 − c18h7 − c19h8, (4.38)

K2 = −c27h6 − c28h7 − c29h8, (4.39)

K3 = −a97h6 − a98h7 − a99h8 + h9. (4.40)

Note that all three constants have negative sign.

Summarizing, the described set gives already explicit definitions for the states x1 to x5

and x7 to x9. There are two remaining equations for ẋ6 and ẋ9, which in combination with

the definitions of u1 and u2 allow us to find solutions for the remaining states x1 and x6.

For this purpose the concerning equations are rewritten as

0 = K3u3 + u2 = K3u3 − u1, (4.41)

u1 = −u2. (4.42)

Here, we take advantage of the non-dependency of u1 of x6 by first finding possible solutions

for x1 and then using the equilibrium condition for the shaft torques to define x6.

For the determination of the equilibria, we can distinguish two main cases:

• Case 1: u3 = 0.

• Case 2: u3 6= 0.
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Equilibrium points for u3 = 0

Then equation (4.41) reduces to

0 = −u1, (4.43)

where the only possible solution is | x1

c11

| < α. Then all possible equilibria of x1 lay inside

the dead-zone.

Furthermore, equation (4.42) gives

u2 = 0. (4.44)

From what follows

|c21x1 + c26x6| < α. (4.45)

Using the triangle inequality and inserting then the previous result for x1 we obtain

|c21x1 + c26x6| ≤ |c21x1|+ |c26x6| < α,

|c26||x6| < α− |c21||x1| (4.46)

|x6| <
1

|c26|
(1−
|c21|

|c11|
)α.

All other states become 0, as they depend only on u3 and u3 = 0.

The output y can then be expressed as

|y| = |Cx| =






|c11||x1|

|c21||x1|+ |c26|x6|




 <






α

α




 (4.47)

Summarizing, in case u3 = 0 there exist numerous equilibrium points for |y| < α.

Equilibrium points for u3 6= 0

In the case u3 6= 0 solutions of (4.41) exist for

1. u1 < 0⇒ c11x1 +K1u3 < −α. In this case equation (4.41) leads to:
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0 = K3u3 − (c11x1 +K1u3 + α)
︸ ︷︷ ︸

u1

(4.48)

and the equilibrium point is

x1 =
(K3 −K1)u3 − α

c11
. (4.49)

Inserting the result in

dz2α(c11x1 +K1u3), (4.50)

gives the condition

K3u3 − α < −α⇒ K3u3 < 0⇒ u3 > 0 and K3 < 0

or (4.51)

u3 < 0 and K3 > 0.

As we know that u1 = −u2 and in the present case u1 < 0, we only must consider

the case u2 > 0 for determining x6. Thus, we have

u2 = c21x1 + c26x6 +K2u3 > α, (4.52)

u2 = −u1, (4.53)

c21 + c26x6 +K2u3 − α = −K3u3 (4.54)

and x6 results to

x6 =
1

c26
((−K2 −K3 −

c21

c11
(K3 −K1))u3 + (1 +

c21

c11
)α). (4.55)

2. u1 > 0⇒ c11x1 +K3u3 > α. In this case equation (4.41) leads to



4.3 Stability analysis of a three-mass system containing two dead-zone nonlinearities 85

0 = K3u3 − (c11x1 +K1u3 − α)
︸ ︷︷ ︸

u1

(4.56)

and the equilibrium point is

x1 =
(K3 −K1)u3 + α

c11
. (4.57)

Inserting the result in

dz2α(c11x1 +K1u3), (4.58)

gives the condition

K3u3 + α > α⇒ K3u3 > 0⇒ u3 > 0 and K3 > 0

or (4.59)

u3 < 0 and K3 < 0.

As we know that u1 = −u2 and in the present case u1 > 0, we only must consider

the case u2 < 0 for determining x6. Thus, we have

u2 = c21x1 + c26x6 +K2u3 < −α,

u2 = −u1, (4.60)

c21 + c26x6 +K2u3 + α = −K3u3

and x6 results to

x6 =
1

c26
((−K2 −K3 −

c21

c11
(K3 −K1))u3 + (−1−

c21

c11
)α). (4.61)

Consequently, an equilibrium point outside the dead-zone can be achieved by setting

u3 6= 0. By choosing the sign of u3 one can even determine on which contact side the

equilibrium lays, as K3 is determined by the system parameters. Note that for every

u3 6= 0 there exists only one equilibrium point.
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4.3.4 Stability analysis

In the previous subsection, the existence of equilibrium points in the system was shown.

Now, their local stability is analyzed. The analysis is carried out in the original system

representation A,B,H,C. This is possible as their exists a transformation T from x to x

and therefore also from x to x with x = T−1x.

Local stability for u3 = 0

We have shown, that for u3 = 0 there exist multiple equilibria inside the dead-zone. If

we linearize the system around one arbitrary chosen equilibrium point, which satisfies the

above condition, e.g. y = α
2
, we obtain

ẋ = Ax (4.62)

y = Cx.

As A has several eigenvalues with Re(λ) = 0, the system is unstable. This statement

holds for all possible equilibrium points obtained when u3 = 0.

Local stability for u3 6= 0

For every u3 6= 0 an equilibrium point is defined. If we linearize the system around the

equilibrium obtained by choosing an arbitrary value of u3 6= 0, we obtain

ẋ = Ax+B(y ± α) +Hu3 (4.63)

y = Cx.

So we can write

ẋ = (A+BC)x+B(±α) +Hu3 (4.64)

y = Cx.
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Let us denote Acl = A+BC. All poles of Acl lay in the LHP, with being max(Reλi) =

−0.2880, i = 1 . . . 9. Thus the system is local asymptotically stable.

As in the case of the two-mass system, local stability can be achieved by any u3 6= 0.

But again, for making sure a stable performance some |u3| > |δ| > 0 is required. This

is emphasized by simulations, which show that u3 has to have a certain magnitude for

stabilizing the system. An interpretation would be, that the region of attraction of the

equilibrium point increases with increasing magnitude of |u3|.

4.4 Global stability of a nonlinear three-mass system

In this section the stability analysis of Section 4.3 is extended to global stability. For

this purpose we introduce the multivariable circle criterion in Subsection 4.4.1. The same

nonlinear system containing two dead-zone nonlinearities as presented in Section 4.3 is

analyzed.

To apply the multivariable circle criterion in the present case some operations on the

system are required: In Subsection 4.4.2, the loop shown in Fig. 4.3.1 in Section 4.3 is

modified in order to obtain a stable linear part, which is in negative feedback with the

nonlinear part. Then in Subsection 4.4.3 the loop is once again transformed to allow a

better analysis of the influence of the constant input on the system. As we have shown

in Section 4.3 for u3 6= 0 the equilibrium of the system does not lay in the origin. Sub-

section 4.4.4 gives a coordinate transformation which shifts the equilibrium in the origin

and explains in more detail the influence of that coordinate change on the nonlinearities,

especially on their sector bounds.

In Subsection 4.4.5 finally we derive a condition which guarantees global stability for

the system depending on the constant input u3.
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4.4.1 Mulivariable Circle Criterion

According to [22] the multivariable circle criterion can be formulated as follows:

Theorem The system

ẋ = Ax+Bu (4.65)

y = Cx+Du (4.66)

u = −φ(t, y) (4.67)

is absolutely stable if

• φ ∈ [K1,∞] and G(s)[I + K1G(s)]−1 is strictly positive real, or

• φ ∈ [K1, K2], with K = K2 − K1 = KT > 0, and [I + K2G(s)][I + K1G(s)]−1 is

strictly positive real.

If the sector condition is satisfied only on a set Y ⊂ Rp, then the foregoing conditions

ensure that the system is absolutely stable with a finite domain.

The next lemma gives a characterization of a strictly positive transfer function, [22].

Lemma Let G(s) be a p×p proper rational transfer function matrix, and suppose det[G(s)+

GT (−s)] is not identical zero. Then, G(s) is strictly positive real if and only if

• G(s) is Hurwitz; that is poles of all elements of G(s) have negative real parts,

• G(jω) +GT (−jω) is positive definite for all ω ∈ R, and

• either G(∞) +GT (∞) is positive definite or it is positive semidefinite and

lim
ω→∞

ω2MT [G(jω) +GT (−jω)]M is positive definite for any p×(p−q) fullrank matrix

M such that MT [G(∞) +GT (∞)]M = 0, where q = rank[G(∞) +GT (∞)].
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4.4.2 Loop transformation to asymptotically stable linear part

A state-space representation (A,B,C,H) of the system is given in Eq.(4.24) and Eq.(4.27).

Let us denote the backlash nonlinearities modeled by a dead-zone as defined in Eq.( 4.26)

by φ(·). Then we can write

ẋ = Ax+Bu+Hu3

y = Cx (4.68)

u = φ(y),

where

φ(·) =






dz2α(Θd1) 0

0 dz2α(Θd2)




 (4.69)

with

dz2α(Θd) =







Θd − α, Θd > α,

0, |Θd| < α,

Θd + α, Θd < −α

(4.70)

and (A,B,C,H) as given in Eq.(4.27).

Now the loop can be transformed as shown in Fig.4.8. With this transformation the

linear part becomes asymptotically stable and is in negative feedback with the nonlinear

part φ̃(·). The latter becomes a saturation with a positive slope K and saturation bounds

[−Kα,Kα], see Fig. 4.9. The system can then be written as

ẋ = (A+BKC)x+Bũ+Hu3

y = Cx (4.71)

ũ = −φ̃(y),
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where

φ̃(·) =






sat2α(Θd1) 0

0 sat2α(Θd2)




 (4.72)

with

sat2α(Θd) =







Kα, Θd > α,

KΘd, |Θd| < α,

−Kα, Θd < −α.

(4.73)

4.4.3 Loop transformation to analyze the influence of the con-

stant input

The system loop as given in Eq.(4.71) is again transformed such that the influence of the

constant input is split from the rest of the system as shown in Fig 4.10. This is possible

without any restrictions as the poles of the transfer function matrix

G(s) = C[sI − (A+BKC)]−1[BH ] lay all in the LHP. The system can thus be written as

y = G̃(s)ũ+GTm2
u3 (4.74)

ũ = −φ̃(y).

For a slope of both saturation nonlinearities of K = 1, one obtains the following transfer

function matrices, wchich have the same denominator polynomial with all poles in the LHP

G̃(s) =






G̃11 G̃12

G̃21 G̃22




 = C[sI − (A+BC)]−1B, (4.75)

and

GTm2
(s) =






GTm211

GTm221




 = C[sI − (A+BC)]−1H. (4.76)
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Figure 4.8: Loop-transformation for state-space representation of the nonlinear three-mass system of

Eq.(4.68). The transformed loop contains a asymptotically stable linear part, which is in negative feedback

with the nonlinearity.



92 4 Dual motor control of a nonlinear three-mass system

Figure 4.9: Transformation of a dead-zone into a saturation.

4.4.4 Coordinate transformation and sector bound changes un-

der influence of an offset

Now the influence of the constant input u3 is interpreted as an offset. The equilibrium

point of the system given in Eq.(4.74) does not lay in the origin as soon as u3 6= 0, see

Section 4.3. However, the multivariable circle criterion can only be applied to analyze

stability with respect to the origin. Therefore the system coordinates are transformed for

the stability analysis as follows

x̃ = x+ ∆x, (4.77)

where

∆x = Hu3. (4.78)

Figure 4.10: Loop transformation of the system given in Eq.(4.71) to analyze the influence of the constant

input u3.
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The transformation has no influence on the linear dynamics of the system, but on the

nonlinearity. The influence of the offset on a saturation nonlinearity is shown in Fig. 4.11

for a positive offset GTm2
u3 > 0. For a negative offset the effect is reflected on the origin

of the original coordinate system.

One can observe how the operating range of the nonlinearity changes due to the coor-

dinate transformation, see Fig. 4.11. This affects also the sector bounds of the saturation.

In Fig. 4.12 the effects on the sector bounds of the nonlinearity are shown for a positive

offset. The upper bound k2 decreases with increasing magnitude of the offset, while the

lower bound remains constant k1 = 0. This fact is crucial for the stability analysis of the

system depending on the constant input u3.

Figure 4.11: Changes in a saturation nonlinearity under coordinate transformation.

Figure 4.12: This figure illustrates the effects of an offset on sector bounds of a saturation. The upper

bound k2 decreases with increasing magnitude of the offset, while the lower bound k1 remains constant.
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4.4.5 Global stability analysis

As shown in the previous Subsection 4.4.4, the constant input u3 can be used to influence

the upper sector bound of the nonlinearities. To quantify the impact of the constant torque

we look at

GTm2
(0) =






GTm211(0)

GTm221(0)




 =






−2.455e8
8.103e11

2.455e8
8.103e11




 . (4.79)

Thus, the constant input influences both nonlinearities with the same magnitude, but

different signs in the stationary case. The constant input shifts their operating points in

opposite directions, but as the magnitude is equal they lay in the same sector. One block

is shifted into the upper right quadrant and the other one into the lower left quadrant.

Consequently both saturation blocks are bounded by the same sector bounds [k1, k2], where

the lower bound is always k1 = 0.

This fact is now used in the stability analysis in the following way: We try to find the

highest upper bound k2 ∈ (0, 1] for which the system is stable according to the multivariable

circle criterion. Then we are able to determine the minimal necessary magnitude of the

constant input needed to achieve global stability.

Stability analysis

In our case the second point of the multivariable circle criterion as given in Subsection 4.4.1

applies. As always

K1 =






k1 0

0 k1






with k1 = 0, we simply need to find the maximum

K2 =






k2 0

0 k2






with k2 ∈ (0, 1], such that [I +K2G̃(s)] is strictly positive real.

To check positive definiteness we use the Lemma given in Subsection 4.4.1. Point 1 and

3 of the Lemma hold for any k2 ∈ (0, 1]:
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• As the original system (A,B,C,H) was transformed in a way that the linear part

G̃(s) is stable, also [I +K2G̃(s)] will always be Hurwitz.

• As the system (A,B,C,H) is causal, [I + K2G̃](∞) + [I + K2G̃]T (∞) = 2I ∀k2 ∈

(0, 1], which is positive definite.

Thus, we need to check for which k2 the transfer function matrix [I+K2G̃](jω)+ [ I+K2 G̃ ] T (−jω)

is positive definite. If we do so, we obtain the following result:

The system is globally stable for k2 ≤ 0.7349.

Determination of required torque magnitude

Using the graphical approach of Fig. 4.11 the following equation for the determination of

u3 can be derived

u3 =
−Kα(2 + k2)

GT (0)k2
, (4.80)

where K = 1 is the slope of the saturation and GT = |GTm211(0)| = |GTm221(0)| =

|3.0297e− 4|.

For k2 = 0.7349 this gives |u3| = 1.0719e3. Thus, for u3 ≥ 1.0719e3 the system is

globally stable.

Note that this result might be conservative as global stability is guaranteed for any

nonlinearity in the sector [0, k2] and not only for the actual considered shifted saturation.

4.5 Dual motor control with constant torque

In order to verify the results of the stability analysis in Section 4.3 and Section 4.4

the system structure as presented in Fig.4.6 in Section 4.3 is now implemented in Mat-

lab/Simulink.

To avoid the systems´ behavior shown in Subsection 4.2.2, the second motor should

now be used to act in the opposite direction of the driving motor in order to close the

backlash gap.
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This approach is implemented using the same transfer function for Tm2 as in equation

(2.74) in Chapter 2. The only parameter which changes, is the magnitude of the constant

torque |Tm2|. For its determination, various simulations with changing magnitude of |Tm2|

are considered (Fig. 4.13). Thereby, the controller parameters of the first motor remain

equal to the ones described in the previous section and the torques are applied at t = 0 [s].

The step height is set to 0.1 [m] and the system is assumed to be in contact in the beginning

of the motion, that is Θd(t = 0) = α and Θd2(t = 0) = −α.

For torque magnitudes over |Tm2| = 2 [Nm] the limit cycles can be oppressed and

the system seems to be stable. However, one can observe small overshoots in the step

response when the torque magnitude is below |Tm2| = 20 [Nm]. Thus, a good performance

is achieved for magnitudes around |Tm2| = 20−25 [Nm]. Higher magnitudes do not change

the performance significantly. This underlines the conservatism of the global stability

analysis presented in Section sec:globStabAnalysisThreeMass.

Note however, that the system shows a negative response behavior as consequence of the

additional constant torque in opposite driving direction, since in the beginning Tm2 > Tm1.

This behavior is more distinctive the higher the torque magnitude. Consequently, for an

overall satisfying performance a trade-off between the overshoot and the negative response

is needed.

Another possibility is to apply the constant torque not until a certain point in time.

This is the case for the simulation results shown in Fig. 4.14, where the torque is not

applied until t = 50 [s], that is when limit cycles already exist.

Also in this case a constant torque can oppress the limit cycles. However, a sparse

higher magnitude is required as in the previous simulations. Namely, the limit cycles are

not eliminated with a magnitude |Tm2| = 2 [Nm], but with |Tm2| = 3 [Nm] and higher. A

good performance can be achieved by setting |Tm2| = |5 − 15|. Higher torques lead to a

higher outlier in a first moment.

An advantage compared to the first simulations, is that no negative response behavior is

observed. This means a significantly improvement in the performance, as negative response

behavior should be avoided in position control.
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Figure 4.13: Performance of the nonlinear three-mass system for different magnitudes of Tm2 applied at

t = 0 [s]. The limit cycles can be oppressed with a torque magnitude of |Tm2| ≥ 2 [Nm].

Two simulation results for a constant torque starting at t = 0[s] with Tm2 = −20[Nm]

and t = 50[s] with Tm2 = −10[Nm] are shown in Fig. 4.15 and Fig. 4.16 respectively.

One can conclude that the approach of using a dual motor control strategy to reduce

the backlash effects in a robot actuator actually works also for the three-mass system.

As in the case of the two-mass system, applying a torque from t = 0[s] on requires a

higher controller output. Additionally, a negative response behavior can be observed in

the beginning of the motion.

Contrary, applying the torque on a later point in time, the already existing limit cycles

are eliminated. The difficulty is to determine the optimal point in time, when to start

applying the torque. Furthermore, this strategy does not allow a dynamical behavior of

the second motor.



98 4 Dual motor control of a nonlinear three-mass system

50 55 60 65 70 75 80

9.8

9.9

10

10.1

10.2

10.3

Time t [s]

A
b

s
o

lu
te

 p
o

s
it
io

n
 x

p
o

s
 [

m
]

 

 

T
m2

=−1 [Nm]

T
m2

=−2 [Nm]

T
m2

=−10 [Nm]

T
m2

=−20 [Nm]

T
m2

=−25 [Nm]

Figure 4.14: Performance of the nonlinear three-mass system for different magnitudes of Tm2 applied at

t = 50 [s]. The limit cycles can already be oppressed with a torque magnitude of |Tm2| ≥ 3 [Nm].

4.6 Nonlinear dual motor control of a three-mass sys-

tem

In the previous Sections 4.3, 4.4 and 4.5 it was shown that the system can be locally

stabilized by driving the additional second motor with a constant torque. However, some

disadvantages of this operation mode were discussed at the end of Section 4.5.

Therefore, more sophisticated operating strategies are developed in order to reduce the

required total input power of the system. The aim is to use both motors for the motion

drive while the system is not in backlash and to switch the operating of the second motor

when the system gets into backlash for fast closing the backlash gap and avoiding limit

cycles. Different approaches are developed and tested in simulations. Here, Motor1 is

always considered to be the main driving or master motor, whereas Motor2 is regarded as
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Figure 4.15: Dual motor control with constant torque Tm2 = −20 [Nm] at t = 0 [s]. As consequence of

the constant torque, no limit cycles appear and the system reaches its desired final position.

switching or slave motor.

As already described in Chapter 2, the first function determines Tm2 regarding the

relative position angle Θd1, whereas the second function does the same but depending on

the relative error eabs. The third and last approach represents a combination of the first

and the second option.

In contrast to Chapter 2, the switching modes lead now to a nonlinear, smooth switching

control law for the slave motor. This is due to the fact, that the motor is additionally used

to support the master motor, when the system is not in backlash. The step height is set

to 0.1 [m] and the system is assumed to be in contact in the beginning of the motion, that

is Θd(t = 0) = α and Θd2(t = 0) = −α.

The plots for illustrating the simulation results do normally not cover the same time

period as the one for demonstrating the arise of limit cycles in the nonlinear system of the



100 4 Dual motor control of a nonlinear three-mass system

0 10 20 30 40 50 60 70

−200

−100

0

100

200

Input torques [Nm]

Time t [s]

 

 

T
m1

T
m2

0 10 20 30 40 50 60 70
−5

0

5

10

15

Angle Position [rad]

Time t [s]

 

 

Θ
m1

Θ
m2

Θ
l

0 10 20 30 40 50 60 70
−5

0

5

10

Angular velocity [rad/s]

Time t [s]

 

 
ω

m1

ω
m2

ω
l

0 10 20 30 40 50 60 70
−0.05

0

0.05

0.1

0.15

Absolute position [m]

Time t [s]

 

 

x
pos

x
ref

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

Relative position angle [rad]

Time t [s]

 

 

Θ
d1

Θ
d2

0 10 20 30 40 50 60 70

−200

−100

0

100

200

Shaft torques [Nm]

Time t [s]

 

 

T
s1

T
s2

Figure 4.16: Dual motor control with constant torque Tm2 = −10 [Nm] at t = 50 [s].The limit cycles

appear approximately after 15 [s] and can be oppressed by a constant torque, which starts acting after

50 [s].

previous section(t = [0, 70] [s]), but a shorter one. This is due, to a better presentation of

the performance of each switching strategy. Of course, all strategies are tested for longer

time periods up to 500 [s].

4.6.1 Switching function for the slave motor

To achieve a smoother switching between both operating modes of Motor2, the switching

function Kswitch given below is implemented

U2(s) = Kswitch(Yref(s), Ymeas(s), v, |Tm2|) (4.81)

= K(KPID/P + |v|(KTconst −KPID/P ))(Yref(s), Ymeas(s), v, |Tm2|),

where v ∈ [0, 1] is the to defining switching variable, KPID/P is the control function
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corresponding to the cascaded controller as designed in Section 4.2 for the second motor

and KTconst is defined analogue to Chapter 2, but with varied gain

Tm2 = KTconstv = 10sign(v). (4.82)

As in all cases, the torque is not constantly applied from the beginning on a magnitude of

|Tm2| = 10 may be sufficiently high according to the simulation results shown in Section 4.5.

Note that in Kswitch only the absolute value of v is used, as the sign of the switching variable

v is only used to determine the sign of the torque in KTconst .

This implementation follows an approach for a switched controller given in [4], but with

a varied determination of v. Different definitions for v are given in equations (2.75), (2.77),

(2.78) and (2.79). A scheme of the switching function is shown in Fig. 4.17.

4.6.2 Feed-forward control for the master motor

Furthermore, a feed-forward structure is implemented to provide the master motor with

information about the switching status of the slave motor. The aim is to reduce the impact

of the switching of the second motor on the system response. Additionally it should help

to avoid an inverse response behavior.

If we rewrite Kswitch of equation (4.81) into

Kswitch = KPID/P (1− |v|) + |v|KTconst, (4.83)

we can see, that the switching function damps KPID/P to 0 with increasing value of |v|,

whereas the portion of KTconst increases with increasing |v|. Thus, we can take advantage of

the signal |v|KTconst for improving the performance of the system by feed-forward control.

This is achieved by adding inversely the weighted constant torque signal to the output of

the PID/PI-controller of the master motor, that is

u1,FF = u1 − |v|KTconst(sign(v), |Tm2|). (4.84)

An overview of the complete control structure is given in Fig. 4.18. There the calculation

of the feed-forward signal is included in the block representing Kswitch.
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Figure 4.17: Switching function Kswitch. The function depends on the switching variable v, for which

different definitions are given in equations (2.75), (2.77), (2.78) and (2.79).

Figure 4.18: Nonlinear dual motor control structure of a three-mass system. Kswitch defines the switching

of the slave motor and provides the master motor with additional information through a feed-forward

structure.
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4.6.3 Switching-strategy for dual motor control depending on

Θd1

The proposed control strategy in this section is based on the relative position angle between

Motor1 and the load Θd1 = Θm1−Θl, as this is an indicator whether the system is actually

operating in backlash mode or not. If the system is not in backlash, that is |Θd1| > α,

both motors should be used as driving motors. But if the system is in backlash, that is

|Θd1| < α, the second motor should act in opposite direction of the motion, as presented

in Section 4.5.

The backlash state of the second motor with respect to the load is not taken into

consideration, as the first motor is seen as the main driving element and it is supposed

that the second backlash gap will be automatically closed when the accordant motor is

switched into constant torque mode. The switching variable v is defined in equation (2.77)

with Θd1 as input argument.

This strategy leads to the result presented in Fig. 4.19. One can observe that the

control power of each motor is actually lower than in the previous case and that the second

motor takes actively part in the driving task. Unfortunately, this strategy is not robust

against disturbances, especially in the final position. This might be mainly due to the then

constant switching between the backlash and non-backlash case.

As before, this strategy does not achieve the desired improvement in performance.

Again, one can observe that in the undisturbed case, the constant torque is switched to 0

in the final position and thus according to Section 4.3 no stable behavior can be obtained.

However, the negative response behavior observed in the simulations of the two-mass

system can be avoided due to the additional feed-forward control.

Conclusions:

• No elimination of limit cycles, when disturbances are present.

• Advantage: Closing backlash gap when existing, even in the beginning.
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Figure 4.19: Dual motor control with v = f(Θd1). In the undisturbed case, the strategy does not fulfill

the requirements.

• Disadvantage: No local stability as control signals becomes 0 in the final position.

• Requirements cannot be fulfilled.

4.6.4 Switching-strategy for dual motor control depending on eabs

Here, the switching variable v is determined according to Eq.(2.78). The performance

of this set is shown in Fig. 4.20. The switching parameters are set to emax = 0.25 and

emin = 0.01. The limit cycles are oppressed and the required controller energy is distributed

on both motors in the beginning of the motion. Additionally a smooth response is obtained

and the strategy is robust against disturbances. As the second motor is acting with a

constant torque in the final position, local stability can be achieved according to Section 4.3.

A small overshoot of 0.3% is observed in the simulation, which was not the case when
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acting with a constant torque from the beginning of the motion on. This might be due to

the impact of the switching of the second motor on the process. However, the overshoot

can be eliminated by e.g. increasing the P-gain on the PID-controller of the outer loop

from 200 to 250-300. Then the control signal of the first motor increases and it can faster

compensate the impact of the constant torque. Further, the distribution of power when

both motors act together remains equal.

Actually, the P-gain has to be increased depending on the desired accuracy of the

position trajectory. For small position changes, the control output signals are lower, thus

the impact of the constant torque switching are higher and more difficult to compensate

for the master motor. A higher controller gain allows to react on this fact.

But as already stated in the discussion for the two-mass case, one has to be careful

when the trajectory path is lower than rlα, that is lpath ≤ rlα. However, the same methods

as presented in Subsection 2.5.2 may solve this problem.

Conclusions:

• Strategy fulfills requirements.

• Switching dependent on relative error with respect to final position, not on backlash-

state.

• Therefore, no reaction if system is in backlash while eabs < emax.

• Strategy is robust against load disturbances.

• Need to adapt parameters emax and emin depending on trajectory path length lpath.

4.6.5 Switching-strategy for dual motor control depending on

Θd1 and eabs

The last switching-version is a combination of the first and the second. It aims to join

both switching reference values Θd1 and eabs in order to be able to react to backlash-

situations during the motion and especially avoid limit cycles when reaching the final
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Figure 4.20: Dual motor control with v = f(eabs).The limit cycles are oppressed and the required

controller energy is distributed on both motors in the beginning of the motion. Furthermore a smooth

response is obtained and the strategy is robust against disturbances.

position. Therefore v is defined according to equation (2.79) with Θd1 and eabs as input

arguments.

This strategy leads to the behavior presented in Fig. 4.21. It shows a satisfactory

behavior, similar to the case when v = f(eabs). But it could eventually lead to an inverse

response behavior, when the system is in backlash at the beginning of the motion.

Conclusions:

• Satisfactory behavior, similar to case when v = f(eabs).

• Closing of eventual backlash gaps during transition.

• Robust against load disturbances.



4.6 Nonlinear dual motor control of a three-mass system 107

0 5 10 15 20
−100

−50

0

50

100

Input torques [Nm]

Time t [s]

 

 

T
m1

T
m2

0 5 10 15 20
−5

0

5

10

15

Angle Position [rad]

Time t [s]

 

 

Θ
m1

Θ
m2

Θ
l

0 5 10 15 20
−5

0

5

10

Angular velocity [rad/s]

Time t [s]

 

 
ω

m1

ω
m2

ω
l

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Absolute position [m]

Time t [s]

 

 

x
pos

x
ref

0 5 10 15 20
−1

−0.5

0

0.5

Relative position angle [rad] and switching variable [−]

Time t [s]

 

 

Θ
d1

Θ
d2

v

0 5 10 15 20

−100

0

100

Shaft torques [Nm]

Time t [s]

 

 
T

s1

T
s2

Figure 4.21: Dual motor control with v = f(Θd1, eabs). This alternative shows a satisfactory behavior,

similar to the case when v = f(eabs). But it could eventually lead to an inverse response behavior.

4.6.6 Comparison of the different switching-strategies for a se-

quence of input-positions

Now, all three different switching-strategies are tested and compared for the following

sequence of input-positions xpos,ref = [0.1, 1,−2.5, 0], with xpos,start = 0. No disturbances

are considered, that is Td = 0. The results are presented in Figs. 4.22, 4.23 and 4.24.

Here, defining v = f(eabs) seems to achieve the best performance in terms of a smooth

and efficient motion. Even in the undisturbed case the variant using v = f(Θd1) shows

up to have an undesired behavior, as can e.g., be observed by the oscillations in v around

t = 12 [s].

Operating with a switching-function based on both variables, also leads to a less ad-

vantageous performance as determining v only depending on the relative error eabs. The
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Figure 4.22: Input-sequence with v = f(Θd1). This variant has an undesired behavior, as can e.g., be

observed by the oscillations in v around t = 12 [s].

main disadvantages of the combination are higher input and shaft torques of Motor1, which

might be provoked by the intention of closing the backlash gap in the beginning of a po-

sition change. In that situation, the motors are forced to act against each other and only

Motor1 is used as driving motor.

In conclusion, the most promising strategy seems to be the one based on v = f(eabs)

and will therefore be used for further analysis. Another advantage of this variant is that

measuring the position angles Θm1 of Motor1 and Θl of the load becomes unnecessary.
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Figure 4.23: Input-sequence with with v = f(eabs). This strategy seems to achieve the best performance

in terms of a smooth and efficient motion.

4.7 Validation of the results of Matlab/Simulink in

Dymola

Now, the simulation software Dymola [10] is used to verify the validity of the Mat-

lab/Simulink model and the simulation results obtained with it. Therefore, all the dif-

ferent operating strategies presented in the previous sections are implemented and tested

in Dymola. The model shown in Fig 4.25 is used as starting basis.

Dymola is a tool for modeling and simulation of integrated and complex systems for use

within automotive, aerospace, robotics, process and other applications. It is based on the

open Modelica modeling language, which allows the user to create new libraries or modify

the existing ones.
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Figure 4.24: Input-sequence with v = f(Θd1, eabs). The main disadvantages of the combination are

higher input and shaft torques of Motor1, which might be provoked by the intention of closing the backlash

gap in the beginning of a position change. In that situation, the motors are forced to act against each

other and only Motor1 is used as driving motor.

In comparison to the Matlab/Simulink environment, the modeling approach of Mod-

elica is not signal-based, but object-oriented and based on the real physical structure of

the system. This allows the equations to have no specified ’direction’, as it occurs in

Matlab/Simulink and gives a high importance to the physical connectors of the different

blocks. The aim of Modelica is to relocate the whole mathematics into each block. The

more descriptive manner of modeling in Dymola, makes it also interesting for simulation

of complicated systems.
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Figure 4.25: Three-mass system consisting of two motors and one load in Dymola. The backlash is

represented using the mechanical backlash block, which is already implemented in Dymola.

This work is mainly done for two reasons:

• To check the correct implementation of the Matlab/Simulink model (see Fig. 4.2).

• To take advantage of the different modeling/coding approach of Dymola, in order to

verify the simulation results obtained with Matlab/Simulink.

4.7.1 Dymola model

The model implemented in Dymola is also based on the three-mass model derived in

Section 4.1. Consequently, it consists of two driving motors and one load, which are

connected by a backlash exhibiting shaft. The implementation is illustrated in Fig. 4.25.

The backlash is represented using the mechanical backlash block, which is implemented

in the Dymola Mechanical Rotational Library. Note that this backlash implementation

differs from the description of Nordin´s exact backlash model, which was used in the
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Simulink model. Several different implementations for Nordin´s model in Dymola lead to

errors due to an algebraic loop when compiling the model. Hence, the backlash model

already included in the Dymola library is used.

In Dymola the mechanical backlash block is implemented as a modified version of a

dead-zone model, [7]. The shaft torque is determined according to

Tsi =







ks(Θdi − α) + min(ks(Θdi − α), csωdi),

if Θdi > α and ks(Θdi − α) + csωdi > 0

0,

if Θdi > α and ks(Θdi − α) + csωdi ≤ 0

0,

if |Θdi| ≤ α

0,

if Θdi < −α and ks(Θdi + α) + csωdi ≥ 0

ks(Θdi + α) + max(ks(Θdi + α), csωdi),

ifΘdi < −α and ks(Θdi + α) + csωdi < 0.

(4.85)

In order to avoid confusions, it is remarked that in comparison to the implementation

in Matlab/Simulink the backlash block of Dymola needs the total backlash gap as input

value for the backlash size (b = 2α). Inside the block, the calculation of the shaft torque

is then effectuated using b2 = b
2
.

The available measurements are the same as in the Matlab/Simulink model, these are

the absolute position of the load (xpos), the motor and load angle positions (Θm1, Θm2, Θl)

and the motor velocities (ωm1, ωm2).
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4.7.2 Comparison

For the simulation, the Dormand Prince integration method ’Dopri45’ of order 5 and a

tolerance of 0.001 is chosen, as this configuration is equivalent to the one used before in

Matlab/Simulink, namely the there implemented ’ode45’-solver.

It can be stated, that the simulation results obtained in Dymola for the different strate-

gies are quite similar to those obtained with Matlab/Simulink and underline the validity of

latter. For demonstration purposes, the results for two cases are presented in Fig. 4.26 and

Fig. 4.27. The reference value is again set to xpos,ref = 0.1 [m] and the system is initially

in contact, that is Θd1(t = 0) = α and Θd2(t = 0) = −α.

The first case represents the operation strategy based on a constant torque Tm2 =

−10 [Nm], which starts acting after t = 50 [s]. As expected, without the stabilizing

torque the system undergoes limit cycles after reaching its final reference position xpos,ref =

0.1 [m]. This occurs around t = 20 [s]. The constant torque starts acting after t = 50

[s] and leads to an oppression of the limit cycles. The developing of the different values

for the absolute position, the position angles of the motors and the load, as well as their

angular velocities equal their respective developments obtained with the Matlab/Simulink

simulation environment (see Fig. 4.16). The same holds for the input and shaft torques.

The second case demonstrates the behavior of the system, when operating with a

switching-strategy based on v = f(eabs). This has turned out to be the most promis-

ing strategy according to the analysis in Section 4.6. The same observations as in the

previous case can be made. That is, the results are quite equal to those obtained in

Matlab/Simulink.

Therefore, it can be stated that the previous analysis and the simulation results are

confirmed by the results obtained in Dymola and underline their validity. Especially it is

remarked, that the limit cycles can be avoided using any of the two backlash models, which

is an indicator for the reliability of the proposed control structure.
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Figure 4.26: Dual motor control with constant torque Tm2 = −10 [Nm] at t = 50 [s] simulated with

Dymola. The limit cycles appear approximately after 20 [s] as in the Matlab/Simulink simulation and can

be oppressed by a constant torque, which starts acting after 50 [s].

4.8 Parameter optimization for v = f(eabs)

This section aims to improve the system performance by optimizing the controller param-

eters and the switching of the slave motor. For the optimization the best-rated strategy

based on the absolute error eabs is chosen. Thus, the switching parameters emax and emin

are used as tuning parameters.

For this purpose, the Optimization Function of the Dymola Design Library is used. This

design tool provides several optimization algorithms and allows to optimize parameters of

a Dymola model with respect to certain criteria. An introduction to the function is given

in [21].
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Figure 4.27: Dual motor control with v = f(eabs) simulated with Dymola. The limit cycles are op-

pressed and the required controller energy is distributed on both motors in the beginning of the motion.

Furthermore a smooth response is obtained and the strategy is robust against disturbances. The results

equal those obtained in Matlab/Simulink.

4.8.1 Controller-parameter optimization

In a first step, we aim to optimize the outer-loop PID-controller. Therefore the following

cost function is defined

f =min(max(
1

W1
riseTime(xpos) +

1

W2
overshoot(xpos) (4.86)

+
1

W3
settlingTime(xpos))

with W1 = 1.7473, W2 = 10−4 and W3 = 3.957.

For the optimization the model operating with a constant torque on the second motor

is chosen. The values of the weighting parameters correspond to the obtained results of
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Table 4.1: Optimization of controller parameters. The Genetic algorithm gives the best result. The start

value of the cost function is 3.00354.

Optimal values Optimization method Optimal value f

[Kp,Ti,Td]

[292.01, 1.24, 0.01] Pattern Search 1.67645

[229.32, 1.38, 0.05] SQP 1.82310

[223.38, 1.4, 0.073] Simplex 1.88427

[281.92, 1.25, 0.087] Genetic Algorithm 1.67730

the characteristics when simulating with the previously designed controller of Section 4.2.

Thus, we aim to improve the system performance regarding its step response with respect

to the settling time, the overshoot and the rise time.

The available tuning parameters are Kp, Ti and Td of the PID-controller. For the

optimization we set the following bounds on the parameters

Kp ∈ [100, 300]

T i ∈ [0.5, 2],

Td ∈ [0.01, 0.1].

The optimization is carried out using the different algorithms implemented in the

Optimization-function. An overview of the results is provided in Table 4.1. As start-

ing values the nominal values of the designed PID-controller in Section 2.2 are used. The

start value of the cost function is then 3.00354.

The best results are obtained by Pattern Search and Genetic Algorithm. When checking

the parameter sets in Matlab/Simulink, the set of the Genetic Algorithm seems to be the

most appropriate solution and will be used in the further analysis.
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4.8.2 Switching-parameter optimization

In the present case, the following cost function is defined

f1 = min(max(
1

W1

∫ T

0
(u2

1 + u2
2)dτ +

1

W2
overshoot(xpos))), (4.87)

with W1 = ψ · 2165 and W2 = 3 · 10−4. The weighting parameters correspond to

the values obtained for the characteristic parameters of the optimization function, when

operating with the previously chosen values emax = 0.25 and emin = 0.01, as well as an

input step reference of xpos,ref = 0.1[m] and a simulation time of t = 10[s]. As optimization

goal consists of minimizing the energy input by avoiding any overshoot in the system´s

step response, the energy input is additionally weighted with factor ψ = 10.

For the optimization different start values and optimization methods are chosen. As

initial values for the switching parameters two sets are chosen, [emax = 0.5, emin = 0.25]

and [emax = 0.25, emin = 0.01] The cost function has then a start value of f1(start) =

9.54322 and f1(start) = 10.9464 respectively. An overview of the different setups and

the corresponding results is given in Table 4.2. The tuning parameters are limited to

emax ∈ [0.1, 1] and emin ∈ [0.01, 1] in order to avoid switchings in the area where limit

cycles occur.

All algorithms give similar results for the optimal switching parameters. These lay in a

range of emax ∈ [0.62, 0.69] and emin ∈ [0.40, 0.45]. Only the SQP and the Simplex-method

lead to different results when starting with emax = 0.25 and emin = 0.01. However, the

Genetic Algorithm and the Pattern Search seem to give more reliable results, as the value

of the cost function and the optimal switching parameters are almost identical for both

initial sets.

To recheck the optimization results, the cost function f1 is reformulated to f2

f2 = min(max(
1

W1

∫ T

0
(u2

1 + u2
2)dτ,

1

W2
overshoot(xpos))), (4.88)

Then the start values are f2(start) = [8.85308, 0.690137] and

f2(start) = [10.02246, 0.924029]. The results of this optimization are shown in Table 4.3.
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Table 4.2: Optimization of switching parameters with cost function f1 of Eq.(4.87). The Genetic algo-

rithm gives the best results. The start value of the cost function is 10.9464.

Start Optimization Optimal Optimal

values method value f1 values

[0.5, 0.25] Pattern Search 9.08898 [0.69, 0.41]

[0.5, 0.25] SQP 9.06205 [0.62, 0.44]

[0.5, 0.25] Simplex 9.08140 [0.63, 0.45]

[0.5, 0.25] Genetic Algorithm 9.06148 [0.62, 0.45]

[0.25, 0.01] Pattern Search 9.08444 [0.68, 0.4]

[0.25, 0.01] SQP 9.47738 [1, 0.01]

[0.25, 0.01] Simplex 9.19005 [1, 0.24]

[0.25, 0.01] Genetic Algorithm 9.06148 [0.62, 0.45]

For the cases with initial values [emax = 0.5, emin = 0.25] the results are similar to the ones

obtained with the previous cost function. However, for the initial set [emax = 0.25, emin =

0.01] it seems to exist at least two different minima, one in the neighbourhood of [emax =

1.0, emin = 0.1] and one around [emax = 0.6, emin = 0.4]. Again the Genetic Algorithm

gives the best results. The optimal values for the switching parameters obtained with this

method are identical to the ones obtained with the previous cost function.

The latter corresponds to the already obtained minima using the first cost function f1

and f2, with the first set of initial values [emax = 0.5, emin = 0.25]. As its value is inferior to

the minimum around [emax = 1.0, emin = 0.1], one can conclude that a pair of parameters

[emax ≈= 0.6, emin ≈ 0.4] may satisfy the optimization goal best.

As a consequence, the switching parameters are set to [emax = 0.6, emin = 0.4]. Then the

integrated square sum of the required input signals for a reference step of xpos,ref = 0.1[m]

and a simulation time of t = 10[s] is reduced from 2165 to 1845, which means an energy

saving of 15[%].
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Table 4.3: Optimization of switching parameters with cost function f1 of Eq.(4.88). The Genetic algo-

rithm gives again the best results. The start values of the cost function are [10.02246, 0.924029].

Start Optimization Optimal Optimal

values method value f1 values

[0.5, 0.25] Pattern Search 8.50622, 0.51865 [0.67, 0.40]

[0.5, 0.25] SQP 8.60525, 0.51835 [0.55, 0.33]

[0.5, 0.25] Simplex 8.49155, 0.57118 [0.60, 0.44]

[0.5, 0.25] Genetic Algorithm 8.49167, 0.57253 [0.61, 0.45]

[0.25, 0.01] Pattern Search 8.80359, 0.65697 [1, 0.033]

[0.25, 0.01] SQP 8.81529, 0.66332 [1, 0.01]

[0.25, 0.01] Simplex 8.55782, 0.58015 [0.98, 0.28]

[0.25, 0.01] Genetic Algorithm 8.49013, 0.57150 [0.62, 0.44]

4.9 Nonlinear MIMO controller

In this section a nonlinear MIMO control law for the position of the cart is depicted. It is

obtained by combining the nonlinear, smooth switching control law based on v = f(eabs)

of Subsection 4.6.4 with an additional switching between the master/slave-assignment of

the motors.

The master/slave-assignment of Motor1 and Motor2, which so far has been considered

to be constant, is designated depending on the driving direction of the system. This is

possible as both motors are equal. The aim of this additional implementation is to close

the backlash gap always on the same side of the gears connecting the motors and the load.

This could be e.g. on the outer side. The master-motor is regarded as main driving motor,

whereas the slave-motor is used whether as supporting driving motor or for closing the

backlash gap.

By using a constant master/slave-assignment, the backlash gap is closed whether on

the inner or the outer side of the gear connecting the second motor and the load depending

on the direction of the motion. The switching-strategy defined in Subsection 4.6.4 closes
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Figure 4.28: MIMO control law structure in Simulink.

the backlash gap on the outer side when the motion occurs in negative direction and on the

inner side when the motion occurs in positive direction. This can be omitted by varying

the assignment of the master- and slave-motor.

Therefore, the switching variable vMaster/Slave for the master/slave-assignment is defined

as follows

vMaster/Slave = sign(xref,old − xref,new) (4.89)

and the assignment is stated as

MasterMotor =







Motor1, vMaster/Slave = −1,

Motor2, vMaster/Slave = 1.

(4.90)

The marking of Motor1 and Motor2 is according to Fig. 4.1. Practically, this means

that Motor1 is assigned to be the master-motor for motions in negative direction, whereas

Motor2 acts as master for motions in positive direction according to the definition in

Fig. 4.1. An overview of the implemented structure is given in Fig. 4.28.

The resulting structure is then combined with the switching-strategy for the slave-

motor based on v = f(eabs), as described in Subsection 4.6.4 and the optimized controller

of Section 4.8. In total, one obtains a nonlinear MIMO control law.
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A comparison between the performance with and without an additional switching be-

tween the master/slave-assignment of the motors is shown in Fig. 4.29 and Fig. 4.30.

One can observe, how in the first case with a constant master/slave-assignment the

relative position angles Θd1 and Θd2 change their signs depending on the direction of the

motion. In contrary, using a variable master/slave-assignment leads to the desired behavior

of closing the backlash gap always on the outer side of the contact-gears. This is stated

by the constant allocation of the signs of Θd1 and Θd2. However, they undergo the same

transition when it comes to a position change of the cart as in the non-switching case.

There the backlash gap is once traversed completely in both directions, which is due to the

acceleration and breaking processes. But besides the different acting of the motors, there

are no significant differences visible in the performance of the whole system.

The same observations can be made by designing the master/slave-switching in a way,

that the backlash gap is always closed on the inner side of the gears.
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Figure 4.29: Dual motor control of a three-mass system based on v = f(eabs) with no additional switching

of the master/slave-assignment of the motors. One can observe, how the relative position angles change

their signs depending on the direction of the motion of the system.
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Figure 4.30: MIMO control law for the dual motor control. Dual motor control of a three-mass system

based on v = f(eabs) with additional switching of the master/slave-assignment of the motors. One can

observe, how the relative position angles maintain their signs independently on the direction of the motion

of the system. Besides, no other improvement in the performance is achieved.

4.10 Summary

In this chapter, a dual motor control for a nonlinear three-mass system is proposed. The

considered masses represent two motors and a cart of a parallel kinematic robot. First,

the model equations are introduced in Section 4.1. Then, a linear cascaded controller for

the absolute cart position is designed and tested in simulations in Section 4.2. Further,

in Section 4.3 the system behavior is analyzed under the assumption of a constant torque

acting on the second motor. The system´s equilibrium points and their stability character-

istics are derived. Furthermore, conditions for the global stability of the system are given

in dependency of the constant input. The results are by simulations in Matlab/Simulink

in Section 4.5. Subsequently, several switching strategies for the operation of the second

motor are provided in Section 4.6 aiming to improve the system performance mainly in

meanings of the required energy input. These approaches lead to a nonlinear, smooth
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switching control law. In Section 4.7 the simulation results are checked in Dymola and in

Section 4.8 the controller and switching parameters for the best approach are optimized.

Finally, in Section 4.9 a nonlinear MIMO control law for the dual motor control problem is

proposed based on the previous introduced implementations and an additional switching

between the master-/slave-assignment of the two motors.



124 4 Dual motor control of a nonlinear three-mass system



Chapter 5

Conclusions and outlook

5.1 Conclusions

In this work, different nonlinear approaches for reducing the backlash effect in a parallel-

kinematic robot are presented. All approaches are based on the incorporation of a second

motor to the driving system. In Chapter 4, the process is modeled as a nonlinear three-

mass system in which two masses represent the motors and the remaining mass represents

the load or cart of the robot. Backlash exists between each motor and the load.

It is shown, that the system can be locally and globally stabilized by the additional mo-

tor which acts in opposite direction of the main driving motion when backlash may occur.

Different control strategies for the operation of the dual-motor drive based on a nonlinear,

smooth switching-function are introduced and tested in simulations in Matlab/Simulink

and Dymola. The switching function allows to improve the system performance and reduce

the required energy input.

The most promising strategy is based on the determination of the switching variable

using the relative position error eabs. For this implementation an optimization of the

controller and switching parameters is carried out using the Design-Optimization tool in

Dymola. Subsequently, a nonlinear MIMO controller for the dual-motor drive is proposed

and tested in simulations. The MIMO control allows to define the side where the backlash

gap should be closed and may therefore improve the stiffness of the system.
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All methods are first derived in Chapter 2 on a simplified nonlinear two-mass model

of the process. In Chapter 3, they are tested on an experimental setup representing a

nonlinear two-mass system exhibiting backlash and the simulation results are verified.

Thereby, the analytical and simulation results of Chapter 4 are confirmed and a similar

performance on the real system can be expected.

5.2 Outlook

Future work might cover mainly two aspects:

• The implementation and testing of the proposed dual motor control on a real three-

mass system exhibiting backlash and a parallel-kinematic robot respectively. This

has already been started by another master student at the department.

• To deepen the analytical stability analysis of the nonlinear three-mass system by ex-

tending the analysis from the constant input case to the nonlinear, smooth switching

controller. Hereby, hybrid methods such as piece wise quadratic Lyapunov functions

may be of interest, see [24] or [25].
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