
ISSN 0280-5316
ISRN LUTFD2/TFRT--5842--SE

Optimal Control and Path Following
for Industrial Robots

Martin Hast

Department of Automatic Control
Lund University

June 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289940241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

June 2009
Document Number

ISRN LUTFD2/TFRT--5842--SE
Author(s)

Martin Hast

Supervisor

Anders Robertsson Automatic Control, Lund
Johan Åkesson Automatic Control, Lund
Rolf Johansson Automatic Control, Lund (Examiner)

Sponsoring organization

Title and subtitle

Optimal Control and Path Following for Industrial Robots. (Optimal reglering och trajektorieföljning för
industrirobotar)

Abstract

When using industrial robots in production lines both speed and accuracy is of great importance. This thesis
investigates how off-line optimization can be used to create references to a control structure with the aim of
traversing a given path in as little time as possible,
under given input constraints, without deviating from the path. In this thesis Modelica and Optimica is used to
formulate and solve minimum time optimization problems. For the purpose of optimization, a model of an
ABB IRB140B industrial robot was identified. A control structure known as a Path Velocity Controller has
been implemented in Simulink with the objective to control the IRB140B. The implemented controller was
then evaluated in simulations.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

88
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

Acknowledgements

First I would like to thank my supervisors Anders Robertsson and Johan
Åkesson who have been very supporting during this master thesis. Always
there to answer questions regarding everything from optimization, robotics,
LATEX to automatic control issues in general and this report in particular.
Thank you. I would also like to thank Linnea Andersson for reading the
manuscript for this thesis over and over again while taunting me for my
repeated linguistical mistakes. Thank you. You have really facilitated this
work.
Secondly I would like to thank everyone at the Department of Automatic

Control for a pleasant and interesting working environment. In particular
I would like to thank Leif who has been of tremendous help when it comes
to typesetting this thesis in LATEX and computer issues in general. Without
his help the work of writing the thesis would have taken forever.
At last I would like to thank the other master thesis students that

I have worked in parallel with and who had to endure my, sometimes,
endless talking.

5

Acknowledgements

6

Contents

Acknowledgements . 5

1. Introduction . 9
1.1 Background . 9
1.2 Problem Definition . 9
1.3 Method . 9

2. Optimization . 12
2.1 Defining the Optimization Problem 12
2.2 Reduction of the State Dimension 14
2.3 Optimization over a Fixed Interval 15
2.4 Solving the Optimization Problem 18

3. Path Velocity Controller . 22
3.1 Control Structure . 22
3.2 Path Velocity Controller . 23

4. Case Study . 27
4.1 Model Identification . 27
4.2 Path Recording . 30
4.3 Optimization . 33
4.4 PVC in Simulink RF . 38
4.5 Controller Parameters . 42
4.6 Simulation . 42
4.7 Practical issues with the PVC algorithm 53
4.8 Using the PVC with the Robot 55
4.9 Experiment . 56

5. Conclusions and Future Work 57

6. Bibliography . 58

A. Model Identification . 59

B. Optimization Results . 72

C. Simulink RF models . 79

D. Modelica and Optimica Code 84
D.1 Modelica Code . 84
D.2 Optimica Code . 85
D.3 MATLAB RF code . 86

7

Acknowledgements

8

1. Introduction

1.1 Background

Industrial robots are used for a large number of tasks in industry. In several
applications, such as glueing, painting and arc welding, not only the end
points but also the path as such and the speed of traversal are strongly
connected to the quality and efficiency. In order to maximize plant effi-
ciency it is crucial to maximize robot work speed. Unfortunately, the cost
and length of robot programming is an obstacle for companies producing
small series. This thesis provides a method for making industrial robots
follow predefined paths as quickly as possible. These paths can be defined
by mathematical expressions or recorded using lead-through programming.

1.2 Problem Definition

The aim of this thesis is to use Modelica [6] and Optimica [5] to solve
minimum time optimization problems. The results from the optimization
should be used in the Simulink RF implementation of a path velocity con-
troller, PVC. The PVC should be used to control an ABB IRB140B robot.

1.3 Method

The project consist of a number of different tasks, briefly described below:

• Identify a model of the ABB IRB140B robot.

• Use lead-through to record a path.

• Formulate an optimization problem using Modelica and Optimica.

• Solve the optimization problem.

• Implement a Path Velocity Controller in Simulink RF.

• Find a suitable controller to include in the Path Velocity Controller.

• Tune the controllers to obtain a desired system response.

• Evaluate the controller in simulations.

• Finally, use the Path Velocity Controller on the robot.

These tasks require a number of different tools as described below.

9

Chapter 1. Introduction

Figure 1.1 Work flow when doing optimization with Modelica and Optimica.
Picture from [5].

Tools

MATLAB RF, Simulink RF and Real Time Workshop MATLAB RF and
Simulink RF are used extensively throughout this thessi. MATLAB RF is used
for general computations and plotting of results. The System Identification
Toolbox is used to identify models for the robot axis. Simulink RF is used
for the implementation and the simulation of the PVC. In order to run
the controller on the IRB140B, Real-Time Workshop is used. Real-Time
Workshop translates the Simulink RF models into C-code to be run on the
robot.

Modelica and Dymola Modelica is a free object-oriented modeling lan-
guage developed by the members of the Modelica Association. Modelica is
developed for multi-domain modelling, meaning that models can contain
for instance electrical systems interacting with mechanical, hydraulic and
control systems [12]. The Modelica language offers possibilities to model
small parts of a system, or to use the available libraries, and to put the
parts together to form large and complex models [6]. Although this thesis
includes neither large nor complex systems, the Modelica language provides
a convenient way of making models. As opposed to Simulink, Modelica is
beneficial because models are stated using differential algebraic equations
(DAE) which makes modelling much easier than using ordinary differential
equations.
Dymola, "Dynamic Modeling Laboratory", is a modeling and simulation

environment, developed by Dynasim, for the Modelica language. Dymola
provides graphical features that enhance the use of Modelica as well as
the possibility to simulate models. The simulation results can be used,
e.g., to evaluate the models or to serve as an initial guess for the Optimica
compiler as described below.

Optimization Tools In this thesis, Modelica together with Optimica,
are used to formulate optimization problems. Modelica is used for making
dynamical models, i.e., stating dynamical constraints, but lacks support
for formulating the other parts of the optimization problem. Optimica is
an extension to the Modelica language, allowing to express cost functions,
boundaries and constraints on states and inputs [4], [5]1. Once the prob-
lem is formulated in Modelica and Optimica code it is translated by the
Optimica compiler into AMPL,"A Mathematical Programming Language",

1The version of Optimica used in this thesis is a prototype which differs in syntax from
the one presented in [5]

10

1.3 Method

see figure 1.1. AMPL is an algebraic modelling language suitable for the
expression of a variety of optimization problems [11]. AMPL does not solve
the optimization problem but calls for an external solver, in this thesis
IPOPT2, to do so. IPOPT solves the optimization problem and, if a feasible
solution is found, produces a result file. Dymola is then used to evaluate
the optimization results using plots and simulations. The chance of finding
an optimal solution is substantially increased if an initial guess is given to
the Optimica compiler.

Figure 1.2 ABB IRB140B [3]

Robot System

The robot that will be used in this thesis is an ABB IRB140B robot. It is
ABB’s smallest industrial robot with a 6 kg pay load and a 0.81 m reach
[1]. The IRB140B is a serial industrial robot with six axes providing 6 de-
grees of freedom. Using only axis one, two and three it is possible to reach
any point within the robot’s workspace. Axis four, five and six allow reach-
ing a given position from an arbitrary direction. Serial six-axis robots are
therefore in general versatile and used for many applications as mentioned
above. The IRB140B is controlled by an ABB IRC5 control cabinet and
powered by a corresponding ABB drive module. The robot’s control panel,
the FlexPendant, can be used to jog and program the robot. The FlexPen-
dant can also be used for numerous other task [2] and the ABB homepage
[3]. The conventional way to program an ABB IRB140B robot is to use the
robot programming language RAPID. This will however not be done in this
thesis, but instead Simulink RF will be used together with Real-Time Work-
shop to generate C-code. A program that logs signals, specified by the user,
from the robot was available. For a description on how to run the robot and
how to use Real-Time Workshop together with the robot available at the
department see [10].

2IPOPT is described in [16]

11

2. Optimization

This chapter discusses the different parts of the time minimum optimiza-
tion problem formulation. A general minimum time problem is presented
in the first section. The problem is then reformulated to reduce the number
of states. The reformulated problem is then reformulated again in order to
obtain an optimization problem defined over a fixed interval. The reformu-
lations are done according to the method in [8] Chapter 3, Sections 3.2 and
3.5. The goal of the optimization is to find input sequences that drive the
model states from a start point to an end point along a predefined path. To
do so requires a model, a predefined path for the model states to follow and
a formulation of the model’s constraints. The prerequisites are discussed
and defined in Section 2.1.

2.1 Defining the Optimization Problem

The Model

A dynamic model of order p describes the system states q and their deriva-
tives q̇, q̈, . . . , q(p) in relation to the system inputs τ . The model is assumed
to be given on the form

τ = �(q, q̇, . . . , q(p)) (2.1)

Eq. (2.1) constitutes the dynamical constraints of the optimization prob-
lem. We further assume that there are n inputs with the lower and upper
bounds

τmini ≤ τ i ≤ τmaxi , 1 ≤ i ≤ n (2.2)

The Path

The predefined path is a description of how the model states should evolve.
The path is defined as

f (s) =

f1(s)

...

fn(s)

 (2.3)

The path f (s) is parametrized by the path parameter s(t). We assume that
the path parameter s(t) is a real, piecewise twice differentiable function
defined in the interval t0 ≤ t ≤ t f . The path’s starting and ending points
are defined as s(t0) = s0 and s(t f) = s f respectively. The first derivative
of s with respect to time, ṡ(t) = ds

dt
, is called the path velocity. The second

derivative of s(t) with respect to time, s̈(t), is called the path acceleration.
If motion is assumed only to take place in the forward direction, equivalent
to ṡ(t) > 0, it is possible to express the path velocity and acceleration as
functions of the path parameter. We call these functions the velocity profile

v1(s(t)) = ṡ(t) (2.4)

and the acceleration profile

v2(s(t)) = s̈(t) (2.5)

12

2.1 Defining the Optimization Problem

with notation as in [8]. Eq. (2.4) and Eq. (2.5) are vital to the path velocity
controller described in Chapter 3.

The Optimization Problem

The objective of the optimization is to minimize the traversal time t f along
the path, expressed as the following cost function

min
τ
t f = min

τ

∫ t f

t0

1dt (2.6)

Eq. (2.6) together with the constraints and boundary conditions stated
below statute the optimization problem. The model, or the dynamical con-
straints, is defined by Eq. (2.1). The path is an equality constraint meaning
that the states should always follow the path i.e., f (s) = q. The input lim-
its are inequality constraints defined by Eq. (2.2). Finally, the boundary
conditions are defined by the initial and final states

q(t0), . . . q
(p−1)(t0)

q(t f), . . . q
(p−1)(t f)

(2.7)

This optimization problem has pn states and is generally hard to solve.
Consequently, a reduction of the number of states is desirable.

An Example

In order to illustrate the procedure, an example of how an optimization
problem is formulated will be given. The example will be continued in
the following sections, each of them emphasizing different aspects of the
problem. We assume that a process model is known and expressed as

Mq̈+ Dq̇=

[
m1 0

0 m2

] [
q̈1

q̈2

]

+

[
d1 0

0 d2

] [
q̇1

q̇2

]

=

[
τ1

τ2

]

(2.8)

where τ is the model inputs and q the states that should follow a path. The
inputs are limited by lower and upper bounds

−1 ≤ τ i ≤ 1, i = 1, 2 (2.9)

The path is a straight line defined as

f (s) =

[
4

1

]

s (2.10)

The motion starts from rest at time t0 = 0 with q= (0, 0). The motion stops
at rest at time t f in position q = (4, 1), giving the boundary conditions

q(0) =
[
0

0

]

, q̇(0) =
[
0

0

]

q(t f) =

[
4

1

]

, q̇(t f) =

[
0

0

] (2.11)

13

Chapter 2. Optimization

The cost function for the minimum time problem is

min
τ
t f = min

τ

∫ t f

0
1dt (2.12)

Eq. (2.8), Eq. (2.9), Eq. (2.10), Eq. (2.11), and Eq. (2.12) describe all
parts of the optimization problem. The optimization problem has p = 2 and
n = 2, giving the total of four states. Section 2.2 presents a method of how
to reduce the number of states from four to two.

2.2 Reduction of the State Dimension

Using the path constraints, the dynamics can be rewritten to reduce the
number of states in the optimization problem from pn to p. The path is
given by the vector Eq. q = f (s). Using the chain rule the time derivatives
of q can be computed. Since the model is of order p, only the derivatives of
q to the order of p has to be calculated. Using the chain rule

d f

dt
=
d f

ds

ds

dt
(2.13)

gives the following results

q= f (s)

q̇= f ′(s)ṡ

q̈= f ′′(s)ṡ+ f ′(s)s̈

...

q(p) =
dq(p−1)

dt
=
dq(p−1)

ds

ds

dt

(2.14)

Since f (s) is given, and its derivative with respect to s can be calculated
if putting the Eq. s (2.14) into the system dynamics (2.1), we have

τ = �s(s, ṡ, . . . , s(p)) (2.15)

Eq. (2.15) serves as constraints in the rewritten optimization problem. The
limits on τ are still described by Eq. (2.2) while the boundary conditions
are expressed as

s(t0), . . . , s(p−1)(t0)

s(t f), . . . , s
(p−1)(t f)

(2.16)

The dynamics of the optimization problem are replaced by a p-order inte-
grator

ds

dt
= ṡ

dṡ

dt
= s̈

...

ds(p−1)

dt
= sp

(2.17)

14

2.3 Optimization over a Fixed Interval

The cost function for the minimum time problem becomes

min
s(p)
t f = min

s(p)

∫ t f

t0

1dt (2.18)

where minimization is no longer done by using τ as input. Instead the p-th
time derivative of s, s(p), serves as the input.

An Example - Reduced

Setting q= f (s) with f (s) as defined in (2.10) and calculating the first two
time derivatives using the chain rule according to (2.13) gives

q=

[
4

1

]

s

q̇=

[
4

1

]

ṡ

q̈=

[
0

0

]

ṡ+

[
4

1

]

s̈

(2.19)

Inserting Eq. (2.19) into the system dynamics Eq. (2.8) gives

[
4m1
m2

]

s̈+

[
4d1
d2

]

ṡ =

[
τ1

τ2

]

(2.20)

The dynamics of the optimization problem is the set of integrators as de-
fined by Eq. (2.14). Since p = 2 the dynamics are

ds

dt
= ṡ

dṡ

dt
= s̈

(2.21)

The boundary conditions of these dynamics are

s0 = 0, ṡ0 = 0

s f = 1, ṡ f = 0
(2.22)

and the inputs’ limits are still described by Eq. (2.9). According to Eq. (2.18)
the cost function is

min
s̈(t)

∫ t f

0
1dt (2.23)

The reduced optimization problem has only two states and is therefore
easier to solve than the previously formulated example.

2.3 Optimization over a Fixed Interval

Although the number of states in the optimization problem are reduced
to p the problem remains hard to solve due to the open final time. The
optimization problem in Section 2.2 can be reformulated to carry out the
optimization over a fixed interval. Fixed time problems are generally easier

15

Chapter 2. Optimization

to solve than open time problems. The reformulation is done by interpreting
the path parameter s as the time variable and by maximizing the speed
ṡ in the interval s0 ≤ s ≤ s f . Following the reformulation, the dynamic
system is further reduced to order p− 1 but the main advantage is that
the optimization problem is formulated as a fixed time problem.
To reformulate the problem, new state variables, x1, . . . , xp−1, are intro-

duced where

x1 =
ṡp

p
(2.24)

ů Then the path velocity is expressed by the function

ṡ = �(x1) = (px1)
1
p (2.25)

The following states are defined by

xk =
dxk−1

ds
, k = 2, . . . , p− 1 (2.26)

After the reformulation, the dynamical constraints of the optimization
problem are written as

x1

ds
= x2

x2

ds
= x3

...
xp−2

ds
= xp−1

xp−1

ds
= u− Fp(x1, . . . , xp−1)

(2.27)

where u = s(p)(s) is the input to the system. Fp is calculated by differenti-
ating Eq. (2.25) with respect to time, p-times. According to Lemma 3.2 in
[8] the p:th derivative of s can be expressed as

s(p) = �′(x1)�(x1)
p−1dxp−1

ds
+ Fp(x1, . . . , xp−1) (2.28)

It is also shown in the proof of Lemma 3.2 in [8] that th choice of � as in
Eq. (2.25) will give a constant order of the dynamical system.
The equations presented in Section 2.2 will be expressed as functions of

s and x1, . . . , xp−1. The constraints, as described by Eq. (2.15), is therefore

�x(s, x1, . . . , xp−1,u) (2.29)

and the boundary conditions in Eq. (2.16) will be

x1(s0), . . . , xp−1(s0)

x1(s f), . . . , xp−1(s f)
(2.30)

The dynamic system is also reformulated to be interpreted as functions of
s. The input to the reformulated dynamical system is the p:th derivative
of s, s(p).

16

2.3 Optimization over a Fixed Interval

Reformulating the problem from a problem defined over time to a prob-
lem defined over the fixed path s implies a change in the cost function.
Minimizing the traversal time t f is the same as minimizing the inverse of
the path velocity, 1

ṡ
, which is the same as minimizing the inverse of �(x1)

min
τ (t)

∫ t f

t0

1dt = min
s(p)(t)

∫ s f

s0

1
ṡ
ds = min

u(s)

∫ s f

s0

1
p
√

(px1)
ds (2.31)

In order for the numerical solver, IPOPT, to find an optimal solution the
occurrence of an initial guess is crucial. This is especially the case if the op-
timization problem has many dynamical state. Finding an optimal solution
for the general minimum time problem requires an initial guess close to the
optimal solution. Generating good initial guesses is hard and reformulating
the optimization problem to a fixed interval is therefore preferable.

An Example - Fixed in Time

With p = 2 we start by rewriting the cost function (2.23) according to
Eq. (2.31)

min
u(s)

∫ s f

s0

1
2
√

(2x1)
ds (2.32)

x1 and �(s) are defined according to Eq. (2.24) and Eq. (2.25) as

x1 =
ṡp

p
(2.33)

and
ṡ = �(x1) = (2x1)

1
2 (2.34)

As p is equal to two u = s̈. To calculate F2 we differentiate Eq. (2.34)

s̈ =
1
2
(2x1)

1
22
dx1

dt
︸︷︷︸
dx1
ds
ds
dt

= (2x1)
1
2
dx1

ds
ṡ = (2x1)

1
2
dx1

ds
(2x1)

1
2 =
dx1

ds
(2.35)

Thus, F2 is equal to zero and the dynamics of the optimization problem is

dx1

ds
= u (2.36)

The constraints from Eq. (2.20) are now written as functions of x1 and u
i.e. [

4m1
m2

]

u+

[
4d1
d2

]

(2x1)
1
2 =

[
τ1

τ2

]

(2.37)

subject to (2.9). The reformulated boundary conditions are

x1(s0) = 0, x1(s f) = 0 (2.38)

Eq. (2.32), Eq. (2.36), Eq. (2.37) and Eq. (2.38) then constitutes an opti-
mization problem of order 1 defined over the interval s0 ≤ s ≤ s f .

17

Chapter 2. Optimization

2.4 Solving the Optimization Problem

As said above in the introduction, the Modelica language will be used to
formulate the dynamical constraints while Optimica is used to formulate
the rest of the optimization problem. Dymola offers help when formulating
Modelica code and provides simulation possibilities. The simulation results
have been used as an initial guess for the numerical solver. In this section
the work of solving the optimization problem is presented.

Solving an Example - Fixed in Time

To illustrate this work the example above will be used. The optimization
problem is defined as:

min
u(s)

∫ s f

s0

1
2
√

(2x1)
ds (2.39)

subject to
dx1

ds
= u (2.40)

x1(s0) = 0, x1(s f) = 0 (2.41)
[
4m1
m2

]

u+

[
4d1
d2

]

(2x1)
1
2 =

[
τ1

τ2

]

(2.42)

−1 ≤ τ i ≤ 1, i = 1, 2 (2.43)

The dynamical equations (2.40), the constraints (2.42) and the initial val-
ues in (2.41) are expressed in Modelica code as follows

model anExampleFixedInTime

// Process

processModel pm;

// Dynamics - Define variables and starting values.

Real sd(start=0);

Real x1;

Real sdd;

// Path - Define variables for the first and

// second derivatives of the path.

Real[2,1] df;

Real[2,1] ddf;

// Optimization input - Define an input to the system

Modelica.Blocks.Interfaces.RealInput u

equation

// Equations defining the process

pm.tau1 = pm.M1*ddf[1,1] + pm.D1*df[1,1];

pm.tau2 = pm.M2*ddf[2,1] + pm.D2*df[2,1];

// Dynamics

x1=sd^2/2;

der(x1) = u;

sdd = u;

// Path

df = [4;1]*sd;

ddf = [4;1]*sdd;

end anExampleFixedInTime;

18

2.4 Solving the Optimization Problem

The process model is defined by the Modelica class processModel

model processModel

// Process definition

Real tau1;

Real tau2;

parameter Real M1 = 1;

parameter Real M2 = 1.5;

parameter Real D1 = 0.5;

parameter Real D2 = 0.3;

end processModel;

For an overview of the Modelica language see Fritzson[6]. A richer presen-
tation can be found in [12] or in the language specifications [7]. Due to a
bug in the Optimica compiler, tau1 and tau2 are defined as scalar variables
and not as a vector.
The bounds on the inputs τ1,2, Eq. (2.43), the boundary conditions in

(2.41) together with the cost function, (2.39) are expressed using Optimica.
For a presentation and manual to Optimica see [4]. The code for the example
is presented below

class fixedInTimeOpt

pm.tau1(lowerBound=-1,upperBound=1);

pm.tau2(lowerBound=-1,upperBound=1);

optimization

grid(finalTime=fixedFinalTime(finalTime=1),nbrElements=200);

minimize(lagrangeIntegrand=1/sqrt(2*x1+1e-15));

subject to

terminal x1 = 0;

terminal sd = 0;

terminal sdd = 0;

sd >= 0;

end fixedInTimeOpt;

In addition to this code for generating an initial guess by simulation were
also written.

model initialGuess

anExampleFixedInTime ex;

parameter Real amplitude = 1;

equation

ex.u = if time >= 0 and time <= 1/2 then amplitude

else if time >= 1/2 and time <= 1 then -amplitude

else 0;

end initialGuess;

When the Modelica and Optimica code is written and an initial guess
has been generated it is time to compile the code. This is done as described
in the method section in Chapter 1. Using this problem formulation gives
the input sequences as functions of the path parameter s. This is convenient
when the optimization results should be used in a PVC. The results from
the numerical solver is readable in Dymola for inspection. They can also
be imported into MATLAB RFusing m-functions distributed with Optimica.

19

Chapter 2. Optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Nominal path velocity

s

v
1
(s
)

Figure 2.1 The nominal path velocity, v1, as a function of the path parameter, s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Nominal path acceleration

s

v
2
(s
)

Figure 2.2 The nominal path acceleration, v2, as a function of the path parameter
s.

Using the initial guess generated when simulating the initialGuess
model above in the optimization proved to be enough to find a optimal
solution. The results are presented in Figure 2.1, 2.2 and 2.3.
It can be seen in Figure 2.3 that τ1 is at limit at all points along the path

and that the solution for this input has bang-bang-characteristics. This is
xpected when moving along a straight line. Since, at least, one input is at
limit at all parts of the path there does not exist other solutions that have
larger acceleration profiles and therefore a shorter traversal time along the
path. Any acceleration profile with larger accelerations would give inputs
that breaks either the lower or upper boundaries.

20

2.4 Solving the Optimization Problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s

τ
i,
i
=
1,
2

τ1
τ2

Process inputs

Figure 2.3 The process inputs, τ1 and τ2, as functions of the path parameter s.

21

Nominal

trajectories

τ (t)

Process

q(t) q̇(t)

Figure 3.1 Open-loop control using the nominal input trajectories.

3. Path Velocity Controller

This chapter presents the algorithms of the Path Velocity Controller and
describes the implementation of the PVC in Simulink RF. The algorithms
origin from the PhD thesis "Path Constrained Robot Control" by Ola Dahl
[8]. The basic idea is to use feedback to modify the acceleration along the
path. The algorithms ensure that the input constraints are not violated
while still traversing the path in as short time as possible.

3.1 Control Structure

Using the input trajectories τ (t) obtained for the optimization as inputs
to the process is a naïve way of controlling the process, see Figure 3.1.
This open loop strategy gives no space to correct for model errors and
disturbances. Instead, a strategy to include a controller, making it possible
to reject disturbances, could be applied, see Figure 3.2.
There is however a major problem for both of these strategies. Since

the inputs are functions of time, the reference will change regardless if the
process can follow these reference trajectories or not. This will result in
deviations from the path if the process inputs saturate.
A solution to this problem is to use a control structure that modifies the

reference trajectory. This control structure is refered to as a PVC and is
thoroughly described in Section 3.2. A PVC is used to generate a reference
signal to an external controller. The external controller should both consist
of feed-forward and a feedback loop. The feed-forward part is used to ob-
tain a fast response to the reference changes. The feedback loop is used to
account for disturbances and to ensure robustness. The controller should
be designed in a way that guarantees good tracking performance and dis-
turbance rejection[8]. In order to use this approach with a PVC requires
that the controller can be written on the form

τ = β 1 s̈+ β 2 (3.1)

Nominal

trajectories

v1, v2
Controller

u τ
Process

q, q̇

Figure 3.2 Closed loop control using the nominal input trajectories as references.

22

3.2 Path Velocity Controller

PVC Controller

Path

Process
σ

σ , σ̇ , . . .

f (σ), f ′(σ), . . .

τ

β 1, β 2

q, q̇

Figure 3.3 Control structure when using a PVC.

3.2 Path Velocity Controller

From the optimization a nominal acceleration profile v2(s) was acquired.
The acceleration profile ensures, under ideal conditions, that all inputs will
be within their limits. This profile will therefore be used as a reference ac-
celeration trajectory. Due to model errors and disturbances, using the nom-
inal acceleration will result in input signals, calculated by the controller,
which violates the predefined limits (2.2). The path velocity controller lim-
its the acceleration to ensure that the calculated input signals does not
violate the limits (2.2). The control structure when including the PVC can
be seen in Figure 3.3.

The Basic PVC Algorithm Based on a controller, a first prototype for a
PVC algorithm is described in this section. Introduce a new path parameter
σ . The first prototype limits the path acceleration, σ̈ , with respect to the
input limits. Writing the controller on the form

τ = β 1(σ)σ̈ + β 2(σ , σ̇ , q, q̇) (3.2)

, where τ is the input signals to the process, and inserting it in the input
limitations (2.2) results in

τmini ≤ τ i = β 1iσ̈ + β 2i ≤ τmaxi , 1 ≤ i ≤ n (3.3)

where n is the number of inputs. Using Eq. (3.3) it is possible to calculate
the lower and upper bounds for the path acceleration, σ̈ , so that the input
limits are not exceeded. For each degree of freedom upper and lower limits
can be calculated using the equations below.

σ̈ imax(β 1iβ 2i),=

τmax
i

−β 2i
β 1i

β 1i > 0
τmin
i
−β 2i

β 1i
β 1i < 0

∞, β 1i = 0

σ̈ imin(β 1iβ 2i),=

τmin
i
−β 2i

β 1i
β 1i > 0

τmax
i

−β 2i
β 1i

β 1i < 0

−∞, β 1i = 0

(3.4)

Given the upper and lower limit for each input the limits on the path
acceleration can be calculated. By taking the smallest σ̈ imax as the upper

23

Chapter 3. Path Velocity Controller

bound on the acceleration and the largest σ̈ imin as the lower bound we can
be certain that all torques will be admissible.

σ̈min(β 1, β 2) = max
i

σ̈ imin(β 1iβ 2i)

σ̈max(β 1, β 2) = min
i

σ̈ imin(β 1iβ 2i)
(3.5)

These bounds can now be used in the first prototype algorithm for the PVC:

dσ

dt
= σ̇

dσ̇

dt
= σ̈

σ̈ = sat(v2(σ), σ̈min(β 1, β 2), σ̈max(β 1, β 2))

(3.6)

where v2 is the function defined by Eq. (2.5). Using the algorithm in (3.6)
the nominal velocity profile will be followed if σ̈ does not saturate. Once σ̈
saturates the acceleration will differ from the nominal acceleration given
by v2. If the path acceleration is at limit for a period of time the path
velocity will differ from the nominal velocity profile v1. Since (3.6) is an
open-loop control algorithm the deviation from the nominal velocity profile
will not be considered. After the period during which the path acceleration
was at limit there is the possibility to try to ”catch up” by accelerating
more than the nominal acceleration profile prescribes. This can be done by
introducing feedback into the algorithm (3.6). It is shown in [8] that σ is
a time delayed version of the s if a feedback, which makes σ̇ converge to
v1(σ), is introduced. The feedback used in this thesis is the same as the
the one in [8]. Introducing feedback that makes the path velocity converge
towards the nominal velocity profile renders the following control algorithm

dσ

dt
= σ̇

dσ̇

dt
= σ̈

u = v2(σ) +
α

2
(v1(σ)

2 − σ̇ 2)

σ̈ = sat(u, σ̈min(β 1, β 2), σ̈max(β 1, β 2))

(3.7)

It can be shown[8] that, assuming σ̇ > 0, σ̇ → v1(σ). The assumption that
σ̇ > 0 corresponds to a forward motion along the path.

Velocity Profile Scaling The maximum velocity profile is defined by

vmax = max
ṡ,s̈
ṡ (3.8)

subject to the Eq. (2.2). Eq. (3.8) describes the point wise maximum
velocity in each point along the path that is admissible according to the
constraints in Eq. (2.2) combined with (2.15) [8]. Problems can occur if
the velocity profile, v1(s), obtained from the optimization, at some point is
equal to the maximum velocity profile. If the real process differs from the
process model a situation where v1 is larger than the maximum velocity
profile for the real process could occur. This could result, e.g., in the velocity,

24

3.2 Path Velocity Controller

at one point, being so high that even if minimum acceleration is applied
the velocity further along the path will be so high that the process will
deviate from the path. The problem is addressed by applying scaling to the
velocity profile v1. Scaling of the velocity profile corresponds to time scaling
of the path parameter. To show this a time scaled nominal path parameter
s = s(γ t) is introduced as in [8]

ṡ =
d

dt
s(γ t) = γ ṡ(γ t) = γ v1(s(γ t)) = γ v1(s(t))

To show how the path acceleration is affected by the scaling ṡ is differen-
tiated.

s̈ =
d

dt
γ ṡ(γ t) = γ 2 s̈(γ t) = γ 2v2(s(γ t)) = γ 2v2(s(t))

Introducing the time scaling in algorithm (3.7) changes u to

u = γ 2v2(σ) +
α

2
(γ 2v1(σ)

2 − σ̇ 2) (3.9)

The implementation used in this thesis uses feedback to change the
scaling factor in the same way as in [8]. γ is adjusted so that it goes towards
the scaling factor, γ̂ , which results in σ̇ = γ̂ v1(σ). γ is updated according
to

dγ

dσ
= k(γ̂ − γ) (3.10)

Combining the chain rule
dγ

dt
=
dγ

dσ
σ̇ (3.11)

and the relation
σ̇ = γ̂ v1(σ) (3.12)

the Eq. (3.10) is written as

dγ

dt
= σ̇ k(

σ̇

v1(σ)
− γ) (3.13)

To Eq. (3.13) additional logic is introduced. γ is only adjusted when the
path acceleration, σ̈ , is at limit and when the path velocity σ̇ is lower than
γ v1. Furthermore, the algorithm is not used when then velocity profile,
v1(σ), is zero since this would render an infinite derivative on γ .

The Final PVC Algorithm The final algorithm including the velocity
profile scaling for the PVC is presented below. Figure 3.4 shows the block
diagram for the PVC algorithm.

dσ

dt
= σ̇

dσ̇

dt
= σ̈

u = γ 2v2(σ) +
α

2
(γ 2v1(σ)

2 − σ̇ 2)

σ̈ = sat(u, σ̈min(β 1, β 2), σ̈max(β 1, β 2))

γ̇ =

{

σ̇ k(σ̇
v1(σ)

− γ), γ v1(σ) ≥ σ̇

0, γ v1(σ) < σ̇

(3.14)

25

Chapter 3. Path Velocity Controller

v1(⋅)

v2(⋅)

∫ ∫

X

α
2 (γ

2v1(σ)
2 − σ̇ 2)

γ -calculation

Limits

calculation

Controller Process

Path

∑ σσ̇σ̈uγ 2v2

β 1, β 2

τ q, q̇

f (σ), f ′(σ), . . .

Figure 3.4 Block diagram for the final PVC algorithm presented in Section 3.2.

26

4. Case Study

In this chapter a PVC, according to Algorithm (3.14), is implemented and
tested, both in simulations and on a real process, the ABB IRB140B. The
chapter starts with a section regarding the system identification of the
ABB robot. Following this section is a section about path recording us-
ing ABB’s lead-through system. The time minimum optimization problem
is then formulated in Modelica and Optimica. The problem is solved and
the optimization results are used in the PVC, which is implemented in
Simulink RF. The PVC is tested in simulations before it is used on the real
robot system.

4.1 Model Identification

Ideally, the control structure and the controller parameters of the ABB
robot system should be known. If that was the case, a model from motor
torque to angular position could have been identified and used together
with the ABB control structure. Unfortunately, and understandably, this
information is not shared by ABB. Therefore, the model and control struc-
ture used in this thesis is somewhat forced by the possibilities offered by
the available robot interface.
It was decided that the ABB position control loop should be turned off

and that the velocity reference is to be considered as the system input.
Note that the ABB velocity control loop is left unchanged. The output is
considered to be the motor angular position. During the system identifica-
tion, the input was the velocity reference and the output was the velocity
measurements. An integrator has been added to the identified model in
order to obtain the angular position rather than the angular velocity.

Identification Procedure

The identification has been performed joint-wise and the model does not
include any cross couplings between the joints. When including the velocity
control loop the input-output behaviors are alike for all six joints. Deriving
an extensive model for the ABB robot is not in the scope for this the-
sis, therefore finding simple linear models that describe the process ”good
enough” have been identified. As always when doing system identification
the question of how to define "good enough" arises. Since the processes to
identify already include a well tuned controller, the input-output relation
is nice in the sense that it does appear to be linear.
The input signal used is a square wave that changes sign depending on

the sign of a random sequence. How often the square wave could change
sign was set by a parameter in the Simulink RF model as well as the ampli-
tude of the wave. The amplitude was chosen as large as possible for each
joint. Consideration was taken when choosing amplitude so that the robot
safety system did not execute an emergency stop and so that the physical
angular limitations was not exceeded.
The sample time when using the robot interface is fixed at h = 0.004 s.

Measurements are retrieved using an available log program that logs speci-
fied signals. The measurement logs are converted to textual format which is

27

Chapter 4. Case Study

i ai bi

0 1.41 ⋅ 1010 1.41 ⋅ 1010

1 4.96 ⋅ 105 1.55 ⋅ 105

2 1.11 ⋅ 108 −9.73 ⋅ 107

3 532.6 -653.6

4 1 0

Table 4.1 ARMAX model parameters for joint 1

readable using the MATLAB RFfunction readlog. The data was then divided
into two equal parts, one used for identification, the other for validation.
Two different models have been identified, using the MATLAB RF System

Identification Toolbox, for each joint, a discrete-time ARMAX model and a
continuous-time process model. These two models are described below.

ARMAX-model

ARMAX-models have a structure according to Eq. (4.1).

A(z−1)yk = z
−dB(z−1)uk + C(z

−1)wk (4.1)

where d is a delay, A, B and C are polynomials according to (4.2)

A(z−1) = 1+ a1z−1 + . . .+ anA z
−nA

B(z−1) = b0 + b1z
−1 + . . .+ bnB z

−nB

C(z−1) = 1+ c1z
−1 + . . .+ cnC z

−nC

(4.2)

wk is a white noise stochastic process with zero mean, E{wk} = 0, and
some covariance E{wkwi} = δ i jσ

2
w, [14].

The polynomial orders and delay, nA, nB and nC and d, in Eq. (4.2) are
determined by extensive testing. A great number of different models have
been tried before the decided model structure was chosen. The goal was to
find a model of relativly low order that still gave small residuals and a good
model data fit when doing cross-validation. The discrete ARMAX models
are converted to continuous models using the MATLAB RF d2c command
with the zero-order method [15].
The model structure that gave the best models for all six joints with a

relativly low model order was nA = 4, nB = 4, nC = 4 and k = 2. Hence, the
model structure in continuous time is described by the transfer function
(4.3).

G(s) =
b3s
3 + b2s

2 + b1s+ b0
s4 + a3s3 + a2s2 + a1s+ a0

(4.3)

In Table 4.1, the identification result for joint 1 will be presented. Figure 4.1
and Figure 4.2 shows the model fit and residuals from the cross-validation
for joint 1. For figures and data regarding joint two to six refer to Appendix
A.

28

4.1 Model Identification

0 1 2 3 4 5 6 7 8
−30

−20

−10

0

10

20

30

Time

Measured and simulated model output

Figure 4.1 Fit between ARMAX-model and cross-validation data for joint 1

Process-model

The Simulink RF Identification Toolbox has also been used to obtain con-
tinuous process models with a predefined structure. Tests with different
model structures have been performed. The Identification Toolbox allows
for continuous process models up to an order of three. It can also include
an extra integrator, a zero and a time delay. All these different choices
have been tested but the model described by (4.4) was finally chosen to
represent this category of identified models.

Gi(s) =
Ki

Tis+ 1
, 1 ≤ i ≤ 6 (4.4)

The identified parameters are seen in Table 4.1 and the model fit and
residuals when doing cross validation are seen in Figure 4.3 and Figure
4.4. Both the residuals and the model fit indicates that there are more
information in the data that the model does not utilize.

Model Used for Optimization

For optimization purposes the process model (4.4) together with an inte-
grator will be used. The resulting transfer function is

Gi(s) =
Ki

Tis+ 1
1
s
, 1 ≤ i ≤ 6 (4.5)

with parameters Ki and Ti according to table 4.1. These models are chosen
in favour for the higher-order ARMAX models due to the fact that only
the two first derivatives of the path are required. The residuals for the

29

Chapter 4. Case Study

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Samples

Cross corr for input u1 and output y1 resids

Figure 4.2 Auto correlation and cross-correlation for the residuals for the
ARMAX-model

Joint Ki Ti $102

1 1.031 1.907

2 1.077 2.043

3 1.061 1.913

4 1.051 1.716

5 1.062 1.791

6 1.062 1.745

Table 4.2 Model parameters for the identified process models

ARMAX models are smaller and the model fit is better compared to the
process models. Hence, using the ARMAX models would probably render
better results since it better describes the dynamics, eg., resonances etc.,
in the robot joints. Since the ARMAX models are of higher order it will
probably be harder to solve the optimization problems, using these models.

4.2 Path Recording

The paths can, as in the examples in Chapter 2, be constructed using math-
ematical expressions. In the case of robot programming, lead-through is a
more versatile way to construct paths. Lead-through is a force-control mode
which allows the operator to freely move/lead the robot in the workspace by
hold ing the end effector. The joint angles are recorded while an operator
moves the robot around. Some manual manipulation of the recorded path
can be required. This includes editing the length of the recorded track so

30

4.2 Path Recording

0 1 2 3 4 5 6 7 8
−30

−20

−10

0

10

20

30

Time

Measured and simulated model output

Figure 4.3 Fit between process model and cross-validation data

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Samples

Cross corr for input u1 and output y1 resids

Figure 4.4 Auto correlation and cross-correlation for the residuals

31

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

j1

j2

j3

j4

j5

j6

Path parameter s

Jo
in
t
an
gl
es
q
[r
ad
]

Joint angles as functions of the path parameter

Figure 4.5 The path represented as joint angles

that it represent the desired motion. When the joint angles are available as
vectors these are parametrized as function of a path parameter, s, defined
on the interval s0 = 0 ≤ s ≤ s f = 1. The choice of s0 and s f are not that
important as long as s0 < s f .

When the path is parametrized, Modelica splines can be created using
the MATLAB RF function gen_modelica_spline that is distributed along
with Optimica 0.3. The derivatives of the path, f ′(s), f ′′(s), . . . are calcu-
lated in the Modelica model using the der()-operator. The der()-operator
differentiates a variable with respect to the Modelica variable time. Using
the reformulated optimization problem formulation in Section 2.3, timewill
be equal to s and the der()-operator can be regarded as if it differentiates
with respect to s.

Using all the points from the recording when generating the splines is
unnecessary since it will create a large amount of splines that does not
contribute considerably to a more accurate optimal solution. When creat-
ing splines with gen_modelica_spline an appropriate scale factor has to be
chosen. The scale factors determines how fine or coarse the splines should
be. The scale factor should be chosen small enough so that the misfit be-
tween the original path and the splines are small but large enough so that
the resulting file containing the splines is not too large. Fine splines makes
it harder to find a good optimal solution as well as it makes the optimiza-
tion sloving take longer time. In the path used in this chapter the scaling
factor was chosen to be 30. Figure 4.5 show the path represented as joint
angles. Figure 4.6 shows the path in a Cartesian coordinate system with
origin at the robot base.

32

4.3 Optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

0

200

400

600

800

1000

Path parameter s
P
os
it
io
n
[m
m
]

Cartesian coordinates as functions of the path parameter
xy
z

Figure 4.6 The resulting Cartesian coordinates for the tool center point along
the path

4.3 Optimization

The time minimum optimization problem is formulated over a fixed time
interval as in Section 2.3. When solving for the minimum time solution,
the results are often a bit spiky. Therefore a second optimization is done
in order to get smoother profiles.
In the first optimization, the time t f , i.e., the time it takes to traverse

the path is obtained. In the second optimization, a terminal constraint is
set to make the traversal time one or two percent longer than the minimum
time. The cost function is changed so that it should minimize the derivative
of the input signals τ i and the nominal path acceleration v2. This makes
the acceleration and velocity profiles smoother.
The optimization is formulated using the model from Section 4.1 and

the path from Section 4.2. The time minimum optimization problem is
formulated in Section 4.3 and 4.3.
The input boundaries are chosen to be five percent of the maximum

velocities for each joint specified by ABB, [1]. This is due to the fact that
the fixed sample time in the robot system is to large to accuratly perfom
the integration needed in the PVC. By limiting the inputs, the traverasal
time is increased and therefore the numerical errors from the integrations
decreased.

Formulation of the Model in Modelica

The Modelica part of the problem formulation is stored in a Modelica pack-
age. This package includes two Modelica models and one Modelica class
that holds different parts of the optimization problem. The Modelica files
are used in both optimizations.
The main Modelica model is Optimization. It declares all the used vari-

ables, the robot model, the derivatives of the path and the system dynamics
etc. Commented code for the model can be seen in Appendix D.1.
The Modelica class, Splines contains the splined path f (s) implemented

as if-clausules. Because of the implementation using if-clausules the class
is large and it will therefore not be fully presented here. The structure of
Splines can be seen in Appendix D.2.

33

Chapter 4. Case Study

The InitialGuess model is used, as is suggested by the name, to gen-
erate an initial guess for the Optimica compiler. The InitalGuess model
contains an Optimization object and a predefined sequence connected to
the Optimization object’s input, u. This file, when run in Dymola’s sim-
ulation environment, produces an initial guess in textual format that is
readable to the Optimica compiler.

Formulating the Problem in Optimica

As mentioned above, the optimization is done in two steps and therefore
two separate Optimica files has been written. Some things are alike in the
two optimization problem formulations. For instance the input constraints,
i.e., the upper and lower bounds on the inputs, are described as

tau1(lowerBound=-3.49*0.05, upperBound=3.49*0.05);

Here, as an example, only the bounds on joint one are displayed.
The grid over which the optimization is calculated is described by

grid(finalTime = fixedFinalTime(finalTime=1)

,nbrElements=200);

The optimization is performed over the interval 0 ≤ s ≤ 1 which is speci-
fied by setting finalTime=1. The parameter nbrElements=200 specifies that
the optimization is calculated using 200 numerical elements. The more el-
ements used, the longer it takes to solve the optimization problem but it
also offers the possibility for more exact solutions. It is hard to say how
many elements to use when solving these kinds of problems. After a while
you get a feeling for how many elements to use in order to obtain a optimal
solution but until this feeling appear you are down to trial and error.
Both Optimica files also contains terminal constaints that are alike in

both optimization problems. These are

terminal x1 = 0;

terminal sd = 0;

sd >= 0;

The first and second terminal constraints specifies that the velocity at the
end of the path should be zero. The third and last constraint specifies that
the velocity should be larger or equal to zero during the traversal of the
path.
The two Optimica files has resemblances, as described above, but they

do differ.

Finding the Minimum Traversal Time The Optimica file
MinTimeOpt.op is used to find the time it takes to traverse that path, t f .
t f is found by minimizing the cost function described in Eq. (2.31). The
cost function is described in Optimica as

minimize(lagrangeIntegrand=1/sqrt(2*x1+1e-10));

Note that a small value has been added to 2*x1. This is to avoid division
by zero in the start and the end of the path were the speed along the path
is zero.
This problem was solved in the way described in the Chapter 1. The

file MinTimeOpt.op can be found in Appendix D.2. Even though the initial
guess given to the Optimica compiler was not close to the optimal solution,

34

4.3 Optimization

the problem could be solved without problems. The time it took to solve an
optimization problem was approximately one minute.
The path acceleration and velocity profiles can be seen in Figure 4.7

and 4.8. In Figure 4.9, which shows all input trajectories normalized with
respect to their limits, one can see that at least one input is at limit, i.e.,
-1 or 1, for the whole path.

35

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

50

100

150
Path acceleration as a function of the path parameter

s

s̈(
s)

Figure 4.7 Nominal path acceleration profile obtain from the first optimization
run.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Path velocity as a function of the path parameter

s

ṡ(
s)

Figure 4.8 Nominal path velocity profile obtain from the first optimization run.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized inputs τ i 1 ≤ i ≤ 6

s

τ
i(
s)

Figure 4.9 Optimal normalized input sequences τ from the first optimization
run.

36

4.3 Optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4
Path acceleration as a function of the path parameter

s

s̈(
s)

Figure 4.10 Nominal path acceleration profile obtain from the second optimiza-
tion run.

Finding Nominal Trajectories To obtain smoother profiles a second
optimization was done. The result from the first optimization was used as
an initial guess. In this second optimization the cost function was changed
to

minimize(lagrangeIntegrand=der(sdd)^2 + der(tau1)^2

+ der(tau2)^2 + der(tau3)^2 + der(tau4)^2

+ der(tau5)^2 + der(tau6)^2);

A new terminal constraint was also added to the problem formulation

terminal tf = 10.653*1.02;

If the time for traversal found in the first optimization was t f = 10.653
the new time for traversal is now two percent more. This means that the
path will not be traversed in minimum time, however the nominal acceler-
ation and velocity profiles together with the input sequences are smoother.
Hence, this is a trade-off between a minimum time traversal of the path
and the wear on the motors. The Optimica code for the second optimization
problem can be seen in Appendix D.2. Figure 4.10 and 4.11. In Figure 4.12
the normalized input sequences are displayed.
By comparing Figure 4.7 to Figure 4.10, a difference in the acceleration

magnitude can be seen. This results in smoother path velocity profiles
which can be seen in Figure 4.8 and Figure 4.11 The not so spiky and
smoother profiles will work better in the PVC because of the numerical
integration. Since the integrators have a fixed sample time of 0.004 s, the
integration of a spiky nominal profile is more prone to numerical problems.
Comparing Figure 4.9 and Figure 4.12 we can see that the input sequences
are almost the same, which is to be expected since the traversal time is
just two percent longer.

What to do if no Optimal Solution is found Besides making the
problem easier to solve because of the fewer dynamical states, reformulat-
ing the optimization problem to a fixed interval was another advantage
as well. If the solver fails to find an optimal solution the problem can be
solved in steps.

37

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Path velocity as a function of the path parameter

s

ṡ(
s)

Figure 4.11 Nominal path velocity profile obtain from the second optimization
run.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized inputs τ i 1 ≤ i ≤ 6

s

τ
i(
s)

Figure 4.12 Optimal normalized input sequences τ from the second optimization
run

By reducing the interval, i.e., changing s f for stemp < s f in the cost
function (2.31), over which the optimization problem is solved, an optimal
solution can be obtained for the interval s0 ≤ s ≤ stemp [9]. The optimal
solution obtained can then be used as an initial guess when solving the
optimization problem with a larger stemp. If an optimal solution is found,
stemp is increased and the procedure is repeated. If an optimal solution is
not found stemp has to be decreased and the optimization has to be run
again. By repeating this procedure, and gradually increasing the optimiza-
tion interval until stemp = s f , an optimal solution for the whole path can
be found.

4.4 PVC in Simulink RF

In this section, the control structure described in Chapter 3 will be imple-
mented using Simulink RF. The PVC will be used for both simulations, Sec-
tion 4.6, and for experiments on the ABB IRB140B, Section 4.9. The robot

38

4.4 PVC in Simulink RF

interface and its connection to the PVC is described in Section 4.8. The im-
plementation of the PVC algorithm is described in Section 4.4. Section 4.4
also describes the controller used with the PVC and its implementation.
The control structure is the same as discussed in Section 3.1, Figure

3.3. Below, the implementation of the Controller, the PVC and the Path
blocks shown in Figure 3.3, is described.

Controller

The model (4.5) consists of six, n = 6, second order systems, p = 2. The
feed-forward part was chosen as

τ = K−1Tq̈re f + K
−1 q̇re f (4.6)

with K and T as diagonal matrices. The diagonal elements are chosen as
in Table 4.1 to match the system dynamics so that good reference trajec-
tory tracking is obtained. The feedback part consists of six parallel PID
controllers on the form

vi = K
P
i (q

re f
i − qi) +

1
K Ii

∫

(qre fi − qi) + K
V
i (q̇

re f
i − q̇i) (4.7)

Due to the fact that all six models are very alike, the parameters K Pi , K
I
i

and K Vi have been chosen as scalars, i.e., the value of each parameter is
the same for all six joints. Combining Eq. (4.6) and Eq. (4.7) gives the
controller

τ = K−1Tq̈re f + K
−1 q̇re f + K

P
i (q

re f
i − qi)+

1
K Ii

∫

(qre fi − qi+ K
V
i (q̇

re f
i − q̇i))

(4.8)
Setting q= f (s), differentiating this expression according to the chain rule
(2.13) and writing the result on the form

τ = β 1(σ)σ̈ + β 2(σ , σ̇ , q, q̇) (4.9)

gives

β 1(σ) = K
−1T f ′(σ)

β 2(σ , σ̇ , q, q̇) = K−1(T f ′′(σ)σ̇ 2 + f ′(σ)σ̇)+

K V (f (σ)σ̇ − q̇) + K I
∫

((f (σ) − q) + K P(f (σ) − q))

(4.10)

This controller is straightforward to implement in Simulink and the block
diagram can be found in Appendix C, Figure C.3.

PVC

During the implementation of the PVC it has proved efficient to use Em-
bedded MATLAB function blocks. Embedded MATLAB functions support
a subset of MATLAB commands and is therefore a convenient way of im-
plementing certain parts of the PVC.
The PVC Simulink RF model can be found in Appendix C, Figure C.4. The

core of the PVC is the look up-tables containing the nominal acceleration

39

Chapter 4. Case Study

and velocity profiles. These are called v1 and v2 respectively in Figure C.4.
The model contains a parameter called f_switch that is used to switch the
PVC on and off, where f_switch equal to one corresponds to on and f_switch
equal to zero corresponds to off. The v2 signal is multiplied by γ 2 and the
result is added to the i f b signal. i f b is short for Internal FeedBack and it
is implemented according to Eq. (3.9), i.e.

i f b =
α

2
(γ 2v1 − σ̇ 2)

The implementation in Simulink RF is straightforward and is shown in
Figure C.5. The signal u, calculated according to Eq. (3.9) is the input to the
Saturation block. All the internal blocks in the PVC model, including the
Saturation block, are described below. The output form the Saturation block
goes through the ON/OFF Logic block, see the below section. The output
from this first ON/OFF Logic block is the path acceleration sigmadd, σ̈ . σ̈
is sent as an output from the PVC block as well as integrated by a reset-
able discrete integrator. The integrator, as well as all integrators used in
this implementation, uses the forward Euler method for integration and
has a sample time of h = 0.004 s. The result of the integration is sigmad,
σ̇ . σ̇ is also sent as an output from the PVC as well as integrated and
sent trough the Stopper block. The output signal from the Stopper block is
sigma, σ which drives the look up-tables v1 and v2.
Throughout the implementation some blocks have constants as inputs

due to the fact that global parameters cannot be set or changed inside an
Embedded MATLAB function. In order to conveniently change the param-
eters between simulations and during the robotic experiments the solution
to implement them as constant inputs to the concerned functions was cho-
sen.

Saturation The Saturation block is implemented as an Embedded MAT-
LAB function and has three inputs: an upper limit, a lower limit and u.
The block limits u between the upper and lower bounds just like a regular
saturation block in Simulink RF but has some special features. If the lower
bound is greater than the upper bound, the saturation block output is equal
to the block input i.e. y = u. The block also sets the output LimitsActive
to one if the lower bound is lesser than the upper bound and if u is not
between the upper and lower bounds. Otherwise the LimitsActive is set to
zero. This is used by the function that calculates γ . The MATLAB RF code
for the saturation block is found in Appendix D.6.

Limits calculation The limits that serves as inputs for Saturation are
calculated by the Embedded MATLAB functionpathAccLim. Inputs to the
function are the vectors beta1, beta2, tauMax, tauMin. tauMax and tauMin
are constant inputs for the reason described above. beta1 and beta2 are
values calculated by the controller, Section 4.4, according to Eq. (4.10). The
block calculates lower and upper bounds for all axes according to Eq. (3.4).
The block output is then chosen according to Eq. (3.5). To avoid problems
when translating the Simulink RF model to C-code in order to run it on
the robot the infinity limits have been replaced by large numbers, in this
case 106. The MATLAB RF code for the pathAccLim block is presented in
Appendix D.5.

40

4.4 PVC in Simulink RF

Velocity Profile Scaling The block responsible for the velocity profile
scaling, Gamma Calculation, can be seen in Appendix C, Figure C.6. The
block consists of an Embedded MATLAB function and a resettable integra-
tor. The time derivative of γ , γ̇ is calculated according to Eq. (3.13) and the
additional logic following Eq. (3.13). The calculation of γ̇ is done in an Em-
bedded MATLAB function. The code for this block is available in Appendix
D.7. The Embedded MATLAB function is followed by an integrator in or-
der to obtain γ . This integrator differs only from the other integrators by
having the output starting value equal to one, γ (t = 0) = 1, corresponding
to no scaling.

Stopper The Stopper block has been implemented to ensure that σ never
gets larger than than the maximum s, s f . When σ is close to s f , the stop-
per value becomes larger than zero and the switch threshold is exceeded
making the switch block switch input. When the treshold is exceeded σ is
set to s f . The stopper signal affects the On/Off Logic, see below. The Stop-
per block also includes a Min Max Running Resettable Simulink RF block to
ensure that σ never decreases.

On/Off logic The On/Off Logic block has two functions, turning the PVC
on and off. The PVC is turned on when f_switch is equal to one. Turned
on meaning that the input signal is equal to the output signal. The PVC is
turned off when f_switch is zero and when stopper is larger than zero, i.e.,
σ is equal to s f . The Simulink RF model can be found in the Appendix C.

Path

The path and its two derivatives, with respect to the path parameter, are
stored in look-up tables. These tables are interpolated between the specified
points in the tables. If the table input is outside the specified interval the
table output will hold the specified output value for interval. A Simulink RF

block diagram for the path can be found in Appendix C. In the Simulink
implementation of the PVC, I have chosen to locate the ”Path block” outside
the PVC block for convenience and readability.

Implementation Issues

During the implementation and testing of the PVC some problems arose.
When σ got close to s f it began to decrease instead of settling at σ = s f .
The path, which is recorded point wise, is represented using splines dur-
ing the optimization and by interpolated values originating from look up
tables in the PVC. This, together with the numerical integration of σ̈ and
σ̇ , could be the reason for the numerical problems encountered. In order
to handle this problem the Min Max Running Resettable Simulink RF block
was inserted as well as the parameter s f ǫ, sfeps. TheMin Max Running Re-
settable Simulink RF block prevents σ from decreasing and sfeps determines
how close to s f the path parameter σ should be before the Stopper block
sets σ to s f . Using the Min Max Running Resettable Simulink RF block can
be motivated by the assumption, σ̇ ≥ 0, that motion only should take place
in the forward direction.

41

Chapter 4. Case Study

4.5 Controller Parameters

The controller has been tuned manually to obtain good reference tracking.
Tests were done both in simulations and on the real robot. Since the models
for all six joints are alike the control parameters are also alike. Both K P =
20 and K I = 1 are chosen identical for all six joints. For the parameter K V

the value 0.5 was chosen at first. This value worked well for joint one, two
and three whereas for joint four, five and six small oscillations occurred.
New test were performed on joint four to six with K V = 0.3 which was
good in terms of tracking and did not lead to any oscillations.

4.6 Simulation

The implemented PVC has been used in simulations with the recorded
path from Section 4.2 and the nominal trajectories obtained in Section 4.3.
In this section the effect of the internal feedback and the velocity profile
scaling will be investigated. Furthermore, a test including a model error
will be performed. Finally, the effect of faster sampling will be investigated.
There are of course an almost infinite number of different simulations that
could be done and an equally large number of signals to plot. The results
of the simulation displayed in this section are the ones that are believed to
be of greatest importance.

Different Parameters

Three simulations were done using different parameters α and k, see Sec-
tion 3.2. The sample time h = 0.004 was chosen as the sample time that is
used in the ABB robot system.

Simulation 1 The first simulation was done with α = 0, i.e., no in-
ternal feedback, and k = 0, i.e., no velocity profile scaling. Without the
internal feedback there can be no recovery in speed if the system is dis-
turbed. Not using the velocity profile scaling increases the risk of touching
the maximum velocity profile if model errors are present. Velocity profile
scaling is discussed in Section 3.2. The traversal time for this simulation
was t f = 11.19 s to be compared with the optimal time t fopt = 10.87 s.
Small deviations from the nominal acceleration profile can be found in

Figure 4.13. These deviations, together with numerical errors from the nu-
merical integration, are the source of the deviation in the nominal velocity
profile in Figure 4.14. Since no internal feedback is used the path velocity
does not approach the nominal velocity. The fact that the deviations depend
on the numerical integrations will be investigated in Simulation 5.
Figure 4.15 show the error in the x-, y- and z- directions for the tool

center point, TCP, in millimeters. The error is never larger than 0.31mm
in each direction at any part of the path.
Figure 4.16 shows the input sequences for all six robot joints along with

their limits. The inputs are not at limit during the the whole traversal of
the path. This is due to the deviation from the nominal trajectories and
the fact that there is no internal feedback that makes the path velocity
approach the nominal velocity.

42

4.6 Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Path Acceleration as function of σ

σ

P
at
h
ac
ce
le
ra
ti
on

v2(σ)

σ̈ (σ)

Figure 4.13 Nominal and obtained acceleration profiles. Simulation 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Path Velocity as function of σ

P
at
h
ve
lo
ci
ty

σ

v1(σ)
σ̇ (σ)

Figure 4.14 Nominal and obtained velocity profiles. Simulation 1.

43

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Tool center point error as function of σ

σ

[m
m
]

x
y
z

Figure 4.15 Tool center point error. Simulation 1.

0 0.5 1
−0.2

0

0.2

0 0.5 1
−0.2

0

0.2

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

Input sequencesJoint 1 Joint 2

Joint 3 Joint 4

Joint 5 Joint 6

σσ

σσ

σσ

ττ

ττ

ττ

Figure 4.16 Input sequences with limits. Simulation 1.

44

4.6 Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

Path Acceleration as function of σ

σ

P
at
h
ac
ce
le
ra
ti
on

v2(σ)
σ̈ (σ)

Figure 4.17 Nominal and obtained acceleration profiles. Simulation 2.

Simulation 2 The second simulation was done with the parameters
α = 500 and k = 0. The traversal time for this simulation was t f = 11.14 s
which is faster than the first simulation that did not use the internal feed-
back. By comparing Figure 4.14 and Figure 4.18 it is concluded that the
path velocity is closer to the nominal in the latter as expected. Hence,
the internal feedback helps reducing the errors caused by the numerical
integration.
Figure 4.19 shows errors of the same magnitude as the first simulation.

In Figure 4.20 it can be seen that the inputs are at limit slightly more than
what was the case in simulation 1, Figure 4.16. This is expected since the
internal feedback is used.

Simulation 3 In the third simulation the velocity profile scaling has
been activated by setting k = 50. k was chosen according to the guide-
lines in [8]. The guidelines specifies that 1

k
should be smaller than the

first acceleration interval. By inspection, the interval was determined to
be 0.0232 which gives k > 43.1. As expected, the traversal time increases
when using velocity profile scaling. The traversal time in this simulation
is t f = 11.44 s. Figure 4.25 show how γ develops during the simulation. In
Figure 4.22 it can be seen that the path velocity profile is lower than the
nominal profile.

Introducing Model Errors

In the fourth simulation a model error was introduced. The transfer func-
tion for joint 1 was multiplied by 0.8 which means that a larger input is
needed in order to obtain the same results as for the unmodified model.

45

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Path Velocity as function of σ

P
at
h
ve
lo
ci
ty

σ

v1(σ)
σ̇ (σ)

Figure 4.18 Nominal and obtained velocity profiles. Simulation 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Tool center point error as function of σ

σ

[m
m
]

x
y
z

Figure 4.19 Tool center point error. Simulation 2.

46

4.6 Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

Input sequencesJoint 1 Joint 2

Joint 3 Joint 4

Joint 5 Joint 6

σσ

σσ

σσ

ττ

ττ

ττ

Figure 4.20 Input sequences with limits. Simulation 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

Path Acceleration as function of σ

σ

P
at
h
ac
ce
le
ra
ti
on

v2(σ)

σ̈ (σ)

Figure 4.21 Nominal and obtained acceleration profiles. Simulation 3.

47

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Path Velocity as function of σ

P
at
h
ve
lo
ci
ty

σ

v1(σ)

σ̇ (σ)

Figure 4.22 Nominal and obtained velocity profiles. Simulation 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Tool center point error as function of σ

σ

[m
m
]

x
y
z

Figure 4.23 Tool center point error. Simulation 3.

48

4.6 Simulation

0 0.5 1
−0.2

0

0.2

0 0.5 1
−0.2

0

0.2

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

Input sequencesJoint 1 Joint 2

Joint 3 Joint 4

Joint 5 Joint 6

σσ

σσ

σσ

ττ

ττ

ττ

Figure 4.24 Input sequences with limits. Simulation 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Velocity profile scaling factor as function of σ

σ

γ

Figure 4.25 The velocity profile scaling factor in Simulation 3.

49

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

4

Path Acceleration as function of σ

σ

P
at
h
ac
ce
le
ra
ti
on

v2(σ)

σ̈ (σ)

Figure 4.26 Nominal and obtained acceleration profiles. Simulation 4.

Simulation 4 The simulation was done using the parameters α = 500
and k = 50. The traversal time in this simulation is t f = 13.83 s. There
are multiple reasons for the longer traversal time. The first reason is the
modified slower model. The second reason is the velocity profile scaling
which decreases fast, see Figure 4.30, and therefore slows down along the
remainder part of the path. This is also the reason that the input signals
are not at limit at all time. In Figure 4.26 and Figure 4.27 the effect of
the scaling factor is clearly visible. Figure 4.28 it can be seen that the
errors are larger, especially in the y-direction. This is due to the fact that a
movement in joint one will primarily move the tool in this direction. Note
that the maximum error is only 1.4mm. Since the controllers control the
joint angles and the robot arm is extended almost a meter this is a very
small error in terms of joint angle errors.

Faster Sampling

In order to investigate the effects of numerical errors due to too slow sam-
pling, a simulation with a higher sample rate was performed. The param-
eters in this simulation are α = 500, k = 0 and h = 5 ⋅ 10−4 s.

Simulation 5 Comparing Figure 4.31 to Figure 4.13 and Figure 4.32 to
Figure 4.14 it is clear that the decreased sample time make the obtained
profile equal to the nominal profiles. Even though the decreased sample
time makes the obtained profiles approach the nominal profiles it also
creates new numerical errors. These errors arise from the fact that the
optimization is discrete and done over a specified number of points. When
the nominal profiles are used in Simulink RF they are implemented as look-
up tables with linear interpolation between the points in the table. This

50

4.6 Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Path Velocity as function of σ

P
at
h
ve
lo
ci
ty

σ

v1(σ)

σ̇ (σ)

Figure 4.27 Nominal and obtained velocity profiles. Simulation 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Tool center point error as function of σ

σ

[m
m
]

x
y
z

Figure 4.28 Tool center point error. Simulation 4.

51

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

Input sequencesJoint 1 Joint 2

Joint 3 Joint 4

Joint 5 Joint 6

σσ

σσ

σσ

ττ

ττ

ττ

Figure 4.29 Input sequences with limits. Simulation 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1
Velocity profile scaling factor as function of σ

σ

γ

Figure 4.30 The velocity profile scaling factor in Simulation 4.

52

4.7 Practical issues with the PVC algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

Path Acceleration as function of σ

σ

P
at
h
ac
ce
le
ra
ti
on

v2(σ)

σ̈ (σ)

Figure 4.31 Nominal and obtained acceleration profiles. Simulation 5.

introduces a small mismatch between the two nominal trajectories, so when
v2 is numerically integrated the result is not equal to v1. This mismatch
makes σ̇ < 0 as σ approaches s f . This is the reason for the big error
towards the end of the track that can be seen in Figure 4.33. Note that
besides this big error at the end, the error is actually smaller than in the
four previous simulations.

4.7 Practical issues with the PVC algorithm

During this master thesis, different paths, models and controllers have
been simulated. This section will discuss two problems with the PVC algo-
rithm itself that were encountered.
The first problem concerns the part of the PVC algorithm that calcu-

lates the bound on the path acceleration, see Eq. (3.4) and Eq. (3.5). The
calculations performed in these equations are very sensitive to noise, es-
pecially when the bounds on the input τ are small. In Eq. (3.4) a scenario
where β 2i is larger than τmaxi or smaller than τmini at same time as β 1i is
close to zero and with the same sign as β 2i this could lead to a large σ̈ imax
or a small σ̈ imin. When performing the calculations in Eq. (3.5) the effect
will be that the upper bound is smaller than the lower bound. The risk for
this scenario increases when the measurement signal is noisy. Using some
kind of filter could be a possible way around this problem. Caution must
be taken to ensure that the filters do not cause to much lag.
The first problem, noisy mesurments corrupting the bound calculation,

can cause the second problem which occurs when the calculated upper

53

Chapter 4. Case Study

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Path Velocity as function of σ

P
at
h
ve
lo
ci
ty

σ

v1(σ)

σ̇ (σ)

Figure 4.32 Nominal and obtained velocity profiles. Simulation 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Tool center point error as function of σ

σ

[m
m
]

x
y
z

Figure 4.33 Tool center point error. Simulation 5.

54

4.8 Using the PVC with the Robot

0 0.5 1
−0.2

0

0.2

0 0.5 1
−0.2

0

0.2

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

0 0.5 1
−0.5

0

0.5

Input sequencesJoint 1 Joint 2

Joint 3 Joint 4

Joint 5 Joint 6

σσ

σσ

σσ

ττ

ττ

ττ

Figure 4.34 Input sequences with limits. Simulation 5.

bound on the path acceleration is smaller than the lower bound. In that
case the saturation block does not saturate the signal, which instead just
passes trough the block unaffected. If the saturation block switches between
saturating the signal and letting it pass right through this could render a
jumpy path acceleration which is far from the nominal.

4.8 Using the PVC with the Robot

The interface which allows communication with the robot through Simu-
link RF is described in [10]. It basically allows reading from, modifying and
sending data back to the robot. The modification in this case is the PVC.
The PVC tested on the robot was the same used in the simulations. As men-
tioned in the introduction, Chapter 1, the model is converted into C-code
using Real-Time Workshop. This code can then be run on the robot using
the available graphical user interface, (GUI). The GUI has four modes;
unload, load, submit, obtain. In unload no model is loaded, as the name
suggests. Switching to load, loads the specified model. The submit mode
allows reading the signals from the robot and using the model but it does
not send data from the model to the robot. Finally, the obtain mode is like
the submitmode but the signals from the model are sent to the robot. Great
care should be taken when switching to the obtain mode.
The Simulink RF model starts executing as soon as the model is loaded.

Therefore switches, controlled by the variable f_switch, were inserted. The
switches make sure that no integrators in the PVC receives anything but
zero which prevents the PVC controller from starting. Setting f_switch

55

Chapter 4. Case Study

equal to one in the GUI starts the PVC.
The PVC requires measured positions and velocities for each joint. The

signals used for this purpose were the irb2ext[i].posRaw_abs and
irb2ext[i].velFlt. These signals contain motor angles and motor angle veloc-
ities and therefore they have to be converted into arm angles and velocities.
This was done using a Simulink RF block from the extctrl library, see [10].
As stated in Section 4.1, ABB’s position controller was disabled. This

is done by setting the gains in the position controllers to zero. A specific
variable shutOffABBController handles the switches that either sets the
controller gains to zero or back to their original values. Setting shutOffAB-
BController to one switches the ABB controllers off while setting it to zero
switches them on.
ABB has implemented safety mechanisms that lock the brakes if the

position reference sent from the main computer or from the Simulink RF

model is too far from the real position. In order to be able to run the
PVC algorithm this safety feature was bypassed by sending the measured
position as the reference. Since the ABB position controller is turned of by
setting the gains to zero this does not interfere with the PVC.

4.9 Experiment

Unfortunately, no experiments on the real robot using the full PVC with
the path in Section 4.2 succeeded. The robot was able to follow the path,
using only the path trajectories and the controller, but only at a speed
lower than the optimal. However, when connecting the PVC algorithm, it
did not behave as expected. Logs from experiments show that some values
unexpectedly goes towards infinity. The source of this behavior has not been
found, but the same problem occurs, sometimes, in simulations. Since these
problems arose at the end of this master thesis there was no time to further
investigate the reasons for this behavior. Initial tests using simple models,
double integrators, and paths defined as sinus functions did actually work
in both simulations and on the real robot. These tests did only include joint
one, two and three. Since the inital tests were not intended to be used in
this thesis, no experimental data was saved.

56

5. Conclusions and Future

Work

In this thesis, two models have been identified for each joint. A path has
been recorded using lead-through. A minimum time optimization problem
has been formulated, using the path and the identified second order model,
and modified to reduce the number of states. The problem has also been
transformed so that the optimization is done over a fixed interval. This was
necessary in order to find an optimal solution without having to generate
an initial guess that was close to the optimal solution. The reformulation
also decreased the time it took for the solver to find a optimal solution.
Usually when formulating optimization problem it has to be done for

instance in AMPL or in some other mathematical language which can be
a cumbersome work. Modelica and Optimica provides a natural way of
formulating optimization problems.
Optimica can also be used, even-though this was not the case in this

thesis, to solve optimization problems with Modelica models which were
not made intended for optimization. Thus optimizations can be done using
a model that was developed with another intention, e.g., simulations.
In this thesis a beta version of Optimica has been used. In future re-

leases the syntax will be changed and the optimization problem will not be
using AMPL but instead be solved directly using IPOPT [13].
The result of using Modelica and Optimica to solve the minimum time

optimization problem is satisfactory. When solving optimization problems,
you often knows what kind of answer you would like. The problem is to
formulate a question that gives the desired result.
The PVC algorithm has been implemented in Simulink RF. Unfortunately,

some problems remain to be addressed in order to make function in the
desired way. The unexpected behavior that renders infinite values would
have to be solved in order to use the PVC on the robot.
The PVC algorithm has been validated through simulations where the

effect of different parameters has been investigated. The internal feedback
has proven efficient for obtaining faster motion along the path and provides
some compensation for the numerical errors that occur.
Had there been even more time to work on this project there are a

number of different things that could have been done.
Getting the PVC to work on the real robot would have been first priority.

Secondly, investigating how to filter the β signals in order ensure robust-
ness against noise. The third thing that would be interesting to examine
is what to do if the lower bound is greater than the upper bound in the
saturation block.
Trying the identified higher order model, in both optimization and in

the PVC, would also be interesting. Finally, it would be nice to use the ABB
control structure in the PVC and to identify models from motor voltage or
torque to joint position.

57

6. Bibliography

[1] ABB. IRB140B Data Sheet. www.abb.com/robotics/.

[2] ABB. IRC5 Data Sheet. www.abb.com/robotics/.

[3] ABB. ABB Home Page, 2009. http://www.abb.com.

[4] Johan Åkesson. The optimica compiler – 0.3 users guide. Technical
report, Department of Automatic Control, 2007. Distributed together
with Optimica 0.3.

[5] Johan Åkesson. Tools and Languages for Optimization of Large-
Scale Systems. PhD thesis, Department of Automatic Control, Lund
University, Sweden, November 2007.

[6] Modelica Association. Modelica overview. http://www.modelica.org/

documents/ModelicaOverview14.pdf.

[7] Modelica Association. Modelica RF - a unified object-oriented language
for physical systems modeling - language specification. http://www.

modelica.org/documents/ModelicaSpec30.pdf.

[8] Ola Dahl. Path Constrained Robot Control. PhD thesis, Department of
Automatic Control, Lund University, Sweden, April 1992.

[9] Henrik Danielsson. Vehicle path optimisation. Master’s Thesis ISRN
LUTFD2/TFRT--5797--SE, Department of Automatic Control, Lund
University, Sweden, June 2007.

[10] Isolde Dressler. Force Control Interface for ABB S4. Technical report,
Lund Univeristy, Department of Automatic Control, LTH, 2008.

[11] AMPL A Modeling Language for Mathematical Programming. Ampl
home page, 2009. http://www.ampl.com/.

[12] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. John Wiley & Sons, jan 2004.

[13] JModelica. JModelica Home page. http://www.jmodelica.org/.

[14] Rolf Johansson. System Modeling and Identification. Prentice Hall,
Englewood Cliffs, New Jersey, January 2008.

[15] Mathworks RF. Mathworks RF matlab RF control toolbox. http://www.

mathworks.com/products/control/.

[16] IPOPT Interior Point OPTimizer. Ipopt home page, 2009. https:

//projects.coin-or.org/Ipopt.

58

A. Model Identification

0 1 2 3 4 5 6 7 8
−30

−20

−10

0

10

20

30

Time

Measured and simulated model output

Figure A.1 Fit between model and cross-validation data. Joint 1

59

Appendix A. Model Identification

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Samples

Cross corr for input u1 and output y1 resids

Figure A.2 Auto correlation and cross-correlation for the residuals. Joint 1

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

Time

Measured and simulated model output

Figure A.3 Fit between model and cross-validation data. Joint 2.

60

Appendix A. Model Identification

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Samples

Cross corr for input u1 and output y1 resids

Figure A.4 Auto correlation and cross-correlation for the residuals. Joint 2

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

Time

Measured and simulated model output

Figure A.5 Fit between model and cross-validation data. Joint 3

61

Appendix A. Model Identification

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Samples

Cross corr for input u1 and output y1 resids

Figure A.6 Auto correlation and cross-correlation for the residuals. Joint 3

0 1 2 3 4 5 6 7 8
−40

−30

−20

−10

0

10

20

30

Time

Measured and simulated model output

Figure A.7 Fit between model and cross-validation data. Joint 4

62

Appendix A. Model Identification

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Samples

Cross corr for input u1 and output y1 resids

Figure A.8 Auto correlation and cross-correlation for the residuals. Joint 4

0 1 2 3 4 5 6 7 8
−30

−20

−10

0

10

20

30

40

Time

Measured and simulated model output

Figure A.9 Fit between model and cross-validation data. Joint 5

63

Appendix A. Model Identification

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Samples

Cross corr for input u1 and output y1 resids

Figure A.10 Auto correlation and cross-correlation for the residuals. Joint 5

0 1 2 3 4 5 6 7 8
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time

Measured and simulated model output

Figure A.11 Fit between model and cross-validation data. Joint 6

64

Appendix A. Model Identification

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

Samples

Cross corr for input u1 and output y1 resids

Figure A.12 Auto correlation and cross-correlation for the residuals. Joint 6

65

Appendix A. Model Identification

0 1 2 3 4 5 6 7 8
−30

−20

−10

0

10

20

30

Time

Measured and simulated model output

Figure A.13 Fit between ARMAX-model and cross-validation data. Joint 1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Samples

Cross corr for input u1 and output y1 resids

Figure A.14 Auto correlation and cross-correlation for the residuals. Joint 1

66

Appendix A. Model Identification

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

Time

Measured and simulated model output

Figure A.15 Fit between ARMAX-model and cross-validation data. Joint 2

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Samples

Cross corr for input u1 and output y1 resids

Figure A.16 Auto correlation and cross-correlation for the residuals. Joint 2

67

Appendix A. Model Identification

0 1 2 3 4 5 6 7 8 9 10
−40

−30

−20

−10

0

10

20

30

40

Time

Measured and simulated model output

Figure A.17 Fit between ARMAX-model and cross-validation data. Joint 3

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Samples

Cross corr for input u1 and output y1 resids

Figure A.18 Auto correlation and cross-correlation for the residuals. Joint 3

68

Appendix A. Model Identification

0 1 2 3 4 5 6 7 8
−40

−30

−20

−10

0

10

20

30

Time

Measured and simulated model output

Figure A.19 Fit between ARMAX-model and cross-validation data. Joint 4

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Samples

Cross corr for input u1 and output y1 resids

Figure A.20 Auto correlation and cross-correlation for the residuals. Joint 4

69

Appendix A. Model Identification

0 1 2 3 4 5 6 7 8
−30

−20

−10

0

10

20

30

40

Time

Measured and simulated model output

Figure A.21 Fit between ARMAX-model and cross-validation data. Joint 5

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Samples

Cross corr for input u1 and output y1 resids

Figure A.22 Auto correlation and cross-correlation for the residuals. Joint 5

70

Appendix A. Model Identification

0 1 2 3 4 5 6 7 8
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time

Measured and simulated model output

Figure A.23 Fit between ARMAX-model and cross-validation data. Joint 6

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Autocorrelation of residuals for output y1

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Samples

Cross corr for input u1 and output y1 resids

Figure A.24 Auto correlation and cross-correlation for the residuals. Joint 6

71

B. Optimization Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

50

100

150
Path acceleration as a function of the path parameter

s

s̈(
s)

Figure B.1 Optimal path acceleration profile for the Finding the Minimum Trav-
esal Time problem in Section 4.3

72

Appendix B. Optimization Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Path velocity as a function of the path parameter

s
ṡ(
s)

Figure B.2 Optimal path velocity profile for the Finding the Minimum Travesal
Time problem in Section 4.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Input sequence for joint 1 as a function of the path parameter

s

τ
1
(s
)

Figure B.3 Optimal input sequence tau for the Finding the Minimum Travesal
Time problem in Section 4.3. Joint 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Input sequence for joint 2 as a function of the path parameter

s

τ
2
(s
)

Figure B.4 Optimal input sequence tau for the Finding the Minimum Travesal
Time problem in Section 4.3. Joint 2.

73

Appendix B. Optimization Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Input sequence for joint 3 as a function of the path parameter

s

τ
3
(s
)

Figure B.5 Optimal input sequence tau for the Finding the Minimum Travesal
Time problem in Section 4.3. Joint 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Input sequence for joint 4 as a function of the path parameter

s

τ
4
(s
)

Figure B.6 Optimal input sequence tau for the Finding the Minimum Travesal
Time problem in Section 4.3. Joint 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Input sequence for joint 5 as a function of the path parameter

s

τ
5
(s
)

Figure B.7 Optimal input sequence tau for the Finding the Minimum Travesal
Time problem in Section 4.3. Joint 5.

74

Appendix B. Optimization Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Input sequence for joint 6 as a function of the path parameter

s

τ
6
(s
)

Figure B.8 Optimal input sequence tau for the Finding the Minimum Travesal
Time problem in Section 4.3. Joint 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized inputs taui 1 ≤ i ≤ 6

s

τ
i(
s)

Figure B.9 Optimal normalized input sequences tau for the Finding the Mini-
mum Travesal Time problem in Section 4.3.

75

Appendix B. Optimization Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4
Path acceleration as a function of the path parameter

s

s̈(
s)

Figure B.10 Optimal path acceleration profile for the findNominalTraj problem
in Section 4.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Path velocity as a function of the path parameter

s

ṡ(
s)

Figure B.11 Optimal path velocity profile for the findNominalTraj problem in
Section 4.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Input sequence for joint 1 as a function of the path parameter

s

τ
1
(s
)

Figure B.12 Optimal input sequence tau for the findNominalTraj problem in
Section 4.3. Joint 1.

76

Appendix B. Optimization Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Input sequence for joint 2 as a function of the path parameter

s
τ
2
(s
)

Figure B.13 Optimal input sequence tau for the findNominalTraj problem in
Section 4.3. Joint 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Input sequence for joint 3 as a function of the path parameter

s

τ
3
(s
)

Figure B.14 Optimal input sequence tau for the findNominalTraj problem in
Section 4.3. Joint 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Input sequence for joint 4 as a function of the path parameter

s

τ
4
(s
)

Figure B.15 Optimal input sequence tau for the findNominalTraj problem in
Section 4.3. Joint 4.

77

Appendix B. Optimization Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Input sequence for joint 5 as a function of the path parameter

s

τ
5
(s
)

Figure B.16 Optimal input sequence tau for the findNominalTraj problem in
Section 4.3. Joint 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Input sequence for joint 6 as a function of the path parameter

s

τ
6
(s
)

Figure B.17 Optimal input sequence tau for the findNominalTraj problem in
Section 4.3. Joint 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized inputs taui 1 ≤ i ≤ 6

s

τ
i(
s)

Figure B.18 Optimal normalized input sequences tau for the findNominalTraj
problem in Section 4.3.

78

C. Simulink RF models

Saturation

IRB140B1

input

position

velocity

Control structure

position

velocity

tau

Figure C.1 The block containing the full controller (red) to the left connected to
the robot model (green) via a saturation block

79

A
p
p
en
d
ix
C
.
S
im
u
lin
k
RF
m
o
d
els

tau

1
Product

Path description

sigma

f

f’

f’’

PVC

beta1

beta2

sigma

sigmad

sigmadd

Controller

sigmad

f

df

ddf

q

qd

beta1

beta2

Add

velocity

2
position

1

F
ig
u
r
e
C
.2
T
h
e
con
trol
stru
ctu
re
in
side

th
e
fu
ll
con
troller

block
sh
ow
n
in
figu
re

C
.1.

80

Appendix C. Simulink RF models

beta2

2

beta1

1

|u|
2

I−part

positionError Integral−part

inv(K)* u

inv(K)*T* u

Kv* u

Kp* u

inv(K)*T* u

Ki* u

qd

6

q

5

ddf

4

df

3

f

2

sigmad

1

Figure C.3 Controller used to calculate β 1 and β 2.

81

A
p
p
en
d
ix
C
.
S
im
u
lin
k
RF
m
o
d
els

sigmadd

3

sigmad

2

sigma

1

v2(.)

v1(.)

tol

tol
tauMinValues

−C−
tauMaxValues

−C−

resetSignal

f_switch

Switch

Stopper

In1 Out1Saturation

upperLimit

u

lowerLimit

limitsActive

sigmadd

Saturation

Path acceleration limits

beta1

beta2

tauMax

tauMin

tol

upperLimit

lowerLimit

pathAccLim

On/Off logic1

In Out

On/Off logic

In Out

|u|
2

Internal feedback

gamma

v1

sigmad

ifb

reset

sigmad

reset
reset

sigmad

sigmad

K Ts

z−1
K Ts

z−1

0

gamma calculation

v1

sigmad

limitsActive

gamma

beta2

2

beta1

1

F
ig
u
r
e
C
.4
T
h
e
P
ath
V
elocity

C
on
troller.

82

Appendix C. Simulink RF models

ifb

1

sq1

|u|
2

sq

|u|
2

alpha

−K−

Subtract

Product1

sigmad

3

v1

2

gamma

1

Figure C.5 The internal feedback.

gamma

1
k

gammadot

gamma

v1

sigmad

k

limitsActive

gammad fcn

reset

Discrete−Time

Integrator2

K Ts

z−1

limitsActive

3

sigmad

2 v1

1

Figure C.6 Gamma calculation block.

Out

1

0

f_switch

Stopper

0
In

1

Figure C.7 On/Off logic connected to the integrators in the PVC.

Out1

1

sfeps

sf

sf

MinMax

Running

Resettable

u

R

ymax(u,y)

Goto

Stopper

reset

Stopper

In1

1

Figure C.8 Stopper block

83

D. Modelica and Optimica

Code

D.1 Modelica Code

model Optimization " Formulation of the time minimum

optimization problem"

// Declareation of model parameters and inputs

parameter Real K1 = 1.031;

parameter Real K2 = 1.077;

parameter Real K3 = 1.061;

parameter Real K4 = 1.051;

parameter Real K5 = 1.0543;

parameter Real K6 = 1.062;

parameter Real T1 = 0.019086;

parameter Real T2 = 0.020433;

parameter Real T3 = 0.019129;

parameter Real T4 = 0.017158;

parameter Real T5 = 0.017909;

parameter Real T6 = 0.017447;

Real tau1;

Real tau2;

Real tau3;

Real tau4;

Real tau5;

Real tau6;

// Declareation of the t_f variable

Real tf(start =0);

// Dynamics definiton

Real sd(start =0);

Real sdd;

Real x1;

// Path definition

Splines path;

Real df1;

Real df2;

Real df3;

Real df4;

Real df5;

Real df6;

Real ddf1;

Real ddf2;

Real ddf3;

Real ddf4;

Real ddf5;

Real ddf6;

// Optimization input

Modelica. Blocks .Interfaces. RealInput u

84

D.2 Optimica Code

equation

// Calculation of t_f

der(tf) = if sd <= 0.000000000001 then 0 else 1/sd;

// Caclulation of the derivatives of the

// path with respect to s

df1 = der(path.f1);

df2 = der(path.f2);

df3 = der(path.f3);

df4 = der(path.f4);

df5 = der(path.f5);

df6 = der(path.f6);

ddf1 = der(df1);

ddf2 = der(df2);

ddf3 = der(df3);

ddf4 = der(df4);

ddf5 = der(df5);

ddf6 = der(df6);

// Constraints

K1*tau1 = T1*(ddf1*sd^2 + df1*sdd) + df1*sd;

K2*tau2 = T2*(ddf2*sd^2 + df2*sdd) + df2*sd;

K3*tau3 = T3*(ddf3*sd^2 + df3*sdd) + df3*sd;

K4*tau4 = T4*(ddf4*sd^2 + df4*sdd) + df4*sd;

K5*tau5 = T5*(ddf5*sd^2 + df5*sdd) + df5*sd;

K6*tau6 = T6*(ddf6*sd^2 + df6*sdd) + df6*sd;

// Link the splines parameter t__ to

// the Modelica built -in variable time

path.t__ = time;

// Dynamics

x1=sd ^2/2;

der(x1) = u;

sdd = u;

end Optimization;

Listing D.1 Optimization model written in Modelica as described in Section 4.3

class Splines

Real t__(start =0);

Real f1 = if (t__ >= 0 and t__ < 0.4931) then ...

Real f2 = if (t__ >= 0 and t__ < 0.4931) then ...

Real f3 = if (t__ >= 0 and t__ < 0.4931) then ...

Real f4 = if (t__ >= 0 and t__ < 0.4931) then ...

Real f5 = if (t__ >= 0 and t__ < 0.4931) then ...

Real f6 = if (t__ >= 0 and t__ < 0.4931) then ...

Listing D.2 Modelica model for the splines. Since the implementation is done
using if-clausules only the structure is displayed here.

D.2 Optimica Code

85

Appendix D. Modelica and Optimica Code

class MinTimeOpt

tau1(lowerBound= -3.49*0.05, upperBound=3.49*0.05);

tau2(lowerBound= -3.49*0.05, upperBound=3.49*0.05);

tau3(lowerBound= -4.53*0.05, upperBound=4.53*0.05);

tau4(lowerBound= -6.28*0.05, upperBound=6.28*0.05);

tau5(lowerBound= -6.28*0.05, upperBound=6.28*0.05);

tau6(lowerBound= -7.85*0.05, upperBound=7.85*0.05);

optimization

grid(finalTime = fixedFinalTime(finalTime=1) ,

nbrElements=200);

minimize(lagrangeIntegrand=1/sqrt (2*x1+1e -10));

subject to

terminal x1 = 0;

terminal sd = 0;

sd >= 0;

end MinTimeOpt;

Listing D.3 Optimica file used for finding the minimum traversal time T f de-
scribed in Section 4.3

class findNominalTraj

tau1(lowerBound= -3.49*0.05, upperBound=3.49*0.05);

tau2(lowerBound= -3.49*0.05, upperBound=3.49*0.05);

tau3(lowerBound= -4.53*0.05, upperBound=4.53*0.05);

tau4(lowerBound= -6.28*0.05, upperBound=6.28*0.05);

tau5(lowerBound= -6.28*0.05, upperBound=6.28*0.05);

tau6(lowerBound= -7.85*0.05, upperBound=7.85*0.05);

optimization

grid(finalTime = fixedFinalTime(finalTime=1) ,

nbrElements=300);

minimize(lagrangeIntegrand=der(sdd)^2 + 1*(der(tau1)^2

+ der(tau2)^2 + der(tau3)^2 + der(tau4)^2 + der(tau5)^2

+ der(tau6)^2));

subject to

terminal tf = 10.653*1.02;

terminal x1 = 0;

terminal sd = 0;

sd >= 0;

end findNominalTraj;

Listing D.4 Optimica file used for finding smooth trajectories described in Sec-
tion 4.3

D.3 MATLAB RF code

Listing D.5 Code for calculation of the Path Acceleration Limits. Found in Sec-
tion 3.2

function [upperLimit , lowerLimit] =
pathAccLim (beta1 , beta2 , tauMax , tauMin , t o l)

% This block ca l cu l a t e s the upper and lower bound on

% the path ac c e l e ra t i on so that the input l im i t s are

% not v i o la t ed .

nbrJoints = 6 ;

86

D.3 MATLAB RF code

tmpMax = zeros (nbrJoints , 1) ;
tmpMin = zeros (nbrJoints , 1) ;

for i=1: nbrJoints
i f (beta1 (i) > t o l)

tmpMax(i) = (tauMax (i) − beta2 (i)) / beta1 (i) ;
tmpMin(i) = (tauMin (i) − beta2 (i)) / beta1 (i) ;

else i f (beta1 (i) < −t o l)
tmpMax(i) = (tauMin (i) − beta2 (i)) / beta1 (i) ;
tmpMin(i) = (tauMax (i) − beta2 (i)) / beta1 (i) ;

else

tmpMax(i) = 1000000;
tmpMin(i) = −1000000;

end

end

upperLimit = min(tmpMax) ;
lowerLimit = max(tmpMin) ;

Listing D.6 Code for Saturation block. Found in Section 3.2

function [l imitsAct ive , sigmadd] =
Saturation (upperLimit , u , lowerLimit)

% This block l im i t s the input u between upperLimit and

% lowerLimit . I f the input i s g rea t er than upperLimit or

% smaller than lowerLimit , l im i t sAc t i v e i s equal to 1 .

% I f lowerl imi t i s g rea t er than upperLimit then

% l im i t sAc t i v e= 0 and sigmadd=u ;

i f lowerLimit > upperLimit
sigmadd = u ;
l imi tsAct ive = 0 ;

else

i f u < lowerLimit
sigmadd = lowerLimit ;
l imi tsAct ive = 1 ;

else i f u > upperLimit
sigmadd = upperLimit ;
l imi tsAct ive = 1 ;

else

sigmadd = u ;
l imi tsAct ive = 0 ;

end

end

Listing D.7 Code for Velocity Profile Scaling. Found in Section 3.2

function gammad = f cn (gamma, v1 , sigmad , k , l imi tsAct ive)
% Calculates the time der i va t i v e o f gamma

i f gamma∗v1 >= sigmad && v1 ~= 0 && l imi tsAct ive == 1
gammad = sigmad∗k∗(sigmad/v1 − gamma) ;

else

87

Appendix D. Modelica and Optimica Code

gammad = 0 ;
end

88

