
ISSN 0280-5316
ISRN LUTFD2/TFRT--5837--SE

Haptic Interface for a Contact
Force Controlled Robot

Fredrik Eriksson
Marcus Welander

Department of Automatic Control
Lund University

May 2009

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

May 2009
Document Number

ISRN LUTFD2/TFRT--5837--SE
Author(s)
Fredrik Eriksson and Marcus Welander

Supervisor

Anders Robertsson Automatic Control, Lund
Rolf Johansson Automatic Control, Lund (Examiner)

Sponsoring organization

Title and subtitle

Haptic Interface for a Contact Force Controlled Robot
(Haptiskt gränssnitt för en kontaktkraftreglerad robot)

Abstract

The use of haptics in teleoperation and robotics can help the human operator to greatly improve the
performance. This master thesis presents a haptic interface between a haptic device, a Phantom Premium A,
and an industrial robot, an IRB140B, on which a force sensor was mounted. This will enable a human operator
controlling the Phantom to get information about the environment surrounding the IRB140B through the sense
of touch. An impedance controller is also introduced in order to avoid too large contact forces in the robot-
environment interaction and to obtain a good behavior of the Phantom.
The haptic interface was achieved by deriving a general mathematical mapping from the states of a haptic
device to these of an industrial robot and by implementing that mapping for the Phantom and the IRB140B. To
handle the Phantom e.g., the force feedback, a C++ program was developed. The program also features a
virtual representation of the IRB140B. The impedance controller for the robot-environment interaction was
implemented in Matlab’s Simulink. That controller was translated into C code and downloaded to the axis
computer of the IRB140B. Everything was connected via a TCP/IP network. Tuning the impedance controller
resulted in a stable teleoperation system with haptic feedback to the human operator for the materials touched
by the IRB140Be.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

98
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

Contents
1. Introduction . 3

1.1 Previous Work . 3
1.2 Motivation . 3
1.3 Outline . 4

2. Haptics . 5
2.1 Haptic Devices . 5
2.2 OpenHaptics . 6

3. Robotics . 7
3.1 IRB140B . 7
3.2 Parallel Kinematic Robots . 9
3.3 Force Sensor . 9
3.4 Homogeneous Transformations 10
3.5 Denavit-Hartenberg Representation 11
3.6 Forward Kinematics . 13
3.7 Inverse Kinematics . 13
3.8 Jacobian . 14
3.9 Impedance Control . 15

4. Mapping a Haptic Device to a Robot 19
4.1 Frames and Transformations 19
4.2 Bumpless Switching . 21

5. How to Connect the Phantom to the IRB140B 23
5.1 TCP/IP Communication and Endianness 24
5.2 Using Simulink in a Network With Labcomm 25

6. Calibration of Tool and Sensor 27
6.1 Force Sensor . 27
6.2 Tool . 28

7. Simulink Model . 31
7.1 Position Signals . 31
7.2 Simulink Library . 32
7.3 The Model . 34
7.4 The Force Sensor Signal . 34
7.5 Implementation of Impedance Control 37
7.6 The Position Reference Generation 39
7.7 The Velocity Reference Generation 40
7.8 Solving the Bumpless Switching Problem 41

8. Phantom Robot Connector . 45
8.1 The Program Modes . 45
8.2 Digital Force Filter . 46
8.3 Using the Phantom Robot Connector 47

9. Code Implementation . 51
9.1 An Overview of the Code Structure 51
9.2 The RobotHaptics Class . 53
9.3 The RobotGraphics Class . 53
9.4 The Communicator Classes . 53
9.5 Client Program for Linux . 55
9.6 Obstacle Classes . 55

1

9.7 The Haptic Thread . 56
9.8 The Graphics Thread . 58
9.9 Synchronous Functions . 60

10. Results . 63
10.1 Stiffness of the Materials Used 63
10.2 Choosing the Impedance Control Parameters 65
10.3 Impedance Control . 67
10.4 Controlling the IRB140B With the Phantom 71
10.5 Virtual Painting . 72
10.6 Haptic Behavior . 75

11. Summary . 79
11.1 Main Results . 79
11.2 Future Work . 80

12. Acknowledgements . 83
References . 85
A. Data Collected During Experiments with the IRB140B . . 87
B. Phantom Robot Connector Key List 94
C. Simulink . 95

C.1 Simulink Library Blocks . 96

2

1. Introduction
While robotics is a fairly well known field of science nowadays, haptics is
a relatively unknown one. It is a field of great potential which may be a
reason why the number of articles written each year within the field of haptics
increase rapidly. Combining haptics with robotics, allows humans to perform
different tasks using a robot but still with the feeling that they are doing it
by hand. That can be used in a wide range of areas where one of the more
important ones is teleoperation in surgery. Today, robots are used in surgery,
but tactile feedback is lacking. For a surgeon to be able to operate with pin-
point precision through a small incision with the sensation of doing it with his
own hands instead of joysticks and robots, haptics enters the picture.

The goal of this master thesis is that a human operator controlling a haptic
device should be able to get information about the environment surrounding an
industrial robot through the sense of touch. A contact force controller should
also be developed in order to avoid too large forces in the robot-environment
interaction and to obtain a good behavior of the haptic device.

This should be achieved by a mathematical mapping from the states of
a haptic device to these of an industrial robot and by connecting the haptic
device and the robot via a TCP/IP network. The human operator should be
able to control the movements of the tool held by the robot by using the
haptic device. To make the robot follow the directions from the haptic device
properly a contact force controller should be implemented. Furthermore, the
force sensed by the robot should also be sent as feedback to the haptic device
to close the haptic loop.

1.1 Previous Work

There exist many articles on the theory of different master and slave systems,
how they work and how they can be controlled, e.g., [14], [16] and [9]. One
thing that was not included in this thesis, due to a limited time span, was an
investigation of how the time delays that appear in such systems may affect
the performance and how that negative effect can be reduced, [4].

At the Robotics Lab at the Department of Automatic Control, Lund Uni-
versity, work concerning different forms of force control for industrial robots
has been done before. This thesis will use some knowledge from that previous
work and aims to integrate force control with haptics.

1.2 Motivation

At the Robotics Lab at the Department of Automatic Control, Lund Univer-
sity, where this master thesis was done, no previous work within the combi-
nation of haptics and robotics has been performed. Hopefully, this thesis will
therefore serve as a foundation for future work in this area at the Department
and maybe as an inspiration to others to pick up where this work left off.

In the future, the Department of Automatic Control wishes to continue
working with haptics and to explore its potential when integrated with robots
in applications in the field of medicine.

3

Chapter 1. Introduction

1.3 Outline

In Chapters 2 and 3 the foundations of haptics and robotics are presented.
The devices used in this thesis are described. These two chapters serve as
a brief introduction for a reader with no or little experience from haptics or
robotics respectively but will however also provide the more experienced reader
with some useful basic information needed later on in the report. Especially
Section 3.4, where some important notations are defined, is recommended for
everyone.

The mathematical mapping from a haptic device to an industrial robot
is stated in Chapter 4. How they were connected is described in Chapter 5,
which also describes the communication.

To make the haptic feedback possible a force sensor must be attached to
the industrial robot. How the calibration of that sensor was done is shown in
Chapter 6.

A Simulink model is needed in the communication and it is presented in
Chapter 7. Furthermore, a computer program taking care of the haptic device
was developed and how it works is presented in Chapter 8. How the program
code was implemented to achieve that behavior is described in Chapter 9.

The performance of the full system, the results and conclusions of different
tests of it are presented in Chapter 10. In Chapter 11 a summary of this work
is presented together with a brief presentation of some future work, i.e., what
can be done to improve the results of this thesis and the performance of the
full system implementation.

4

Figure 2.1 The Phantom Premium A from SensAble Technologies, Inc. is the
haptic device used throughout the thesis.

2. Haptics
Haptics is the field of tactile feedback in human-machine interactions. A haptic
device is an instrument that provides the user’s sense of touch with feedback.
Such a device is defined by its number of degrees of freedom in motion and
feedback, as these not necessarily need to agree. Haptic devices may be used for
entertainment purposes in computer games but also have a great potential in
more serious contexts. For example in surgery, both in training and in practice,
a haptic device can help a surgeon using teleoperation to perform better [24].

2.1 Haptic Devices

At the Virtual Reality Lab at Ingvar Kamprad Design Centrum (IKDC), Lund,
several haptic devices are at hand. Among these, two were considered for this
thesis. The Novint Falcon by Novint Technologies, Inc. [17] and the Phantom
Premium A by SensAble Technologies, Inc. [22]. Due to the superior perfor-
mance of the Phantom Premium A, it was selected as the haptic device to
work with throughout this thesis.

The Phantom Premium A
The Phantom Premium A is used by holding the end of the device as if it were
a pen, see Figure 2.1. Six degrees of freedom in motion is featured, but only
three degrees of freedom in force feedback. Compared to the Novint Falcon it is
more expensive but with much better performance. The user hardly feels any
friction at all when moving the "pen" around, twisting or turning it and the
workspace does not feel as limited as with the Novint Falcon. The three motors
of the Phantom Premium A are stronger than the motors on the Novint Falcon.
This can help produce more distinct boundaries of objects in the virtual world.

The Phantom Premium A is connected to a computer through a 110 V
amplifier box to a PCI-card. The drivers at hand at IKDC are for Windows.
The available software includes a program that features calibration and testing
of the device.

5

Chapter 2. Haptics

Figure 2.2 The Novint Falcon by Novint Technologies, Inc. is a rather simple
haptic device.

The Novint Falcon
This is a haptic device developed for gaming purposes. Thus, it is more ro-
bust than the Phantom Premium A but also more simple, see Figure 2.2. For
starters it only has three degrees of freedom in both motion and force feed-
back. All three are translational so no rotations are featured. Furthermore its
workspace is considerably smaller than that of the Phantom Premium A and
the user becomes very aware of the arms holding the knob in place when using
the Novint Falcon.

2.2 OpenHaptics

The Application Programming Interface (API) chosen for the thesis is Open-
Haptics, [20], [21] and [22]. It is developed by SensAble Technologies, Inc. and
therefore only compatible with the Phantom series. To be able to use it, a
license must be obtained from SensAble. This API was chosen because of its
close relation to the Phantom Premium A in Section 2.1. The downside of
using OpenHaptics is of course that any software developed can not be used
on other brands of haptic devices, such as the Novint Falcon in Section 2.1.

OpenHaptics is based on OpenGL (Open Graphics Library), an API for 2D
and 3D graphics compatible with several programming languages and plat-
forms, [19]. This makes OpenHaptics easy to work with for a programmer
familiar with OpenGL.

OpenHaptics is divided into two APIs, the HDAPI and the HLAPI. The
HDAPI stands for Haptic Device API and it lets the user take care of low
level communication with the Phantom, e.g., position, velocity, force feedback,
raw data I/O (encoder/DAC) etc.

The HLAPI is the High Level API and is built upon the HDAPI. The
HLAPI handles the force rendering without the programmer needing to know
anything about the force equations involved. It also incorporates the use of
graphics, i.e., (OpenGL), together with the haptics and takes care of all syn-
chronization between the underlying haptic and graphic threads needed. For
more detailed information, see [21].

The API chosen to be used in this thesis was HDAPI. The HDAPI gives a
straight forward way of coding the force feedback without the extra complexity
of the features found in HLAPI.

6

3. Robotics
Robotics is the scientific field of robots and is a relatively new field but with
increasing importance in the modern world. It is about the knowledge of con-
structing, designing and controlling robots. There are many kinds of robots
but in this thesis a robot is referred to as an industrial robot. Industrial robots
are often used in welding, pick-and-place and assembly operations in factories
or in other situations where something tiresome, monotonic or outright dan-
gerous for a human to do should be performed.

A robot can kinematically be described as links connected by joints. To
control the robot it is necessary to have some knowledge about the position
and orientation of each joint in comparison to a universal coordinate system.
One way of choosing the description of position and orientation of the joints
is presented in Section 3.5. This chapter also features other basic mathematic
tools needed when dealing with robots, [23] and [6].

Figure 3.1 The IRB140B by ABB. The photograph is taken from [1].

3.1 IRB140B

The robot used in this thesis is the IRB140B, see Figure 3.1, from ABB, [1].
Information about the IRB140B can be found in [2]. It is a serial robot with
six degrees of freedom, one for each of its six revolute joints. A revolute joint
revolves around its so called joint axis. The joints are numbered from 1 to 6,
starting at the base. To each joint corresponds a coordinate frame. Some joint
frames have special names beside their number, see Figure 3.2. The frame of
the first joint is called the base frame and the frame at the end of the robot is
called the flange frame. In Section 3.5, a method for choosing the joint frames
in a smart way is presented. The frames does not necessarily end up in the
joints themselves. This is used to give a mathematical relation between the
different coordinate frames.

The three last joints are often called a spherical wrist due to their orien-
tation and another common term is the Wrist Center Point, WCP, which is
situated where the three last joint axes intersect, i.e., in joint 5. If a tool is

7

Chapter 3. Robotics

mounted on the robot, the Tool Center Point (TCP) frame appears. It should
be defined as the tip of the tool.

z

x

x0

z0

TCP

TCP

θ2

θ3

J2

J3

J1

J5

θ5

θ1

θ4

θ6

Figure 3.2 This is how the joint angles’ positive directions are defined. The index
0 indicates the base frame and the TCP frame coincides with the flange frame as no
tool is attached to the robot.

The IRB140B can be moved manually by using the Teach Pendant, a hand-
held terminal for robot control, see Figure 3.3. This is called jogging the robot.
To make the robot move at all the operator must hold the Teach Pendant’s
dead man’s switch and release the brakes. The dead man’s switch has a Off-
On-Off functionality so that the robot stops both if the user squeezes or lets
go of the switch.

Figure 3.3 The Teach Pendant.

In Figure 3.2 the definition of the six joint angles can be seen. For every
angle θi, it holds that θi is constant when any of the other angles, θj , j 6= i,
varies. However, this is not the case for all robots. The usual way of defining the
joint angles in ABB’s robot series is that θ3 is measured relative to a horizontal
plane, or the xy-plane expressed in the robot base frame. This slight difference
is easy to miss at first and can cause unnecessary confusion when working with
the IRB series.

8

3.2 Parallel Kinematic Robots

Figure 3.4 The Parallel Kinematic Robot T1 at the Robotics Lab at The De-
partment of Automatic Control, Lund University.

3.2 Parallel Kinematic Robots

Another type of robots are the Parallel Kinematic Robots (PKR). In Figure 3.4
an example from the Robotics Lab at the Department of Automatic Control,
Lund University, can be seen. It has four degrees of freedom, linear motion in
all directions plus a rotation of the flange.

An upside of a robot of this type is that the moving parts of the robot
are built very light in comparison to many other robots, e.g., the IRB140B in
Section 3.1. From Newton’s second law the following conclusion can be drawn.
If the robot is built lighter, the accelerations due to a constant force exerted
by its motors will be higher.

Parallel Kinematic Robots can be used with great success in situations
where things should be picked from a rapidly moving conveyor belt.

If a Parallel Kinematic Robot should be used in a haptic master and slave
system a device suitable is the Novint Falcon, see Section 2.1. They have
similar constructions apart from the rotation possibility of the PKR flange
that is missing on the Novint Falcon. A haptic device such as a Phantom, see
Section 2.1, can also be used to control a PKR. Doing so, two of the rotational
degrees of freedom for the Phantom can be neglected in the mathematical
mapping to the slave robot to acquire full control of the PKR’s movements.

If all the kinematics needed to describe a PKR fully is derived, it can
replace for example the IRB140B as the slave robot in a master and slave
system, as will be shown in Chapter 4.

3.3 Force Sensor

In order to establish a force controller some knowledge is needed about the
force the environment affects the robot with. There are several approaches
to achieve this and in this thesis a wrist sensor is used. A wrist mounted
force/torque sensor is a mechanical structure equipped with, e.g., a strain
gauge that measures force and torques acting on the end effector. It is attached
between the flange and the end effector. However, it takes no consideration to
whether the force is due to inertia, gravity or contact forces. It measures all

9

Chapter 3. Robotics

the forces acting on the force sensor no matter the underlying reason for the
force.

The force sensor used is the 100M40 sensor from JR3, Inc., [15]. It can
be seen in Figure 3.5 and is mounted on the robot with the help of a tool
changer, the TK-50 from IPR (Intelligent Peripherals for Robots), [13]. The
force sensor itself is the blue part seen in Figure 3.5. In this thesis, two of the
metal bars pointing outwards from the force sensor construction were removed
so that the TCP could be defined as the tip of the sole metal bar that was
left.

Figure 3.5 The force sensor 100M40 from JR3, Inc. that is used in this thesis.
The sensor is the blue part in the construction.

3.4 Homogeneous Transformations

In robotics one often need to be able to shift between various coordinate
frames. For example: when a tool is used it is much more convenient to work
in a coordinate frame attached to the Tool Center Point (TCP) than in the
world frame (in which the robot exists) or in the base frame (where the first
joint is situated). A shift to another frame can be performed using a rotation
matrix and a translation vector. A rotation matrix is a matrix containing the
base vectors of the new frame’s axes, described in the previous frame, as rows.
In the same way a translation vector is a vector from the origin of the new
frame to the origin of the previous frame described in the new frame.

A vector with its coordinates described in frame 0 will throughout this
thesis be denoted p0. To translate the vector p0 into p1, i.e., the same vector
but instead described in frame 1, the following equation can be used:

p1 = R1
0p0 + d0

1 (3.1)

R1
0 is a 3x3 dimensional matrix where each row corresponds to the base vectors

of frame 1 described in frame 0. The matrix is thus a rotation matrix which
in this case rotates p0 to a new orientation. The vector d0

1 is a vector from
the origin of frame 1 to its counterpart in frame 0, see Figure 3.6. Throughout
this thesis all base vectors will be ordered in a right-hand system and have a
length of one.

10

3.5 Denavit-Hartenberg Representation

x0
y0

z0

x1

y1

z1d10

p1

p0

Figure 3.6 The vector p0 has been rotated by a matrix R1
0 and translated by the

vector d0
1 into p1.

A simpler way of representing Equation 3.1 is to use a homogeneous trans-
formation. It is a matrix that holds all the information needed for a rotation
and a translation of a vector. A homogeneous transformation matrix will al-
ways be non singular. A homogenous transformation matrix is shown in Equa-
tion 3.2.

H1
0 =

[
R1

0 d0
1

0 1

]
(3.2)

If the vectors p1 and p0 are augmented with a fourth element equal to
one, this together with Equation 3.1 and Equation 3.2 leads to Equation 3.3.
Throughout this thesis the vector p will denote either the extended or the
unextended vector depending on the context.

p1 = H1
0p0 (3.3)

3.5 Denavit-Hartenberg Representation

The forward kinematics for a robot is determined by multiplying the homoge-
neous transformation matrices for the coordinate frames attached to the robot
joints, see Section 3.6. The question how to choose these coordinate frames
arises. One solution is the Denavit-Hartenberg representation. There are two
alternative representations called the standard representation and the modi-
fied representation. Throughout this thesis the standard representation will be
used [23].

The idea of both representations is that by choosing the coordinate frame
for each joint by certain rules one can reduce the number of parameters needed
to fully describe a joint from six to four. And furthermore, out of these four
values only one is a variable hence called the joint variable. For a revolute
joint the joint variable is the angle, θ, of the joint whereas for a prismatic joint
the variable is the offset, d. The other two parameters are the twist, α, and
the length, a, see Figure 3.7. The parameters for the IRB140B are presented
in Table 3.1. The values for a and d were computed based on the IRB140B
Product Specification [2].

The seven frames needed for the IRB140B were placed as shown in Fig-
ure 3.8. Due to the Denavit-Hartenberg rules the origin of a joint frame doesn’t

11

Chapter 3. Robotics

α1

x0

z0

y0
y1

x1

z1

d01

a1

d1

θ1

Figure 3.7 The parameters in the standard Denavit-Hartenberg representation,
[23], are defined as shown.

Link(i) ai (mm) αi (degrees) di (mm) θi

1 70 −90◦ 352 θ1

2 360 0 0 θ2

3 0 90◦ 0 θ3

4 0 90◦ 380 θ4

5 0 90◦ 0 θ5

6 0 0 d6 θ6

Table 3.1 Link parameters for the IRB140. d6 = 65 if no tool is attached.

necessarily have to end up in the joint itself. It can in several cases be situ-
ated in another point or even in another joint. Therefore origins belonging to
different joints can coincide which leads to problems when displaying them in
the same figure which is the reason for using two different figures.

0
200

400
600

800

−400

−200

0

200

400

0

100

200

300

400

500

600

700

X

6
4

1

2

0

Y

Z

IRB140

x

y

z

0
200

400
600

800

−400

−200

0

200

400

0

100

200

300

400

500

600

700

X

5

3

Y

Z

IRB140

x

y

z

Figure 3.8 The index of the coordinate frame is one less than the corresponding
joint index. The origins of frames 3 and 5 coincide with the origins of frames 2 and
4 respectively.

12

3.6 Forward Kinematics

3.6 Forward Kinematics

Forward kinematics is about describing position, velocities and acceleration
without taking forces and torques into account. The main goal is to relate the
frame of the TCP to the base frame using the joint variables. To each joint
a coordinate frame is attached. Multiplying the homogenous transformations
for the frames step-by-step it is then possible to derive a homogenous trans-
formation from the base frame to the TCP frame. To achieve a simple relation
it is useful to follow a convention when assigning frames to the joints. In this
thesis the standard Denavit-Hartenberg representation is used which results
in that the relation between two frames is described by Equation 3.4. In the
matrices the notations cθ and sθ are used. These are short for cos θ and sin θ.

H i−1
i = A1A2A3A4 (3.4)

A1 =




cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1



A2 =




1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1




A3 =




1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1



A4 =




1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1




The matrix H i−1
i describes the transformation from frame i to frame i − 1.

Using these matrices the position and orientation of the TCP, described in the
base frame, can be calculated, see Equation 3.5. In a similar way all parts of
the robot can be expressed in the base frame.

p0 = H0
1H

1
2H

2
3H

3
4H

4
5H

5
6p6 (3.5)

3.7 Inverse Kinematics

In Section 3.6, Equation 3.5 was derived. It gives the possibility to calculate
the position and orientation of the TCP frame for a given set of joint angles.
But what if the opposite situation occurs, i.e., given a position and orientation
of the TCP frame you want to find the joint angles? That is what inverse kine-
matics is all about. In practice this means to solve the equations that relates
the homogeneous transformation matrix H to the joint angles. H describes
the TCP frame.

H =




r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1




Equations 3.4 and 3.5 give a relation between rij and the joint angles. Solv-
ing these twelve nonlinear equations will generate the joint angles. However,
these equations are nontrivial. Some constraints exist, e.g., the determinant of

13

Chapter 3. Robotics

a rotation matrix must be equal to one since the volume of the cube defined
by the base axes does not change when a rotation is performed. Furthermore,
the norm of each row or column in a rotation matrix part has to be one.

However, multiple solutions may still exist. One possibility of multiple so-
lutions is illustrated in Figure 3.9. There are a number of different ways to
solve these equations. One could for instance use a numerical algorithm or try
to find the closed-form solution.

rTCP

y

z

x

rBase
xy

z

Figure 3.9 Two different ways of reaching the TCP with a certain orientation
called elbow up and elbow down.

3.8 Jacobian

The Jacobian matrix, J , is mathematically defined as a matrix containing all
partial derivatives of a vector valued function, see Equation 3.6 and 3.7.




y1
...
yn


 =




f1(x1, x2 . . . xn)
...

fn(x1, x2 . . . xn)


 (3.6)

J =




∂f1
∂x1

. . . ∂f1
∂xn...

∂fn
∂x1

. . . ∂fn
∂xn


 (3.7)




∂y1
...

∂yn


 = J(x1, · · · , xn)




∂x1
...

∂xn


 (3.8)

The relation of how a small change ∂x relates to small change ∂y is described
in Equation 3.8. By dividing each side by the differential time element Equa-
tion 3.9 appears. The Jacobian matrix can therefore be seen as the mapping
between the velocities of x and the velocities of y.




ẏ1
...
ẏn


 = J(x1, · · · , xn)




ẋ1
...
ẋn


 (3.9)

14

3.9 Impedance Control

In robotics the Jacobian matrix is often denoted Jacobian and the Jacobian
relates the link velocities with the frame velocities. The relation can be seen
in Equation 3.10.

νji = J ji (θ)θ̇ (3.10)

νji =




vx

vy

vz

ωx

ωy

ωz




(3.11)

The first three elements in νji is the velocity for frame j expressed in frame i and
the last three is the angular velocity for each corresponding axis for frame j.
The Jacobian J ji is expressing the relation of the angular velocities of the
joints, θ̇, and the velocity of frame j expressed in frame i. The Jacobian can
be calculated in all given robot configurations and therefore the Jacobian will
only contain numerical values.

For some set of joint angles the Jacobian will lose rank and this is called
a singularity or a singular configuration. A loss in rank for the Jacobian is
equivalent to the inverse of the Jacobian being undefined. If there is a singular
configuration there are several interpretations on why this occur. Singularities
appear where some robot motions are unachievable. At a singularity there
is infinitely many or no solutions to the inverse kinematics problem, which
makes the robot very sensitive near singularities. This will cause a problem
if the robot path is calculated using the Jacobian. Further information about
Jacobians can be found in [23] and [6].

3.9 Impedance Control

There exist many different methods for controlling a robot in different kinds
of situations. For industrial robots it is common to look at position control
and force control. To apply position control to move the robot to the right
spot and then use force control when contact forces emerge. That is basically
what is done in hybrid control. A switch of regulators must then be done at
the proper moment. How to make that switch is not trivial. The advantage
of impedance control is that it will manage both position and force control
at the same time, [10], [11] and [12]. Therefore, a switch of regulators is not
needed. In this thesis impedance control is used.

The idea of impedance control is to make the robot’s TCP behave as a
spring-mass-damper system, see Figure 3.10. The spring-mass-damper system
is described by Equation 3.12, where M represents the mass, D the damping
coefficient and K the spring stiffness.

F = Mẍref +D(ẋ− ẋdes) +K(x− xdes) (3.12)

The force F is what the environment is affecting the robot’s TCP with. The
desired position of the system is xdes and ẋdes is the desired velocity. The
robot’s TCP position and velocity are expressed as x and ẋ respectively.

15

Chapter 3. Robotics

D

K
M

x

F

xxdes

Figure 3.10 A simple spring-mass-damper system affected by an external force,
F . The external force is causing the system to move its equilibrium point from xdes
to x.

If ẍ = ẍref , where ẍ is the robot’s TCP acceleration, the robot will behave
like the spring-mass-damper system in Figure 3.10. Using Equation 3.12 leads
to the control law seen in Equation 3.13.

ẍref = F −D(ẋ− ẋdes)−K(x− xdes)
M

(3.13)

By defining the M , D and K parameters and using the current measured
and desired values the acceleration reference can be calculated using Equa-
tion 3.13. By integrating that acceleration one or two times the velocity and
position can be derived, see Equations 3.14 and 3.15. If the robot is set to
follow the derived position and velocity signals it will behave as Equation 3.12
and Figure 3.10 implies.

ẋref =
∫
ẍdes dx (3.14)

xref =
∫∫

ẍdes dx (3.15)

But in order to implement the proposed control law it has to be discretized.
A discretization with a sampling rate of h and a discrete integration of a signal
u[k] defined as ∑u[k]h is used. By assuming that the robot’s TCP velocity is
zero and that the TCP position is x[0] at k=0, Equations 3.16 and 3.17 are
derived.

ẋref [k] =
k∑

i=0
ẍdes[i]h (3.16)

xref [k] = x[0] +
k∑

i=0
ẋref [i]h (3.17)

Thus, the implementation of a discrete impedance controller, defined in
Equations 3.16 and 3.17, can be used to make a robot behave as a spring-
mass-damper system.

Choosing the parameters M , D and K is not a trivial task as it is hard to
imagine exactly how a spring with a stiffness, K, or a damper with a damping
coefficient,D, actually behaves. Therefore the characteristic polynomialMs2+
Ds+K is compared to s2+2ζωs+ω2. That results in Equations 3.18 and 3.19.
ω represents the eigenfrequency of the spring-mass-damper system and ζ is the
damping. The advantage of expressing the damping in terms of ζ instead of D

16

3.9 Impedance Control

is that ζ ∈ [0, 1] where zero means no damping and 1 means critical damping,
i.e., no overshoot in a step response.

D = 2Mζω (3.18)

K = Mω2 (3.19)

17

Chapter 3. Robotics

18

4. Mapping a Haptic Device
to a Robot

In order to control a robot’s movements with an external control device some
mapping have to be defined. In this thesis the external control device is a haptic
device. The relation between the haptic device and the robot can be referred to
as a master and slave relation. The master’s position and orientation controls
the position and orientation of the slave.

This chapter will explain in detail how the mapping between the Phantom
and the IRB140B is done in this master thesis. The mapping will be explained
through mathematical and geometrical interpretations of how the master and
slaves relates to each other. However, the proposed mapping could be used
in any general master and slave relation and not only in the Phantom and
IRB140B case. More specifically, any haptic device could use this mapping,
e.g., the Novint Falcon, see Section 2.1.

4.1 Frames and Transformations

When connecting a haptic device to a robot, virtual or real, various coordinate
frames appear. There are six different frames used, see Figure 4.1. The four
main frames are the base frame and the TCP frame for both the robot and
the haptic device. The haptic TCP (hTCP) is defined as the tip of the haptic
"pen" on the Phantom. The haptic base frame (hBase) has its origin in the
center of the haptic workspace. The robot base frame is denoted rBase whereas
the robot TCP frame is denoted rTCP.

Because of the close relation between the frames rTCP and hTCP the
latter has been placed in the same point as the first, i.e., in the robot TCP,
see Figure 4.2. The haptic base frame (hBase) is placed in the position where
the robot TCP is located at the startup. This creates an opportunity to easily
work in different areas of the robot’s workspace and not just in the proximity
of the TCP in the configuration where θi = 0 or in any other predetermined
start configuration.

Transformations between the frames in Figure 4.1 are needed to make the
robot behave in a desired manner according to the haptic device state, see Fig-
ure 4.3. A transformation from rTCP to rBase, HrBase

rTCP , is used in the inverse
kinematics problem, see Section 3.7, to find the robot angles needed to describe
the desired state determined by the haptic device. Using homogenous trans-
formations as described in Section 3.4, Equation 4.1 gives the transformation
needed in the inverse kinematics.

HrBase
rTCP = HrBase

hBaseH
hBase
hTCPH

hTCP
rTCP (4.1)

The origins of hTCP and rTCP always coincide and their orientation to
each other always remains the same. This makes it easy to define the therefore

19

Chapter 4. Mapping a Haptic Device to a Robot

xy

z

x

y
z

x

y

z

x

y

z

x

y

z

x

y

z

hBase

rBase

h0TCP

r0TCP

hTCP

rTCP

Figure 4.1 The different frames used in the mapping. h0TCP and r0TCP are the
startup versions of hTCP and rTCP. The transformations between hTCP and rTCP
are always constant. The origins of hBase, h0TCP and r0TCP coincide. The four
frames on the left are viewed from the rear of the robot for a start configuration
θi = 0. The two on the right are simply reoriented after startup.

hTCP

hBase

rBase
x y

z

yx

y

z

z

x

hTCP

rBase
x y

z

rTCP

yz

x

y

z

x

r0TCP

x

yz zx

y

hBase

1 32

Figure 4.2 The haptic and robot frames. 1 and 2 are robots with a configuration
determined by 3, the Phantom. The position of hBase and r0TCP described in rBase
is determined by the starting robot configuration. Keep in mind that any haptic
device and any robot could have been used in this mapping, not just the Phantom
and a robot as the one in this figure.

constant constant

constant

hTCP

rTCP

rFlange

hBase rBase

read from

Phantom need robot angles

and kinematics

Figure 4.3 The paths available between the haptic and the robot frames.

20

4.2 Bumpless Switching

constant transformation between them, see Equation 4.2.

HhTCP
rTCP =




0 −1 0 0
−1 0 0 0
0 0 −1 0
0 0 0 1




(4.2)

Out of the three transformations on the right-hand-side in Equation 4.1
two remain to be determined. It is assumed that HhBase

hTCP can be read from the
haptic device. HrBase

hBase on the other hand can be evaluated at startup due to
the previously mentioned fact that the position and orientation of the hBase
frame depends on the robot’s starting angles and thereafter remain constant in
the eyes of the rBase frame. Equation 4.3 shows the general way of computing
HrBase
hBase.

HrBase
hBase = HrBase

rTCPH
rTCP
hTCPH

hTCP
hBase (4.3)

At startup however, Equation 4.3 is simplified as presented in Equation 4.4.

HrBase
hBase = HrBase

r0TCPH
r0TCP
h0TCPH

h0TCP
hBase = HrBase

r0TCPH
rTCP
hTCP I = HrBase

r0TCPH
rTCP
hTCP

(4.4)
The extra 0 in the indices implies a startup configuration of a frame. HrBase

r0TCP
can be calculated using forward kinematics for the robot’s starting angles, see
Section 3.6, and HrTCP

hTCP is defined in Equation 4.2. That Hh0TCP
hBase = I can be

realized by looking at Figure 4.1.

4.2 Bumpless Switching

When using the mapping proposed in Section 4.1, the haptic base frame
(hBase) is assumed to be located at the robot’s TCP frame (rTCP) at startup.
However the mapping indicates that the rTCP frame is mapped to the hTCP
frame. Therefore it also assumes that the hTCP frame is the same as the
hBase frame at startup. However this is rarely the case, as the position and
orientation of the Phantom tip is likely to differ from the hBase frame even
if the user tries to hold it as close to the hBase frame as possible. It is unde-
sirable to make the robot attempt a jump in position or orientation in order
to achieve the proposed mapping. To avoid this problem the current hTCP
frame will always be mapped to the rTCP frame in the mapping initialization.
This means that the current hTCP frame is mapped to the r0TCP frame at
startup. A way of achieving this is to use the matrix A = (HhBase

hTCP)−1 in the
initialization and when the mapping begins, multiply the current HhBase

hTCP with
A from the left which leads to Equation 4.5. The matrix H is then interpreted
as the HhBase

hTCP matrix and is used in the same way as described in Section 4.1.

H = A ·HhBase
hTCP (4.5)

Another way of expressing Equation 4.5 is in terms of h0TCP. In fact, the
hBase frame is always situated in the same place, what changes is where the
h0TCP frame is put, see Equation 4.6. The matrix Hh0TCP

hTCP is interpreted as
the HhBase

hTCP matrix in Section 4.1.

Hh0TCP
hTCP = Hh0TCP

hBase ·HhBase
hTCP (4.6)

21

Chapter 4. Mapping a Haptic Device to a Robot

22

Phantom Premium A

IRB140B

Virtual Robot

Simulink Controller

OperatorForce Sensor

Robot

Main Computer

Robot

Axis Computer

Client on

Linux Computer

Phantom Robot Connector on

Windows Computer

Force Sensor

Server

submit

obtain

force measured

by force sensor

angles,

force and

delay signal

hand

movements

force

feedback

position and

orientation
force

3D graphics

angles and

delay signal

angles,

force and

delay signal

angles and

delay signal

irb2ext signals

ext2irb signals

motor

torques

angles and

velocity

Figure 5.1 An overview of the setup. The thicker connections indicates a TCP/IP
connection via a local network.

5. How to Connect the
Phantom to the IRB140B

The Phantom is connected to the IRB140B as shown in Figure 5.1. For more
details on how the robot main and axis computers cooperate with the Simulink
controller, consult [7]. Briefly, the Simulink controller runs the result of a
Simulink model built with Simulink’s Real-Time Workshop and downloaded
to the robot system, see Section 5.2.

The Phantom Robot Connector is a computer program written in C++
that is running on a Windows computer, see Chapters 8 and 9. The Phantom
is connected to that computer through a PCI-card. The client on the Linux
computer serves as an interpreter between the Phantom Robot Connector and
the Simulink controller. The thick wires in Figure 5.1 indicates that data is
sent over a TCP/IP network, see Section 5.1.

There is a graphical user interface (GUI) that can be run on the computer
that the robot’s two serial ports are connected to, [7], see Figure 5.2. In the
GUI, the user can choose to select, in the order as presented here, submit and
then obtain. The Simulink controller will affect the robot first when obtain
is active. It is possible to define a parameter in the Simulink controller as
changeable during runtime. If so, the parameter can then be altered from the
GUI.

The force sensor is mounted on the robot but sends data to a separate
server. The Virtual Robot block is simply a computer screen displaying the
graphics determined by the graphics part of the Phantom Robot Connector.
The Operator is the human controlling the haptic device.

As can be seen in Figure 5.1, there are a lot of different systems and pro-
grams that have to operate simultaneously. Therefore a guide was developed
that goes through the correct order in which to start every process, [8]. It also
presents some advices and cautions to make things easier for the operator.

23

Chapter 5. How to Connect the Phantom to the IRB140B

Figure 5.2 The graphical user interface in which a Simulink model can be loaded
and its parameters altered.

5.1 TCP/IP Communication and Endianness

To establish communication between the Phantom Robot Connector and the
Simulink controller a TCP/IP connection was chosen. Depending on which
platform the Phantom Robot Connector is run on, different implementations
of the TCP/IP connection are needed, see Section 9.4.

There is a problem that may arise when sending data over network byte
by byte. What happens if a computer wants to send a value, for example a
double, to another computer and they don’t use the same order when storing
bytes? There are two different conventions when it comes to storing data in the
memory of a computer called big-endian and little-endian, [5]. The difference
is that big-endian stores the highest ordered byte in the memory location with
the lowest address, i.e., the most significant byte is stored first. Little-endian
does the opposite so that the least significant byte comes first in the memory.
Which endianness is used depends on the processor. This is not a problem in
everyday usage but when sending data byte by byte a difference in endianness
can corrupt the value sent. If this is the case, the bytes can be sent in reverse
order to solve the matter.

24

5.2 Using Simulink in a Network With Labcomm

5.2 Using Simulink in a Network With Labcomm

A model was created in Simulink, see Chapter 7. To be able to use that model
for robot control, it has to be built by Simulink’s Real Time Workshop. What
this does, is that it generates and compiles C code that is downloaded to
the robot’s main computer [7]. To enable the Phantom Robot Connector to
send data to the in ports in the model and to collect data from the out ports
Labcomm is used. In a separate Labcomm file filename.lc, the input and
output data types are defined as shown below.

sample float ph2RobAngles[6];
sample float rob2PhAngles[6];
sample float rob2PhForce[3];
sample float ph2RobDelay;
sample float rob2PhDelay;
sample float jr3_comedi[6];

A Labcomm command then creates filename.c and filename.h. These
files contain functions for sending and reading the data defined in filename.lc
to and from the built Simulink model on the robot computer from within a C
or C++ program via a TCP/IP connection. These functions are written for
Linux. There is currently no counterpart written for Windows. More on useful
commands and how to integrate the mentioned files with the Simulink model
can be found in [8].

25

Chapter 5. How to Connect the Phantom to the IRB140B

26

6. Calibration of Tool and
Sensor

By default the IRB140B is controlling the flange frame. If a tool is attached
it has to be defined, for example by using the Teach Pendant, [3]. Selecting
the newly defined tool in the Teach Pendant will then allow the operator to
jog the robot according to the TCP frame instead of the flange frame. The
new tool must also be defined in the Simulink model, see Section 7.3, so that
the information sent to the Phantom Robot Connector will be correct. Here,
a force sensor is part of the tool. The force sensor frame must therefore also
be defined.

6.1 Force Sensor

The JR3 force sensor described in Section 3.3 needs to be calibrated when
mounted on the flange of the IRB140B, i.e., a transformation matrix between
the force sensor frame and the flange frame should be determined. This trans-
formation matrix is used when calculating the force acting on the tool based
on the data from the force sensor. A method of determining the transformation
matrix will be presented below.

First, the rotation matrix from the flange frame to the sensor frame must
be derived. The robot was jogged manually to a certain position and the JR3
force sensor was reset. A weight was hung from the tip of the tool. The force
sensor then measures the gravitational force of the weight. This means that
the force can be written in the robot base frame as

Fbase =




0
0
−f


 (6.1)

The force is however measured in the force sensor frame as

FsensorFrame =



fx

fy

fz


 (6.2)

f in Equation 6.1 is determined by Equation 6.3

f =
√
f2
x + f2

y + f2
z (6.3)

The relation between Equation 6.1 and 6.2 is given in Equation 6.4.RsensorFrameflange

and Rflangebase are rotational matrices where the latter is derived using forward
kinematics.

FsensorFrame = RsensorFrameflange ·Rflangebase · Fbase (6.4)
The force sensor is attached to the flange in such a way that the z-axis of
the force sensor frame coincides with the z-axis of the robot flange frame, but

27

Chapter 6. Calibration of Tool and Sensor

oriented in the opposite direction. This leads to Equation 6.5.

RsensorFrameflange =




a b 0
−b a 0
0 0 −1


 (6.5)

Since the force sensor measures the force it is exerting on the environment the
following slight adjustment was made

FsensorFrame = −Fmeasured
Equation 6.4 results in three equations. The first equation gives an expres-

sion for determining a and b in Equation 6.5. The second equation will be the
same as the first, whereas the last equation will be trivial. To get a complete
set of equations the experiment was repeated for another configuration of the
robot. This procedure can be, but was not, done numerous times in order to
acquire a least squares approximation.

In a rotation matrix, the rows represent the base vectors of the new frame
expressed in the old frame, see Section 3.4. Hence, for each row (and column) in
a rotation matrix it holds that their norm equals to one. However, this was not
the case for the rows and columns when the derived equation system of order
two above was solved in Matlab. a and b were therefore divided by the norm
of for example, the first row. The resulting matrix is found in Equation 6.6.
Possible reasons for the rows not to have a norm of one naturally are the
resolution in the force measurements and the resetting of the sensor functioning
poorly, see Section 7.4.

RsensorFrameflange =



−0.7894 0.6139 0
−0.6139 −0.7894 0

0 0 −1


 (6.6)

Second, the cartesian distances from the flange frame to the sensor frame
was measured using a vernier caliper to d = [0, 0, 56.7] mm. The sensor frame
has its origin in the center of the sensor. Because of the difficulty in finding
and measuring from the center, the distance to the end of the sensor was
determined as 76.7 mm. In a data sheet for the JR3, the distance from the
end to the center is stated to be 20.0 mm.

The translation vector, d, in the transformation matrix from the force
sensor frame to the flange frame, see Section 3.4, is only used if the torques
measured by the force sensor should be used. Otherwise, to shift frames for a
force, only the rotation matrix part of the homogeneous transformation matrix
is used.

6.2 Tool

The tool was defined using the Teach Pendant. Following step-by-step instruc-
tions in [3] will result in a definition of the transformation from the flange frame
to the TCP frame. The method used is a so called four-point-calibration. Ba-
sically, the robot is jogged to four different configurations where each configu-
ration makes the tool center point end up in the same point in the workspace.

28

6.2 Tool

Figure 6.1 One of the four configurations the robot was set to in order to perform
a four-point-calibration of the tool center point.

Using data from the four configurations, the translation part of the desired
transformation matrix can be calculated. A four-point calibration will orient
the TCP frame in the same way as the flange frame is oriented. To change the
orientation, other methods described in [3] have to be used.

To define the calibration point in the workspace a metal stick was used.
The calibration point was placed in mid-air half a centimeter above the stick
to enable access from several different angles. In Figure 6.1 one of the four
robot configurations is shown. It may seem a bit rough to use a calibration
point as the one described above. During this thesis, no known structures will
however be dealt with, so it will not be crucial to have a very small error
in the TCP position. The four-point-calibration resulted in the homogeneous
transformation matrix in Equation 6.7. The unit in the translation vector is
millimeters.

HTCP
flange =




1 0 0 50.82
0 1 0 64.51
0 0 1 173.0
0 0 0 1




(6.7)

29

Chapter 6. Calibration of Tool and Sensor

30

7. Simulink Model
A model created in Simulink can be used for communication with a robot, see
Section 5.2. The model created in this thesis, see Section 7.3, has two roles.
It serves to feed the robot and the Phantom Robot Connector with data from
one another but it also performs calculations on its own regarding the force
control, see Section 7.5.

Used in the model is a Simulink library called ExtCtrl Library that contains
Simulink blocks for various calculations needed in robotics applications. The
library blocks are based on the same C code that is used in Chapter 9. A new
Simulink library was also created, holding blocks that were needed more than
once in the full scale model, see Section 7.2.

Many different signals are available for communication with the robot.
There are for example a number of different position, velocity and torque
signals. These signals hold information about the joint angles and not a specific
coordinate frame. A position signal for example, is therefore containing the
joint angles, measured in motor side angles. Before they are at any use, they
must be transformed into arm side angles by a Simulink block from the ExtCtrl
Library. For this reason, whenever a position or velocity signal is mentioned in
this chapter, it is assumed that if it originally contains motor side angles, they
have been transformed into arm side angles. There are also signals concerning
parameters in the robot’s own controller and a signal containing the force
measured by the force sensor attached to the robot.

The signals’ names tell whether the signal is coming from or going to the
robot. Most signals have either irb2ext or ext2irb as a prefix, irb being the
robot and ext referring to external control, i.e., the Simulink model.

7.1 Position Signals

Since the Phantom Robot Connector uses the robot’s joint angles to perform
it’s calculations, see Chapter 9, a clever choice of which position signal should
be used is called for. Figures 7.1 and 7.2 show how the two signals irb2ext.posFlt
and irb2ext.posRaw_Abs act when the robot is performing a step on the first
joint angle. The step back and forth was induced by jogging the robot man-
ually on the teach pendant. From the figures the following conclusion can be
drawn: irb2ext.posFlt is filtered too heavily for the application in this the-
sis. However, to use irb2ext.posRaw_Abs instead will also lead to problems.
irb2ext.posRaw_Abs contains, as the name imply, the position signal directly
from the joint angle encoders. Using it as a reference to the Phantom Robot
Connector will cause any disturbances entering in the measurements to affect
the reference sent to the robot from the Phantom Robot Connector directly.

A better signal to use as a reference to the Phantom Robot Connector
is irb2ext.posRef. It is a purely mathematically induced signal, i.e., it is not
based on measurements as the position signals previously mentioned. It comes
from the robot’s main computer and will change when the robot is jogged
manually. However, it will not change if the other position reference signal,
ext2irb.posRef, is varying, see Figure 7.3. So even if changes in ext2irb.posRef
will cause the robot to move, these changes will not affect the irb2ext.posRef
signal, see Figure 5.1. This fact is causing a problem that will be treated in

31

Chapter 7. Simulink Model

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Filtered Position Signal (posFlt) vs. Position Reference (posRef) for Joint 1

Time / (s)

Jo
in

t
A

n
g

le
 /

 (
ra

d
ia

n
s)

Position Reference (posRef)

Filtered Position (posFlt)

Figure 7.1 A filtered position signal.

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
RawAbs Position Signal (posRawAbs) vs. Position Reference (posRef) for Joint 1

Time / (s)

Jo
in

t
A

n
g

le
 /

 (
ra

d
ia

n
s)

Position Reference (posRef)

RawAbs Position (posRawAbs)

Figure 7.2 The raw position signal follows the position reference well, evidence
of the robot’s good controllers.

Section 7.8.

7.2 Simulink Library

The advantage of gathering functions needed in more than one place in a
library is that if they need some adjustments, these only have to be done in
the library. A Simulink model using blocks from a library will update them at
startup. Apart from the ExtCtrl Library, that was available from the beginning,
another library was created in order to simplify working with the full model,
see Figure 7.4. The contents of each block can be found in Appendix C.1.

The ordinary Simulink subsystem Forward Kinematics – arm joints -> tcp
encapsulates blocks from the ExtCtrl Library. The subsystem will return the

32

7.2 Simulink Library

0 5 10 15 20
−100

−50

0

50

100
irb2ext.posRef[i] for all Joint Angles

Time / (s)

Jo
in

t
A

n
g

le
 R

e
f.

 /
 (

d
e

g
re

e
s)

J1

J2

J3

J4

J5

J6

0 5 10 15 20
−100

−50

0

50

100
ext2irb.posRef[i] for all Joint Angles

Time / (s)

Jo
in

t
A

n
g

le
 R

e
f.

 /
 (

d
e

g
re

e
s)

J1

J2

J3

J4

J5

J6

Figure 7.3 The signal irb2ext.posRef does not respond to changes in
ext2irb.posRef.

Figure 7.4 The created Simulink library.

transformation from the robot TCP to the robot base instead of from the
flange to the base.

The Angle Fix and Inverse Angle Fix are used to transform the third joint
angle to relative the horizontal plane form and back to normal IRB140B form
respectively, see Section 3.1. The reason this has to be done is that the C
code in the ExtCtrl Library treats the IRB140B in the same way as the other
ABB robots, i.e., the third joint angle is considered to be defined relative the
horizontal plane.

The third embedded Matlab function in Figure 7.4 will return the trans-
lation vector, d, in a given homogeneous transformation matrix on row-major
form.

33

Chapter 7. Simulink Model

7.3 The Model

During the thesis work many different tests were performed using a Simulink
controller, for example the solution to the problem with bumpless switching
problem that is presented in Section 7.8, leading to different appearances of the
Simulink model. The final version of the Simulink model can though be seen in
Figure 7.5. The sample time used is h = 0.004 seconds. Many times throughout
the remainder of this chapter, different inports, outports and subsystems will
be mentioned. These can, if no other specific reference is given, always be
found in this figure.

The force sensor signal treatment is a big part of the Simulink model why it
has been given its own section in Section 7.4. The block Impedance is presented
in Section 7.5 whereas the subsystems called Position Reference and Velocity
Reference are described in Sections 7.6 and 7.7 respectively.

Some parameters in the Simulink model has been made changeable from
the GUI, see Figure 5.2. A complete list over all the parameters and their
function is included in [8].

7.4 The Force Sensor Signal

The force sensor signal is received through the in port jr3_comedi. It is mea-
sured in the force sensor frame, from here on referred to as the sensor frame,
see Section 6.1. Before it is at any use, methods for resetting it, transferring
it to the TCP frame and preparing it for the Phantom must be implemented.
This is done in the subsystem called Treat Force Signal in Figure 7.5. The
contents of the subsystem is shown in Figure 7.6.

Resetting the force sensor is crucial at startup as the force sensor has quite
a big offset due to the weight of itself and the construction it is attached to,
see Figure 3.5. It will however also be necessary to reset the force sensor if
the robot’s TCP is reoriented. That is due to the sensor frame’s reorienta-
tion compared to the gravitation force vector. There is another version in the
ExtCtrl Library of the subsystem in Figure 7.6 called offset correction/reset
that will compensate for the gravitational forces acting on the tool. It is not
crucial to do this since the force sensor is not reoriented while controlling the
robot with the Phantom, the more simple version of the subsystem was used.

First, two ways to reset the force sensor signal are presented. There is an
inport called ph2RobDelay and an outport called rob2PhDelay, see Section 5.2.
These are used by the Phantom Robot Connector to measure the time it takes
for a round trip back and forth to the robot, or in reality the Simulink Con-
troller, see Section 9.7. Briefly, the idea is that the delay signal is shifting
between two values, either zero and one, or two and three. The default is zero
and one but when requested by the user, that can change to two and three
instead and from there back again to zero and one. That fact can be used
to reset the force sensor. Whenever a shift between the pair of values sent is
induced the force sensor will be reset.

The purple subsystem, called offset correction/reset, in Figure 7.6 was
available, [18]. It will reset the force sensor signal when given a positive flank
in its in port reset_at_pFlank. That positive flank can be induced either by
altering the parameter resetSensor from the GUI or through altering the delay
signal from the Phantom Robot Connector as described above. In the latter

34

7.4 The Force Sensor Signal

Figure 7.5 The Simulink model used in this thesis.

case the subsystem reset via Phantom Robot Connector comes in, see Fig-
ure 7.7. The idea is that a zero will be sent out at all occasions except for
when the two last values, after having subtracted 1.5, have different signs.
That indicates that the user has shifted pairs in the delay signal, i.e., the user
wants to reset the force sensor signal.

The resetting of the force sensor does not give a perfect result. A reason
for this might be the force sensor quantization and resolution rather than the
logics behind the resetting.

The orange subsystem, called Force sensor -> TCP, in Figure 7.6 was also

35

Chapter 7. Simulink Model

Figure 7.6 This subsystem handles the resetting, the transformation and the
filtering of the force sensor signal. The outputs are the force that should be sent to
the Phantom and a filtered force signal.

Figure 7.7 This subsystem will render a value that can be used to reset the force
sensor. The criteria for passing input port one in the switch block is that u2 > 0.

available from start, [18]. It will transform a force sensor signal from the sensor
frame to the TCP frame by using some blocks from the ExtCtrl Library.

After a reset at startup, or after a reorientation, and a transformation to
the TCP frame, the force sensor signal is treated some more in the subsystem
called force[6] -> force[3], see Figure 7.8. The name refers to the fact that only
the forces and not the torques will be sent to the Phantom Robot Connector.
However, the second out port of the subsystem contains a filtered force signal
of size 6. As can be seen in the figure, the torques are not filtered. The reason
is simply that they will not be used and are only brought along to enable the
use of a force transmission block from the ExtCtrl Library block later on. The
phForceGain and the saturation limit, phSaturationLimit, can be set from the
GUI. The default values are 0.05 and 2.0 respectively.

The discrete low pass filter in Figure 7.8 has a transfer function as shown
in Equation 7.1.

G = 1− e−ωh
z − e−ωh (7.1)

The continuous low pass filter constant, ω, can be altered from the GUI
through omega_ForceF ilt. An example of the impact of the filter can be
found in Figure 7.9 where omega_ForceF ilt = 30. There will be a slight delay
in the force measurements due to this filter and in an attempt to minimalize
that delay but still keep the disturbances in the signal away, the continuous
filter constant was set to omega_ForceF ilt = 50.

To prepare the force signal for the impedance controller it must be ex-
pressed in the robot’s base frame. This is fixed by a Force Transmission block

36

7.5 Implementation of Impedance Control

Figure 7.8 The force signal is scaled down and saturated to prevent a strange
behavior of the Phantom. The reason for the minus one gain is the force sensor
measuring the force it exerts on the environment. Notice that the torques are not
filtered as they will not be used further on.

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

15

20

25

30

35

time / (s)

F
o

rc
e

 /
 (

N
)

The impact of the discrete LP−"lter in the subsystem force[6] −> force[3]

forceNonFlt z

TCP

forceFlt z
TCP

Figure 7.9 The impact of the discrete low pass filter in the subsystem in Figure 7.8
when the filter constant ω = 30.

from the ExtCtrl Library hidden in the subsystem called force tcp[6] -> base[3]
in Figure 7.5.

7.5 Implementation of Impedance Control

The force control method used in this thesis is impedance control, see Sec-
tion 3.9. An implementation in Simulink can be seen in Figure 7.10. The
feedback loops in this figure indicates that the impedance controller does not
receive any information about the actual state of the robot, but only about
the desired state of the robot. It is assumed that the robot’s own controllers
does a fine job making sure the robot will follow the trajectories asked for. An
evidence of this can be seen in Figure 7.2. Therefore, to prevent any unneces-
sary disturbances to enter the impedance controller, these two feedback loops

37

Chapter 7. Simulink Model

Figure 7.10 This subsystem holds both the impedance controller and some rout-
ing necessary to enable the implementation of the impedance control law.

Figure 7.11 A Simulink implementation of the impedance controller described in
Section 3.9.

were created. The impedance controller itself can be found in Figure 7.11. The
latter subsystem implements the control law given by Equations 3.16 and 3.17.
The embedded Matlab function in Figure 7.11 implements Equation 3.13 and
the code can be found in Appendix C.

The parameter impedanceControlSwitch determines the in port impSwitch
in both Figure 7.10 and Figure 7.11 and can be set from the GUI. A value
of zero results in no impedance control being used whereas a value of one
activates the impedance control. The default value is zero and the impedance
controller should not be started until the obtain mode has been entered in
the GUI. In order to prevent the integrals that result in additions in the
position and velocity references in Figure 7.11 from building up when the
impedance controller is turned off, these two integrals are drained whenever

38

7.6 The Position Reference Generation

impedanceControlSwitch equals to zero. That will cause the robot to return to
the position it had before the impedance controller was activated.

From the GUI it is also possible to neglect the external force in the impe-
dance controller and to turn off the velocity reference, see Figure 7.10, through
the parameters impForceGain and impVelRef. For the latter, as before, it
holds that a value of one will activate and a value of zero will deactivate.
Deactivating the velocity reference is equal to setting it to zero which means
the impedance controller will try to make the TCP position follow a change
in position reference with a speed of zero. This will naturally utterly decrease
the performance and there is, due to that fact, no other reason to turn off the
velocity reference following than to investigate how great the performance loss
will be.

The impedance controller uses the parametersM ,D andK, see Section 3.9.
It is not trivial to interpret how a system with three given values of these
parameters will behave. Therefore, they are determined by Equations 3.18
and 3.19. imp_Omega and imp_Zeta represent the eigenfrequency and the
damping and can be set from the GUI together with the mass, imp_M . They
are then recalculated into imp_D and imp_K in the Impedance Parameters
embedded Matlab function in Figure 7.5. The code for Impedance Parameters
can be found in Appendix C. In the model the parameters are defined as
constants, i.e., the system will have the same behavior in all directions.

7.6 The Position Reference Generation

The Simulink model has the responsibility to join the position references from
the Teach Pendant, the Phantom Robot Connector and the impedance con-
troller. Part of this is done in the subsystem called Position Reference, see
Figure 7.12. The main idea is that the position given by the Teach Pendant
in the irb2ext.posRef signal is sent to the Phantom Robot Connector as a
static reference. In reality, the robots position is only needed when starting
the Phantom Robot Connector so the fact that irb2ext.posRef does not change
when the robot is moved by other means than those of the Teach Pendant,
see Figure 7.3, does not concern the Phantom Robot Connector. The signal
received by the Simulink model from the Phantom Robot Connector will then
be used as a position reference in the impedance controller and its derivative
used as a velocity reference. The derivation and also low pass filtering of the
signal from the Phantom Robot Connector is done in the subsystem called
Discrete Filter in Figure 7.12. The low pass filter is of the same type as the
one in Section 7.4. The continuous filter constant is called omega_PhFilt and
can be set from the GUI. The default value is omega_PhFilt = 30. The de-
rived joint angle velocities are then reinterpreted as a TCP frame velocity in
the subsystem called Calculate TCP velocity in Figure 7.13.

The impedance controller will listen to appeals from both the position
reference, velocity reference and any external forces when calculating its ad-
ditions in position and velocity references. That position reference addition is
then added to the TCP position given by the irb2ext.posRef signal and will be
transformed into joint angles before sent to the robot as a new position refer-
ence through the ext2irb.posRef out port. A schematic view over the position
reference loop is shown in Figure 7.14. In it the feedback loops in Figure 7.10
can be found as well.

39

Chapter 7. Simulink Model

Figure 7.12 This subsystem will create the position reference that will be sent to
the robot.

Figure 7.13 The subsystem Calculate TCP velocity. The inner subsystems come
from the ExtCtrl Library. The angular velocities of the TCP frame are neglected.

In Figure 7.12 there is an inverse kinematics block from the ExtCtrl Library.
The input parameters for that block are the desired homogeneous transforma-
tion matrix and the previous set of joint angles. The latter is the reason for
the existence of the memory block.

It is important that the inverse kinematics block will select a solution near
the one selected by the Phantom Robot Connector to obtain good performance.
A problem may therefore occur when starting the Simulink controller. The
output of the memory block during the first sample will be zeros which will
lead to that the inverse kinematics block is, in a way, given free hands and
may therefore select a quite random solution compared to the Phantom Robot
Connector. This is prevented by sending the angles determined by the jogging
of the robot to the inverse kinematics block until the user has decided it is safe
to use the previous set of angles and has changed the parameter startInvKin
from 0 to 1 in the GUI, [8].

7.7 The Velocity Reference Generation

The impedance controller seen in Figure 7.11 will determine an addition in
velocity reference, see Equation 3.16. Figure 7.14 also shows the velocity ref-
erence generation loop schematically.

The addition in velocity reference is described as the cartesian flange ve-
locity expressed in the base frame. The subsystem Velocity Reference, see Fig-

40

7.8 Solving the Bumpless Switching Problem

Phantom

Robot

Connector

Discrete

LP- lter

Discrete

Derivative

Impedance

Controller

+
ext2irb.PosRef

ext2irb.VelRef

irb2ext.PosRef
desired

position

desired

velocity

robot

velocity

robot

position

Phantom

angles

Figure 7.14 The loop determining the position and velocity references that will
be sent to the robot. The jogging of the robot, the Phantom Robot Connector and the
impedance controller will all have their say. It is assumed that the robot will follow
the references sent to it very well, why the references can be used as feedback in
order to prevent disturbances in the real measurements from entering. The Phantom
angles is a set of robot joint angles based on the state of the Phantom.

Figure 7.15 This subsystem will create the velocity reference that will be sent to
the robot.

ure 7.15, will transform that velocity into joint velocities to prepare for sending
the addition to the robot. Being an addition in reference, it is added to the
signal irb2ext.velRef and the result is passed on to the outport ext2irb.velRef.

The addition is however not crucial as the irb2ext.velRef will be zero at
almost all times as it is recommended not to jog the robot in obtain mode,
see [8]. The irb2ext.velRef signal will not change if the robot changes its state,
just as the with the irb2ext.posRef signal, see Section 7.1. It is therefore often
unnecessary to add the irb2ext.velRef signal to the velocity reference sent to
the robot through ext2irb.velRef. The only time there is a need to add the two
reference signals is if an external program is run on the robot.

7.8 Solving the Bumpless Switching Problem

The previously mentioned fact that the signal irb2ext.posRef does not listen
for changes in ext2irb.posRef will cause a problem when the user wants to stop
controlling the robot through the Phantom.

The reason for the problem is that, as the Simulink model in Figure 7.5 is
constructed, the signal irb2ext.posRef is used as a reference to the Phantom
Robot Connector. In that program a new position reference will be calculated

41

Chapter 7. Simulink Model

Figure 7.16 The subsystem Mode Switch will make the robot return to the its
original position when control of the robot using the Phantom ceases. The derivative
of the joint angle references will then go to zero. The from tag velRef contains the
signal irb2ext.velRef.

depending on the state of the Phantom, see Chapter 9. This new position ref-
erence can be sent to the robot through the ext2irb.posRef port (here without
any impedance control) and therefore not affect the irb2ext.posRef signal, see
Section 7.1. The Phantom Robot Connector can deal with that but a problem
will occur when the user decides to stop controlling the robot with the Phan-
tom. As a result, the ext2irb.posRef signal will start to contain the values in
irb2ext.posRef, a signal holding the position where the robot was when control
using the Phantom was started. If the user has moved the robot away from
that starting position, the robot will attempt a jump back to its starting posi-
tion due to the fact that it will appear to the robot as if though a step in the
position reference has just occurred. This will cause an error and the robot
will hit the brakes.

To handle the above described situation, some kind of Go Home routine
has to be implemented. One way of doing this is shown in Figure 7.16. The
figure shows how a subsystem, Mode Switch, has been implemented to deal
with the problem.

Outside the subsystem in Figure 7.16 there is some logics treating the value
from the ph2RobDelay port. That makes the signal going in to the subsystem
Mode Switch through the port phantom2RobotMode have the value one if the
user is controlling the robot with the Phantom and zero if not.

The control structure in Figure 7.16 is presented as a block diagram in
Figure 7.17. The value sent to the rob2PhAngles port will be passed on to
the ph2RobAngles port by the Phantom Robot Connector, for more details see
Chapter 9. It is therefore assumed that there will be a delay of one sample in
the outer loop in Figure 7.17.

To analyze the inner loop in Figure 7.17 the transfer function from v to δ
is needed. Equation 7.2 gives the desired transfer function

δ = KiTs
z − 1 +KiTs

· v (7.2)

From Equation 7.2 the pole of the closed loop system is determined as

pi = 1−KiTs (7.3)

42

7.8 Solving the Bumpless Switching Problem

-1

z-1

Kd(z-1)
Ts z

Ki Ts

(z-1)
+

+

ext2irb.PosRef δ

n

v

Figure 7.17 A block diagram over the control structure implemented in Fig-
ure 7.16 when the draining of the integral is not saturated.

The sampling time is set to Ts = 0.004 s which will lead to a stable pole for
Ki ∈]0, 500[.

An important question regarding the outer loop in Figure 7.17 is how a
disturbance entering through n will affect δ. The transfer function from n to
δ was therefore derived, see Equation 7.4

δ = KdKi(z − 1)
z3 + (KiTs − 1)z2 −KdKiz +KdKi

· n (7.4)

Through clever choices of Kd and Ki, all poles can be placed within the unit
circle which leads to stability. However, tests showed that doing so, the Go
Home routine though completing its task, did so very slowly. Another issue
is that the Go Home routine affected the position reference to the robot even
when it should not. The problem with bumpless switching was therefore solved
in another way, see Section 9.7.

43

Chapter 7. Simulink Model

44

8. Phantom Robot Connector
A program named Phantom Robot Connector written in C++ was developed.
Its main purpose is to enable communication between the Phantom and the
robot to provide a way of controlling the robot’s motions based on these of
the Phantom and to give force feedback to the operator holding the Phantom.

In order to do this, the Phantom Robot Connector collects information
from both the robot and the Phantom, performs calculations and then sends
new information back to them. The communication between Simulink and the
Phantom Robot Connector on a Windows platform, was enabled by another
program that was written in C, see Section 9.5. The C program was written
for Linux, and was a convenient solution to the problem with the Labcomm
and Windows compatibility, see Section 5.2.

The data received from the robot by the Phantom Robot Connector through
the TCP/IP connection is the force signal and the robot angles. The force sig-
nal is sent to the Phantom as force feedback and the robot angles are used
to determine the starting configuration of the robot. From the Phantom, data
concerning the position and orientation of the Phantom tip is gathered. This
data is used to provide the robot with a new set of joint angle references sent
through the TCP/IP connection.

The Phantom Robot Connector will also draw a representation of the robot
and the orientation of the robot’s TCP frame in a graphical window on the
computer screen. This virtual robot can be used to test the performance when
controlling a robot with the Phantom. Virtual objects have been created to
simulate contact forces affecting the virtual robot.

8.1 The Program Modes

There are four different modes in the program, see Table 8.1. They are phant-
om2graphic, robot2graphic, goHome and phantom2robot. Depending on which
mode is active the program will act differently.

The default mode is the robot2graphic mode, where the state of the Phan-
tom is ignored and the graphical robot is a correct representation of the real
robot. From the robot2graphic mode, the user can switch to either the phan-
tom2graphic mode or the phantom2robot mode. In the phantom2graphic mode
the user can control the graphical robot through the Phantom. The r0TCP
frame for the graphical robot will be the same as the TCP frame for the
real robot, but the graphical robot’s TCP frame is based on the state of the
Phantom. In this mode it is also possible for the user to simulate interactions
between the virtual robot and a virtual wall or a virtual sphere, i.e., the user
can "touch" the objects by controlling the virtual robot with the Phantom.

In the phantom2robot mode on the other hand, the Phantom controls both
the virtual and the real robot. Due to the force control entering in the Simulink
model there will be a small difference between the real robot and the graphical
representation of it.

Lastly, the mode goHome can not be selected by the user. It is merely a
transition mode when switching from the phantom2robot mode to the robot2-
graphic mode. This is the solution to a problem occurring in Simulink, see
section 7.8. Briefly its purpose is to prevent the robot to attempt a jump in

45

Chapter 8. Phantom Robot Connector

Mode Program Functionality
phantom2graphic The Phantom is controlling the virtual

robot. The real robot is not affected by
the Phantom.

robot2graphic This mode is active when the Phantom
Robot Connector starts. The virtual robot
is a representation of the real robot, i.e.,
any changes in the Phantom position or
orientation are not displayed.

goHome This mode can not be chosen by the
user and is only active in the transi-
tion from the phantom2robot mode to the
robot2graphic mode in order to make the
real robot return to the position it had
when the human operator switched to the
phantom2robot mode.

phantom2robot The mode where the real robot will follow
the Phantom’s movements.

Table 8.1 The program modes in the Phantom Robot Connector.

position and/or orientation when switching back to the robot2graphic mode
from the phantom2robot mode.

Besides the different mode settings the user can also decide whether the
mapping between the Phantom and the robot should just depend on the po-
sition or on both the position and orientation of the Phantom tip. This must
be chosen when the program is in the robot2graphic mode. If the mapping is
done using both position and orientation everything works as in Chapter 4.
If it is done using the position alone instead, the part of the homogeneous
transformation matrix that describes the Phantom’s orientation is set to the
unit matrix.

8.2 Digital Force Filter

The force signal received by the Phantom Robot Connector from the Simulink
controller is sampled at the frequency 250 Hz in contrast to the haptic ren-
dering which is run at approximately 1000 Hz. To let the Phantom render the
force in 250 Hz is not good for the performance of the haptic rendering, which
will behave more stable with a higher updating frequency, see [21]. In order
to take advantage of the fast haptic rendering a discrete filter was developed.
The purpose of the filter is to smooth the force signal and by doing this attain
smaller force steps to be rendered by the Phantom. When sending this force
through the proposed filter it will appear as though the force signal is being
rendered in 1000 Hz.

Equation 8.1 describes the filter used, where u[k] and y[k] is the force signal
received and rendered by the Phantom respectively, at the time step k.

y[k] = b1u[k] + a1y[k − 1] + a2y[k − 2] (8.1)

46

8.3 Using the Phantom Robot Connector

1.07 1.08 1.09 1.1 1.11 1.12

0.3

0.305

0.31

0.315

0.32

0.325

Simulation of the E!ect of the Discrete Filter Implemented in the PRC

Time / (s)

F
o

rc
e

 /
 (

N
)

Figure 8.1 Shows a force signal and its filtered version. The data used in this figure
has been gathered from the actual force sensor in Section 3.3. However, the filter is
simulated in Matlab under the assumptions that the force signal has a frequency of
250 Hz and that the filtered signal has a frequency of 1000 Hz.

By choosing the parameters b1, a1 and a2 such that equation 1 = b1
1−a1−a2

holds and that the poles of the filter is inside the unit circle, y[k] will go towards
u[k] = u if u is a constant. The discrete filter equation and the corresponding
poles can be seen in Equation 8.2 and 8.3 respectively.

y[k] = b1u[k] + a1y[k − 1] + a2y[k − 2] (8.2)

z = a1
2 ±

√
a2

1
4 + a2 (8.3)

The filter used in Phantom Robot Connector has the parameters a1 = 0.5,
a2 = 0.3 and b1 = 0.2. The poles are z = {0.8521,−0.3521} and b1

1−a1−a2
= 1

which proves that the filter is stable and that y[k] → u[k], k → ∞. A force
signal filtered by the proposed filter can be seen in Figure 8.1.

8.3 Using the Phantom Robot Connector

When the Phantom Robot Connector starts, a console will appear and the
user will be given three options to choose between, see Figure 8.2. The first
option is to start running a virtual robot equipped with a tool that is a virtual
replica of the force sensor construction in Figure 3.5. The second option is
to run the program with the same virtual robot but without the tool. Both
these options make the program run without any communication with the real
robot. In these cases, the Phantom Robot Connector can therefore be seen as
a pure virtual robot that will demonstrate how the real robot would have

47

Chapter 8. Phantom Robot Connector

Figure 8.2 The Phantom Robot Connector awaits the user’s choice at startup.

behaved, had it been connected. The third option in the console is to connect
to the IRB140B over a network. As soon as a connection is established the
main program will start. The force sensor described earlier is assumed to be
attached to the IRB140B in option number three.

There are a number of different keys the user can press to control the
run-time behavior of the Phantom Robot Connector. A full list is found in
Appendix B. One of the things the user can activate is the painting mode,
by pressing [D]. If this is activated the program will draw small blue surfaces
perpendicular to the sensed force at the correct location in the 3D-space. This
will work for both virtual objects in the phantom2graphic mode and for real
world objects in the phantom2robot mode. If the user presses [C] all the paint
is erased. There are also a lot of small visual settings that the user can activate
or deactivate.

The view perspective of the virtual robot can be changed by moving around
on a sphere surrounding the robot. This is done by pressing the left and right
arrow keys to move around a horizontal circle and by pressing the up and down
arrow keys to move around a vertical circle. Pressing the page up and page
down keys will change the radius of the sphere causing the view perspective
to zoom in or out. By pushing key [P], [R], [H] the program will change mode
to phantom2graphic, robot2graphic or phantom2robot respectively. To change
the mapping setting between free orientation and fix orientation of the TCP
frame the [O] key is pushed. All settings that are activated will be highlighted
in the color green.

In the phantom2graphic mode some other settings will be revealed on the
screen. These are the No Obstacle, Wall and the Sphere and they are activated
by pressing the [N], [W] or [S] keys respectively. As the names imply they
activate the virtual wall, the virtual sphere or in the first case neither of them.
The setting that is activated will as before be highlighted in green.

Some settings can only be made in a predetermined order. This is in order
to avoid a strange behavior from the program. For example, the virtual ob-
stacles are only available in the phantom2graphic mode. They will disappear
when changing mode. The allowed combinations can be seen in figure 8.3.

On the right side of the screen the real robot angles are printed. But if the
mode is set to phantom2graphic it will only show the simulated robot angles
that the graphical robot are using. Below the Robot angles the force signal
is expressed. Also for the force it holds that it is not the real force signal
that is represented in the phantom2graphic mode. In the other modes it is the
received force signal that is printed on the screen.

To toggle full screen mode the [F] button is used, whereas pressing [Q] or

48

8.3 Using the Phantom Robot Connector

P R H

O

W

S

N

Z

robot2graphics phantom2robotphantom2graphics

Wall

Sphere

No obstacle

Hide/View obstacle
Free orientation

Figure 8.3 Depending on which mode is active, different actions can be taken.
For the full list, see Appendix B.

[ESC] will exit the program. The force sensor attached to the robot can be
reset by pressing [0].

49

Chapter 8. Phantom Robot Connector

50

9. Code Implementation
In this chapter follows a more detailed description about how the Phantom
Robot Connector is coded. Some C++ functions will be mentioned, however
without their parameters or return values. To make it clearer, all function
names will be written in a fixed width font. For more details it is recom-
mended to have a look directly at the C++ or C code. It can be accessed by
visiting the publications page of the Automatic Control website (at present
http://www.control.lth.se), and searching for the thesis title. There will be
links to a zip-archive containing the code.

The program uses some different code packages. These areGLUT (OpenGL
Utility Toolkit), OpenHaptics and ExtCtrl Library. They each represent one of
three corner stones in the Phantom Robot Connector. To create the graphics,
GLUT is used. It is a graphics API in C that uses OpenGL (Open Graphics
Library), [19]. Besides providing an easy way of creating graphical applications
it is also supported by many different platforms which makes it very useful.
To render a haptic simulation and to communicate with the Phantom, the
OpenHaptics API is used, or more specifically the HDAPI, see Section 2.2.
OpenHaptics is also available on more than one platform. Finally, the ExtCtrl
Library was used to make a proper mapping between the Phantom and the
robot. It contains functions written in C that handles the forward and inverse
kinematics for, amongst other robots, the IRB140B. There is also a fourth
corner stone, the communication with the real robot that will be presented
more in Section 9.4.

In the following, the term Phantom angles will refer to a set of robot joint
angles calculated based on the state of the Phantom. Robot angles on the other
hand will refer to joint angles received from the robot.

9.1 An Overview of the Code Structure

The program is based upon three threads: The haptic, the graphic and the
underlying thread concerning the TCP/IP connection. An overview of the
structure is seen in Figure 9.1. The program starts by setting the initial con-
ditions and global variables and starting the threads.

There are some different classes used. The RobotHaptics class, see Sec-
tion 9.2, is where all the calculations refereing to the mapping between the
robot and the Phantom configuration are made. The RobotGraphics class, see
Section 9.3, have a set of functions concerning the drawing of the virtual robot.
The two classes are totally independent of each other. In order to take advan-
tage of them both a new class named Robot extends them, see Figure 9.2. No
further functions are added to the Robot class.

The connection to the robot is made through a TCP/IP connection an
therefore a Communicator class was written. More correctly, three different
classes were implemented where one of them is an abstract base class. For fur-
ther details see Section 9.4. The idea is that the Communicator classes handle
all code concerning the TCP/IP connection by themselves. When creating an
instance of one of these classes, an underlying thread will take care of all re-
ceiving and sending of data over the network. This approach makes using them
easy, because all synchronization is made within the classes which will avoid

51

Chapter 9. Code Implementation

Phantom Robot Connector (Windows)

IRB140B

Communicator Object

thread

Simulink model 250 Hz

in
ph2RobAngles

out
rob2PhAnglesrob2PhForce

out

Haptic Thread

~1000 Hz

hapticRendering

Phantom Premium A

Graphic Thread

graphicRendering

receiveFromRobot

sendToRobot

Synchronous Functions

Asynchronous function

copyRobotAngles

setRobotAngles

copyPhantomAngles

setPhantomAngles

copyCalibration

calibrate

copyUserMode

setUserMode

setStartCon!guration

Synch. Func.

sendDelayToRobot

receiveDelayFromRobot

get funcs

set funcs

copyDelayValue

setDelayValue

rob2PhDelay

outin
ph2RobDelay

Client Program
(Linux)

transform

force
velocity

Figure 9.1 An overview of the program structure and communication when the
Phantom Robot Connector is run on a Windows system. Far more functions and
variables exist than what is shown here. Pay attention to the synchronization of the
shared data.

Robot

RobotGraphics RobotHaptics

Figure 9.2 The inheritance tree for the Robot class.

halting the program.
The haptic thread uses an instance of the Communicator and can therefore

send data to the Simulink model whenever it has finished its calculations. The
lower paced Simulink controller then uses the latest data it has received when
performing its own calculations.

The classes Obstacle, Wall and Sphere are used to simulate objects in the
virtual environment, see Section 9.6. The Obstacle class is an abstract base
class, or an interface, for the Wall and Sphere class and can be used to define
the haptic and graphic behavior of a given object.

52

9.2 The RobotHaptics Class

9.2 The RobotHaptics Class

The RobotHaptics class is responsible for all calculations concerning the map-
ping between the real robot and the Phantom. When initializing an instance
of the RobotHaptics class the current angles of the real robot are used to cal-
culate all the static transformations HrBase

hBase, HhBase
rBase , HrBase

r0TCP and HhTCP
rTCP , see

Figures 4.1 and 4.3. The user must also define the transformation HrF lange
rTCP .

If no tool should be used, the matrix is simply set to an identity matrix. All
calculations are assumed to be in millimeters.

The explicit mapping is made in the function updateJointAngles which
has the matrix HhBase

hTCP and the latest joint angles for the robot as arguments.
HhBase
hTCP is representing the position and orientation of the Phantom tip. By us-

ing the method of mapping described in Section 4.1, HrTCP
rBase can be calculated.

The inverse kinematics needed in that method are determined by the function
optInverseFlange from the ExtCtrl Library. It determines all solutions to the
inverse kinematics problem and returns the closest solution in means of the
difference between the possible solution and the previous set of joint angles for
the robot by using the 1-norm. The joint angles returned are called Phantom
Angles as previously defined.

9.3 The RobotGraphics Class

All the code concerning the drawing of the robot can be found in the Robot-
Graphics class. It uses OpenGL for the graphic rendering. When initializing
an instance of the RobotGraphics class all values representing the standard
Denavit-Hartenberg representation, see Table 3.1, are set. The function draw
will draw the robot and uses the joint angles as argument. Using Equation 3.4
and the values in Table 3.1 all joint positions can be calculated and thereby
made drawable. All of the robot’s links are visualized as cones and all joints as
spheres in different sizes. Therefore it is not an entirely correct visualization
of the real IRB140B.

The function draw will also draw the JR3 force sensor if it is mounted on
the virtual robot along with the robot base frame and current TCP frame,
see for example Figure 9.8. In all calculations in the RobotGraphics class, the
unit is assumed to be meters.

9.4 The Communicator Classes

Depending on which operating system is used the communication with the
robot has to be done differently. If the Phantom Robot Connector is run on a
Linux system, the Phantom Robot Connector can communicate with the robot
directly. In that case it can use the functions generated in Section 5.2 to send
and receive data to and from the robot.

If however the Phantom is connected to a computer running Windows,
as was the case during this thesis, complications arise. The main problem
is that the labcomm functions, see Section 5.2, are written for Linux only.
No Windows counterpart exists. Therefore, in order to be able to run the
Phantom Robot Connector on a Windows platform, a new program has to
be implemented on another computer that is running Linux, see Figure 9.1.

53

Chapter 9. Code Implementation

Communicator

VirtualClient LinuxClient WindowsServer

Figure 9.3 The inheritance tree for the communication classes.

The program is called winComm and was written in C, see Section 9.5. Its
purpose is to establish communication over TCP/IP with both the Phantom
Robot Connector on the Windows computer and the built Simulink model on
the robot computer and to pass on the values they need to send to each other.

By introducing the class structure seen in Figure 9.3 the shifting between
different platforms will be made easier. The Phantom Robot Connector has a
pointer to a Communicator as a global variable. Then it can create an instance
of the appropriate subclass and use the pointer for access.

The Communicator class is an abstract class with four public abstract func-
tions: sendToRobot, receiveFromRobot, sendDelayToRobot and receive-
DelayFromRobot. As a result, each of the subclasses to the Communicator
class has to implement their own version of these four functions. For a Linux
system, the Phantom Robot Connector acts as a client that connects to the
robot. Therefore the subclass LinuxClient was written. It was however never
implemented since the Phantom Robot Connector was running on Windows
throughout the whole thesis. In case of Windows, the Phantom Robot Con-
nector instead acts as a server to which the additional Linux run C-program,
winComm, is connected. Hence the subclass to be used is given the name
WindowsServer. Both subclasses are however dealing with the communication
part of the Phantom Robot Connector why their common base class is called
Communicator.

The WindowsServer has a thread of its own, as should the LinuxClient
have if implemented. That thread copies the values stored when the Phantom
Robot Connector calls sendToRobot or sendDelayToRobot and sends these
values to the robot accordingly. Likewise, the functions receiveFromRobot
and receiveDelayFromRobot copies the latest values received from the robot
by the thread when they are called by the Phantom Robot Connector. All
copying and setting of values in these classes is done in a thread-safe manner.
Mutual exclusion is used in a way suitable for the current platform. The in-
ternal thread is run as fast as possible. However, fresh data is available from
Simulink only at a rate of 250 Hz, see Chapter 7.

If the LinuxClient should be implemented, it should be functioning in the
same way as WindowsServer to prevent any misbehavior.

In Figure 9.3 a third sub class can be found, the VirtualClient. As the
name suggests, this class has no TCP/IP connection. Its only responsibility
is to appear to the Phantom Robot Connector as if though it communicates
with an ideally working robot, i.e., the angles sent to the robot will also be
the angles received from the robot. This sub class can hence be used both on
Linux and Windows platforms and also when no robot is connected, in order
to test the graphics etc.

54

9.5 Client Program for Linux

Sphere

Obstacle

Wall

Figure 9.4 The inheritance tree for the Obstacle classes.

9.5 Client Program for Linux

When the Phantom is connected to a computer running Windows the need
for a C program developed for Linux emerges. This program has been named
winComm due to its sole purpose: to enable the Windows computer to com-
municate with the robot, see Figure 9.1.

The program starts by setting up the TCP socket connection to the server
initialized in the Phantom Robot Connector by the WindowsServer class.
When this is done winComm advances and starts to set up the communi-
cation with the robot. After all necessary steps for successful communication
with the built Simulink model have been taken, winComm starts a thread.
Its duty is to listen for information sent out by the Simulink model. Helping
the thread with this is a few handler functions, one for each out port in the
Simulink model that has been defined in the *.lc file in Section 5.2.

After this, winComm heads into an infinity loop where it conducts the
following actions repeatedly: Read from Windows computer, send to robot,
receive from robot and finally send to Windows computer. The infinity loop
does not halt to wait for fresh data from Simulink. It just sends to Windows
the latest data received by the handler functions no matter how old it is.
It can seem unnecessary that all this old information is sent, but it makes
winComm totally independent of the sampling time of the Simulink model.
That independency is deemed worth striving for in case the sampling time in
the Simulink model should be varied.

9.6 Obstacle Classes

The Obstacle class is the base class to the Wall class and the Sphere class,
see Figure 9.4. It exists of only three abstract functions. They are getForce,
isInside and draw.

The purpose of the function isInside is to decide whether a position in 3D-
space should be considered to be inside the virtual object using the Obstacle
class. The function getForce calculates the force a virtual object will exert if
the function isInside returns true. The combination of these two functions
gives all the information needed to simulate a haptic environment. The final
function draw is responsible of drawing the object in 3D-space.

The Wall class simulates a virtual wall that lies in the xy-plane, see Fig-
ure 9.6. The virtual force experienced by the surroundings is simulated as a
spring force, see Figure 9.5. The Sphere class simulates a sphere with a spec-
ified radius and center point, see Figure 9.7. For the Sphere class the force is

55

Chapter 9. Code Implementation

wall

x1x0 x

k

Figure 9.5 The virtual wall will return a force F = −k(x1 − x0).

Figure 9.6 The virtual wall. A simple graphical representation of the JR3 force
sensor is mounted on the robot.

defined as a spring force normal to the tangent of the surface in the contact
point.

9.7 The Haptic Thread

The haptic thread runs at a frequency of approximately 1000 Hz. The choice
of a high frequency ensures a stable haptic rendering that is perceived as a
natural sense of touch by a human operator, [21]. The haptic rendering takes
place in the function hapticRendering which is called by the haptic thread
in an asynchronous way, see Section 9.9. However the force feedback and the
receiving of the state of the Phantom takes place in a special high priority
section in hapticRendering. In that section it is guaranteed that the state

56

9.7 The Haptic Thread

Figure 9.7 The virtual sphere.

of the Phantom remains unchanged, [21]. Here, the current position, velocity
and orientation of the Phantom tip is read and the latest force signal received
from the robot is sent to the Phantom as force feedback.

Outside the high priority section calls are made through a pointer to a
Communicator object to get the latest robot angles and force signals. These
values are then saved through synchronous calls to different functions, see
Section 9.9.

Thereafter, depending on which mode is active, different pieces of code
are executed. In the robot2graphic mode calls are made to the synchronous
functions calibrate and setStartConfiguration. The function calibrate
saves the inverse of the transform collected from the Phantom. This is later
on used to solve the jump problem, see Section 4.2. The function setStart-
Configuration sets the r0TCP frame to be the same as the current TCP
frame for the robot.

If the phantom2robot mode is active the calculated Phantom angles will be
sent to the robot. When the mode goHome is active the calculated Phantom
angles are changing with constant velocity towards the received robot angles.
This is a solution to the problem discussed in Section 7.8. Thus, the Phantom
angles are totally independent of the state of the Phantom in the goHome
mode.

The piece of code executed in the phantom2graphic mode is similar as the
phantom2robot but with the difference that no data communication with the
robot occurs. All forces felt by the Phantom are from the virtual environment,
e.g., the wall and sphere obstacles.

The jump problem described in Section 4.2 is triggered when switching
modes from robot2graphic to phantom2robot. To solve this the same solution
as suggested in Section 4.2 is used.

Finally calls are made to the functions updateHapticFrequency and up-
dateDelay. The function mentioned first calculates an approximation of the
haptic frequency. This is done by measuring the time it takes for the haptic
thread to run for a predetermined number of cycles. The latter function does a
similar job. It calculates an approximation of the time elapsed during a round

57

Chapter 9. Code Implementation

trip back and forth to the robot. The approximation is achieved by measuring
the average time for a significate number of round trips. Each round trip is
marked by the return of a value sent to the Simulink controller on the robot’s
main computer. When a value returns another value is sent out. The time it
takes until that specific value is received is defined as the time for one round
trip. By default the values sent out are shifting between zero and one but the
user can change that into a shift between two and three instead by pressing
the [0] button, see Appendix B. This is used to reset the force sensor, see
Section 7.3.

9.8 The Graphics Thread

In the main function all the initialization concerning the graphics is done, e.g.,
the window size, the depth settings, the light settings etc. The exact thread
frequency for the graphics loop is not critical as in the case of the haptic thread.
However it is recommended that the CPU is fast enough for the animation to
appear smooth to a human eye.

The graphics thread never communicates with the Communicator object
directly. If any values shared with the haptic thread are needed they are col-
lected through calls to synchronous functions, see Section 9.9 and Figure 9.1.
All the global variables that are only used in the graphic thread are completely
thread safe and can be used without fear of any conflict.

In the graphics loop a call to the function graphicRendering is made
repeatedly. In graphicRendering all things that concern the actual drawing
on the screen is done through calls to several functions. Their purpose is to
draw everything that should be visible in the graphical window, e.g., the robot,
the different coordinate frames, the floor, an obstacle (if any) and the robot’s
workspace, see Figures 9.6, 9.7, 9.8 and 9.9.

To draw the robot a call is made through the instance of the robot to
the function draw which draws the robot based on the joint angles. The joint
angles used correspond to the Phantom angles if the phantom2graphic mode
is active but otherwise they correspond to the joint angles for the real robot.
There are also calls made to draw some of the different coordinate frames. To
draw the Phantom’s workspace the function drawWorkspace is called. It draws
a rough approximation of the space where the Phantom will render a more or
less correct force feedback, see Figure 9.8. There is also a lot of information
printed as text on the screen. An example of that is the approximation of the
the graphic frequency. The graphic frequency is calculated approximately in
the function updateGraphicFrequency which works in the same way as the
function updateHapticFrequency, see Section 9.7.

An instance of the Sphere class or the Wall class is used to draw a virtual
wall or a virtual sphere depending on which setting is activated by the user.

There is a class called Painter. It can be used to make invisible obstacles,
virtual or real, visible. Using synchronous functions, information about the
current force and the robot’s TCP position is gathered. This information can
be used by the Painter class. If the force is higher than a threshold value the
instance of the Painter class will use the position and the force to derive a
matrix describing a frame where the z-axis is aligned with the force direction.
This is used to draw a small blue square perpendicular to the force. All these
frames are stored in a vector so that they can be drawn at each graphics

58

9.8 The Graphics Thread

Figure 9.8 The virtual IRB140B near the starting configuration for which the
rTCP frame has been drawn. As throughout this report the x, y and z axes corre-
spond to red, blue and green respectively. The black-edged box indicates an approx-
imation of the current workspace.

Figure 9.9 Another configuration of the virtual IRB140B. The Phantom has been
moved farther away from the hBase frame causing the IRB140 to move farther away
from its starting rTCP frame.

59

Chapter 9. Code Implementation

update.
The graphics loop also checks if any keyboard key or mouse button has

been pressed. One of the functions mouseFunc, inputKey or inputKeyboard
is then called depending on which action that took place. This allows the user
to modify the program in a predetermined way while running it. For example,
the function lookAt is controlling the perspective of the graphic scene and is
called by the function inputKey. Hence it is possible to change the perspective
of the virtual robot while running the program, see Section 8.3.

9.9 Synchronous Functions

In OpenHaptics the HDAPI controls all communication with the Phantom.
It provides a scheduler that is responsible of deciding which code that should
be run at a specific time. To provide the scheduler with code either one of
the functions hdScheduleSynchronous or hdScheduleAsynchronous can be
used. These functions take three arguments: function name, the data sent
to the function specified, and finally which priority this call has compared
to other scheduled functions. The function hdScheduleSynchronous means
that the scheduler will try to execute the function provided immediately and
without any interruptions. For deeper an more detailed information on how
the OpenHaptics scheduler works see [21] and [20].

The most important function is the hapticRendering which is scheduled
as asynchronous and with the highest possible priority. Therefor the haptic-
Rendering will be called every time in the haptic thread with a frequency
of approximately 1000 Hz. The scheduler is also responsible for the functions
described in Table 9.1. They are scheduled by hdScheduleSynchronous to
achieve a thread safe behavior.

60

9.9 Synchronous Functions

Function name Description
copyRobotAngles Copies the real robot angles.
setRobotAngles Saves the real robot angles.
copyPhantomForce Copies the force that is exerted on the Phan-

tom.
setPhantomForce Sets the force that should be exerted on the

Phantom. The force will not be exerted during
the robot2graphic mode.

copyPhantomAngles Copies the robot angles calculated from the
Phantom.

setPhantomAngles Saves the robot angles calculated from the
Phantom.

copyhTCP2hBase Copies the transformation saved from the
Phantom.

sethTCP2hBase Saves the transformation from the Phantom.
copyCalibration Copies the inverse transformation from the

Phantom which was saved by calibrate.
calibrate Calibrates, which means to save the in-

verse of the Phantom transformation during
robot2graphic mode.

setStartConfiguration Sets the start configuration for the robot which
means that hTCP frame is defined.

copyUserMode Copies the currently active mode.
setUserMode Sets the current mode.
copyPh2GrMode Copies the currently active Ph2Gr mode. This

is used to decide which, if any, obstacle is ac-
tive.

setPh2GrMode Defines what obstacle is active.
copyFixOrientation Copies the fix orientation setting.
setFixOrientation Sets the current orientation setting.
copyHapticFrequency Copies the saved estimation of the haptic

thread frequency.
setHapticFrequency Saves the estimation of the haptic thread fre-

quency.
copyDelayValue Copies the measured delay for a signal round

trip to the robot.
setDelayValue Saves the measured delay for a signal round

trip to the robot.
resetForceSensor Resets the force sensor attached to the robot.
copyResetForceSensor Copies the current reset force sensor setting.

Table 9.1 A list of all synchronous functions called by both the graphic and haptic
thread.

61

Chapter 9. Code Implementation

62

10. Results
In previous chapters, theory and the control of the robot with the help of
a haptic device were described. In this chapter the results of the thesis are
presented, i.e., how everything previously described in this report worked when
tested. A lot of tests concerning the impedance parameters were done in order
to decide the most suitable parameter combination for the impedance control.
Something that is also shown is how different parameter settings can lead to
other useful implementations, e.g., lead-through or simulating the phenomenon
of inertia.

The most interesting result is perhaps how a human operator experiences
the environment of the robot, i.e., the haptic behavior for the Phantom-Robot
relation. Several tests were conducted to investigate how different obstacles
were experienced haptically when touched by the robot. The stiffness of the
different materials was also derived in order to see how the stiffness is influ-
encing the haptic behavior.

There was a painting mode implemented in the Phantom Robot Connector
which can be used both in the virtual and the real world. The painting was
investigated in Section 10.5.

10.1 Stiffness of the Materials Used

Haptic tests were performed by touching three different materials with the
IRB140B. The objects were the cardboard box seen in Figure 10.15, a small
piece of rubber foam attached to the mentioned cardboard box and a piece of
cellular plastic also attached to the mentioned cardboard box. It is of inter-
est to have a rough estimation of the stiffness for the three materials. These
estimations could help giving an understanding of which impedance control
parameters that should be used and how the material stiffness influences the
haptic behavior.

By setting the desired position for the robot to be inside an object through
inducing a step, the impedance controller will make the robot push on the
object in order to reach the set point. To estimate the stiffness parameter of
that object, the force can be plotted in relation to the position of the robot’s
TCP.

A step such as described above was performed on the three materials men-
tioned earlier, see Figures 10.4, A.5 and A.6. During the tests the force and
the robot’s TCP position were therefore measured and their relation can be
seen in Figures 10.1, 10.2 and 10.3 for the three materials respectively. A
straight line was estimated in the area of interest using least-squares and its
slope corresponds to the stiffness. The stiffness parameters were calculated to
k1 = 7.40 N/mm for the cardboard box, k2 = 0.48 N/mm for the rubber foam
and k3 = 3.72 N/mm for the cellular plastic.

Conclusions
The stiffness value of k1 = 7.3980 N/mm for the cardboard box is a very
rough approximation because the relation between the force and position is
clearly not linear, see Figure 10.1. A reason for the nonlinear behavior may be

63

Chapter 10. Results

778 778.5 779 779.5 780 780.5 781 781.5 782
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

TCP Position / (mm)

F
o

rc
e

 /
 (

N
)

Sti"ness Relation for the Cardboard Box

Measured

Least Squares

Figure 10.1 The relation between the robot’s TCP position and the force exerted
on it when trying to reach a point located inside a cardboard box. The blue line is
defined by the filtered force signal and the TCP position, both expressed in the robot
base frame. The red line is the least-squares estimation for the part of the blue line
within the interesting interval.

730 735 740 745 750 755
−7

−6

−5

−4

−3

−2

−1

0

TCP Position / (mm)

F
o

rc
e

 /
 (

N
)

Sti"ness Relation for the Rubber Foam

Measured

Least Squares

Figure 10.2 The relation between the robot’s TCP position and the force exerted
on it when trying to reach a point located inside a piece of rubber foam. The blue
line is defined by the filtered force signal and the TCP position, both expressed in
the robot base frame. The red line is the least-squares estimation for the part of the
blue line within the interesting interval.

that the cardboard box was not held perfectly still by its attachment. Another
reason is that the box was empty and thereby flexible in a nonlinear way.

For the rubber foam the stiffness value of k2 = 0.4848 N/mm seems more
accurate due to the more linear behavior in the force position relation in
Figure 10.2. The part of the data that behaves strange is partly due to the
piece of rubber foam used being quite small and thin. This caused the material
to behave strange if the robot pushed to far inside the piece of rubber foam.

64

10.2 Choosing the Impedance Control Parameters

632 633 634 635 636 637 638 639 640 641
−16

−14

−12

−10

−8

−6

−4

−2

0

TCP Position / (mm)

F
o

rc
e

 /
 (

N
)

Sti"ness Relation for the Cellular Plastic

Measured

Least Squares

Figure 10.3 The relation between the robot’s TCP position and the force exerted
on it when trying to reach a point located inside a piece of cellular plastic. The blue
line is defined by the filtered force signal and the TCP position, both expressed in
the robot base frame. The red line is the least-squares estimation for the part of the
blue line within the interesting interval.

In Figure 10.3 the stiffness for the piece of cellular plastic was approximated
to k3 = 3.7206 N/mm. The stiffness value lies thereby in between the value for
the other two materials used. The piece of cellular plastic was also attached
to the cardboard box which introduces some of the nonlinear behavior.

10.2 Choosing the Impedance Control Parameters

The purpose of the impedance control is to avoid large forces and to make
the haptic behavior more smooth. The parameters to choose are the M , D
and K according to Equation 3.12. Another approach is to use Equations 3.18
and 3.19. Then there are instead the mass, M , the eigenfrequency, ω, and
the damping, ζ, to decide. A higher eigenfrequency means that the robot will
respond faster to new directions but doing so with more oscillations. A higher
damping will make the amplitude of the oscillations decrease faster. The mass
decides how the system responds to forces, i.e., a higher mass increases the
inertia of the system.

The goal when choosing the parameters was that the robot should be able
to handle many different materials. Materials with higher stiffness is harder
for the impedance control to work effectively at. Therefore, most of the tests
were conducted on the stiffest material at hand, i.e., the cardboard box.

Human Operator Touching a Cardboard Box
The most important factor when deciding which impedance control parame-
ters to choose is how the robot behaves when being controlled by the Phantom.
Therefore, a test was conducted where the human operator should try to con-
trol the robot in such a way that the Phantom position corresponded to a TCP
position inside an obstacle consisting of a the cardboard box in Section 10.1.
Furthermore, the operator should try to hold the Phantom as still as possible.

65

Chapter 10. Results

ω0 (rad/s) ζ M (kg) D (Ns/m) K (N/m)
Set 1 8.0 1.0 100 1600 6400
Set 2 8.0 1.0 50 800 3200
Set 3 8.0 0.6 100 960 6400

Table 10.1 The parameter settings used in the different tests.

The cardboard box was positioned with its surface perpendicular to the
robot base frame’s y-axis. Three tests were performed with the parameter
settings seen in Table 10.1. The results can be seen in Figures A.1, A.2 and A.3.

It is hard to draw any decisive conclusions from the test because it is a
human that controls the robot. But some general thinking can be done anyway.
The force is clearly larger when using the parameters of Set 1 in comparison
to the other set of parameters. This is due to the fact that the user was able
to push harder without getting an uncontrollable oscillation in the Phantom.
In the tests, forces were also recorded in the x and z directions and that was
a consequence of the cardboard box’s surface not being perfectly positioned
and that the surface is flexible when pushed upon. It is also noticeable that
some of the oscillations come from the human operator’s inability to hold the
Phantom still when forces are feeded back to the Phantom.

Touching a Cardboard Box Automatically
In order to investigate how much the impedance controller itself causes oscil-
lations the same tests as described in Section 10.1 were performed. Only the
tests concerning the cardboard box are analyzed here. All three parameter
sets defined in Table 10.1 were used. Part of the result is seen in Figures 10.4,
10.5 and 10.6. More data concerning the tests can be seen in Figures A.7, A.8
and A.9.

Using the parameters of Set 1 gives the smallest oscillations, this despite
the fact that it handles the biggest forces. The larger mass makes the inertia
bigger and more insensitive to fast force changes. However, the drawback of
this is of course that it is not desired that the robot totally ignores forces. Using
Set 2 parameters gives a similar result as for Set 1 but with bigger oscillations
that never disappear which makes this set of parameters unwanted. In the last
set of parameters, Set 3, the damping is lowered and the behavior of the system
is almost identical to when using Set 2 but with slightly larger oscillations.

Final selection of Impedance Parameters
After considering the tests described earlier in this section, the impedance
parameters in Set 1 were chosen. This because of the overall performance such
as taking care of big forces and in the same time minimizing the oscillations.
The haptic behavior worked acceptably with these parameters and the robot
followed the Phantom in a good manner in free motion, acting quickly and
precisely. The parameters are not necessarily optimal, but they define a system
that works fairly well in the situations tested and is perceived as natural by
a human operator holding the Phantom, though it is hard to prove the latter
statement.

66

10.3 Impedance Control

0 5 10 15
778

780

782

784

Time / (s)

y
 /

 (
m

m
)

TCP−Position in y−Direction

Measured Position

Desired Position

0 5 10 15
−20

−15

−10

−5

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

Figure 10.4 The two plots show how the force and TCP position in the robot
base frame’s y-direction change through time when a step occurs in the desired
y-position. The desired position is set to be inside the cardboard box. The blue
line is the actual robot position and the red line is the desired position. The set of
impedance parameters used is Set 1.

0 5 10 15
778

780

782

784

Time / (s)

y
 /

 (
m

m
)

TCP−Position in y−Direction

Measured Position

Desired Position

0 5 10 15
−15

−10

−5

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

Figure 10.5 The two plots show how the force and TCP position in the robot
base frame’s y-direction change through time when a step occurs in the desired
y-position. The desired position is set to be inside the cardboard box. The blue
line is the actual robot position and the red line is the desired position. The set of
impedance parameters used is Set 2.

10.3 Impedance Control

The impedance control makes the robot behave like a spring-mass-damper
system. In this section the behavior of the robot due to the impedance control
is investigated.

67

Chapter 10. Results

0 5 10 15
778

780

782

784

Time / (s)

y
 /

 (
m

m
)

TCP−Position in y−Direction

Measured Position

Desired Position

0 5 10 15
−30

−20

−10

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

Figure 10.6 The two plots show how the force and TCP position in the robot
base frame’s y-direction change through time when a step occurs in the desired
y-position. The desired position is set to be inside the cardboard box. The blue
line is the actual robot position and the red line is the desired position. The set of
impedance parameters used is Set 3.

Step in the Desired Position
Under the assumption that the robot follows the position reference perfectly
the robot can be viewed upon as a spring-mass-damper system. The theo-
retical step result can be derived, i.e., making a step in the desired position
reference gives the where the robot position should be. Three experiments were
conducted where a step in the desired position reference for the three different
sets of impedance parameters in Table 10.1 was performed. The steps were in
the y direction of the robot base frame. The desired velocity reference was as-
sumed to be zero, this in order to avoid calculating the discrete derivative for
a step which would have given strange results. The step experiments together
with the corresponding theoretical calculations are presented in Figure 10.7.
Notice that the theoretical values are the same for the parameter sets Set 1
and Set 2.

In Figure 10.7 it can be seen that the reaction from the robot is a bit slow.
The explanation is that it takes some time for the robot to follow the reference
values sent from the impedance control. This due to the real inertia and motor
limitations for the robot IRB140B. The damping is set to one for the Set 1
parameters and that forces the robot to avoid any oscillations when following
the step. When the damping is set to 0.6 the system behaves faster but with
the consequence that it oscillates.

Force Impulse
A force impulse was generated on the robot’s TCP in order to see if the
robot would behave like the spring-mass-damper system defined. In contrast
to earlier tests the desired position is hold fixed but the generated force impulse
makes the impedance control to move the robot in opposite direction to the
force direction. If the force is only applied for a short time the robot will try to
go back to its original equilibrium state. The equilibrium state is the desired
position, due to the spring characteristics.

68

10.3 Impedance Control

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

Step Response

Time (sec)
A

m
pl

itu
de

 /
(m

m
)

Theoretical Position

Measured Position

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

Step Response

Time (sec)

A
m

pl
itu

de
 /

(m
m

)

Theoretical Position

Measured Position

Figure 10.7 The two plots show how the TCP position changes through time
when a step occurs in the desired y-position in comparison to the theoretical step re-
sponse derived from the impedance control used. The upper plot is for the impedance
parameters of Set 1 and the lower for Set 3. The parameters of Set 2 gives precisely
the same result as plot one when no forces are acting on the robot.

0 1 2 3 4 5
560

570

580

590

600

Time / (s)

y
/ (

m
m

)

TCP−Position in y−Direction

0 1 2 3 4 5
−300

−200

−100

0

Time / (s)

F
or

ce
 /

(N
)

The Force Impulse in y−Direction

Figure 10.8 The robot’s TCP position and the force impulse generated by a
human pushing on the TCP in the y-direction. The parts of the position and force
presented are in the robot base frame’s y-direction. The set of impedance parameters
used is Set 1.

The test described was performed, with the chosen impedance parameters
of Set 1, where the robot was pushed in the robot base frame’s y-direction.
The result is seen in Figure 10.8.

Because of the inertia due to the impedance control and the speed of the
robot motors there is a time delay before the force impulse affects the robot
in any significant way. The force impulse showed in Figure 10.8 is also delayed

69

Chapter 10. Results

0 2 4 6 8 10 12
560

570

580

590

600

Time / (s)

y
/ (

m
m

)
TCP−Position in y−Direction

0 2 4 6 8 10 12
−300

−200

−100

0

Time / (s)
F

or
ce

 /
(N

)

The Force Step in y−Direction

Figure 10.9 The robot’s TCP position and the force step generated by a human
pushing on the robot TCP with a constant force. The position and force presented
is the part directed in the y-direction. The set of impedance parameters used is Set
3.

in comparison to the real force due to the time delay introduced by the force
sensor and the force filter implemented in the Simulink model.

The damping parameter used was defined to one, and that prevents the
robot from oscillating. As seen in Figure 10.8 the robot position returns to the
desired position a little bit slow and that is the prize the robot will have to
pay to avoid oscillations.

Another force test was also performed where the robot was influenced
by a force step generated by a human hand. The result is presented in Fig-
ure 10.9. The robot stays in the new equilibrium position which is decided
by the stiffness parameter, K, in the impedance controller. The robot shows
small oscillations in the position but they are likely to stem from difficulties
for the human to generate a constant force.

Lead-Through
That the human operator can move the robot in any wanted direction by
holding the end effector is called lead-through. The lead-through behavior can
be achieved as a byproduct of the implemented impedance controller by setting
the influence by the stiffness parameter,K, in Equation 3.12 to zero. The robot
will then behave in similar way as an object laying still in water. If pushed in
any direction it will go there but it will slow down due to the damping and
eventually stop moving.

A test where the stiffness effect was turned off was conducted. The human
operator tried, by holding the end effector with the hands, to make the robot
move in some kind of circular path. The path for the robot’s TCP is seen in
Figure 10.10. The impedance parameters used were equivalent toM = 10,D =
31 and K = 0. The result implies that the robot follows the calculated path
good at least for moderate movements. By lowering the mass and damping it
would be considerably easier to move the robot which could be preferable.

Lead-through is achieved when the stiffness effect is removed from the
impedance control. By also setting the damping to zero the robot will simulate
how the phenomenon inertia works. The robot then behaves as Newton’s first
and second law imply. If the robot is pushed it will continue with the given

70

10.4 Controlling the IRB140B With the Phantom

0 50 100 150 200 250
700

720

740

760

780

800

820

840

860

880

TCP Position in x / (mm)
T

C
P

 P
o

si
ti

o
n

 in
 z

 /
 (

m
m

)

The Lead Through Movement in the xz−Plane

Figure 10.10 The human operator leads the robot through a circular path in the
xz-plane. The impedance parameters were set to M = 10, D = 31 and K = 0. In
the figure there are two lines, one red and one blue. The red is where the impedance
controller wants the robot to be and the red where the robot actually is.

velocity for an infinite time. However, due to physical restraints for a robot,
it will eventually stop.

10.4 Controlling the IRB140B With the Phantom

This section will describe the results concerning the master and slave rela-
tion, i.e., the Phantom’s ability to control the IRB140B. There will also be a
retrospect of earlier presented results concerning the haptic behavior.

Different Modes
The Figure 10.11 shows how the robot’s TCP position changes when different
program modes in the Phantom Robot Connector are active. The same test is
also seen in Figure A.10 which shows how the joint angles change. During the
test, first the robot2graphic mode was active, then the phantom2robot mode
was activated and the operator moved the Phantom around. Lastly, the Go
Home was chosen which lead back to the robot2graphic.

Notice in Figure 10.11 that the Go Home mode in the Phantom Robot
Connector doesn’t make the robot’s TCP position move along the shortest
path to its initial position. Furthermore, it is important that no obstacles are
positioned on the path. Because of the fact that the impedance controller has
no impact on the robot during the Go Home mode the robot will not take any
consideration to forces felt by the force sensor.

Fast Phantom Movements
It is of interest to know how well the robot will follow the Phantom position
if the Phantom is moved fast. Therefore, a test of this was conducted where
the impedance parameter set used was Set 1. The human operator tried to
move the Phantom as fast as possible without harming it. In Figure 10.12 the
movements made in the xz-plane are shown. How the TCP position in the y-
direction changes through time is seen in Figure 10.13. The robot joint angles
in this test can be seen in Figure A.11.

71

Chapter 10. Results

0 10 20 30 40 50 60 70
560

570

580

590

600

610

620

630

640

TCP Position in y / (mm)

T
C

P
 P

o
si

ti
o

n
 in

 z
 /

 (
m

m
)

The Phantom Movement in the yz−Plane

Robot TCP position

Phantom TCP Position

Go Home Mode

Figure 10.11 The path the robot’s TCP position will take when being controlled
by the Phantom. It also shows how the Go Home routine makes the robot move.
The path plotted is a projection on the xz-plane, (the robot was attempted to be
controlled by the Phantom so that it would only move in the xz-plane).

190 200 210 220 230 240 250 260 270 280
490

500

510

520

530

540

550

560

570

580

TCP Position in x / (mm)

T
C

P
 P

os
iti

on
 in

 z
 /

(m
m

)

The TCP−Movement in the xz−Plane

Figure 10.12 The path the robot’s TCP position takes when being controlled by
the Phantom with fast movements.

The robot’s fast movements make the force sensor register its own inertia
which is seen in Figure 10.14. The force plotted is the filtered force signal after
it has gone through a dead zone of 2.0 N. The figure shows that the inertia is
working as a disturbance in the impedance controller for fast movements but
that it is negligible for slow movements.

10.5 Virtual Painting

How the virtual painting in the Phantom Robot Connector works for a real
world object in comparison to virtual objects is described in this section.

First the painting was tested for a real world object. The robot start config-
uration was set according to Figure 10.15. The obstacle used was a cardboard
box and the robot TCP was only a few centimeters from the box and with the

72

10.5 Virtual Painting

0 2 4 6 8 10 12 14
520

530

540

550

560

570

580

590

Time / (s)
T

C
P

 P
os

iti
on

 y
 /

(m
m

)

The TCP Position in y−Direction

Measured Position
Desired Position

Figure 10.13 How the robot’s TCP position in the y-direction changes through
time when the robot is controlled by the Phantom with fast movements.

0 2 4 6 8 10 12 14
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time / (s)

F
or

ce
 /

(N
)

The Force due to Inertia

x
y
z

Figure 10.14 The force due to the inertia for the force sensor. The force plotted is
the filtered force signal that has gone through a dead zone of 2.0 N. The blue, green
and red colors stand for the force measured in the x, y and z-directions respectively.

attack direction pointing towards it. The cardboard box was placed so that
the surface was perpendicular to the robot base frame’s y-direction.

The actual test was performed by setting the mode in Phantom Robot
Connector to phantom2robot and with the painting enabled. The Phantom
was then moved in such a way that the box was touched and the contour
made clear. The result of the test is seen in Figure 10.16. Notice the shape of
the virtual paint in comparison to the shape of the real box.

A similar test but with virtual obstacles was also conducted. During these
tests the phantom2graphic mode was active instead of the phantom2robot
mode. The start relation between the wall and the robot was similar to the one
in the previously mentioned test. In order to pretend that the wall was real it
was made invisible. The result of the painting of the virtual wall can be viewed
in Figure 10.17. Notice that the wall was placed so its surface perpendicular to
the x-direction, in comparison to the previous test. However, this has no effect
for the outcome other than that the paint is located differently in 3D-space.

73

Chapter 10. Results

Figure 10.15 The setup during the experiment where the virtual painting was
investigated.

Figure 10.16 The virtual robot corresponding to the real robot in Figure 10.15.
The blue colored paint indicates that the robot has made contact with a real-world
object.

Figure 10.17 The virtual robot touching and painting the virtual wall. The blue
colored paint indicates where the virtual robot felt contact forces.

74

10.6 Haptic Behavior

Figure 10.18 The virtual robot touching and painting the virtual sphere. The
blue colored paint indicates where the virtual robot felt contact forces.

The virtual sphere was also made invisible and tested upon. However, this
result has no equivalent in a real world situation as some parts of the robot
were moved inside the sphere when the backside of the sphere was touched and
painted, this due to the Phantom tip just being mapped to one single point
on the robot and with no consideration taken to other parts of the robot. The
test with the virtual sphere can be found in Figure 10.18.

10.6 Haptic Behavior

It is preferable when controlling a robot with a haptic device that large move-
ments by the haptic device give small movements for the robot. This behavior
will give the user a delicate control over the robot’s movements. Therefore,
the movements of the Phantom was mapped to correspond to a factor 0.5 of
these of the IRB140B. A smaller factor might have given the operator even
smoother control of the robot but the choice made was due to that the limited
workspace of the Phantom would have given a very small workspace for the
IRB140B. It would had been hard to touch and recognize different obstacles
if this choice had not been made.

Earlier results like the one in Figure A.1 suggests that some oscillations
are due to the inability of the human operator to keep the Phantom still when
forces are felt by the force sensor. This is especially a problem when touching
a very stiff object because of the sudden force peak that occurs. The time
delays are also a big part of the problem because if the user moves the robot
into an object it takes some time before the human senses the force and the
longer it takes the further inside the object the robot would be and the larger
the force peak will get. If the time delays would be negligible the problem
would probably have been smaller. However, making the time delays smaller
is hard and an easier way of improving the performance could be to decrease
the workspace for the IRB140B in relation to the Phantom’s workspace. This
would lower the robot speed and thereby the amplitude of the contact force
peaks measured by the force sensor. But as mentioned earlier this solution
may not be optimal due to other dilemmas.

75

Chapter 10. Results

0 5 10 15
620

630

640

650

660

Time / (s)

y
 /

 (
m

m
)

TCP−Position in y−Direction

Measured Position

Desired Position

0 5 10 15
−40

−30

−20

−10

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in y−Direction

Figure 10.19 The two plots show how the force and TCP position in the robot
base frame’s y-direction change through time when the Phantom is controlled by a
human user. The robot is moved in such a way that it touches a piece of cellular
plastic. The blue line is the robot position and the red line is the desired position.
The impedance parameters used is from Set 2 in Table 10.1.

The solution used in this thesis in order to give the human operator a
chance of handling the force feedback was to lower the force sent to the Phan-
tom with a predefined factor. The factor was chosen to be 20, i.e., 20 N mea-
sured by the force sensor would be felt as 1 N by the user. The drawback of
this solution is that objects with low stiffness would almost not be felt at all
by the human operator.

There are bigger oscillations for the IRB140B when the material touched
is the cardboard box than for example the piece of rubber foam. The problem
when touching the rubber foam is that it is hard to feel the contour due to
the small contact forces. Therefore, a test was performed where the material
touched was instead a piece of cellular plastic. The impedance parameters used
during the test was Set 1. Cellular plastic was used because the oscillations
are smaller than for the cardboard box and that the contour is easier felt by
the human operator than in the rubber foam case.

In one test the user tried to hold the Phantom so that the IRB140B was
pressed into the object with a constant force. The test results are presented
in Figure 10.19. The figure shows that the force signal is quite stable and
that no oscillations to speak of are present. This suggests that the impedance
parameters in Set 1 is a good choice when the material to be touched is one
of the three used in the tests described in this chapter. The haptic feeling is
distinct, which is shown by the sharpness of the force signal in Figure 10.19
and that the force curve follows the movement from the Phantom well. Further
data from the test can be seen in Figure A.4.

Conclusions
There are many factors that affect the haptic feeling for the human operator.
There are practical limitations due to the IRB140B’s motors, the Phantom’s
motors, the force sensor, signal delays, etc. There are other limitations due to
other considerations, e.g., the contact force controller implemented in order

76

10.6 Haptic Behavior

to avoid high forces or having a large robot workspace in order to have the
ability to feel the contour of a large object.

The parameters used for the impedance controller was Set 1. Evidently
there are other parameter settings that would had worked good, perhaps even
better than the one chosen here. In order to give the human operator a good
perception of the surroundings of the IRB140B through the sense of touch
(haptic feedback) the ideal thing would be to let the robot follow the Phantom
perfectly. However, due to the practical limitations earlier mentioned this is
not possible. Additional limitations come from the implemented impedance
controller. It is important that the user will have the most influence on the
robot’s behavior to achieve a good haptic behavior.

77

Chapter 10. Results

78

11. Summary
The target of this thesis was to implement a haptic interface for a contact force
controlled industrial robot. The haptic device used was a Phantom Premium
A from SensAble Technologies, Inc., see Section 2.1, and the industrial robot
was an IRB140B from ABB, see Section 3.1. The haptic interface can be
divided into two parts, one theoretical where a mathematical mapping from
the current state of the haptic device to a corresponding robot state was done
and one practical part where the mathematical mapping was implemented
through programming in C++ and C and by using Matlab’s Simulink. The
theoretical mapping was done in a general way and could hence be used for
other master and slave systems than the Phantom and the IRB140B.

A computer program called Phantom Robot Connector was written in C++
with the responsibility to communicate with the Phantom directly, see Chap-
ters 8 and 9. The program determines a new set of joint angles for the IRB140B
based on the current state of the Phantom and will set the force feedback sig-
nal to the Phantom. It also has a graphics part that features a virtual robot
that is a simplified version of the IRB140B, but with all joints and links repre-
sented correctly. The graphical robot has its own standard Denavit-Hartenberg
representation.

The Simulink model created, see Chapter 7, was transformed into C code
and downloaded to the robot’s axis computer. It receives values from the Phan-
tom Robot Connector and the server belonging to the force sensor mounted
on the robot. In the model the contact force controller that was to be im-
plemented in this thesis was created. It is an impedance controller with both
position and velocity references. They are based on the new set of robot joint
angles suggested by the Phantom Robot Connector. The impedance controller
can be altered during runtime to enable lead-through of the robot, see Sec-
tion 10.3. Parameters in the Simulink model can be altered during runtime
through a graphical user interface (GUI), see Chapter 5.

11.1 Main Results

To test the full implementation of the system in this thesis, a series of different
tests were performed, see Chapter 10. The most important tests and results
are presented in this section.

Impedance Controller
The impedance controller finally selected is described in Section 10.2. It is
well damped and has a quite large mass. The latter will decrease the effects of
the quantization and resolution problems with the force sensor used, see Sec-
tion 3.3. A step response in the desired position for the IRB140B compared to
that of the theoretical spring-mass-damper system can be seen in Figure 10.7.
A step was also performed so that the robot will attempt to reach a position
inside a piece of cellular plastic. The result can be seen in Figure 10.19.

Controlling the IRB140B with the Phantom
Using the impedance controller described above, the robot was controlled by
an operator holding the Phantom. In Figure 10.11 the robot’s TCP position is

79

Chapter 11. Summary

shown for a sequence where the robot is at rest, the control by the Phantom is
started, the Phantom is moved around and the control of the robot is stopped
to make it return to its original configuration. The figure hence shows how the
control of the robot through the Phantom is commenced and ceased without
any bumps in the robot’s position.

The robot has a speed limit it can not exceed. If so, the brakes will be locked
automatically. The question is if the human operator holding the Phantom can
move it so quickly that the robot will exceed the speed limit? In Figure 10.12
the result of a test where the operator moved the Phantom very fast is seen.
The robot did not exceed the speed limit.

Haptics
To test the haptic behavior of a master and slave system is not a trivial task
as there is no simple way to express how good the performance is in the
eyes of the user. Something that could be measured is however how the robot
will react if it is pressing against an obstacle and do this under two different
circumstances. First, to let a human operator induce the step through the
Phantom and to apply the force feedback, i.e., to run the full system. Second,
to do it by inducing an automatic step in the desired position in the impedance
controller and not listening to the Phantom or sending any force feedback to
it. In Figure A.1 the first case is shown and in Figure 10.4 the second can
be seen. There will clearly be a difference in behavior according to the two
figures which has to be explained by the user’s inability to hold the Phantom
perfectly still, and by that keeping the desired position constant, when the
force feedback kicks in.

Time Delay
The round trip time from the Phantom Robot Connector to the robot and back
again is lying just above 4 ms in average. As that almost corresponds to the
sample time of the Simulink controller, which runs at 250 Hz, it is assumed
that the network communication does not decrease the performance of the
system that much.

11.2 Future Work

Due to the limited time span of a master thesis, some issues will remain un-
resolved. There are some things that would have been added, improved or
redone in a different way, had there been more time.

Extra Functionalities
Some extra functionalities that are not featured in this thesis could be added,
e.g., a solid lead-through implementation that would enable the operator to
lead the robot to the place where the haptic experiments will take place. As
of now, lead-through comes as an extra bonus with the impedance controller,
see Section 10.3, through clever choices of some parameters in the impedance
controller that can be set via the GUI. It would be very handy for an operator
if the robot would not have to be jogged into a suitable position, but could
instead be lead there by hand before any experiments.

To further extend the workspace of the robot while being controlled by
the Phantom a function for repositioning the robot during control with the

80

11.2 Future Work

Phantom could be implemented. This would be a much faster way to move the
workspace for the robot than to re-jog it. Introducing this would maybe take
a bit of reconstruction of the current version of the Phantom Robot Connector
but is not an impossible task.

The Influence of Time Delays
An area that was not investigated was the occurrence of time delays in the
control loop. Data is being sent over a network and the Simulink model runs
at a slower pace than the Phantom Robot Connector. These are both circum-
stances that imply that a time delay will appear. Time delays in master and
slave systems can, and often will, result in instability of the system [4]. Espe-
cially when a human operator is involved in the loop.

As can be seen in Chapter 10 even the best found parameter settings for
the impedance controller would not make the system entirely without any
oscillations if a human operator would hold the Phantom, see Figure A.1.
It would be of interest to see if a time delay analysis would lead to better
performance in this case. A possible solution that could be implemented is
found in [4].

Miscellaneous Things to Improve
Of course, there exist a number of things and functions that could be improved.
For example the free orientation option in the Phantom Robot Connector will
not work on the real robot as well as the fix orientation. The risk of an overspeed
error in the robot system is highly increased in the orientation of the Phantom
is considered. If the mapping would be done differently, let’s say a full 360
degree twist of the pen would instead correspond to only a 180 or a 90 degree
twist of the robot’s sixth joint, the risk of an overspeed error would decrease
but it would perhaps instead feel awkward to the user when controlling the
robot. Therefore the fix orientation was focused on. Due to that fact, the
Simulink model was not created in such a way that the free orientation mode
would work as good as the fixed. Hence, some things in the Simulink model
would need to be updated if the free orientation mode is to be improved in
the future.

Another thing that leaves room for improvements is the graphic represen-
tation of the IRB140B. It has all the links correct and the joints in the right
places, but it could be designed to look more like the real robot.

The Painter class allows the user to paint any virtual or real objects felt
with the Phantom. The current implementation is far from perfect and there
are many things to improve, e.g., how to store the points where to paint
between cycles in the graphics loop, when to add a new point and how to
paint the points added.

81

Chapter 11. Summary

82

12. Acknowledgements
First of all, we would like to express our great gratitude to our supervisor
Anders Robertsson. Always nice and positive minded he is ready to help out
in his trademark buoyant mood. He has shown great interest in our work
and has always been eager to understand exactly how we have tried to solve
a problem and thereafter done his best to help us where we are, instead of
where we might be, as easily happens in other supervising situations. Frankly,
it is hard to imagine a better supervisor for this thesis than Anders.

In the beginning of this thesis a lot of work with the Phantom and the 3D-
graphics was carried out at the Virtual Reality Lab at Ingvar Kamprad Design
Centrum. Helping us getting started there both with the programming itself
and with other practical issues, and thereby acting as kind of a co-supervisor
for a while, was Joakim Eriksson who we would like to thank a lot for that.
We would also like to thank Joakim for letting us bring a computer from the
Virtual Reality Lab, to which the Phantom was connected and installed on,
to the Robotics Lab at the Department of Automatic Control.

Another person involved in moving the Phantom to the Robotics Lab is
Kirsten Rassmus-Gröhn from Certec, the department to which the Phantom
originally belongs to. Thank you for your approval and assistance in the relo-
cation of the Phantom.

Two persons from the Department of Automatic Control that also deserves
special thanks are Leif Andersson and Anders Blomdell. When the Phantom
was to be installed at the Robotics Lab, some materiel issues arose. Leif An-
dersson was then a great help and provided us with the paraphernalia needed
to set up a proper workstation. Leif has also helped us with some questions
concerning LATEX, as we both were novices when it came to that area at the
beginning of the thesis.

Anders Blomdell has helped out with different problems primarily concern-
ing the network programming part of the thesis, e.g., how the communication
with the downloaded Simulink controller should be done, to install the force
sensor server and to do maintenance work on the logging of data from the
Simulink controller.

In all of the above mentioned, Anders Robertsson has also taken a great
part. Both when it comes to contacting people and taking initiatives in matters
but also when it comes to helping us with any kind of issues that may have
come up, be it with LATEX, programming, thoughts on problem solving, haptics,
robotics or any other general concerns we might have had during this journey.
So once more, thank you Anders.

Finally we would like to address a thank you to all the other persons
besides the above mentioned that have helped us getting where we got with
this master thesis. Also to all of you who have followed our work and asked
questions and shown interest in our achievements, thank you.

83

Chapter 12. Acknowledgements

84

References
[1] ABB. www.abb.com.

[2] ABB Automation Technologies AB, Robotics. Product Specification –
Articulated Robot 3HAC9041-1, 2004.

[3] ABB Automation Technologies AB, Robotics. Operator’s Manual – IRC5
with FlexPendant, 2005.

[4] Robert J. Anderson and MarkW. Spong. Bilateral control of teleoperators
with time delay. IEEE Transactions on Automatic Control, 34(5):494–501,
1989.

[5] Christopher Brown and Michael Barr. Introduction to endianness. Em-
bedded Systems Programming, pages 55–56, January 2002.

[6] John J. Craig. Introduction to Robotics – Mechanics and Control.
Addison-Wesley Publishing Company, 1986.

[7] Isolde Dressler. Force control interface for ABB S4. LTH.

[8] Fredrik Eriksson and Marcus Welander. How to Connect the Phantom
with the IRB140B, 2009.

[9] Xuejian He and Yonghua Chen. Six-degree-of-freedom haptic rendering
in virtual teleoperation. IEEE Transactions on Intstrumentation and
Measurement, 57(9):1866–1875, 2008.

[10] N. Hogan. Impedance control: An approach to manipulation, part i –
theory. J. Dynam. Syst. Meas. Control, vol. 107, 1985.

[11] N. Hogan. Impedance control: An approach to manipulation, part ii –
implementation. J. Dynam. Syst. Meas. Control, vol. 107, 1985.

[12] N. Hogan. Impedance control: An approach to manipulation, part iii –
applications. J. Dynam. Syst. Meas. Control, vol. 107, 1985.

[13] IPR (Intelligent Peripherals for Robots). www.ipr-worldwide.de.

[14] Dong-Soo Kwon Jee-Hwan Ryu and Blake Hannaford. Stable teleoper-
ation with time-domain passivity control. IEEE Transactions on Auto-
matic Control, 20(2):365–373, 2004.

[15] JR3, Inc. www.jr3.com.

[16] Rajni V. Patel Mahdi Tavakoli, Arash Aziminejad and Mehrdad Moallem.
High-fidelity bilateral teleoperation systems and the effect of multimodal
haptics. IEEE Transactions on Systems, Man and Cybernetics – Part B:
Cybernetics, 37(6):1512–1528, 2007.

[17] Novint Technologies, Inc. home.novint.com.

[18] Tomas Olsson. High-Speed Vision and Force Feedback for Motion-
Controlled Industrial Manipulators. PhD thesis, Department of Auto-
matic Control, Lund University, Sweden, May 2007.

[19] Open GL. www.opengl.org.

85

References

[20] SensAble Technologies, Inc. OpenHaptics Toolkit – version 2.0 – API
Reference.

[21] SensAble Technologies, Inc. OpenHaptics Toolkit – version 2.0 – Program-
mer’s Guide.

[22] SensAble Technologies, Inc. www.sensable.com.

[23] Mark W. Spong and M. Vidyasagar. Robot Dynamics and Control. John
Wiley & Sons, Inc., 1989.

[24] Nicolas Turro, Oussama Khatib, and Eve Coste-Maniere. Haptically
augmented teleoperation. Proceedings of the 2001 IEEE International
Conference on Robotics & Automation, Seoul, Korea, pages 386–392, 2001.

86

A. Data Collected During
Experiments with the
IRB140B

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the x−Direction

0 1 2 3 4 5 6 7 8 9 10
270

280

290

Time / (s)

x
/

(m
m

)

TCP−Position in the x−Direction
Robot Position

Desired Pos. Ref. from Phantom

0 1 2 3 4 5 6 7 8 9 10
−40

−20

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

0 1 2 3 4 5 6 7 8 9 10
760

780

800

Time / (s)

y
 /

 (
m

m
)

TCP−Position in the y−Direction Robot Position

Desired Pos. Ref. from Phantom

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the z−Direction

0 1 2 3 4 5 6 7 8 9 10

566

568

570

Time / (s)

z
/

(m
m

)

TCP−Position in the z−Direction
Robot Position

Desired Pos. Ref. from Phantom

Figure A.1 How the force and TCP position change through time when a human
operator tries to hold the phantom still when the desired robot position is inside the
cardboard box. The impedance parameters used is Set 1.

87

Appendix A. Data Collected During Experiments with the IRB140B

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the x−Direction

0 1 2 3 4 5 6 7 8 9 10
285

290

295

Time / (s)

x
/

(m
m

)

TCP−Position in the x−Direction
Robot Position

Desired Pos. Ref. from Phantom

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

0 1 2 3 4 5 6 7 8 9 10
760

780

800

Time / (s)

y
 /

 (
m

m
)

TCP−Position in the y−Direction
Robot Position

Desired Pos. Ref. from Phantom

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the z−Direction

0 1 2 3 4 5 6 7 8 9 10
565

570

575

Time / (s)

z
/

(m
m

)

TCP−Position in the z−Direction
Robot Position

Desired Pos. Ref. from Phantom

Figure A.2 How the force and TCP position change through time when a human
operator tries to hold the phantom still when the desired robot position is inside the
cardboard box. The impedance parameters used is Set 2.

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the x−Direction

0 1 2 3 4 5 6 7 8 9 10
280

290

300

Time / (s)

x
/

(m
m

)

TCP−Position in the x−Direction Robot Position

Desired Pos. Ref. from Phantom

0 1 2 3 4 5 6 7 8 9 10
−40

−20

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

0 1 2 3 4 5 6 7 8 9 10
760

780

800

Time / (s)

y
 /

 (
m

m
)

TCP−Position in the y−Direction Robot Position

Desired Pos. Ref. from Phantom

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the z−Direction

0 1 2 3 4 5 6 7 8 9 10
560

565

570

Time / (s)

z
/

(m
m

)

TCP−Position in the z−Direction Robot Position

Desired Pos. Ref. from Phantom

Figure A.3 How the force and TCP position change through time when a human
operator tries to hold the phantom still when the desired robot position is inside the
cardboard box. The impedance parameters used is Set 3.

88

Appendix A. Data Collected During Experiments with the IRB140B

0 5 10 15
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the x−Direction

0 5 10 15
225

230

235

Time / (s)

x
/

(m
m

)

TCP−Position in the x−Direction

Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−40

−20

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

0 5 10 15
620

640

660

Time / (s)

y
 /

 (
m

m
)

TCP−Position in the y−Direction Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−10

−5

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the z−Direction

0 5 10 15
440

450

460

Time / (s)

z
/

(m
m

)

TCP−Position in the z−Direction

Robot Position

Desired Pos. Ref. from Phantom

Figure A.4 How the force and TCP position in the robot base frame’s y-direction
change through time when the Phantom is controlled by a human user. The robot is
moved in such an way that it touches the cellular plastic. The blue line is the robot
position and the red line is the desired position. The impedance parameters used is
Set 2, from Table 10.1.

89

Appendix A. Data Collected During Experiments with the IRB140B

0 5 10 15
730

740

750

760

Time / (s)

y
 /

 (
m

m
)

TCP−Position in y−Direction

Measured Position

Desired Position

0 5 10 15
−8

−6

−4

−2

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

Figure A.5 How the force and TCP y-position change through time when a step
occurs in the desired y-position. The desired position is set to be inside the rubber
foam. The impedance parameters used is Set 1.

0 5 10 15
630

635

640

645

Time / (s)

y
 /

 (
m

m
)

TCP−Position in y−Direction

Measured Position

Desired Position

0 5 10 15
−20

−15

−10

−5

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in y−Direction

Figure A.6 How the force and TCP y-position change through time when a step
occurs in the desired y-position. The desired position is set to be inside the cellular
plastic. The impedance parameters used is Set 1.

90

Appendix A. Data Collected During Experiments with the IRB140B

0 5 10 15
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the x−Direction

0 5 10 15
301.5

302

302.5

Time / (s)

x
/

(m
m

)

TCP−Position in the x−Direction Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−20

−10

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

0 5 10 15
775

780

785

Time / (s)

y
 /

 (
m

m
)

TCP−Position in the y−Direction
Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the z−Direction

0 5 10 15
565

565.5

566

Time / (s)

z
/

(m
m

)

TCP−Position in the z−Direction Robot Position

Desired Pos. Ref. from Phantom

Figure A.7 How the force and TCP position change through time when a step
occurs in the desired y-position. The desired position is set to be inside the cardboard
box. The impedance parameters used is Set 1.

0 5 10 15
−2

0

2

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the x−Direction

0 5 10 15
301.5

302

302.5

Time / (s)

x
/

(m
m

)

TCP−Position in the x−Direction Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−20

−10

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

0 5 10 15
775

780

785

Time / (s)

y
 /

 (
m

m
)

TCP−Position in the y−Direction
Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the z−Direction

0 5 10 15
565

565.5

566

Time / (s)

z
/

(m
m

)

TCP−Position in the z−Direction
Robot Position

Desired Pos. Ref. from Phantom

Figure A.8 How the force and TCP position change through time when a step
occurs in the desired y-position. The desired position is set to be inside the cardboard
box. The impedance parameters used is Set 2.

91

Appendix A. Data Collected During Experiments with the IRB140B

0 5 10 15
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the x−Direction

0 5 10 15
301.5

302

302.5

Time / (s)

x
/

(m
m

)

TCP−Position in the x−Direction Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−40

−20

0

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the y−Direction

0 5 10 15
775

780

785

Time / (s)

y
 /

 (
m

m
)

TCP−Position in the y−Direction
Robot Position

Desired Pos. Ref. from Phantom

0 5 10 15
−5

0

5

Time / (s)

F
o

rc
e

 /
 (

N
)

Measured Force in the z−Direction

0 5 10 15
565

565.5

566

Time / (s)

z
/

(m
m

)

TCP−Position in the z−Direction Robot Position

Desired Pos. Ref. from Phantom

Figure A.9 How the force and TCP position change through time when a step
occurs in the desired y-position. The desired position is set to be inside the cardboard
box. The impedance parameters used is Set 3.

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2
Joint 1

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Desired Position

Measured Position

Go Home Mode

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1
Joint 2

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Desired Position

Measured Position

Go Home Mode

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5
Joint 3

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Desired Position

Measured Position

Go Home Mode

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4
Joint 4

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Desired Position

Measured Position

Go Home Mode

0 1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8
Joint 5

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Desired Position

Measured Position

Go Home Mode

0 1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8
Joint 6

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Desired Position

Measured Position

Go Home Mode

Figure A.10 The joint angles when a human operator moves the Phantom and
different modes in Phantom Robot Connector are activated. The blue line is the
actual robot position and the red line is the joint angles on where the Phantom
want’s the robot to be.

92

Appendix A. Data Collected During Experiments with the IRB140B

0 2 4 6 8 10 12 14
1

1.2

1.4

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Joint 1

Desired Position

Measured Position

0 2 4 6 8 10 12 14
−0.2

−0.1

0

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Joint 2 Desired Position

Measured Position

0 2 4 6 8 10 12 14
−0.2

0

0.2

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Joint 3
Desired Position

Measured Position

0 2 4 6 8 10 12 14
−1

−0.5

0

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Joint 4
Desired Position

Measured Position

0 2 4 6 8 10 12 14
0.4

0.6

0.8

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Joint 5
Desired Position

Measured Position

0 2 4 6 8 10 12 14
−0.5

0

0.5

Time / (s)

A
n

g
le

 (
ra

d
/s

)

Joint 6
Desired Position

Measured Position

Figure A.11 The joint angles when a human operator moves the Phantom in a
fast way. The blue line is the actual robot position and the red line is the joint angles
on where the Phantom want’s the robot to be.

93

B. Phantom Robot Connector
Key List

Key Function
[P] Changes to phantom2graphic mode. Only available in

robot2graphic mode.
[R] Changes to robot2graphic mode.
[H] Changes to phantom2robot mode. Only available in

robot2graphic mode.
[O] Changes between fix orientation and free orientation.

Only available in robot2graphic mode.
[W] Makes a virtual wall appear. Replaces the virtual sphere,

if present. Only available in phantom2graphic mode.
[S] Makes a virtual sphere appear. Replaces the virtual wall,

if present. Only available in phantom2graphic mode.
[N] No obstacle. Removes any virtual obstacle currently

present.
[Z] Hide/view the virtual obstacle currently present. Hiding

a virtual obstacle will not affect the forces from it.
[0] Resets the robot’s force sensor.
[D] Paint the surface of an obstacle, virtual or real. Paints

whenever |Fp| > 0.2, where Fp is the force on the Phan-
tom.

[C] Clears the all paint.
[X] Hide/view the paint. This does not remove the paint as

[C] does.
[I] Show a list of commands.
[T] Hide/View the data i.e., the angles, the force and the

miscellaneous data column.
[F] Toggles full screen.

[←] and [→] Move horizontally around a sphere to change the view
perspective.

[↑] and [↓] Move vertically around a sphere to change the view per-
spective.

[Page Down/Up] Zoom in and out towards the robot.
[Esc] or [Q] Exit the Phantom Robot Connector

Table B.1 A list of all keyboard buttons used in the Phantom Robot Connector.

94

C. Simulink

Impedance Control Embedded Matlab Function Code

1 function acc = fcn (posRef , pos , velRef , vel , force , M , D , K ,←↩
posDeltaLimit , impSwitch)

2 % Cal cu l a t e s the de s i r ed a c c e l e r a t i o n f o r the system to←↩
behave such as a

3 % simple spr ing−mass−damper system with parameters M, D←↩
and K.

4
5 limit = posDeltaLimit ;
6 deltaPos = pos−posRef ;
7
8 for i=1:3
9 if abs (deltaPos (i)) < limit ;
10 deltaPos (i)=0;
11 elseif deltaPos (i) > 0
12 deltaPos (i) = deltaPos (i) − limit ;
13 else
14 deltaPos (i) = deltaPos (i) + limit ;
15 end
16 end
17
18 if impSwitch<0.5
19 acc = [0 0 0] ’ ;
20 else
21 acc = (force − D∗(vel−velRef) − K∗deltaPos) /M ;
22 end

Impedance Parameters Embedded Matlab Function Code

1 function [D , K] = fcn (omega , z , M)
2 %Sets the impedance parameters based on the ←↩

c h a r a c t e r i s t i c polynomial .
3 % 0=s^2+2∗z∗w∗ s+w^s <=> 0=M∗ s^2+D∗ s+K
4
5 D = 2∗M∗z∗omega ;
6 K = M∗omega∗omega ;

Update Position Referens Embedded Matlab Function Code

1 function tcp2base_new = fcn (tcp2base , posRef_new)
2
3 tcp2base_new = tcp2base ;
4 tcp2base_new (4) = posRef_new (1) ;
5 tcp2base_new (8) = posRef_new (2) ;
6 tcp2base_new (12) = posRef_new (3) ;

95

Appendix C. Simulink

C.1 Simulink Library Blocks

Get TCP Position Embedded Matlab Function Code

1 function rTCPposition = fcn (rTCP2rBase)
2 % Extracts the po s i t i o n from a given row−major ←↩

t rans fo rmat ion matrix .
3
4 rTCPposition = [rTCP2rBase (4) rTCP2rBase (8) rTCP2rBase←↩

(12)] ’ ;

Angle Fix Embedded Matlab Function Code

1 function y = fcn (u)
2 % Rede f ines the th i rd j o i n t ang le so that i t i s ←↩

expres sed r e l a t i v e the
3 % hor i z on t a l plane .
4
5 y = u ;
6 y (3) = u (3)+u (2) ;

Inverse Angle Fix TCP Position Embedded Matlab Function Code

1 function y = fcn (u)
2 % Rede f ines the th i rd j o i n t ang le so that i t i s no ←↩

l onge r expres sed
3 % r e l a t i v e the ho r i z on t a l plane .
4
5 y = u ;
6 y (3) = u (3)−u (2) ;

Forward Kinematics – arm joints -> tcp

Figure C.1 This subsystem will return the transformation from the robot’s TCP
frame to the robot’s base frame.

96

