ISSN 0280-5316
ISRN LUTFD2/TFRT--5869--SE

Implementation of the Functional
Mock-up Interface
in Matlab and Simulink

Bengt-Arne Andersson

Department of Automatic Control
Lund University
December 2010

Lund University Document name

Department of Automatic Control MASTER THESIS

Date of issue

Box 118 December 2010

SE'221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5869--SE

Author(s) Supervisor

Bengt-Arne Andersson Johan Akesson Automatic Control, Lund
Claes Fiihrer Mathematical Sciences, Lund
(Examiner)

Sponsoring organization

Title and subtitle
Implementation of the Functional Mock-up Interface in Matlab and Simulink (Implementation aav FMI i
Matlab och Simulink)

Abstract

New products on the market are likely to be simulated in a computer sometime during the
development process. The environment for which the physical model of the product is developed
may not always be the optimal for control simulations of the model. To be able to export models
from one environment to another a common model definition must be defined.

The Functional Mock-up Interface, FMI, provides such a model definition and makes it possible
to incorporate models from different environments together. In this thesis we will witness a
successful implementation of the interface for model exchange, FMI, into the well known
MATLAB and Simulink environment. Simulink is widely used in industry to develop control
systems but not that used for physical modelling. It is therefore of great interest to be able to
simulate models created from other physical modelling environments in to Simulink. A block is
developed in Simulink and a user interface in MATLAB such that models created according to
the FMI standard can be simulated.

The FMI is a standard for solving ODEs with events. The thesis discusses the most essential
parts of the FMI standard. Events may be discontinuities that the ODE solver needs to take
special care of and is therefore discussed in more detail.

In Simulink an S-function block is used with a GUI developed for the user to easily configure
the model. The MATLAB interface is developed using MEX functions and is discussed based on
how MATLAB's ODE solvers can be used to simulate a model. MEX functions are MATLAB's
way to incorporate C, C++ and Fortran code. The FMI standard models consists of DLL
functions that enforce the use of MEX functions.The implementations are verified to be correct
by comparison of simulation results from different environments such as Dymola and
JModelica.org. A comparison of simulation times and the number of function evaluations are
also done where we can see that the S-function and the MEX interface performs on a similar
level as the other simulation environments.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 60

Security classification

http://www.control.lth.se/publications/

Preface

First of all would like to thank my supervisors Johan Akesson at the Lund
University at the Department of Automatic Control and Magnus Géfvert at
Modelon for the guidance and support of this thesis and of curse for giving me
the chance to experience a real program development. I would also thank all
the people on Modelon that have been contributing to this thesis, especially
Tove, Christan and Jesper in the JModelica team and Hubertus for giving
me lessons that I never though I would be given in undocumented Dymola.

Lund, December 2010

Bengt-Arne

Contents

1

2

Introduction

Background

2.1
2.2
2.3
24

MATLAB
Simulink
Functional Mock-up Interface for Model Exchange
FMISDK
241 ZIPfileso
242 XMLfiles
243 DLLfiles

FMI and the FMI SDK

3.1
3.2
3.3
3.4
3.5
3.6

Events
Principle data flow
FMI functionso
FMI model description schema
FMI function calling sequence
FMISDK e

Simulink S-function implementation

4.1

4.2

4.3

The block
4.1.1 Why an S-function block isused
4.1.2 Adding the block to the Simulink library
4.1.3 Block Properties
The implemented GUT
4.2.1 Description and Functionality
4.2.2 Technicalities
S-function API and function mapping
4.3.1 mdlInitializeSizes
432 mdlStart. o
4.3.3 mdlZeroCrossings
434 mdlOutputso
4.3.5 mdlDerivativeso
4.3.6 mdlTerminate

MATLAB MEX interface

0.1

0.2

ODE solvers in MATLAB
5.1.1 odeDerivativeFMI
5.1.2 odeOutputFMI
5.1.3 odeEventFMI
MATLAB Executable, MEX
52.1 Void*

11
11
12
13
15
16
17

18
18
18
19
20
21
21
23
24
25
28
29
30
31
31

5.2.2 The FMU MATLAB structure 36

6 Case studies 38
6.1 ODE with time and state events - Coupled clutches model . . 39
6.2 Step events - Pendulum 000000 42
6.3 Inputs - Mechanics model 44
6.4 Algebraic loop - Feedback model 47
6.5 Performance - Robot model 49
6.6 State event in detail L. 51

7 Summary and conclusions 55
7.1 Simulation results 0oL 55
7.2 Performance 56
7.3 Models used during the development 56
7.4 Optimization o 56
7.5 Linux implementation 57
7.6 My reflectionso a7

1 Introduction

New products on the market are likely to be simulated in a computer some-
time during the development process. The environment for which the phys-
ical model of the product is developed may not always be the optimal for
control simulations of the model. To be able to export models from one
environment to another a common model definition must be defined.

The Functional Mock-up Interface, FMI, provides such a model definition
makes it possible to incorporate models from different development environ-
ments together. In Figure 1 we see how a typical model of a complex system
may look like. It is a model of an air conditioning system in a block diagram
representation in the well established modelling and simulation environment

Dymola.

Cooling Power [W]

; 0.0
Collected Water [g] A e COP
0.0 00 |00 ﬂ 0.0

B Modehen | §F Sl

Lo

Figure 1: Block diagram model of an air conditioning system in Dymola

In this thesis we will witness a successful implementation of the interface for
model exchange, FMI, into the well known MATLAB and Simulink environ-
ment. Simulink is widely used in industry to develop control systems but
not that used for physical modelling. It is therefore of great interest to be
able to simulate models created from other physical modelling environments

in to Simulink.

In Simulink an S-function block is developed with a GUI for simulating and
interacting with the model. In MATLARB, different functions are developed
for both invoking the so called FMI functions separately from the workspace
and simulating a model.

A test suite of models that covers most of the FMI functionalities is simu-
lated and compared with the corresponding results from Dymola and JMod-
elica.org.

The Functional Mock-up Interface is a new model exchange standard de-
veloped from results of the ITEA2 project MODELISAR and was released
26.01.2010 [7]. When this is written, there are about 10 different modelling
environments supporting the interface. The FMI is defined for simulations
solving ordinary differential equations in state space form (ODE) with events.
Differential algebraic equations(DAE) are not yet supported but might be
in future releases of the FMI. For now, DAEs need to be treated within the
model.

2 Background

We will describe the basic elements used for the implementation of the FMI in
this section. These are the simulation environments MATLAB and Simulink
for which the implementation takes place, the Function Mock-up Interface,
FMI, for model exchange to be implemented, and a Software Development
Kit, SDK from QTronics [4]. More detailed descriptions of the topics will be
given continuously where it is needed in the rest of the thesis.

2.1 MATLAB

MATLAB is one of most used tools for simulations and fast software develop-
ment. It is therefore attractive to support the FMI. It is a high-level language
and an interactive environment that primarily is used for mathematical and
technical calculations. MATLAB has a wide range of tools for example data
analysing, algorithm developing and perform calculations. MATLAB sup-
ports many applications such as control design, signal and image processing,
finance modelling and analysis. It is a so-called script language that is inter-
preted while it is executed. It also supports other compiled languages such
as C,C++ Fortran in a special format, so called MEX. During this thesis
MATLAB 7.5(R2007b) was used during the development in Windows XP32.
It was also tested in MATLAB 7.10(R2010a) with Windows Vista32.

2.2 Simulink

Simulink is a tool for modelling and simulating dynamical systems. It of-
fers tight integration with the MATLAB environment and can either drive
MATLAB or be scripted from it. Simulink has a graphical block diagram
interface with blocks and lines which together describe a system of equation.
In Figure 2 we have a general block with an input signal that the block may
use to calculate the output. And inside the block it self, it can have temporal
variables such as previous values, so called states.

We give an example of how the block diagram interface works in Figure 3.
The leftmost block produces a sinusoidal wave signal with amplitude 1 and
frequency i The feedback signal from the output is then subtracted from
the signal. The result is then visualised with a Scope block to the rightmost.
The blocks are often dragged and dropped in the model workspace from the
so called Library Browser where all the blocks are found.

x
B — (states) » Y
{input) foutput)

Figure 2: A graphical representation of a block with states in Simulink

B untitled * [=lErE=]
File Edit View Simulation Format Tools Help i
O)sH&| &8 Pleacz| o m 00 Nomal ~| 20 REBE®

nScnpe [E=8|ESE|=D)
8BPLL ARE O A F .
Sine Wave Scope
Ready [100% 1]l |oded5

Figure 3: Coupled blocks representing a system in Simulink’s model
workspace. The input signal is sin(¢) and the output signal should be
0.5 - sin(t).

2.3 Functional Mock-up Interface for Model Exchange

The Functional Mock-up Interface, FMI, defines an interface for how a Func-
tional Mock-up Unit, FMU, is called to create a model instances and simulate
it. It may be self-integrating (co-simulation) or it may require the simulator
to perform numerical integration. Models are distributed in zip-files with
the file name extension *.fmu. It contains a Dynamic-link library, DLL, and
a model description in XML format. The xml-file contains necessary data
needed for calling the FMI functions but also description of the whole model
and its variables. There may be additional model data but it should not be
necessary for simulation.

2.4 FMI SDK

A FMI software development kit, SDK, from QTronics(FMU SDK 1.0.1)
was used during the development. The FMU extraction relay’s on the SDK
features for unzipping the FMU, parsing the model description file and how
the FMI functions are invoked from the DLL file. The unzipping and XML-
parsing is performed with two external programs called 7-zip and Expat.

2.4.1 ZIP files

ZIP is a file format for data compression. A ZIP file contains files that have
been compressed to reduce the files size, using a compression algorithm. The
FMUs are ZIP files with the file extension *.fmu. To restore the data to its
origin from a ZIP file , the file needs to be unzipped.

2.4.2 XML files

Extensible Markup Language, XML, is a defined set of rules for encoding
documents. An XML-file is in textual data format designed for represen-
tation of arbitrary data structures. The XML file mentioned above in the
FMU, describes the model according to the XML scheme defined by the
FMI standard. The XML scheme describes for instance the structure and
constraints of how the data in the XML file shell be defined.

2.4.3 DLL files

Dynamic-link library, DLL, is Microsoft’s implementation of shared library.
Shared library is roughly described as a file containing functions that can be
shared among different programs. The FMI functions are found in such a
DLL file. How these functions are set up and invoked is found in the FMI
documentation [7].

10

3 FMI and the FMI SDK

We will highlight and describe the most essential data of the FMI documen-
tation for better understanding and discussions in later sections. A lot of
the text here is reproduced from the FMI documentation [7].

3.1 Events

The FMI interface is designed for models to be simulated by solving an ODE
with events (so called hybrid ODEs) numerically. This type of a system with
events (often discontinuities) is called piecewise continuous system |7].

A mathematical description of events defined by the FMI is given here. An
event can occur at time instants tg, ¢y, ...t, where t; < t;11 |7]. Let us define
the state of an ODE with z(¢) as the continuous state and m(t) as the time-
discrete state.

e x(t) is a vector of real numbers and is continuous function in time
inside each interval ¢; <t < t;41 where t; = lirr(lJ t; + €, i.e., the right
E—>

limit to ¢; (note, z(t) is continuous between the right limit to ¢; and
the left limit to ¢,y respectively) |7].

e m(t) is a set of real, integer, logical and string variables that is con-
stant inside each interval t; < ¢t < t;11. m(t) changes values only at
events [7].

At every event instance t;, variables might be discontinuous and therefore
have two values at the same time instance, a left and a right limit [7]. x(¢;)
and m(t;) is defined to be the right limit. In Figure 4 the different states
can be seen.

FMI defines events in three kinds. These events are all triggered from the
simulation environment [7]. The events are defined as follows [7]:

e Time event - At a predefined time instance ¢; = Tyeqt(t;—1) that was
defined at the previous event instance t;_; either by the FMU, or by
the environment of the FMU due to discontinuous changes of an input
signal u; at ;.

e State event - At a time instance, where an event indicator z;(t)
changes its domain from z; > 0 to z; < 0 or vice versa(see Figure 5).
More precisely: An event t = t; occurs at the smallest time instance
"min t" with ¢ > t; where "(2;(t) > 0) # (2;(ti—1) > 0)". All event
indicators are piecewise continuous and are collected together in one
vector of real number z(t).

11

e Step event - At every completed step of an integrator, the FMI func-
tion fmiCompletedIntegratorStep must be called. An event occurs at
this time instance, if indicated by the return argument callEventUp-
date. Such an event is used to change continuous states because the
previous states where not longer numerical suitable.

)

m(t)

/

/
m(t) |

» time t

Cre i U [

- m(ty)
;

Figure 4: Piecewise-continuous states of an FMU: time-continuous (x) and
time-discrete (m). The Figure is from the FMI documentation [7].

z>0

el el et

————— = o
28]

Figure 5: An event occurs when the event indicator changes its domain from
z > 0 to z = 0 or vice versa. The Figure is from the FMI documentation [7]

3.2 Principle data flow

In Figure 6 we see an overview of the data flow between an FMU and a
simulator. The red arrows provide the data needed by the FMU and the blue

12

arrows provide data needed by the simulator. For example when an FMU
model is simulated, it sometimes needs input data u from the simulation
environment to calculate the state derivatives . The state derivatives are
used by the solver to integrate the ODE. A thorough description of the
calling sequence between the FMU and the simulation environment is given
in section 3.5.

fo.D.1nital values (a subset of {X,.X,,¥,. Vo, mg}) |

Enclosing Model *

time

discrete states (constant between events)
parameters of type Real, Integer, Boolean, String
inputs of type Real, Integer, Boolean, String

all exposed variables

continuous states (continuous between events)
outputs of type Real, Integer, Boolean, String
event indicators

o
N< X< cw©T 3 ™

External Model (FMU instance)

t x4 }xmz

Solver

Figure 6: This shows the data flow between an FMU and the simulation
environment. The figure is from the FMI documentation [7].

3.3 FMI functions

The FMI standard is defined to be a platform dependent definition. This
means that the C types(int, float, double, etc.) are defined by the platform
the model is simulated on. This forces the model to be compiled with same
types as the simulator’s platform is using and not the other way around.

We will now describe the FMI functions shortly. These functions are in some
sense the ones describing the FMU model. We will not give the argument
list of these functions but almost all of them return a status flag. This flag
tells the simulation environment how successful the function call was and
then appropriate actions may be taken [7].

e fmilnstantiateModel - This function instantiates a model and re-
turns a model instance. This model instance contains the information

13

needed to process the model equations and is passed as an argument
in many other FMI functions. The simulator environment needs to
provide callback functions to the model, for memory allocation and
logging. These callback functions are set during the instantiation. The
FMI proved some associated functions like freeing the model instance
and configure the logging.

fmiSetTime - This function sets the new time for the model instance.
It updates all the time dependent variables for this time instance.

fmiSetContinuousStates - This function sets the new continuous
state vector x. It updates all the state dependent variables.

fmiCompletedIntegratorStep - This function must be called after
every completed integrator step. It may notify the simulator environ-
ment to react to an event(step) by calling fmiEventUpdate.

fmiSet XXX and fmiGet XXX - Every variable has a unique number
associated with respect to the type(Integer, Real, Boolean, String), a
so called wvalue reference. The fmiSetXXX and fmiGetXXX is called
with the variables value reference and returns or set the value, where
XXX is one of the types.

fmilnitialize - This function initializes the model and can only be
called once for one model instance. All numerical algorithms inside
the model is configured with tolerances passed as arguments to this
function. It may notify the simulator environment to react on an
event(time) by calling fmiEventUpdate.

fmiGetDerivatives - This function computes and returns the state
derivatives at the current time instant and for the current states. The
elements of the returning derivatives vector are in same order as the
continuous state vector(e.g. derivatives|2] corresponds to the derivative
of the continuous state x[2]).

fmiGetEventIndicators - This function computes and returns the
event indicators z at the current time instant and states. The FMU
must guarantee that at an event indicator z; # 0.

fmiEventUpdate - This function returns once new consistent states
have been found and the integrator can continue. It can be configured
such that it returns for every event iteration that is performed inter-
nally. In that case it notifies the simulator environment to continue
call the fmiEventUpdate until it has converged. This function may not
be called backwards in time.

fmiGetContinuousStates - This function returns the new continu-
ous state vector z after initialization or an event.

14

o fmiGetNominalContinuousStates - This function returns the nom-
inal values of the state vector z.

o fmiGetStateValueReferences - This function returns the value ref-
erences to the continuous state vector x.

e fmiTerminate - This function terminate the model evaluation and
frees all memory allocations made since fmilnitialize was called.

3.4 FMI model description schema

All the model data, except from the model equations, are given in an XML-
file. The scheme for this XML-file is well defined by the FMI [7]. This data
is used to set up the environment such as inputs to the FMU and to change
parameters for example. We give an extraction of the XML-schema to give
the reader a feeling of the content that can be found.

e fmiModelDescription
— modellldentifier - Short class name
— numberOfContinuousStates - unsigned integer
— numberOfEventIndicators - unsigned integer
— ModelVariables - List of ScalarVariables
e ScalarVariable
— name Unique variable name.
— valueReference Variable identifying number
— variability Defines when the value of the variable changes

— causality Defines how the variable is visible from the outside of
the model

— One of: Real,Integer,Boolean,String,Enumeration Type of
element

e Real
— declaredType - Providing default attributes
— unit - Unit of the variable, e.g., "N.m"
— min - Minimum value

— max - Maximum value

start - Initial value

15

— fixed - Defines if the initial value is the same after initialization

or not

3.5 FMI function calling sequence

In the FMI documentation a calling sequence for the FMI functions are
given. This is the calling sequence that we want to map into the simulation
environment which has its own calling sequence of callback functions. The
FMI calling sequence is given in Figure 7 and a short description found in
the FMI documentation [7] follows.

frmilnstantiateModel # NULL

¢~ modelUnderEvaluation ‘

fmiSetContinuousStates

b

F
frriSetiNg |~ L
fmiGetx frmilnitialize
(modellnitialized | —_——
. . e 3 E
terationConverged = true ctep
| Acce ptediJ<
e friGet | |
\F'endlng | fmiEventUpdate _»
=
friiEventUpdate 3
step, time or fmiSetTime P
. ctate event =7
fmiSetIN =
F F =
. frmiGetx frmiCo | I
4 mp leted =
fmiSetiNC c
fmiSetTime IntegratarStep o

a function call for | a function call for
this or any other in- | this instance re-
stance of this FMU | turns fmiError
returns fmiF atal

fmiFree

fmiFree
Modellnstance

frriTerminate
v fmiFree

Modellnstance (¢ i =
>_@<Modelln£ﬂance -

fmiGets
F

Fis one of

« fmiGetModelTypesPiatform

» fmiGet\Version

* fmiGetState ValueReferences

* fmiGetNominatContinuousState s
* fmiSetDe bugl ogging

Xisone of

« Real Integer, Boolean, String
* Derivatives

» Continuou sStates

» Eventindicators

N s one of

* Real Integer, Boolean, String
for a variable that has either
causality = Input”
or has a "sant” value

» Time.

INC is one of

» Real
for 2 vanable that has
causality = "input" and
variabilty = "continuous”

IN s one of

* Real Integer, Boolean, String
for a2 vanable that has
causality = "input”

F=B means that the last call
to frifnitialize or fmiEventUpdate
returned with eventinfo. F= B

Figure 7: Calling sequence of Model Exchange C-functions in form of an
UML 2.0 state machine. The Figure is taken from the FMI documenta-

tion [7].

16

If a transition is labelled with one or more function names (e.g. fmiGe-
tReal, fmiGetInteger) this means that the transition is taken if any of these
functions is successfully called.

e instantiated - In this state, inputs, start and guess values can be set.

e stepAccepted - In this state, the solution at initial time, after a
complete integrator step, or after event iteration can be retrieved. If
fmilnitialize or fmiEventUpdate return with eventInfo.terminated =
fmiTrue, a transition to state terminated occurs.

e stepInProgress - In this state, an integrator step is performed. Also,
the event time of a state event may be determined here after a domain
change of at least one event indicator was detected at the end of a
completed integrator step.

e setInputs - Before starting with the event handling, changed(continuous
or discrete) inputs have to be set.

e eventPending - In this state, at least one event is waiting to be pro-
cessed by a call to fmiEventUpdate. Intermediate results of the event
iteration can be retrieved. If fmiEventUpdate returns with eventInfo.iterationConverged
= fmiTrue, then this state is left and the state machine continues in
the state retriveSolution.

e terminated - In this state, the solution at the final time of a simulation
can be retrieved.

3.6 FMI SDK

An open FMI SDK is provided by QTronic [4] and can be found through the
FMI web page [1|. Some structures and functions from the SDK are used
in this implementation. The SDK supports the import and export of FMUs
and has some basic examples of models that have been of great help while
implementing the FMI.

The SDK provides a simple simulator that fulfils the basis of the FMI spec-
ifications for a correct simulation of an FMU. Some of the data structures
used in this simulator are reused or slightly modified to collaborate with our
FMI implementation. Especially the procedures for how the FMI functions
are loaded from the DLL file and used in the simulation. The unzip function
and XML parsing function are taken directly from the SDK. These were very
efficient and suited the implementation well.

17

4 Simulink S-function implementation

In this section we will discuss the implementation of the FMI interface into
Simulink. The goal is to have a robust and fully functional FMI implemen-
tation with a user friendly interface in Simulink that lets the user configure
variables, ports and get information of the model. This is accomplished by
implementing an S-function block with a GUI for the user to interact with
the model.

4.1 The block

EJ untitled * EI
File Edit Miew Simulation Format Tools Help
DEE& $BR|(E= 4 [» 5[0 [Nomal ~|

L
FMUTests_FMUs_VDL_0ChassisP

Ready [100% | | |odeds y

Figure 8: Implemented S-function block loaded with an FMU with input
and output ports

4.1.1 Why an S-function block is used

There are at least three different types of block that the user may customize
in Simulink. One of them is created by a subsystem of other blocks. The
problem with implementing the FMI is then to choose which other blocks
should be used in the subsystem to interact with the FMI functions, which
will end up with using one of the other following custom blocks.

18

A second custom block is the EFmbedded MATLAB Function. This is a block
using Embedded MATLAB code that works almost like MATLAB code. The
problem is now to solve the ODE appropriately. In Embedded MATLAB
neither of Simulink or MATLAB’s ODE solvers! are available?.

A third alternative is to use an S-function block. An S-function block is a
block with callback functions. These functions are well defined with special
purposes. They are then called by the Simulink Engine whenever it finds
it appropriate during the simulation. Some of the functions are required to
be implement and some are optional depending on the desired functionality.
The S-function block is equipped with callback functions for solving ODEs.
This property makes it superior to the other blocks and is therefore used in
our implementation of the FMI.

There is different types of S-functions used for different implementations.
The most flexible one is the C MEX S-function and is chosen in this imple-
mentation. This block is configured with MEX compiled C code. The fact
that it is C code ease the interaction with the FMI functions. We will get
into more details of the S-function block in section 4.3.

4.1.2 Adding the block to the Simulink library

To ease the user friendliness we would like to add the final product of the
S-function FMI block to the Simulink library. This way the user may in-
corporate an FMU model into the system by adding the FMI block from
the library and configure it. A description of how this adding to library
procedure is done is given here in detail.

1. In Simulinkfs library browser choose "File -> New -> Library".

2. Locate the S-function block in the library browser and add it to the
new library.

3. Right click on the S-function block and choose "S-Function Parame-
ters..." then just set the "S-Function Name" to the S-function source
file. The important here is that the compiled MEX-file and the § FUNCTION NAME
macro in the S-function source file is the same that is set in "S-Function
Name".

Next step is to add the new library to the library browser. This is done with
a slblocks.m file that can be found in matlabroot/toolbox/simulink /block-
s/slblocks.m and used as a template.

4. Create a new folder and add the slblocks.m file.

'The trapezoidal numerical integration function trapz and cumitrapz are available
2MATLAB functions may be invoked using one of the eztrinsic methods

19

5. Add the library file, compiled MEX-file and slblock.m to the MATLAB
path and then the block is added.

E Simulink Library Browser E=R[EEE 5=

File Edit View Help

00 & » Entersearchterm - %

Libraries Library: FMU Block | Search Results: (none) Most Frequently Used Blocks |
WOaEF e UTIMES

- Ports & Subsystems m’ Tl e
- Signal Attributes
-~ Signal Routing
- Sinks
- S0Urces —
-~ User-Defined Functions
[+]- Additional Math & Discrete
E Control System Toolbox
E Data Acquisition Toolbox
[+ gl Embedded IDE Link
- Tgh| FMU Block
[]--E Fuzzy Logic Toclbox
E Gauges Blockset
- g Image Acquisition Toolbox ' —
ﬂ Instrument Control Toolbox
- Tgh| Mode! Predictive Control ...
[+l W] Neural Network Toolbox
- 1@ Real-Time Windows Target
[]--ﬂ Real-Time Workshop
_ﬁ| Robust Control Toolbox 5
Showing: FMU Block

m

Figure 9: Implemented block added to the Simulink library

4.1.3 Block Properties

All blocks in Simulink can be configured with different parameters and func-
tions during the model set up(not during the simulation). For example this
would let the user to implement a GUI for the block from which the number
of ports may be configured. A full list of these function with descriptions
can be found in the MATLAB documentation [8]. The two functions used
in our S-function implementation are the LoadFcn and OpenFen. LoadFen
is called by the block every time the model is loaded. This function should
make sure that model is available for simulation if the model was saved in
such a state. OpenFen is called when the user double clicks on the block.
This should open a GUIL

In Section 4.3.1 we will learn that the input and output ports of the block are
configured within the callback function mdlInitializeSizes(not any more) in
the S-function. To be able to configure the ports from the GUI, mdlInitial-
izeSizes has to be invoked and the configuration needs to be fetched. This

20

is achieved by calling the MATLAB function set param that triggers the
mdllnitializeSizes to run and setting the common block parameter UserData
to a appropriate data type containing the configuration. From mdlInitialize-
Sizes the MEX function mezCallMATLAB can then be called to fetch the
configuration. In the same manner as the ports are configured, parameters
and initial values are set in the S-function using the UserData parameter.
The UserData parameter is set persistent such that it is saved in the model
when the model is saved.

The names of the ports visible on the block that can be seen in Figure 8 is
set with the mask icon drawing.

4.2 The implemented GUI

4.2.1 Description and Functionality

) |[FMUTests_FMUs_VDL_0ChassisP

| 306 [Mocldata| l Reset Al] l Lasd FMU]
b [Fiter][Clear |
O sl (O Parameters (3) Wariahles Fixed
| Initial values | Outputl
() Flat view (3) Tree view
=8 frontsuspension ~
=@ steering
=@ steeringWheslToRack
~[F] out_of_range 0
-Zle wheel 1
=@ forces
=@ patchForces
dauping?® 1
u_pos? 1
-Zle wheel 2
=@ forces
=@ patchForces
dauping?® 1
1 pos 1]
-Zlﬁ wheel 3
=@ forces
=@ patchForces
damping u]
u_pos il
BG wheel 4
=@ forces
=@ patchForces
damping u] L
u_pos 0 v
Description Used for lovw-speed damping logic
inEy I Type: Boolean

Figure 10: Showing the filtering functions of a model variables in the Initial
values tab

In Figure 10 above we see the GUI used in the S-function. The GUI is

21

in the tab Initial values where the FMU can be loaded and all the initial
values can be set. We will now describe the main functionalities of this tab
in more detail. In the top left we got all the variable filter functions. For
example in Figure 10 we see that only variables containing the letter "t",
are discontinuous variables and have the attribute fized—true are showed
in the variable tree. When the variables name filtering is used, the tree
expands if Tree view is set. These filter functions are essential for large
models with many variables to eliminate tedious manual time-consuming
search of a variable. The user may toggle between a "Flat tree" where all
variables are listed straight up and down and the Tree view where the GUI
take advantage of the variable naming convention defined by the FMI for
structure defined FMUs. Properties and value of a selected variable are
showed in the bottom left of the GUI. If the user changes the value different
from its default, a "*"

is added to the variable’s name.

)| FMUTests_VDL_0ChassisP:

Sety
| 28 | odel cats| l Reset Al l l Load FMU l

| [Fitter][Clear]

@&l () Parameters O Wariahles Bath +] Fixed

| Tritial values | Output |

G vehicleFramelrientation. T[L, 1]
ii vehicleFrameOrientation. T[1, 2]
@@ vehicleFrameOrientation.T[L, 3]
G vehicleFramelrientation. T[2, 1]
ii vehicleFrameOrientation.T[2, 2]
@ vehicleFraueOrientation.T[Z, 3]
G vehicleFrameOrientation. T[3, 1]
ii wehicleFrameOrientation. T[3, 2]
@ vehicleFraueOrientation.T[3, 3] =
@ world.frame_b.r_0[1]
@ world.freme b.r_0[2]
@ world.frame b.r_0[3]
@ world.frame_b.R.T[1, 1] Up

(e

G orientation[x]

: orientationfl]
ii orientation[2]
-@ orientation[3]

& world.freme b.R.T[1, 2]
@ world.frame b.R.T[1, 3]
& vorld. frame b.R.T[Z, 1]
ii world.frame b.R.T[Z, 2] Dowvn
@ world. frame b.R.T[Z, 3]
& world. frame b.R.T[3, 1]
& world.frame b.R.T[3, 2]
@ world. frame b.R.T[3, 3]
@ world. frame b.R.w[1]
& world.frame b.R.w[2] v
< | >
l Addd == l l == Remove l
a0 [e]

Figure 11: In the left tree the user may choose between variables to move to
the right tree that is used as output ports on the block

The Output tab of the GUI is shown in Figure 11. This is where the output
ports of the block are configured. On the left side all the variables in the
model are listed in a flat tree. These can be added to the tree on the right

22

side of the GUI. In Simulink it is possible to have multiple signals in a
port. If the user selects multiple variables(hold down ctrl while clicking the
variables) from the left tree and add them. The output port will be named
by the first selected variable but the port will have all the variable’s signals
in that output port. The name of the port can be changed as well as the
position on the block. In the figure the default output ports are set using the
naming convention for vector variables and the associated block is showed
in Figure 8. Input ports can not be configured by the user. These are set
by default using the variable name as the name of the port and are scalar
signals.

) FMUTests_FMUs_VDL_0ChassisP H[=E3
| Setup| Model data 4

Reset Al] | Laad FMU |

Model Matme FiUTests FMUs VDL_ChassisP
Description

“ersion

frmit'ersion 1.0

Author

Generation tool

Generation date

Mumber of continuous states
Mumber of evert indicators
Mumber of real variahles
Mumber of integer variables
Mumber of hoolean varisbles
Mumber of string variables
Mumber of enumeration variables
Mumber of top level inputs
Mumber of top level outputs
Mumber of parameters
Mumber of dizcrete variables

Mumber of continuous variables

Drymola Version 7.4, 2010-02-08
2010-09-297T1 6:08:00Z

38

45

30798

10135

594

320

an

g202
a5
16523

Cloze

Figure 12: Summarized data extracted from the FMU

The last tab is the Model data in Figure 12. It shows data extracted from
the model description in the FMU.

4.2.2 Technicalities

The GUI was created using User Interface Objects. Most of the GUI is build
with uicontrol objects and the rest with undocumented wi* functions. Many

23

GUI objects in MATLAB have roots from Java GUI objects. This makes it
possible to exploit functionalities found in the Java documentation that is
not documented by MATLAB.

When the block’s callback function OpenFen is called, it creates a MATLAB
figure and then draw all the UI objects in it. In all of the uicontrols it is
possible to associate a callback function that is called whenever the uicontrol
is triggered to. A handle is returned by every call to a Ul function. By using
the MATLAB command set and get on the handle, it is possible to change
properties of the uicontrol. In the GUI for instance, when a tab is switched,
some buttons and texts are set to visible/invisible.

Every time a change is made that effects the block, the set param is called
to update the UserData parameter of the block. On the other hand, when
the GUI is opened, the get param is called to get the UserData parameter.
This keep the data in the GUI and the S-function block synchronised.

To keep track of which GUI is associated to which block, the figure handle
and the block’s path name is saved to the UserData parameter. Every time
a block invoke the OpenFen, a check in the UserData if a GUI is already
opened is made and highlight it in that case, otherwise a new GUI is created.

It is very time consuming to draw the variable trees and this is noticeable for
big models. So the trees are saved in the UserData and are then reused the
next time the GUI is opened. To improve the performance when a search
of a variable is done, a bit search is used. For the name filter function this
does not apply.

4.3 S-function API and function mapping

Simulink invokes the S-function block callback functions during the simula-
tion to calculate the outputs. The first step in the simulation is to initialize
the S-function block. The following scheme [9] in Figure 13 describes the
initialization loop with respect to the callback functions.

When the initialization is done the simulation execute the simulation loop 9]
found in Figure 14.

We will now list some S-function callback functions and there macros that
can be set and discuss how these are set with respect to the FMI. All these
functions has at least the input argument SimStruct. SimStruct is a structure
that may be described as the S-function model instance. It is this structure
that is updated in the callback functions, and then used by the solver to
perform the evaluations. It may then be used to update the FMI model
instance with the new states.

24

Model Initialization

Simulink Engine

md Start apfionally calk
md Chex kParameters
fo llrwed by

md I roces sPara meters

Sets autput of
Canstant blocks

Ta simulafion kaop

Figure 13: Solid rectangles indicate callbacks that allays are performed.
Dotted rectangles indicate a callback that may be omitted.

4.3.1 mdlInitializeSizes

In mdllInitializeSizes [13] the number of inputs, outputs, states, port types,
port widths among many other things are set. The inputs can be configured

25

Stmulation Loop

Imitia lize Model

(olkd when parameters

change

(olld if sample fime af

o,
i
E 1 mdllnitalizeConditions | his -funcon vrie
g_' mdlOut puts
"N M p: mdlUpdate :
% : g A T R
ol [| Integration 1 (alkd i this S-function
O 7 1 AN — i
; :% : b il Derivatives; . has canfinuo s sioles
- [} [LI B I B] - '
- B |
2 | E | idaman 5
o, N
7 :
E ——p mdlDerivatives' .
- I .
g |
: Zz rosging de i '
(olled when parameters E e g cetection | (alksd i ths S function
---------- I —— .
change. ———p mdlOutputs * . detecks ze o crossings
" mdlZeroCrossings!
mdlTerminate
End Simmlation

Figure 14: Solid rectangles indicate callbacks that are always performed.
Dotted rectangles indicate a callback that may be omitted.

to have different dimensions and types such that it is possible to have ports of
16 bits integers 5x 12 matrices. The FMI implementation sets the dimensions
to 1 x X for each port and of the same type as the variable is specifies to be
by the model description. X is defined by the GUI which may be different

26

for every port.

If the input ports are used in the mdlOutputs which they are for this im-
plementation, the direct feedthrough flag needs to be set to 1 in ssSetInput-
PortDirectFeedThrough. 'This indicate that the input signals are used in
the mdlOutputs [12].

The number of continuous states are set with ssSetNumContStates and is
the number of states the solver will integrate. If the number of continuous
states are more then 0 the mdlDerivatives callback function has to return
the derivatives. In the model description of an FMU the attribute num-
berOfContinuousStates are the number of continuous states of model and
therefore we set the ssSetNumContStates to this.

The sample time are in Simulink an indicator of when an input is processed
and an output are produced in a block. The internal states are updated
accordingly to this. Different blocks can have different sample times. There
are two methods to specify the sample times of a block.

e Block-based sample times - The solver uses the same rate in all the
inputs and outputs.

e Port-based sample times - The solver can use different rates in the
inputs and outputs.

The number of sample times a block has is set with ssSetNumSample Times.
The different types of sample times that can be set at each port are discrete
or continuous. They can then be configured i.e. such that continuous does
not change in the minor time steps?, the discrete sample times may have a
constant sample time or get calculated in another callback function. It is
also possible to set the sample times to be inherited, constant such that the
block is only executed once, trigger and asynchronous when the block is not
executed regularly.

At first, one might think using only continuous sample times and a variable-
step solver is the easiest way to configure the s-function block, and yes, the
discussion will show that it is a good configure for the S-function for general
FMUs™.

A reason for using a discrete sample time would be to speed up the pro-
cess of hitting time events. This would be very efficient for an FMU with
only discrete variables. A discrete input is only updated when an event is
triggered as we can see in the FMI calling sequence in Figure 7. mdlGet-
TimeOfNextVarHit is a callback function that can be used to set the next

3The time steps are divided into major and minor in a continuous sample time config-
uration. The minor steps are used to improve the accuracy in the major steps.

“i.e. not making special case for FMUs with only discrete variables, continuous states,
discrete variables with continuous inputs etc.

27

discrete time step. This could be configured such that it hits the next time
event exact without any steps in between. But one should have in mind that
that the fmiCompletedIntegratorStep could trigger events depending on time
in between the two time events, and the FMI specification says nothing about
fmiCompletedIntegratorStep for pure discrete FMUs when no integration is
performed by the S-function. So due to the fmiCompletedIntegratorStep that
should be called by the environment after every completed integrator step,
to choose a continuous sample time feels more natural then a discrete sam-
ple time. The advantage of choosing a fixed-step solver and a discrete time
sample for a pure discrete FMU might be minimal for a variable-step solver
with continuous time sample with appropriate configuration in Simulink.

A comment on the mdiGetTimeOfNextVarHit is, if an FMU is simulated
with both discrete sample time and continuous sample times, the next time
step for the discrete sample time can not be changed until mdlGetTime-
OfNextVarHit is called again when the next time step must be positive. So
if the continuous sample time dependent simulation detects a new time event,
the next discrete sample time, the time of next time event becomes obso-
lete [7]. The problem is that the time of next discrete sample time can not
be aborted and updated. The advantage to use a discrete sample time for
time events would be to reduce the continuous zero-crossing detection with
one event indicator function which it would not be worth if the time event is
triggered with uncontrolled accuracy or if it should not at all. So if an FMU
with continuous states are used, the only solution for time event handling is
to use continuous sample time and implement the triggering of time event
such that the time of next time event can be aborted and updated. This is
done by using a zero-crossing function to the zero-crossing detection that is
only available if the S-function is using a continuous sample time.

For the curious, if the you would create an S-function with different time
samples, the concerned callback functions can separate which sample time
that is used. If a callback function with this property is independent of which
sample time that is currently used, the UNUSED ARG(tid) macro should
be added. But this is not used in the this S-function since there is only one
sample time.

4.3.2 mdlStart

mdlStart [14] is a function called only once every simulation and is called just
before the simulation is started. This is where initialization and memory allo-
cation that just need to be called once, may be performed. This is therefore a
really good place to perform the model instantiation and do the initialization.
This is also where configurations from the GUIs are handled and data is ex-
tracted in suitable manner for the S-function to increase the simulation per-

28

formance. By setting the SS_OPTION RUNTIME_ EXCEPTION FREE_CODE
macro in mdlInitializeSizes it allows Simulink to bypass the exception han-
dling set up that is usually performed prior to each S-function runtime call-
back function. No exceptions(long jumps) are then allowed in the run-time
methods. All MEX* functions have the potential for long jumping and some
MX* functions. When extracting data from the GUI there is an inevitable
use of a MEX* and MX* functions. The data contained in mzArrays are
copied to calloc allocated memories to better suit® other C-functions and
minimize the MX* presence.

From the blocks UserData, the S-function fetches the address to DLL-file and
load the FMI functions. The addresses of the FMI functions are saved into a
structure, we call it the User Data structure. This structure contains among
many other things also the model instance. A pointer to this structure is
then set with ssSetUserData so that it can be reached within all callback
functions.

4.3.3 mdlZeroCrossings

This function is called by the solver to detect zero crossings. In mdiZe-
roCrossings [15] the zero crossing vector ssGetNonsampleZCs of length ss-
GetNumNonsampledZ Cs set in mdllnitializeSizes is updated. When a zero
crossing is detected, the solver integrates up to the left edge of the zero cross-
ing. Simulink then steps over the zero crossing and begins a new integration
step.

The FMI function fmiGetEventIndicators return the event indicator vector
that suits the ssGetNonsampleZCs zero crossing vector perfect. fmiGetEventIndi-
cators computes the indicators at time instance set by fmiSetTime and the
states fmiSetContinuousStates. This means, when Simulink call mdlZero-
Crossings at time instance ssGetT, we have to make sure that the continuous
states and time are synchronized with Simulink. According to the simula-
tion loop found in Figure 14 there is no guaranty that mdlZeroCrossings are
called at the same time instance as mdlOutputs. To make sure the time and
states of the model instance are synchronised with the simulation environ-
ment, the time and states are set to ssGetT and ssGetContStates by calling
fmiSetTime and fmiSetContinuousStates. The S-function input ports corre-
sponding to fmiSetINC' is also set before fmiGetFEventIndicators is called.

From the discussion of sample times in mdlInitializeSizes the time events
shell be handled as a zero-crossing, state event. If there is no time event, the
function is an arbitrary positive constant. To not make the solver sensitive
for this event indicator being close to a zero-crossing, it is a good idea to

*Not mixing MATLAB/Fortran data structures with C data structures

29

have a relative big value of the constant with respect to the other event
indicators. If a time event is active, the event indicator is changed to be the
linear function z = nextEventTime — ssGetT(S).

4.3.4 mdlOutputs

In mdlOutput [16] is where the final computations of the output signals from
the block is performed. The functions is called every time step, both minor
and major time steps. This is the callback function that has to deal with
the event handling. When a step is taken and the mdlQutput is called, the
step integrated up to that time can be reached with ssGetContStates.

Current simulation time is fetched with ssGeT and the output ports can be
set using the SimStruct macros. In this implementation of the S-function,
the output type is inherited. This is accomplished with the ssGetQutput-
PortSignal macro that returns a void pointer to the signal the port emits
and then a type cast to the inherited type, ssGetOutputPortDataType. The
output ports were configured with the inherited property in mdlInitializesizs
with the DYNAMICALLY TYPED macro in ssSetOutputPortDataType.

Since we use continuous sample times and zero crossing we see in Figure 14
that mdlOutputs iscalled for minor time steps. Since minor time steps is
used to improve accuracy of solution and finding zero-crossings these calls
can be separated from major time steps with sslsMajorTimeStep and ssls-
MinorTimeStep macro.

The minor time steps corresponds to the inner loops of stepInProgress in
Figure 7. The major time steps would then include the step from stepln-
Progress to stepAccepted. The minor step in mdlQOutput has no function
since it is almost always associated to to a call to either mdlDerivatives or
mdlZeroCrossings and can therefore perform all necessary FMI calls from
these instead. Otherwise, if the solver would only call mdlOutput in a minor
step and we forget about event handling, it is an obsolete call according to
the FMI specifications. The event handling is dealt with in major time steps
as we will see. When a major time step is taken in mdlQutput, the solver
has completed an integrator step. The FMU on the other hand is still in the
stepInProgress and has to step to stepAccepted. The FMU model instance
gets synchronised with the solver by calling fmiSetTime, fmiSetContinu-
ousStates and fmiSetINC. Then fmiCompletedIntegratorStep is called and
we end up in stepAccepted. mdlOutput then checks if any events are trig-
gered and handle these accordingly. If no events are triggered the fmiGetX
are used to produce the output of the S-function. If an event is triggered, the
fmiSetIN is called and then the fmiEventUpdate. The eventPending block
in the FMI calling sequence is configured to just be called once such that is

30

does not return for every event iteration that is performed internally. If the
state values were changed after the event update these states are updated in
the FMU with fmiSetContinuousStates. To update the states in solver, the
solver needs to be restarted with ssSetSolverNeedsReset. This macro is only
available for variables-step solvers and causes the simulation to reinitialize
the variable-step size and the zero-crossing computations.

The simulation loop is started in mdlStart when all the initial values are
set including the continuous states. The first callback function called in the
simulation loop in figure 14 is mdlQutput at the time initial time. This is
a major time step and this corresponds to stepAccepted in the FMI calling
sequence. If the fmilnitialize in mdlStart would trigger an event, the event
is handled in mdlOutputs.

4.3.5 mdlDerivatives

Computes the derivative of the continuous states. It is called each time step
and must set the values of all derivatives. The FMU provides the func-
tion fmiGetDerivatives that calculates the derivatives for the current time
instance and states set by fmiSetTime and fmiSetContinuousStates. Ac-
cording to the simulation loop found in Figure 14 there is no guaranty that
mdlDerivatives [17] is called at the same time instance as mdlOutputs. To
make sure the time and states of the FMU are synchronised with simulation
time ssGetT and states ssGetContStates we call the fmiSetTime and frmiSet-
ContinuousStates functions in mdlDerivatives. The S-function input ports
corresponding to fmiSetINC' is also set before fmiGetDerivatives is called.

4.3.6 mdlTerminate

mdlTerminate |18] is called last in the simulation loop and any actions re-
quired at termination may be performed here. This function may also be
called if ssSetErrorStatus is invoked when the

S$S OPTION CALL TERMINATE ON_EXIT option is set in mdlInitializeSizes.
The FMI function fmiTerminate and fmiFreeModellnstance should be called
at the end of the simulation to deallocate all resources allocated since fmilni-
tialize and fmilnstantiateModel was called. Therefore these FMI functions
are naturally called in mdlTerminate. Other resources as the User Data
structure pointed to by ssGetUserData, are released here.

31

5 MATLAB MEX interface

In this section we will discuss the implantation of the FMI in the MATLAB
environment. We will base the discussion around MATLABs ODE solvers
by discussing how they work and then later how we could incorporate the
FMI functions. The final goal is to be able to use the solvers to simulate an

FMU.

5.1 ODE solvers in MATLAB

The ODE solvers in MATLARB are functions called like any other function in
MATLAB with return values and input arguments set by the user. MATLAB
can pass function handles as arguments, that means that any given function
can be used as an input argument and used within the function. The ODE
solvers in MATLAB use this functionality to solve ODEs. The ODE solver
interface defines some input arguments to be mandatory and some to be
optional.

Mandatory input arguments for the ODE solver are the initial conditions,
time span to be integrated over and a function handle that evaluates the
right side of the differential equation y = f(¢,y) [19]. The optional input
arguments that are essential for the FMI implementation are the event han-
dling(Events) and the output function(OQutputFcn). The event handling in
the ODE solver is just searching for the event indicators to switch domain.
If such a domain switch is found, the user is given two alternatives. Either
continue the integration or stop it. If we would like to handle the event(for
example calling fmiEventUpdate) we would need to stop the simulation, han-
dle the event and then start solving the ODE from where we stopped. This
is the standard approach for event handling using the ODE solvers in MAT-
LAB. There is no function to tell the ODE solver to stop integration at a
certain time during the integration. For this we have implemented the time
event handling as a state event as we did in the S-function.

We give here an example in pseudo MATLAB code showing a calling se-

quence for simulating an FMU using the MATLAB ode45 solver. We will

discuss the input arguments to the ODE solver in more detail afterwards.
Listing 1: Draft of an FMU simulation using MATLAB ode45 solver

function FMlexampleUsingODEsolver
fmiLoadFMU("bouncingBall .fmu’);

Tstart =0;
Tend=1;

32

fmiSetTime (Tstart);
fmiSetReal/Integer /Boolean/String
fmilnitialize ();

y0-fmiGetContinuousStates ();
options — odeset (’Events’ ,odeEventFMI, "OutputFen’ ;odeOutputFMI);

while Tstart<Tend
[t,y] = oded45(odeDerivativeFMI |[Tstart Tend]|,y0,options);
nt = length(t);
T — [T; t(2:nt)];
Y = [Y; y(2:nt,:)];
fmiSetReal /Integer /Boolean/String
fmiEventUpdate () ;
yO0=fmiGetContinuousStates ();
Tstart = t(nt);
end

fmiTerminate ();
fmiFreeModellnstance ();
end

5.1.1 odeDerivativeFMI

The ODE function is the first argument for the ODE solver and is a function
handler that evaluates the right side of the differential equation y = f(¢,y).
This function has time and current states as input arguments. The fmiGet-
Derwatives shell therefore be called here to return the model’s derivatives.
Before fmiGetDerivatives is called the time, states and any top level FMU
inputs of the FMU needs to be synchronized. The time and states are given
by the solver but any top level inputs must be given by the user for the
given time and states. This is implemented with a function fmiSet/INC that
sets the values of inputs with the FMI set functions. The values that are
set are either passed as a vector with values for some given times or as a
function. The vector is interpolated to give a value for the time instance but
the function calculate the value for that time.

Listing 2: Draft of ODE solvers differential equation function
function dydt = odeDerivativeFMI(t,y)
fmiSetTime (t);
fmiSetINC (t);
fmiSetContinuousStates(y);

33

dydt=fmiGetDerivatives ();
end

5.1.2 odeOutputFMI

The ODE option ’OutputFen’ can be set to a function handle [20]. This
function is called after every completed integrator step. The given input
arguments for this function is the time, state and a flag. The flag is used to
indicate an initial step, completed integrator step or if it is the final step.
This function does not affect the solution and is often used for plotting or
stop the integration. The output of this function is a state that determines
whether or not the integration should stop. According to the FMI calling
sequence in Figure 7, after every completed integrated step the fmiComplete-
dIntegratorStep should be called for the current time, states and inputs. If
fmiCompletedIntegratorStep returns with the flag to call fmiEventUpdate,
the integration is stopped. The synchronization procedure is the same as
in 5.1.1 above.

Listing 3: Draft of ODE solvers output function

function status = odeOutputFMI(t .y, flag)
if isequal(flag,|]|)
fmiSetTime (t);
fmiSetINC (¢t);
fmiSetContinuousStates (y);
status=fmiCompletedIntegratorStep ();
end
end

5.1.3 odeEventFMI

The ’Event’ option is set with a function handle that is used by the solver
to detect zero-crossings [20]. Input arguments are the time and the current
states. The output arguments of this function are the event indicators, if the
event is sensitivity to the direction of the event indicator, and whether or
not an event indicator should trigger a termination of the integration. If the
zero-crossing is detected and the integration is stopped, solver integrates up
to the right side of the event where the fmiEventUpdate should be called. The
"Event’ function’s event indicators are given by the fmiGetEventIndicators
with the additionally value for the time event handling. This is done by
making the time event to a state event by adding a zero-crossing function as
shown in the pseudo code below.

34

Listing 4: Draft of ODE solvers event function

function [value,isterminal ,direction]| = odeEventFMI(t,y)
fmiSetTime (t);
fmiSetINC (t);
fmiSetContinuousStates (y);
value-fmiGetEventIndicators ();
%Added zero crossing function for time event
if FMU. eventInfo.upcomingTimeEvent==true
value=[value; FMU. eventInfo.nextEventTime—t |;
else
value—[value; 100];
end
isterminal—ones(size (value));
direction=zeros (size (value));
end

5.2 MATLAB Executable, MEX

We will now discuss how the FMI functions above are called in MATLAB.
First of all, these are not the real FMI functions, these are just functions
with the same name that somehow calls the real FMI function of the FMU.
They are so called wrapper functions. The real FMI functions are written in
C [7]. To use C-functions in MATLAB, the C-functions must be written and
compiled as MEX-files, MATLAB executable files. MEX-files are DLL-files,
see section 2.4.3, produced from C,C++ or Fortran. The MEX functions
can be called as any other functions in MATLARB.

All MEX-files written in C must include four things [10].
1. #include mex.h
2. mexFunction, a gateway function
3. The mxArray
4. API functions

The #include mex.h is necessary, to use the mx* and mex* functions.
mexFunction is the gateway function of the DLL that MATLAB uses. The
MATLARB data is represented as mxArray in C. mxArray are the arrays you
see in the MATLAB workspace(scalars, matrices, string, cell arrays, etc.).
Except the data itself, mxArray contains for instance the type, dimensions,
if it is structure and the field names in that case, etc. The API functions,
mx* and mex*, are used to access the data in mxArrays and perform tasks in

35

MATLAB. The data in mxArray is stored columnwise, which is how Fortran
stores matrices.

The code below is a template for the most basic MEX-file.

#include "mex.h"

//Gateway function
void mexFunction(int nlhs, mxArray xplhs|],

int nrhs, const mxArray sprhs|])
{

//variable declarations here

//code here
}

5.2.1 Void*

A possible way to invoke the FMI functions is to in each wrapper function,
pass an argument of the DLL file location. Then load the DLL file, call
the FMI function of interest and then return the DLL handle again. This
produce some overhead that will lower the performance in a simulation. To
remove this overhead, a MEX function is used to load the DLL library and
save pointers to the FMI functions in the DLL file. When a wrapper FMI
function is now called from the workspace, it just needs the address for where
the real FMI function is found. The wrapper function can then easily invoke
the FMI function without loading and unloading the DLL. Another MEX
functions must then be called at last when the user want to return the DLL
handle.

MATLAB do not support void* or function pointers like those we would
need to save between the FMI function calls. MATLAB on the other hand
do support double precision floating-point numbers. The solution is then to
use a union to save the addresses of the FMI functions into doubles. In C
this type of casting should be no problem since the union is the size of the
biggest member. But in MATLAB I have not figured out which data type
that guaranties to fit a C void pointer. Double is one of the biggest data
types in MATLAB and is therefore used.

5.2.2 The FMU MATLAB structure
A MATLAB structure, we call it FMUstruct, is used to contain all the FMI

function addresses and all other essential data of the FMU. For example all
the model variables are saved in an array of structures. The FMI function

36

addresses are saved in a double array. Every wrapper FMI function takes
the FMUstruct as input argument where the address to the corresponding
FMI function is fetched and then invoked along with other input arguments
passed through the wrapper FMI function.

When an FMU model is instantiated, a void pointer to the model instance
is received. The address is saved as described above in section ??7. In the
FMI function fmilnstantiateModel, the simulation environment has to set
the memory allocation and releasing function that the fmilnstantiateModel
should use. The practice is to use MX* functions like mxCalloc, to allocate
memory in MEX-functions. Memory allocated within a MEX function that
is not used as an output argument is freed when the MEX function returns if
the memory is not made persistent. So a small memory allocation function
is written allocating the memory and making it persistent such it suits the
fmilnstantiateModel. The standard MEX function mxFree is used to free
the memory.

When a new FMU is loaded, the FMU file is unzipped in a unique folder in
the temporary folder at the computer. Due to the uniqueness of the folder
makes it possible to load multiple FMUs into the MATLAB workspace and
use them simultaneously. When the user is finished working with the FMU,
the user needs to return the DLL handle. This is done by calling another
function with the FMUstruct as input argument. The consequences of not
doing this is that the temporary folder where the DLL file is located will not
be removed.

37

6 Case studies

The implementation of the FMI interface in the S-function and the MEX in-
terface are verified by comparing the results of model simulations in different
environments. These other simulation environments are considered to have
a correct implementation of the calling sequence of the FMI. JModelica.org
and Dymola are two tools supporting FMI import that are listed on the FMI
documentations page [3]. These are used in our evaluation. Dymola are used
for both generating and simulating the models. The models that are used for
generating FMUs are simulated both as the native model and as an exported
FMU in Dymola. This native simulation may not contribute to the verifica-
tion of a correct implemented calling sequence but may be interesting to see
how well the FMU models stands against the real models and simulations.
In the result figures below we denote the Dymola simulations of the native
model with Native and the FMU model with FMU.

The goal here is to verify the implementations such that all possible calling
sequences are tested. Since this would generate a lot of cases if we would
test one calling sequence at the time, we therefore use a few models that are
exploiting multiple calling sequences. We now list some model properties of
interest to verify the implantations and compare the performances. We will
focus on this list when discussing the model cases below. We just mention
that the physical interpretation and descriptions of the model is restricted
as well as the selected variables that are visualised in the results. This is
in some sense out of the scope for this report and hopefully the reader is
satisfied with what is given.

e Solving the ODE for a model with continuous states
e Time event handling

e State event handling

Step event handling

Model with inputs

Solving algebraic loop for models with direct dependencies

Performance of simulation

In Dymola we used the relative tolerance le-10 with the DASSL solver. In
JModelica.org the CVode solver was used. In MATLAB and Simulink the
ODE15s was used. The relative tolerances were set to 1e-10 and the absolute
tolerance to le-12 in JModelica.org, Simulink and MATLAB. These are all
BDF methods with max order 5 set. The low tolerances were used in hope
to make any errors stand out even more. We also get the chance to see if

38

the results converge towards each other which would be a good sign of a well
implemented interface.

6.1 ODE with time and state events - Coupled clutches model

Ui ey
THEE

A=zHbadl
R
| Jegs

I_lEL
o

S|n1 : .
tor ; - - -
A AL L
:D—I: DI—arT To——aes To—arT Io——as]
t !'55-]-'; i [1] L1}
u clutch1 I=1 clutch2 I=1 clutchs I=1

freqHz =3

flzed

Figure 15: Block diagram model Coupled clutches in Dymola

The coupled clutches model in Figure 15 is a standard example found in
the Modelica standard library. It demonstrates how variable structure drive
trains are handled. The drive train consists of four inertias and three clutches,
where the clutches are controlled by some signal. This model has 8 continu-
ous states with 54 state event indicators and time events. Time events and
state events do occurs within the 10 seconds the model is simulated. We
choose to visualize the results from one variable, w1, that is the angular ve-
locity of inertia 1. The results of the whole simulation is found in Figure 16.
The solutions seem to lie on top of each other. In Figure 17 we have taken
the difference of our implementations and the Dymola Native solution. This
is done by first interpolating the results. Now we see that there some spikes.
The first couple of spikes are verified to be related to a time for when an
event occurred and that is probably the rest of the spikes as well. A compi-
lation of the absolute value of the differences are visualized in a histogram
in Figure 18. We can see that the differences greater then le-8 can be found
for the MEX interface but not for the S-function. If we now zoom as in
Figure 19 we see a phenomenon that is seen around all the spikes and also
some spikes where the S-function have a greater difference then the MEX
interface. This is most likely to be caused due to the spline interpolation
around discontinuities. Unfortunately I have not figured out a good way to
compare the results without interpolating over the events. We will discuss
the spikes more in section 7.1. If we for the moment neglect the biggest
differences we see that the difference is in the order of 1e-8. I would say that
this is satisfying with respect to the low tolerances and the interpolation of
the results and that it indicates the S-function and the MEX interface to be
correctly implemented.

39

— Dyrmola FidU
gl Dymola Native
Jrodelica. ory

— MEX interface
— S-function

Figure 16: Simulation results of Coupled clutches model variable w1, angular
velocity of inertia 1

1o
181
— Dymola Native - MEX interface
Dyrmola Native - S-function
1 L
i ‘ ‘ ‘
§ 0 1|| I|I !‘ | ul |
a
2
o -05f
RN
15+
_2 1 1 1 1 1 1 1 1 1]
1] 1 2 3 4 g 5 7 g 9 10

Figure 17: Interpolated results of variable w1l are differentiated

40

-Dymola Mative - S-function
-Dymnla Mative - MEX interface

-~
o
T

% of the number of steps
) (5] P [5] o
o o [} o o
T T T T T

—
o
T

10 10 10 10 10
Abszolut difference

Figure 18: Absolute value of the differentiated results are summarized in a
histogram

-5

w10
Bri—— Dyrala MNative - MEX intefface
— Dyrnola Mative - S-function
4 .
2 .

Difference
[mm]

1 1 1 1 1 1 1
0.826 0.827 0.828 0.829 0.83 0.831 0.832
Time

Figure 19: A Spike is zoomed. Spike is described here as the difference of
the interpolated results around an event

41

6.2 Step events - Pendulum

The pendulum model used is a demonstration of dynamic state selection.
This is a standard example for how model may change states because they
are not numerical suitable any more. This model has 2 continuous states
and step events that are triggered a couple of times during the simulation of
10 seconds. The variable we chose to compare the results with, x, is one of
the cartesian coordinates of the pendulum weight. In Figure 20 we see the
whole simulation. The results are not noticeable different. In Figure 21 we
see the difference of results after interpolation. We see that the S-function
is more alike the Dymola Native simulation than what the MEX interface
is. The MEX interface seem to have spike like differences seen in Figure 21.
We can see how this effect the spread in the difference in Figure 22 where
we have steps for differences greater than le-7. If we zoom, see Figure 23, it
can be seen that these spikes do all have the same characteristics of starting
to "oscillating" just before the event and then disappear afterwards. This
characterize the S-function as well if we would zoom further. If we for the
moment neglect the biggest differences we see that the difference is in the
order of le-7. I would say that this is satisfying with respect to the low
tolerances and the interpolation, and that this would indicate that the MEX
interface and the S-function are correctly implemented.

1 -
ner —Dymula FhL
05 — Dyrmala Native
Jmodelica.org
04k | —— MEXinterface
— S-function
02r
w2 Oor
02r
0.4 -
06+
08+
-1

T|me

Figure 20: Simulation results of Pendulum model cartesian coordinate x

42

2
— Diymala MNative - MEX interface
— Diymola Native - S-function
1 L
0 P | J | L I ‘ | ‘ 1
] ‘ L I
3 -1f
[
=4
&5 2t
Al
Ak
_5 1 1 1 1 1 1 1 1 1]
1] 1 2 3 4 g 5 7 g 9 10

Figure 21: Interpolated results of variable x are differentiated

e
&3]
T

I Dyrola Mative - S-function
- DOyrmola Native - MEX interface

e
[
T

b b 5] 5]
= a3} [m
T T T T

% of the number of steps

m
T

10 10 10° 10 10
Ahbzolut difference

Figure 22: Absolute value of the differentiated results are summarized in a
histogram

43

w10°

gLl — Dymaola Mative - MEX interface
— Dymola Mative - S-function

Difference

1 1 1 1 1 1 1 1 1 1
0B8 0682 0BB4 DEBE OBBE DEB9 DBS2 0694 D695 0.698
Time

Figure 23: A Spike is zoomed. Spike is described here as the difference of
the interpolated results around an event

6.3 Inputs - Mechanics model

Figure 24: Block diagram the Mechanics model in Dymola

This is a model we named Mechanics, see Figure 24, and is a model of
a drive train consisting of a motor inertia which is driven by a sine-wave
motor torque. Via a gearbox the rotational energy is transmitted to a load
inertia. Elasticity in the gearbox is modelled by a spring element. A linear

44

damper is used to model the damping in the gearbox bearing. This is a
model without events with a top level input which we will focus on. As
input signal to the motor torque we used a sinus signal. The input signal is
generated for those times the solver do calculations. This was simulated for
10 seconds and we show the angular velocity of inertia 1, wl, in Figure 25.
We can just note that the results can not be distinguished by the naked eye.
We now interpolate the results and take the difference in Figure 26 to see
that the solutions really are different. In Figure 27 we can more comfortable
see that the S-function and the MEX interface seems to give very similar
results. The maximum differences from the Dymola Native result seems to
be in the order of 1e-6. Noteworthy is that we do not have any spikes as in
the models with events.

5 -
— Dymola FrU
4 Dymaola Mative
Jmodelica.org
3 — MEX interface
— S-function
2
= 1
D L
1k
2
_3 1 1 1 1 1 1 1 1 1]
0 1 2 3 4 5 B 7 g 9 10

Figure 25: Simulation results of the Mechanics model variable w1, angular
velocity of inertia 1

45

10"

14
— Diymola Native - MEX interface
Dyrmala Mative - S-function
1F
05k
"
[
2 of
E
05k
Ry
_15 1 1 1 1 1 1 1 1 1]
0 1 2 3 4 g 5 7 g 9 10

Figure 26: Interpolated results of variable w1l are differentiated

L]
o
T

-Dymnla Mative - S-function
-Dymnla Mative - MEX interface

% of the number of steps

(48] P [5)] o | o0
[mm] [mm] = (] (] [mm]
T T T T T T

]
[mm]
T

[}
T

1 I 1
10 10° 10° 10
Absolut difference

Figure 27: Absolute value of the differentiated results are summarized in a
histogram

46

6.4 Algebraic loop - Feedback model

ul

faedback - ¥

. [~

—e >
A

u2

>

Figure 28: Dymola model exported as FMU and referred to as the Feedback
model

The feedback model is used to verify that algebraic loops are solved. The
model exported as an FMU is seen in Figure 28. The FMU subtracts two
inputs that becomes the output as in Figure 3. The simulation is then set
up with the FMU with one input signal generated from a sinus and the other
input is connected directly to the output of the FMU. This set up generates
an algebraic loop. Since there is no support for solving algebraic loops in
neither of JModelica.org or the MEX interface, the results from these are
omitted and we added the exact solution instead. We were also forced to
limit the step size in Simulink and force Dymola to produce equidistant
points get enough result points to produce a nice plot. The results of the
output variable y is seen with the exact solution in Figure 29. The first
thing one might notice is that Dymola FMU is constant zero. This imply
that Dymola did not solve the algebraic loop for the FMU. In Figure 30
we neglect the Dymola FMU results and compare the Dymola Native and
the S-function results with the exact solution. Noticeable here is that the
Dymola Native took only 19 steps when Simulink took 500 steps which may
explain why Dymola Native produce some what more error in the result.

47

0sr —— Dymiola FMU
— Dymala MNative

04F '
— S-function

03k Exact solution

02F

01k

]
9.3 9.4 9.5 96 97 98 949 10
Time

Figure 29: Simulation results of the output variable y from the Feedback
model and an exact solution

14

® 100
8 —
Dymola Mative - Exact
Bl S-function - Exact
‘-1 .

Glohal error
ha
T

=
——]
o —
—}
——
——]
——

Figure 30: Global error of the simulation results

48

6.5 Performance - Robot model

mechanics

controlBus

- now A 0o

Figure 31: Block diagram of the Robot model in Dymola

Since we have simulated models with all listed properties from above for
verification of the FMI calling sequence we now turn our interests to the
performance. We simulate a big model such as the Robot example model in
Figure 31 found in Dymolas MultiBody library. This model has over 7000
variables with 36 continuous states and 98 event indicators. The model is
simulated to around 1.8 seconds and the angle of robot joint 1, phil, is seen
in Figure 32. We also give the difference between the Dymola Native results
and the interpolated MEX interface and S-function results in Figure 33. We
see that the differences is within the order of le-7.

We have summarized some of the logging data from the simulations in the
table below. The table should just give a rough picture of the performances.
The MEX interface and JModelica.org is the only one including the time
for loading the FMU by unzipping and parsing the xml-file. For the MEX
interface this takes less then 2s for the big robot model.

In the table below we have listed the simulation times and the number of
function evaluations for the FMUs we discussed above and also added the
TwinEvap. TwinEvap is a example model of a 2 evaporator system. This is a
big and complex model with 130 continuous states and 1090 event indicators
that show some different results in comparison.

The S-function produce results for the variables set as output of the block,
which is only one in each of the simulations above. Depending on the effi-
ciency of writing results, the performance may vary more or less depending
on the number of results that are saved. We therefore choose to omit to pro-

49

— Dymola FMU
— Dyrola Mative

1F Jmodelica.org
— MEX interface
— S-function

phit

Figure 32: Simulation results of the Robot model’s angle joint 1, phil

« 107

Dymala Mative - S-function
— Dyrnola Mative - MEX interface

Difference

] 02 04 0B na 1 1.2 1.4 16 1.8 2
Time

Figure 33: Interpolated results of variable phil are differentiated

duce the results for the MEX interface and JModelica.org when we compare
the simulation times. But we unfairly let Dymola produce the results for all
variables.

In both Dymola Native and Dymola FMU F-evals below corresponds to the

50

number of F-evaluations retrieved from the logging data from the simulation.
In JModelica.org F-evals is the sum of Number of Function Evaluations and
Number of F-Eval During Jac-FEval found in the simulation logging data. In
the S-function and the MEX interface F-evals is the number of calls to the
derivative function.

Coupled clutches Pendulum Mechanics
F-evals Time F-evals Time F-evals Time
Dymola Native 18455 0.3s 9587 0.2s 31250 0.3s

Dymola FMU 24815 0.5s 9385 0.3s 30996 0.ds
JModelica.org 12955 4.3s 4733 1.2s 22234 7.2s
MEX interface 25244 6.2s 5385 1.8s 42968 11.9s
S-function 25216 0.3s 5937 0.1s 42968 0.3s

Feedback Robot Twin Evap

F-evals Time F-evals Time F-evals Time

Dymola Native 37 0.08s 54467 3.3s 7884 79.5s
Dymola FMU 37 0.08s 64237 3.3s 31342 216s
JModelica.org - - 26233 8.8s 6543 T7s
MEX interface - - 27319 89s 11580 123s
S-function 0 0.03s 28575 2.0s 11467 132s

6.6 State event in detail

With this model we want to enlighten the difficulties with event detection
and at the same time strengthen the implementation of state event handling.
This bouncing ball model comes with the QTronic SDK as C code and a
script to compile and export it to an FMU. The model has two continuous
states and one event indicator. The event indicator value is given as the hight
of the ball plus a small perturbation (the perturbation is only used to make
the event indicator different from 0 in accordance with the FMI standard).
This means that the ball fall through the "floor" at every bounce and causes
a domain switch of the event indicator. When the ball is beneath the floor
the fmiEventUpdate is called and changes the direction of the velocity. The
solver starts integrating again and then another domain switch occur since
the ball is on the way up through the "floor". Therefore there is two domain
switches at every bounce. With this model we can verify that the event
update function is called at the correct right side of the zero-crossing. For
the interested reader, we give an extraction of the model’s C-code that is
modified. 7 is a double vector containing all the real variables and pos is

o1

a boolean vector used by the state event indicator. h is the hight variable,
v is hts velocity and e is the coefficient the velocity is multiplied with at
bounces. These are all real variables. Notice the underscore defined macros
that is the element number of the variable’s value in the double vector r.

#define h 0
#define v_ 2
#Hdefine e 4

#define EPS IND le—14
fmiReal getEventIndicator (Modellnstancex comp, int z) {
switch (z) {
case 0 : return r(h) + (pos(0) ? EPS IND : —EPS IND);
default: return 0;

}

void eventUpdate(Modellnstancex comp, fmiEventInfox eventInfo) {
if (pos(0)) {
r(v) = r(e) *x r(v.);

pos(0) = r(h_) > 0;

eventInfo—iterationConverged = fmiTrue;
eventInfo—>stateValueReferencesChanged = fmiFalse;
eventInfo—>stateValuesChanged — fmiTrue;
eventInfo—>terminateSimulation = fmiFalse;
eventInfo—upcomingTimeEvent = fmiFalse;

}

Unfortunately Dymola relay on a static wrapper library to import the FMI
functions. Therefore Dymola can not simulate the bouncingBall FMU and
is omitted from this simulation. This is not in accordance with the FMI
standard.

In Figure 34 we see the ball dropped from the hight 1 and is simulated for 4
seconds. Around 3 seconds we see how the ball fall trough the "floor". This
is accordance with the model and the limitations of numerical computations
when the right side of the domain switch is too far under the floor for the
ball to bounce up through the floor again. We may also notice that results
from JModelica.org, the S-function and MEX-interface are very similar. The
dashed lines the results from using a relative tolerance of le-10 and an ab-
solute tolerance of le-12. The solid lines the results from using a relative
tolerance of 1le-12 and absolute tolerance of le-14.

52

hight

--------- Jhlodelica

Jilodelica
--------- MEX interface
A0k — MEX interface
""""" S-function

S-function

T T 1 1 1 1 1]

0 05 1 15 2 25 3 35 4
Time

Figure 34: QTronics bouncing ball FMU simulated

In Figure 35 we have zoomed at the first bounce to show how different
tolerances effect the state events.

for 1 | L |
D 45154 naEs 5 P DA5IE OSITEMeuIy 0450 (4SIS40GIn 08515 0 4SS0

Figure 35: Close zoom up of a bounce

We zoom even more in Figure 36 and can now demonstrate how the state
events are handled. The MEX-interface detects both zero crossings and
integrate to the right side of these. However the S-function integrates up to
the left side of the event and then to the right side. Therefore we see an
extra step at both zero crossings. Notice that the parturition of the event
indicator causes the ball to cross the floor even though the event indicator
indicates it is above the floor when the ball is falling downwards and vice

93

versa on the way up.

w10
B
n
5L

2 —+— IMadelica
—#— MEX interface
—#— S-function
A

¥

1 1 1 1 1 1 1
8015 501458 50146 -5.0144 -30O142 -85014 -8.0138

Time-0.451523649 vt

Figure 36: The S-function integrates up to the left side of the event and then

steps over and continues at the right side. The MEX-interface integrates up
to the right side of the event and then continuous.

54

7 Summary and conclusions

7.1 Simulation results

The results from the verification of a correctly implemented FMI calling
sequence are satisfying. At first sight from the result figures of the whole
simulations, all simulation environments gave such results that they could
not be distinguished. When we then interpolated the results to compare the
difference we saw that they really were different. We then saw some spikes
occurring around events. To show that this is most likely to be caused by the
interpolation the difference results from the Coupled clutches are showed one
more time here, zoomed at a time event occurring at the time 0.4 seconds.
We now also added the interpolated difference of the same results which we
have limited to only contain the results up to left edge of the time event. This
is seen in Figure 37. The results from the limited interpolated difference is

¥ 107
| /\
1t

1]

Dymaola Mative - MEX interface
Dymala Mative - S-function
Limited:Dymola Native - MEX interface
Lirmited: Dymaola Mative - S-function

Difference

L L L L L L L L
0392 0393 0394 0395 039 039 0398 0399 0.4
Time

Figure 37: Interpolated results differentiated

in the order of 1e-9 which is more similar to the difference that is in between
events. At the right side of the event the difference is in the order of 1e-9
for the unlimited results. This means that if we could stop the interpolation
over the event we would have a maximum difference of 1e-9 instead of le-4.
If all the spikes is caused by this interpolation phenomenon, we may explain
some of the lower staples with higher absolute difference in the histograms
like in the Figure 18 from the Coupled clutches model.

Now when we tried to explain the spikes in the result comparisons we have
not found any other notable deviations that would indicate that the MEX
interface or the S-function is not implemented correct. The differences we
have seen in the results are possible to explain by the use of different solvers
and how the tolerances may effect the solvers differently. My conclusion is
that the S-function and the MEX interface are correctly implemented.

95

7.2 Performance

In tables on page 50 we could see the time it took for the solvers to com-
plete the simulations and how many function evaluations were needed. The
different simulation configurations and how the result generation affect the
times and results differently makes a really fear comparison hard. The reader
should keep this in mind in the next section.

If we consider the simulation times we see that the S-function is faster then
the MEX interface for all simulations except for the TwinEvap model. The
S-function is expected to be faster than the MEX interface since it is a
compiled block used in a compiling simulator. The MEX interface uses the
MATLARB scripting language, that is often slower than a compiling language,
between the FMI function calls.

The S-function seems to qualify in the same performance league as JModel-
ica.org and Dymola. For the minor models, the S-function, Dymola Native
and Dymola FMU is almost equally fast. For the really big model TwinEvap,
JModelica.org and Dymola Native is almost twice as fast as the rest. We
should notice that the rest also do twice as many function evaluations. The
MEX interface is slightly slower then the other simulators for the minor mod-
els but performs better then the S-function for the big TwinEvap model. I
have no good explanation for this behavior. I tested to simulate the same
model in MATLAB 2010a, Simulink 7.5. The simulation time for the MEX
Interface was 200 seconds and for the S-function 181 seconds. This is more
reasonable and the expected results.

The conclusion from this is that both the S-function and the MEX interface
are fast enough to be an alternative for simulating FMU models.

7.3 Models used during the development

The models we used here is not all the models that were used during the
development. One group of models that were left out were the four FMUs
from the Qtronics SDK. These four FMUs were used in the first stage of
development and where referred to be fundamental for being solved correctly
by both the S-function and the MEX-interface. One of these FMUs, inc.fmu,
is a pure discrete model with no continuous sates or event indicators. Some
other models exported from Dymola were also tested.

7.4 Optimization

So far the focus of the implementation has been on getting a correct and a
so robust implementation as possible. But if we would like to optimize the

o6

S-function a little we could investigate if the Simstruct has any flag that can
be used to notify a zero-crossing event in mdlOutput rather then to check all
the event indicators if indicator has switched domain. If this is not found an
alternative could be to introduce a flag that is set by a check if the simulator
takes a minor step back in time in mdlZeroCrossing. This would indicate
that the simulator has detected a domain switch and is trying to accurately
detect where the event occurred. This last proposal would work for the MEX
interface as well.

In the MEX interface one could try to create MEX functions that combine the
wrapper FMI functions that are now called after each other in the MATLAB
code. This would first of all minimize the overhead of running MATLAB code
and also eliminate some procedures that is repeated in every MEX file to
call the real FMI function. To optimize the input handling one could try to
write a MEX function that perform the function evaluations and that sets
the values to the model.

7.5 Linux implementation

An implementation of the S-function and the MEX interface would proba-
bly be easy since we already have the Windows implementations based on
the QTronics windows SDK. There is an SDK adapted from the QTronics
windows version by Michael Tiller [5| found through the FMI homepage [1].
This could be used to make the changes that are needed such as unziping
and loading the FMI functions.

7.6 My reflections

What is not discussed in this theses is the different states the development
been through before it became what it is now. The most time consuming
thing with this project has been the creation of the GUI. This was developed
continuously with increasing number of functionalities. This was a very good
experience for building bigger programs that must be designed for future
developments, even though I learned the hard way. At some point the whole
GUI was remade due to is has become too complex and hard to overview.
Now afterwards I think a Java GUI could have been a serious alternative
due to both the development tools available for this and the possibility to
create better looking GUIs. There is still some work to do in the GUI and
the S-function before it can be used for real, for example the output tab is
still in some development phase.

What the reader also miss is what is done without contributing to the S-
function and MEX interface implementation. For example the investigation

o7

whether or not the cell renderer in the GUI trees were available to use to
make nice aligned variable values. Or if the callback function mdlGetTime-
OfNextVarHit could be used to hit time events exactly in the S-function.
The answers to these questions are hard to find in the MATLAB documen-
tation and were tested in simple examples. Once I needed to ask MathWorks
for technical support for a phenomenon that even they thought was hard to
find a answer for.

Some of the implementation is still not found in any documentation like
the triggering of the mdllnitializeSizes when set param is used. But the
writing of this thesis has contributed to better documentation or even finding
documentation at all for the implementation.

The development has also led to a few bug reports to Dassault Systemes
Lund regarding the FMU export mechanism. Dymola already knew of some
of the bugs, some were new and for some am I still waiting for response. In
QTronics SDK a minor bug in the models were found.

o8

References

[1] Functional Mock-up download site - 9 sep 2010.
http://functional-mockup-interface.org/fmi.html

[2] ITEA2 project MODELISAR, FMU project profile pdf - 9 sep 2010.
http://www.itea2.org/public/project_leaflets/MODELISAR_profile_
oct-08.pdf

[3] FMI support in tools - 9 nov 2010.

http://www.functional-mockup-interface.org/tools.html

[4] QTronic FMU SDK - 23 nov 2010.
http://www.qtronic.de/en/fmusdk.html

[5] Michael Tiller adapted QTronics FMU SDK - 25 nov 2010.
https://github.com/mtiller/fmusdk

[6] How Simulink Works, Modeling Dynamic Systems - 23 nov 2010.
http://www.mathworks.com/help/toolbox/simulink/ug/£7-20739.html

[7] FMI document version 1.0 - 25 nov 2010.

http://www.functional-mockup-interface.org/fmi.html

[8] MATLAB Using Callback Functions - 12 okt 2010.
http://www.mathworks.com/help/toolbox/simulink/ug/f4-122589.html

[9] MATLAB How the Simulink Engine Interacts with C S-Functions - 18
sep 2010.
http://www.mathworks.com/help/toolbox/simulink/sfg/£8-37326.html

[10] MATLAB MEX-files Guide - 9 sep 2010.
http://www.mathworks. com/support/tech-notes/1600/1605.html#

ingredients

[11] MATLAB Controlling and Displaying the Sorted Order - 18 sep 2010.
http://www.mathworks.com/help/toolbox/simulink/ug/f13-91940.html#
brbj4ud

[12] MATLAB ssSetInputPortDirectFeedThrough - 18 sep 2010.
http://www.mathworks.com/help/toolbox/simulink/sfg/
sssetinputportdirectfeedthrough.html

[13] MATLAB mdllnitializeSizes - 18 sep 2010.
http://www.mathworks.com/help/toolbox/simulink/sfg/
mdlinitializesizes.html

[14] MATLAB mdlStart - 18 sep 2010.
http://www.mathworks.com/help/toolbox/simulink/sfg/mdlstart.html

99

[15] MATLAB mdlZeroCrossings - 18 sep 2010.
http://www.mathworks.se/help/toolbox/simulink/sfg/
mdlzerocrossings.html

[16] MATLAB mdlOutputs - 18 sep 2010.

http://www.mathworks.com/help/toolbox/simulink/sfg/mdloutputs.
html

[17] MATLAB mdlDerivatives - 18 sep 2010.
http://www.mathworks.com/help/toolbox/simulink/sfg/
mdlderivatives.html

[18] MATLAB mdlTerminate - 18 sep 2010.

http://www.mathworks.com/help/toolbox/simulink/sfg/mdlterminate.
html

[19] MATLAB ode initial value problem solvers - 21 okt 2010.
http://www.mathworks.com/help/techdoc/ref/ode23.html

[20] MATLAB odeset solvers - 21 okt 2010.
http://www.mathworks.com/help/techdoc/ref/odeset.html

60

