
H
ard

w
are D

esig
n

 o
f R

eal-Tim
e N

eu
ral Sig

n
al G

en
erato

r

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Hardware Design of Real-Time
Neural Signal Generator

Anil Kumar Metla

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-484

http://www.eit.lth.se

A
n

il K
u

m
ar M

e
tla

Master’s Thesis

Hardware Design of Real-Time Neural Signal

Generator

Anil Kumar Metla
mas09ame@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Palmi.T.Thorbergsson

Co-Supervisor: Johan Lofgren

Examiner: Anders.J.Johansson

December 16, 2015

Printed in Sweden
E-huset, Lund, 2015

Abstract

Brain Machine Interface (BMI) denominates a collection of systems which interface
with the Central Nervous System (CNS). Implementation of a BMI involves the
detection, extraction, processing, and translation of the signals from the Central
Nervous System.

A simulator to generate extracellular recordings is proposed by P.T.Thorbergsson,
H. Jorntell, F.Bengtsson, M.Garwicz, J. Schouenborg, A.J Johansson in [1]. The
described simulator is available as a script implemented in the numerical com-
puting software "Matlab". To measure the performance of the BMI systems, the
Matlab script is needed to be implemented on a Field Programmable Gate Ar-
ray (FPGA) providing real-time signals. The first stage of the implementation on
the FGPA requires a hardware design of the simulator. This report presents the
hardware design of the Real-Time Neural Simulator.

The Real-Time Neural Simulator the original Matlab script was to be adapted
for the hardware design. The adaptation process involved replacing the Matlab
closed source signal processing and mathematical functions with hardware im-
plementable algorithms. The performances of these algorithms are successfully
verified against the Matlab functions.

The Neural Simulator Matlab script is converted from floating point to fixed
point implementation and the performance is verified for different word lengths.
One of the quantitative measurements for comparison of the output between orig-
inal script and final fixed point script was the percent of energy difference of the
output signal. For a word length of 13-bits with 1 sign, 6 decimal, and 6 frac-
tional bits, the calculated difference is less than 5 percent depicting the strong
resemblance between the outputs.

Finally the hardware design of the simulator constitutes of interconnected
hardware units. At the highest level a "Data Processing Unit" generates the target
and the noise recordings, "Controller" enables, disables the processing modules and
routes the data between them, and finally the RAM and ROM form the memory
units to store the input and processed data.

i

ii

Acknowledgments

I thank my supervisor Palmi.T.Thorbergsson for being very patient and supportive
all the way through my thesis, It has been a great learning experience. Thanks
to Johan Lofgren, co-supervisor for his wonderful guidance. I am thankful to
my examiner Dr.Anders Johansson for giving me the opportunity to work with
the thesis, Dr.Anders has been a great inspiration. I would also like to thank
Dr.Joachim Rodrigues for helping to find the thesis project and teaching the most
important courses that formed basis of my knowledge of System on Chip, also he
was a great motivation and inspiration for me throughout the Master’s Program.
I thank all the professors and lecturers who have helped to learn and encouraged
to explore during the Master’s program. Love my family and friends for being
supportive till the end.

iii

iv

Table of Contents

1 Introduction and Overview 1

2 Background 5
2.1 Neurons . 5
2.2 Introduction to Brain Machine Interface 6
2.3 Signal Recording Mechanisms . 8
2.4 Extracellular Recording of Brain Signals 10
2.5 Extracellular Signal Recording System 11

3 Analysis of the Spike Library Based Neural Simulator and Matlab Script 15
3.1 Introduction . 15
3.2 Neural Simulator Overview . 15
3.3 Neuronal Spikes . 16
3.4 Attribute Models . 16
3.5 Thermal Noise Modeling . 17
3.6 Algorithm and Output . 17
3.7 Matlab Implementation . 18

4 Analysis and adaption of Matlab library functions 25
4.1 Algorithm Implementation . 25
4.2 Data Flow Conversion . 28
4.3 Rand - Uniformly distributed random numbers 30
4.4 Randn- Normal distribution random numbers 31
4.5 gamrnd- Gamma distributed random numbers 32
4.6 log, exp - cordic algorithm . 34
4.7 division, randsample, randperm . 38

5 Hardware Design of the Simulator 39
5.1 Hardware Implementation at Glance 39
5.2 Top Level View of the Hardware Design 40
5.3 Simulator Controller . 42
5.4 I/O Ports . 42

6 Data Processing Unit 47

v

6.1 Preprocessing unit . 47
6.2 Firing Rate Calculator . 47
6.3 Noise Amplitude Calculator . 49
6.4 Standard Deviation Estimator . 51
6.5 Output Generator . 52

7 Random Number Generators 57
7.1 Uniformly Distributed Random Number Generator - Mersanne Twister

Algorithm . 58
7.2 Normally Distributed Random Number Generator 59
7.3 Gamma Distributed Random Number Generator 60

8 Results and Conclusions 61
8.1 Standard Deviation Calculation Unit Word Length 61
8.2 Word length for Overall Simulator 62
8.3 Simulation Output . 63
8.4 Conclusion . 63

References 67

vi

List of Figures

1.1 Thesis Implementation Flow . 2

2.1 Structure of a Neuron . 6
2.2 Peripheral Nervous System . 7
2.3 Brain Machine Interface . 8
2.4 Brain Machine Interface . 12

3.1 Neural Simulator Block Diagram . 18

4.1 Algorithm Selection Process Flow Chart 26
4.2 CDF of the standard deviation calculation 28
4.3 PDF of the error . 29
4.4 Random Number generators compared via CDF 30
4.5 Fixed point implementation CDF for uniform random number gener-

ator and Matlab function . 31
4.6 Normal distribution random number output comparision of ziggurat

implementation and Matlab library function 32
4.7 PDF of Gamma distributed Random number outputs from Matlab

function and Ziggurat based implementation 33
4.8 pdf overlapped with histogram of data of Matlab output and fixed

point output for different word lengths 33
4.9 Comparison between cordic algorithm and Matlab implementation for

Calculation of logarithm . 35
4.10 Error plot of difference between the logarithm Matlab output and the

fixed point output for different word lengths 35
4.11 Comparison between cordic algorithm and Matlab implementation for

Calculation of exponent . 36
4.12 Error plot of difference between the exponent Matlab output and the

fixed point implementation output for different word lengths 36
4.13 Comparison between cordic algorithm and Matlab implementation for

Calculation of square root . 37
4.14 Error plot of difference between the square root Matlab output and

the fixed point implementation output for different word lengths . . 37

vii

5.1 Simulator Overview . 39
5.2 Simulator Overview . 41
5.3 Simulator Controller Finite State Machine 43

6.1 Target and Noise spike id Selector Block Diagram 48
6.2 Flow chart of Target and Noise Unit Selection Process 48
6.3 Noise Firing rate Generator Data Path 49
6.4 Noise Amplitude Calculator . 50
6.5 Standard Deviation Calculator Data Path Diagram 52
6.6 Output Generator Data path for target, noise and thermal noise gen-

eration along with final output . 53
6.7 Output Generation Process Flow Chart 54
6.8 Thermal Noise Generator Block Diagram 55

7.1 Random Number Generator Initialization Data Path Diagram 57
7.2 Random Number Generator Main Data Path Diagram 58
7.3 Normally Distributed Random Number Data Path 59
7.4 Gamma Distributed Random Number Data Path 60

8.1 Percentage Difference of the Standard Deviation for varying Word
Length . 62

8.2 Calculated Energy Difference in percent between Original and Fixed
Point Converted Simulator Outputs 62

8.3 Fixed Point Converted Simulator Output with Target spike signal
Overlapping . 63

8.4 Comparison of the Original Simulator output and the fixed point Sim-
ulator Output . 64

8.5 Comparison of the Power Spectral Density between Original Simulator
output and the Fixed point Simulator Output 64

8.6 Comparison of the Autocorrelation between Original Simulator output
and the Fixed point Simulator Output 65

viii

List of Tables

3.1 Input parameters for the simulator 19
3.2 Ground truth the simulation . 22

4.1 Implemented Library functions and algorithms 27

5.1 Input ports of the simulator . 44
5.2 Output ports of the simulator . 45

ix

x

Chapter 1
Introduction and Overview

Aim of the thesis is to present an FPGA implementable hardware design of the
Real-Time Neural Simulator based on the work "Spike Library Based Simulator for
Extracellular Single Unit Neuronal Signals" by P. T. Thorbergssson, H. Jorntell, F.
Bengtsson, M. Garwicz, J. Schouenborg, A. J. Johansson. The simulator proposed
in [1] is implemented as a Matlab script by Palmi. T. Thorbergsson, formed the
baseline code for the thesis.

Understanding the simulator proposed in [1] and the related concepts formed
the Literature study of the thesis. The literature study is followed by the study of
the simulator implemented in Matlab code. During the study phase, the simulator
is run multiple times in the Matlab and output is studied.

Replacing the various signal processing and mathematical functions, adapting
parts of code to suit parallel processing, and modifying entire code to use fixed
point data formed the final stage of working with Matlab script. Once the fixed
point implementation was successful, a hardware design of the adapted Matlab
code is proposed to achieve the goal of the thesis.

Figure 1.1 and the text below will explain the various steps involved in the
implementation of the thesis and their presentation in this report. Chapters 2-7
will explain the adaptation and design process while chapter 8 will present the
results.

• Literature Study: The Background of Brain Machine Interface is analyzed
and is explained in chapter 2.

• Analysis of the Simulator: A functional analysis is performed on the original
simulator script proposed in [1]. A data analysis is also performed on the
simulator. Chapter 3 in detail explains the proposed simulator in detail
along with the Matlab script.

• Replacement of Library functions: The Matlab script of the simulator pro-
posed in [1] uses the signal processing, mathematical and data processing
functions from the Matlab library. Since source code for the Matlab library
functions is not available, equivalent algorithms providing the required func-
tionality are to be implemented. Chapter 4 lists and explains in detail the
various algorithms used to facilitate the replacement of the library function.
It also explains the rationale behind choosing the respective algorithms.

1

2 Introduction and Overview

Figure 1.1: Thesis Implementation Flow

• Adaptation of Data Processing: The Matlab runs on a Personal computer
with large memory and can be used for storing huge amounts of data and
perform required operations on it. The same is not feasible in hardware
since it requires huge amount of memory and implementation overhead. To

Introduction and Overview 3

achieve the same output without storing the data, the implementation of the
simulator is changed to a model where the data is processed sequentially and
continuously producing the required output while eliminating the need for
storing huge amounts of data. Chapter 4 shows the analysis of the simulator
data flow and explains in detail the data processing adaptation process.

• Fixed Point Implementation: Matlab implementation of the simulator is in
floating point. Implementing floating point in hardware is costly both in
terms of speed and area and requires a floating point unit. Implementation
using fixed point on hardware reduces the complexity of the implementation
and eliminates the requirement for the floating point unit. The disadvantage
with the fixed point implementation is the deviation in the output since the
word length which includes fractional point length determines the amount of
error in the data representation and processing. With a selection of proper
word length and fractional length the error can be minimized and an output
with good accuracy can be obtained.

• Design of the hardware: The final step in the process is to design the hard-
ware that implements the adapted fixed point simulator. The hardware
design is performed with abstraction at each level of design which is a re-
curring process until it arrives at the basic building blocks. The detailed
hardware design is explained in Chapters 5, 6, and 7

4 Introduction and Overview

Chapter 2
Background

Central Nervous system in the humans is responsible for the transmission, re-
ception and processing of information from different parts of the body. Central
Nervous System (CNS) constitutes of the Brain and the Spinal cord. Spinal cord is
the interface between the brain and the peripheral nervous system and the center
for various reflexes. Brain is not only responsible for the simple sensory informa-
tion reception and motor information transmission, but also for the more advanced
and complex functionalities of Cognition and Behavior.

Nervous system achieves its functionality by the interconnected cells. There
are two major classes of cells in the nervous system, Neurons and the Glial cells
or Glia. Neurons are the basic units of the brain, the interconnections and the
transmission of the signals between the neurons is responsible for the functionality
of the brain. Glial cells which derive their name from the Greek for glue surround
cell bodies, axons and dendrites of neurons [3], Glia are not directly involved in
the electrical signaling. The further discussion about Glia is out of scope of this
thesis, interested readers can refer to [3] for more information.

2.1 Neurons

Neurons are the signaling units of the nervous system. A typical neuron as shown in
Figure 2.1 has four regions, Cell body, Dendrites, Axon and Presynaptic terminals
[3]. Cell body or Soma is the place where metabolic activity takes place. Soma
contains the Nucleus where the proteins are synthesized. Dendrites are extensions
of the cell, and they branch out from the cell body. Dendrites are responsible
for receiving the incoming signals from the other cells. An Axon is responsible
for carrying the electrical signals from the cell, called action potentials. Axon
hillock is the last part of the cell before the beginning of the axon. Axon hillock
is responsible for adding the input excitation potentials to the cell before being
passed on to the initial segment of the axon. The axon can be quite long and also
can be branched out before ending on either other cells or the dendrites of the
other cells. An axon carries electrical potential of amplitude of 100mV without
any drop. The axon is insulated in the Myelin sheath which helps the insulation
of axon. Finally the places where axon makes contact with other cells are called
synapses. Presynaptic cell is the one transmitting the signal and the post-synaptic
cell is the receiving cell.

5

6 Background

Figure 2.1: Structure of a Neuron

2.1.1 Neuron Signaling and Action Potential

Action potentials are the signals responsible for the transmission, reception and
the analysis functionality by the brain. The information conveyed through this
action potential takes different pathways. The brain analyzes the pattern of the
incoming signal and pathway it took to analyze the received information. Each
neuron maintains an electrical potential difference between the inside the cell and
outside of it called resting membrane potential. The input electrical signal from
the other neurons is called the synaptic potential. The input electrical signals to
the neurons causes decrease in the potential difference. When the total sum of
input signals exceed a threshold at the start of axon called trigger zone an action
potential is generated. The action potential is approximately of 100mV amplitude
and can travel long distances across the neuron. The generation of action potential
is an all or nothing affair, which means an action potential is only generated when
the input signal sum is above a threshold, otherwise it will be nothing. Since
the action potential is the signaling mechanism among the neurons, any study
regarding the brain starts with measuring and recording of the action potentials.
The various techniques to measure the electrical activity of the brain rely on
the measurement of action potentials and an generated action potential is called
"spike" at the recording end.

2.2 Introduction to Brain Machine Interface

The field of Brain Machine Interface (BMI) technology aims at developing efficient
and reliable electromechanical system that is directly controlled by the signals from
the human brain. It is a multi-disciplinary field involving synchronized efforts be-
tween Medicinal Science, Electrical Engineering, Signal Processing and Mechanical

Background 7

Engineering fields.
To understand the Brain Machine Interface it is very important to understand

the mechanism of communication between human brain and various organs of hu-
mans or animals. Two important functions of peripheral nervous system of human
brain is to carry information to central nervous system via various sensory organs
called sensory or afferent division and send control signals from central nervous
system to various organs via the motor nervous system or efferent division.Figure
2.2 shows the afferent and efferent divisions of the PNS.

Sensory
Organs

Sensory/
Efferent
System Central

Nervous
System

Motor/
Afferent
System

Muscles/
Organ

Control

Figure 2.2: Peripheral Nervous System

A true BMI system mimics the natural communication and control between
the Central Nervous system and the organs, It is achieved by recording the brain
signals, translating them into control signals for the corresponding BMI applica-
tions. In essence the BMI provides the non muscular communication between the
human brain and the designated application. Figure 2.3 shows the block diagram
of the Brain Machine interface [4]

A Brain Machine Interface system can be divided into following constituent
blocks

• Sensors: The activity of the brain has to be recorded using the sensors. The
sensor translates the brain activity into useful signals to the later stages of
system. There are different kinds of mechanisms for signal recording using
sensors and is discussed in detail in next section.

8 Background

Subject Brain Sensors Artifact
Processor

Feature
Extractor

Feature
TranslatorDevice

feedback

Figure 2.3: Brain Machine Interface

• Artifact Processor: This block is responsible for removing noise and artifacts
from the recorded signal. The requirement of artifact processor is subject
to the mechanism of signal recording.

• Feature Extractor: Feature extractor analyzes the input brain signal and
converts it into a recognizable neurological phenomenon. It basically detects
the spikes of the brains, then sorts and correlates it to a particular function
of brain from a set of known functionalities. The output of this block is
referred to by some as "feature vector" [2]

• Feature Translator: Feature translator maps the feature vector to a control
signal that can be applied to the device. The mapping of feature vector to
control signal is a very important aspect of the BMI and a feedback from
this block is applied to the artifact processor to adapt the process to produce
more accurate output.

2.3 Signal Recording Mechanisms

The mechanism of recording of the brain activity is an important part of the
BMI system. There have been many types of mechanisms proposed and these
mechanisms measure different varieties of brain activities. The two dominant
activities measured are

• Electrical Activity: Electrical activity inside the brain is generated by the
electro-chemical transmitters and receptors exchanging the information among

Background 9

the neurons. The electrical activity in the brain can be measured by using
electrodes measuring the currents and voltages.

• Chemical Activity: Blood carries oxygen and glucose into the brain and in
case of any activity in that part of the brain the oxygen and glucose content
vary causing a change in hemoglobin composition in that area. The chemical
activity can be measured by using the imaging methods where the different
part of brain causes different colors in the image spectrum.

Both the electrical and chemical activity in the brain can be measured using
different mechanisms. The brain activity recording techniques can be grouped into
two based on the placement of sensors, Invasive and non-Invasive methods. The
invasive methods involve implanting the sensor electrodes directly inside the brain,
the non-invasive methods externally measure activity of the brain. Non-invasive
methods use externally placed electrodes or imaging techniques for measuring the
activity in the brain.

To compare quality of various techniques that measure brain activity there
requires some parameters that are important that need to be calculated, they are

• Temporal Resolution: The smallest period of neuronal activity that can be
measured and distinguished. Smaller the values better the performance of
the system.

• Spatial Resolution: Measure of capability to distinguish between two loca-
tions inside the brain. Higher the spatial resolution results in better ability
to localize the changes.

2.3.1 Non-Invasive Technologies

Non-Invasive techniques use imaging techniques and external electrodes to measure
the brain activity. The use external sensors and are harmless but the signal is
prone to noise and interference and require a powerful artifact processor. Also the
non-invasive techniques provide low spatial and temporal resolutions. Some of the
non-invasive technologies are listed below.

• Electroencephalography (EEG): EEG uses electrodes placed on the scalp
for measuring the electrical potentials generated. EEG uses gel between
electrodes and the scalp making it a wet electrode system. Since the signals
are passing through different layers of brain and scalp before reaching the
electrodes the signals are prone to high interference from the bio-electrical
activity in the environment. EEG recordings have better temporal resolution
while limiting the spatial resolution.

• Magnetoencephalography (MEG): In this mechanism the magnetic field pro-
duced outside the brain by the intracellular currents is measured. The MEG
techniques provide high spatial and temporal resolutions but the systems are
still in their initial stages of development.

• functional Near Infrared Spectroscopy(fNRIS): In fNRIS infrared light is
projected into brain via the scalp and measuring the optical changes across
the spectrum from the reflected light. fNRIS can be used to construct

10 Background

functional maps of brain activity. fNRIS has high spatial resolution and less
temporal resolution.

• functional Magnetic Resonance Imaging(fMRI): fMRI measures the small
changes in the Blood Oxidation level-dependent signals associated. It mea-
sures the oxidation and glucose levels during the activity in the brain. The
advantage is high spatial resolution but low temporal resolution.

2.3.2 Invasive Technologies

Invasive technologies need surgery called Craniotomy to implant the electrodes.
The advantages of the invasive methods include high temporal and spatial reso-
lution of the signal and less interference, but they require surgery to implant the
electrodes which could be dangerous and once implanted they cannot be moved
around.

• Electro Corticogram(ECoG): When the electrodes are placed on the surface
of the cortex the resulting signal recorded is called the Electrocorticogram.
It doesn’t damage neurons since it doesn’t penetrate brain. Good spatial
and temporal resolution and high frequency range. It is also less prone to
artifacts and noise since the distance between measured activity and device
is reduced.

• Intra Cortical Neuron recording: Intra cortical neuron recording measures
the electrical activity by placing the electrodes inside the brain. The elec-
trodes are implanted inside the cortex. The electrodes inside the cortex
measure the spike signals and field potentials from neurons. This technique
can again be divided into two kinds of techniques, Intra-cellular recordings
and extra-cellular recordings.

– In the intracellular recordings the electrodes are placed inside single
neuron to measure the activity in that neuron. This mechanism has
advantages that each neuron can be individually identified and mea-
sured but disadvantage that it can damage the neuron and also a small
movement of electrode might result in different measurements.

– In the extracellular recordings the electrodes are placed near the neu-
rons of interest and the activity of a group of neurons is measured
using a group of electrodes. This technique has an advantage that the
neurons are not damaged. But the measured activity is prone to noise
from other neurons. Extracellular recording system is explained in de-
tail in the next section. Both the techniques provide a high spatial
and temporal resolution and low noise artifacts.

2.4 Extracellular Recording of Brain Signals

Extracellular signal recordings measure the electric potentials simultaneously from
large number of neurons from the the area around the sensor. The measurement
of the potential is achieved by the implanted electrodes or electrode arrays near

Background 11

the neurons. Since the extracellular signal recording is done near the neurons it
measures not only the electrical potentials from the neurons that are near but also
the various other signals from the environment.

The constituents of an extracellular signal are, "the spike" signal which is
the measurement from the action potential from the excited neurons that are
close to the electrodes within approximate distance of 50 um [1]. The shape of
the spike varies among the neurons, is dependent on the structure of the neuron
and the spatial relation between the neuron and the electrode. This variation in
spike shapes helps to sort and assign the origin of the spike to individual neurons
via "spike sorting". At any given instant the electrodes also record the spiking
component from the distant neurons and this component of the signal is called
the physiological noise. The electrodes also measure the local field potentials such
as the synaptic potential, the signal component from these potentials is of low-
frequency in nature and can be filtered out.

The spikes, local field potentials and the physiological noise signal compo-
nents are generated by the physiological process in the brain. The other signal
components are caused by the electrical measurement equipment being used for
the recording. The first electrical equipment component is the thermal noise gen-
erated in the analog front end of the system, the other one being the power line
interference signal with frequency of 50Hz/60Hz based on the power-line signal
frequency.

2.5 Extracellular Signal Recording System

BMI based on the Extracellular signal recording system looks much alike the
generic BMI showed in 2.3, the differences in the systems reflect the extracellular
nature of the recording. Figure 2.4 shows the block diagram for the Extracellular
recording based BMI.

In extracellular recording, the implanted electrodes are responsible for the
capture of the signals from the brain. Semiconductor, polymer based electrodes
arranged Linear or planar arrays form few of the popular choices for the electrodes.
Signals recorded by the electrodes are in order of microvolts requiring amplification
of these signals. The amplification of the signals is done either by the embedded
electronic amplification devices on the electrodes or by standalone amplification
device. The important factor during the amplification process is to minimize the
noise by maximum input impedance of the amplifier.

The amplified signal is converted into digital domain using the A/D converter.
The design criteria of the A/D converter depend on the highest frequency compo-
nent representing the relevant signal. The signal bandwidth determines the sam-
pling rate and the resolution of the signal. Ideally it is desirable to have higher
sampling rate and higher resolution, but higher the data higher the computational
requirements thereby putting an upper limit on both sampling rate and resolu-
tion. Many papers have presented mechanisms to determine the optimal values
for bandwidth and resolution, and the final values are determined on individual
setup requirements

In the filtering stage the Low Frequency Potentials are filtered out from the

12 Background

Figure 2.4: Brain Machine Interface

high-frequency spiking component. Usually a bandpass filter is used filter both
the LFP’s and noisy appearance of the spike shapes.

Spike detection stage has the task of detecting and extracting the spike wave-
forms form the recording. The input of spike detector is the filtered signal while
the output is the timestamps of the action potentials and the spike waveforms.
Spike detection can be performed both manually and automatically using algo-
rithms. Manual detection can be performed by reducing the waveforms into shape
parameters, plotting them and clustering them by manual inspection. Manual
detection has the advantages of a chance to refine the inspection criteria to suit
the needs. The disadvantages of manual inspection is that its time intensive with
large clusters, not optimal for complex waveforms. The Automatic detection on
the other hand is usually is based on processing spikes around a given amplitude
threshold. Most of the algorithms proposed for the spike detection involves calcu-
lating of the threshold posing a risk of the threshold being too high or too low. If
the threshold is too high then there is chance of missing on actual spikes, if the
threshold is too low then the noise can be detected as a spike. A good approach
for the selecting threshold is to allow some noise while missing none of the actual
spikes since the noise can be processed and removed in the later stages.

Before the waveforms are sorted, it is required that they are aligned with each

Background 13

other properly. Since the actual time at which the spike has crossed the threshold
lies between two samples, the extracted samples for the waveform will be shifted in
time. This shift will cause misalignment among spikes and is called spike detection
jitter. One of the mechanisms to remove the jitter can be by up-sampling the data,
aligning the waveforms around a reference point such as its center of mass and then
down-sampling in the end.

Final stage in the BMI is the spike sorting, in this stage spikes from different
neurons are identified along with their spike times and finally generating indi-
vidual spike trains. The spike sorting involves feature extraction and clustering
the spikes. Feature extraction involves extracting the differentiating characteristic
features for spikes from each of the neurons. Feature extraction can be achieved
by Discrete wavelet transforms among other mechanisms. Clustering of spikes
involves feature based grouping and assigning the groups to the respective neu-
rons. There are various clustering algorithms proposed that involves assumption
of Gaussian distribution of the clusters.

Once the results of a BMI is presented, there is a need for a process to validate
the output of the BMI. Validation requires the prior knowledge and ground truth
of the incoming recorded neuronal spikes. As it is not possible to have ground
truth from actual functioning neurons, there is a requirement for a simulator that
can provide ground truth while simulating the neuronal activity. One of such
simulators is proposed by Palmi.T.Thorbergsson etal in [1], and is explored in the
next chapter.

14 Background

Chapter 3
Analysis of the Spike Library Based Neural

Simulator and Matlab Script

3.1 Introduction

The success of implementing an Extracellular recording based BMI system de-
pends on the accurate detection and clustering of the neuronal spikes. The preci-
sion of the detection and clustering depends on the algorithms selected. The se-
lected algorithms also influence the design of the signal acquisition and processing
hardware. The task of selecting algorithms requires benchmarking by qualitative
and quantitative evaluation, and comparison. Any benchmarking strategy of the
spike detection and sorting algorithms requires the knowledge of the ground truth
from the Central Nervous System(CNS). For the real-world extracellular neuronal
recordings it is impossible to have the ground truth information hence requiring
the neuronal simulators. The requirement of such a simulator would be to generate
recordings that mimic the actual neuronal activity and provide the ground truth
of the generated recording signal.

A simulator based on spike library is proposed by P.T.Thorbergsson etal in [1].
The proposed simulator generates extracellular recordings to be processed by the
spike detection and sorting algorithms along with the ground truth. The output
of the simulator has shown the properties of the extracellular recordings with
chronically implanted micro-electrode arrays in the central nervous system. This
chapter describes in detail the modeling parameters, neuronal signal generation
algorithms, input and output data of the simulator.

3.2 Neural Simulator Overview

A true extracellular recording of a brain with implanted electrodes will contain the
spike signal from the neuron of interest, the noise from surrounding neurons, and
thermal noise at input of recording amplifier. For a given recording duration the
interval between each spike generated by a neuron varies among different neurons.
This interval between generation of two spikes is called as the inter spike interval
(ISI). The neurons need a cool down period between generating two spikes called
refractory period thus setting a higher limit on the frequency of spike generation.

15

16 Analysis of the Spike Library Based Neural Simulator and Matlab Script

To generate the extracellular recordings via simulation, a simulator need to model
various parameters to provide a similar output to that of actual recordings.

Simulator proposed in [1] models various attributes of individual neuronal
spike generation, extends them to multiple neurons and finally performs the nec-
essary addition and transformations to generate the final simulated extracellular
recording. The simulator models the neuron distribution, inter spike interval dis-
tribution, spike amplitude and applies them to the spike library waveforms to
generate the basic neuronal recording which then is added to the modeled thermal
noise to generate the final simulated extracellular signal output. The following
sections describe in detail the modeled attributes, thermal noise, input waveforms
and the algorithm used in the simulator.

3.3 Neuronal Spikes

Simulator uses the spike waveforms detected and extracted from recordings per-
formed in various regions in the cat cerebellum. The recordings thus extracted are
processed through the open source software package "Chronux". The extraction
and processing of recordings resulted in 85 spike waveforms that were up sampled
to 100kHz while storing. The duration of each spike is defined as the "time period
where the absolute amplitude of the largest phase of spike is above half its peak
value" [1]. Spikes with smaller duration are referred to as "fast spikes" which form
the majority of the recorded spikes.

As part of [2] the spike library in [1] is statistically modeled and six principal
waveforms are extracted with their weight distribution which is a 6-dimensional
2-component Gaussian mixture model. This model in [2] can be used to synthesize
a wide range of spikes that can be detected in recordings of the brain. Since the
usage of model would make the implementation more complicated, a set of 2000
spikes that are most possible during the recordings from brain are generated as a
library with 100kHz sampling rate. The set of 2000 spikes based on [2] forms the
spike library used in the simulation.

3.4 Attribute Models

The models of neuron distribution, spike amplitude, and the Inter spike interval
used in the simulator are explained below.

3.4.1 Neuron Distribution

The simulator mimics the extracellular recordings of brain with micro-electrode
arrays. The simulator assumes an isotropic distribution of neurons around the
electrode with spherical volume of influence on electrode. The volume surrounding
electrode is divided into two parts near field and far field, the neurons inside the
near field are called "Target Units" and neurons inside the far field are "Noise
Units". The target units are the neurons of interest for recording, while the neurons
inside far field contribute to the physiological noise.

Analysis of the Spike Library Based Neural Simulator and Matlab Script 17

3.4.2 Spike Amplitude

Extracellular recordings usually involve the recording of the amplitude of the volt-
age of the neuronal spikes from different Neurons. The recorded amplitudes target
units normally exceed certain threshold while the amplitudes from the other units
decay with respect to the distance. The simulator models the amplitude variation
by assuming the target unit voltage as 1, while the noise units amplitude decay is
calculated using the the equation below.

A =
1

(Kr + 1)n

n is between 2 and 3
K is the scaling factor that specifies the rate of decay

r is the radial distance of the noise unit from the electrode

3.4.3 Inter Spike Interval

Spike generation of a neuron contains a firing period where it generates the spike
wave and an interval which it takes before it fires the next spike. The simulator
assumes spike generation times as a renewal process with gamma distributed inter
spike intervals for both the target and noise units. The following equation is used
to generate the spike times for any given unit ’p’.

SpikeT imes[τ(n)] =

n∑

j=1

ISIj , ISI ∼ Γ (k, θ) (3.1)

where k and theta are the shape and scale factors of the gamma distribution
respectively. For different mean firing rates f̄ the value of shape factor varies for
different units. The scale factor for gamma distribution is given by the mean ISI,
and shape factor k. Simulator assumes different firing rates for different noise unit
which are drawn from a uniform distribution.

θ =
ISI

k
=

1

f̄a
where, ISI −MeanInterspikeinterval

3.5 Thermal Noise Modeling

Thermal noise is modeled using the formula below. It represents the thermal noise
present at the input of recording amplifier and calculates the RMS of the noise.

v =
√
4kTBR

k- is Botlzman constant, T- Temperature
B- Bandwidth of the system

R - Input resistance of the electrode and amplifier

3.6 Algorithm and Output

Simulator generates a final recording for a given duration with spikes from target,
physiological noise from noise units and thermal noise. The simulator also gives out

18 Analysis of the Spike Library Based Neural Simulator and Matlab Script

the values of various parameters used in the simulation called ground truth. The
important parts of the ground truth are the target unit spike times and the target
unit waveforms. With the recorded waveform and ground truth signal processing
algorithms in subsequent stages of BMI can be successfully benchmarked and
verified.

3.7 Matlab Implementation

This section in detail explains the Matlab implementation of the simulator. Fig-
ure 3.1 shows the block diagram of the implementation in the Matlab.

Figure 3.1: Neural Simulator Block Diagram

From the block diagram it can be seen that the simulator takes a set of input
parameters, generates target and noise wave forms and sends out the recording
and ground truth. The Matlab implementation selects target units followed by the
selection of noise units and then generates the target/noise unit amplitudes, firing
rates and finally the recording in case of target units and a standard deviation
adjustment is performed before generating the noise recording. Input parameters,
Target recording generation, Noise recording generation and Final output of the

Analysis of the Spike Library Based Neural Simulator and Matlab Script 19

Matlab implementation is explained in detailed in the following subsections.

3.7.1 Input Parameters

The simulator can be started in Matlab with mandatory input parameter values of
duration, output sample rate and number of target units, also the optional inputs
can be specified. Table 3.1 shows each of the input parameter with unit used
and its significance. In case the optional input parameters are not specified the
simulator assumes default values for them. These input parameters are used to
derive the modeling values for output generation. The spike waveforms are read
from the spike library.

Input Parameter Unit Significance
Duration (D) second The Duration of Simula-

tion
Sampling rate (f s) Hz Sampling rate of output

recording
Target Units (N u) - Number of target units
Standard Deviation of
physiological Noise (σ n)

- Standard Deviation
of Physiological back-
ground noise

ffiremeanu(fu) spikes/sec Mean firing rate of tar-
get units

ffiremeann(fn) spikes/sec Mean firing rate of noise
units

Target Distance m Target Unit Amplitude
ISIKGam(k) - InterspikeInterval

gamma distribution
shape parameter

KAmp(K) - Rate of amplitude decay
in far field

SpikeID - Index Number of
spike(s) to use for
target unit(s)

Thermal Noise Select - Selection of Thermal
Noise

System Bandwidth (B) Hz System Bandwidth
Temperature(K) Kelvin Noise Temperature
Input Resistance at the
Amplifier(R)

Ohm Thermal Resistance

Boltz Constant(k) J/K Boltzmann constant

Table 3.1: Input parameters for the simulator

20 Analysis of the Spike Library Based Neural Simulator and Matlab Script

3.7.2 Target Recording generation

Target unit generation is explained with a sequence of steps given below.

• Target Unit Selection: Target unit selection involves assignment of a spike
waveform for the target units. Index of the spike waveforms can either
be specified via the input to the simulator or randomly selected. When
spike waveform indexes are specified as input, then corresponding units are
taken for generation. Else they are randomly selected using the rand-sample
function where each index is equally likely to be selected. The selected target
unit indexes are removed from the selection for the noise units since the noise
units cannot have same spike waveform as target units.

• Target Firing Time: Inter spike interval between target units is calculated
using the equation 3.1. The inter spike interval is a gamma distributed
process which is given by its shape and scaling factor. Scaling factor is
given by 3.4.3, the target mean firing rate and shape parameter can be
either specified as inputs or default values are considered. The shape and
scale factors thus calculated are provided for the gamma distributed random
number generator function. The final output of gamma distributed random
number generation function is utilized to generate the inter-spike intervals
using the formula 3.1.
One important calculation required is the calculation of total number of inter
spike intervals required that determines the number of outputs required from
the gamma distributed random number generator. Approximate number of
spikes for a given duration is calculated using the equation below, and then
the final count is made by adding the intervals and keeping the values that
fall inside the duration of recording.

NumberofSpikes =
DurationofRecording

ISIMean

• Target Recording: The amplitude scaled target spike waveforms are spread
across the duration of recording separated by the inter spike intervals cal-
culated.

3.7.3 Noise Recording generation

Noise recording is a sum of physiological noise and thermal noise.

Physiological noise generation

As explained the physiological noise is the result of the interference of the spike
waveforms generated by the neurons surrounding the Target Neurons. Simulating
the physiological noise is explained in series of steps below

• Noise Unit Selection: Noise unit selection involves assignment of spike wave
form for the noise units. Indexes of the spike waveforms are selected ran-
domly from the library using the random sample function with replacement

Analysis of the Spike Library Based Neural Simulator and Matlab Script 21

which means the same spike waveform can be assigned to more than one
neuron. The number of noise units in any recording is 960 based on an
approximation [1].

• Noise Unit Amplitude Calculation: Second step is to generate the scaling
factors. Scaling factors are generated according to the equation 3.4.2, where
n is 2.9. In that equation the r is the distance of the noise unit from the
electrode. Since the volume around the electrode is assumed as a sphere,
each point in the sphere is represented with the (x,y,z) co-ordinates. To
calculate the distance of the noise unit from the electrode 3 coordinates
(x,y,z) are necessary, but since it is assumed a isotropic distribution of points
a uniform random number generator output is used. Also for the neuron to
contribute to the noise it should be inside the far field which is between the
Radius of the Inner sphere Ri and Radius of the outer sphere Ro , the values
of Ri and Ro are 50 and 140um respectively. Finally a random position is
generated by following equation where rand function generates the uniform
random numbers required, Ro is the radius of outer sphere of influence.

xyzt = −Ro ∗ 2 + 2 ∗ 2 ∗Ro.rand(1, 3)

With the random position defined by the above equation, the radius is calcu-
lated by calculating the Euclidean distance from the origin. The calculated
radius is checked if it is between near-field and far-field radii values of 50um
and 140um respectively. If it is inside the radius is used to calculate ampli-
tude using the equation else it is generated again. Thus generated radius is
used in 3.4.2 to generate the amplitude scaling factor applied to the noise
unit spike waveforms.

• Noise Unit Inter spike Intervals: The noise unit inter spike intervals are
calculated in the same way as the target units except that the simulator
only takes the input of maximum and minimum firing rates from which the
values from which each of the noise units generates the firing rate. The
firing rate for the noise units is calculated using the equation given below,
the random number generator used is uniformly distributed random number
which generates the values between 0-1 thus distributing the firing rates
between min and max values.

firingrate = firingratemin + (firingratemax − firingratemin) ∗ rand(1)

The values generated above along with the scaling factor are used to generate
a gamma distributed inter spike intervals.

• Noise recording: The amplitude scaled noise spikes are spread across the
duration of recording according to the individual inter spike intervals. The
total physiological noise output is sum of individual noise recordings gener-
ated.

22 Analysis of the Spike Library Based Neural Simulator and Matlab Script

• Standard Deviation Adjustment: The physiological noise generated in above
step is scaled to achieve required noise level. This is achieved by calculating
the standard deviation of noise generated in the above step and then taking
ratio of required standard deviation to the calculated standard deviation.
The ratio gives the scaling factor that is applied to the total physiological
noise generated in above step to generate the final physiological noise.

Thermal Noise Generation

Thermal noise is calculated from the RMS of the noise by using the formula below,
where T is temperature, k- Boltzmann Constant , B is Bandwidth and R is the
Input resistance all values are optional input values to the simulator.

v =
√
4kTBR

The rms value calculated above is substituted in equation below to generate a
thermal noise component to the recording. Normally distributed random number
is used as an input to the thermal noise generation.

Recording = randn∗v∗A
A - Amplitude of the noise

randn - random number drawn from a normal distribution

Ground Truth field parameter
recording spike wave forms

spike wave form ids
spike times
spike duration

signals Target unit recording
Noise Recording
Thermal noise recording

simulation parameters Target unit firing rates
Noise unit firing rates
inter-spike interval
kAmp
Target Amplitude scaling fac-
tor
standard deviation of physio-
logical noise
Gain, Resistance, Bandwidth
and Temperature for calculat-
ing thermal noise

Table 3.2: Ground truth the simulation

Analysis of the Spike Library Based Neural Simulator and Matlab Script 23

3.7.4 Output Recording

The final output recording is a sum of the target spike recording and the noise
spike recording which includes physiological noise and thermal noise. Since without
the ground truth the recording is of no value, a ground truth is generated. The
ground truth output consists of the recoding details and the signals and simulation
parameters as shown in table 3.2

24 Analysis of the Spike Library Based Neural Simulator and Matlab Script

Chapter 4
Analysis and adaption of Matlab library

functions

The Neural Simulator proposed in [1] is implemented in Matlab using the library
functions. Since the aim of the thesis is to design the simulator for hardware
implementation, the source code should be available for all the library functions.
Matlab is a closed source package, each of the library functions has to be replaced
with equivalent algorithm implementations that provide similar outputs.

Matlab implementation of the simulator is executed on the PC which has
abundant hardware resources available. The hardware design involves a resource
constrained system. Any system implementation that requires storing of huge
amounts of data and bulk processing has to be modified to suit the hardware
design for FPGA implementation.

Important phase in any hardware design is the selection of the data represen-
tation, which can either be fixed point or floating point. The selection of floating
point would consume huge hardware resources hence the hardware design of the
simulator uses fixed point. The fixed point implementation requires the selection
of the word length of the implemented system. The word length selection requires
the conversion of the Matlab code into fixed point and running the system at
different word lengths.

First section of the chapter explains the algorithm selection criteria, fixed point
implementation details, and finally the removal of bulk processing of data by data
flow conversion. Section 4.2 explains the data flow conversion of the variance
calculation. Each section following the first section will explain an individual
algorithm used, and results from the implementation.

4.1 Algorithm Implementation

4.1.1 Algorithm Selection Process

The replacement of library functions involves selection of a algorithm that is suit-
able for hardware implementation while producing the output that is reasonably
accurate. The process followed for the selection of algorithm used as a Matlab
library function replacement is shown in figure 4.1.

• Identification of the Matlab algorithm: This step involves the identification

25

26 Analysis and adaption of Matlab library functions

Figure 4.1: Algorithm Selection Process Flow Chart

of the algorithm used in the implementation of the particular library function
in Matlab. This step helps in producing the output that accurately resembles
the Matlab output.

• Check Hardware Adaptability: In this step the identified algorithms are
checked if they are easy to implement in hardware by looking at the com-
plexity of the algorithm. Any algorithm that uses shifts and additions is
considered as easy to implement on hardware.

• Find Alternate Algorithm: This step is reached if the algorithm used in
Matlab is unknown, or implementation details are unknown or too complex
to implement on hardware. Selection criteria for the algorithm is again
reasonably accurate output and hardware adaptability.

• Implementation and Verification: The implementation of algorithm involves
two parts, the first part involves floating point implementation and compar-
ison of output with Matlab library function. The second part involves fixed
point implementation and comparison of output for various wordlenghts of
the implementation.

Analysis and adaption of Matlab library functions 27

4.1.2 List of Library Functions

All the library functions used in the Matlab implementation of simulator are iden-
tified and then analyzed if they require to be adapted. The functions that are not
adapted are the ones involving the file operations. 4.1 shows the library functions
identified to be replaced with user defined algorithms.

Function Significance Algorithm Matlab Algorithm
rand uniformly

distributed
random
number
generator

mersenne-twister
algorithm

Mersenne Twister
mt-19997

randn normally
distributed
random
number
generator

Ziggurat Ziggurat

gamrnd gamma
distributed
random
number
generator

Ziggurat Ziggurat

log logarithm
calculation

cordic unknown

exp exponent
calculation

cordic unknown

sqrt square root
calculation

libfixmath unknown

div Division
calculation

libfixmath unknown

randsample for random
sampling

random sampling
algorithm from
Matlab open
source

unknown

randomperm internally
used by
randample

Matlab open
source

unknown

sort sorting insertion sort unknown
max max value simple compare unknown

Table 4.1: Implemented Library functions and algorithms

28 Analysis and adaption of Matlab library functions

4.1.3 FixedPoint Conversion

The next step in the Real Time Neural Simulator hardware design is the fixed
point conversion. The code in Matlab is using the floating point numbers for
calculations. Implementing the design in the hardware using the floating point is
costly as it requires a floating point unit. Fixed point implementation is straight
forward in the hardware designing. Fixed point implementation causes error in the
results due to the rounding and truncation. Also the error is propagated along the
calculations and can lead to huge error in the final output. To verify the effects of
finite length data on the implementation of simulator, all the functions and data
is converted into fixed point functions. This is achieved by converting the floating
point data to integer data and performing the operations on the integer data.

4.2 Data Flow Conversion

Physiological noise unit recording is normalized by a scaling factor of ratio of
calculated and expected standard deviation of the same [1]. This calculation is
easy to do in Matlab since the entire recording is calculated and held in an array
which is fed as input to the standard deviation function. Implementing similar
algorithm on hardware is impractical because the amount of data to be stored
is variable and the generated data is continuously utilized without storing. If
exactly same algorithm as Matlab is to be implemented the simulator need to
have really huge memory available and the noise generation has to be run twice,
this approach also limits the simulator running continuously for longer periods. In
order to overcome these limitations an estimate of standard deviation has to be
performed where the estimated value is within the acceptable error limit.

0.49 0.5 0.51 0.52 0.53 0.54 0.55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Estimated Standard Deviation
Actual Standard Deviation

Figure 4.2: CDF of the standard deviation calculation

Calculation of the standard deviation is based on the identity that the variance
of the sum of independent random variables is the sum of the individual variances.

Analysis and adaption of Matlab library functions 29

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

5

10

15

20

25

30

Standard Deviation Error

D
en

si
ty

Standard Deviation Error data
Error Density Fit

Figure 4.3: PDF of the error

The Energy of a signal v(k) is given by

Ev =
∑

|v(k)|2 (4.1)

Variance of a signal is given by

E2
v =

1

K

∑

k

|v(k)− μ|2where K is the length of v(k) and μ is the mean of v(k)

(4.2)
The variance of the n-th spike train is estimated as

var(Vn) = E(V n2)− (E(Vn))
2 (4.3)

Assuming K samples in the recording and L samples per spike and fn is the
mean firing rate of neuron n we have

E(V 2
n) = fn ∗D ∗ L ∗ E(S2

n)/K (4.4)

substituting D = K/fs and Sn = An*S0n

E(V 2
n) = (fn/fs) ∗ L ∗A2

n ∗ E(S2
0n) (4.5)

E(Vn) = (fn) ∗D ∗ L ∗ E(Sn)/K = (fn/fs) ∗ L ∗ (E(S0n))
2 (4.6)

simplifying

variance = E(V 2
n)−E(Vn)

2 = (fn/fs)∗L∗A2
n ∗E(S2

0n)− (fn/fs)∗L∗ (E(S0n))
2

(4.7)
stddev =

√
(sumn(variance)) (4.8)

30 Analysis and adaption of Matlab library functions

After implementing the standard deviation estimation algorithm, the calcu-
lation of standard deviation is done with estimation and the actual formula and
the results are used to plot the CDF of the standard deviation and the PDF of
the error and the results are shown in 4.2, and 4.3. It can be observed that the
standard deviation calculated from the estimation is within the acceptable error
range and can be used.

4.3 Rand - Uniformly distributed random numbers

Mersenne-Twister algorithm is proposed by Matsumoto and Nishimura [7]. The
MT19937 has the period of 219937-1, the period of any pseudo random number
generator is the sequence of random numbers it will produce before it repeats
again. When compared to the number of neurons that are in the far field, the
period is very high thus providing very high degree of randomness in the firing
rates and position of noise units. The output of the algorithm is a sequence of
word vectors that is uniformly distributed between 0 and 2w-1 where w is the
word length and then normalizing the vectors gives the required random number
between 0 and 1.

Mersenne Twister algorithm in [7] comes with a c-program which is adapted
and implemented for this thesis. Figure 4.4 shows the output of 10000 random
numbers generated from Matlab library function and the Mersenne Twister algo-
rithm implemented fit into a Cumulative Distribution Frequency. It can be seen
from the plot that the outputs are matching very closely and the distribution is
uniform across the interval 0 to 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Twister Algorithm
Impelementation output
Matlab Random Number
Generator Output

Figure 4.4: Random Number generators compared via CDF

Figures 4.5 present the result of the fixed point adaption of the twister algo-
rithm compared to Matlab output at different word lengths. The curve fit show

Analysis and adaption of Matlab library functions 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Matlab Data
10−bit
11−bit
12−bit
13−bit
14−bit
15−bit
16−bit

Figure 4.5: Fixed point implementation CDF for uniform random
number generator and Matlab function

very minor difference for the different word lengths and the curves look uniform
in the interval 0-1. Since the error is very minimal and the curves look identical,
the random number generator is verified to be successfully adapted to fixed point.

4.4 Randn- Normal distribution random numbers

An ancient Mesopotamian rectangular tower is called Ziggurat. For generation of
the normally distributed random numbers Matlab uses a version of the Ziggurat al-
gorithm. Ziggurat algorithm was proposed by Marsaglia and Tsang [8] and derives
its name from the appearance of the layered rectangles used in the algorithm.

The Ziggurat algorithm expresses the required density as a combination of
simple densities and complicated residual density. The algorithm is a rejection
sampling algorithm. The algorithm constructs a ziggurat around the required
density function with a set of rules. The rules are that the number of rectangles
must be a power of 2 (Can be 64, 128 and 256), areas of the rectangles must be
constant and equal. These rules result in a ziggurat design with rectangles increas-
ing width and decreasing height when parsed from top to bottom, this also results
in the last rectangle tailing off to infinity. The algorithm works by selecting a uni-
form point (x,y) from one of the randomly chosen rectangles. If the random point
is under the required distribution curve, then it is part of the distribution, other-
wise it is rejected and next point is generated. A detailed explanation of ziggurat
algorithm is out of scope of this thesis report, refer [8] for further information.

The Ziggurat algorithm is implemented with 128 sets is implemented in Mat-
lab and the results are stored. Figure 4.6 shows the output of both Matlab library
function and the Ziggurat implementation output for 10000 random numbers gen-
erated fit into a curve and the PDF is calculated. It can be seen from the plots that
the distribution curves are following each other closely and also perfectly centered

32 Analysis and adaption of Matlab library functions

around 0. The PDF shows the expected distribution pattern from the normally
distributed random number generator. Since the results are satisfactory and the
algorithm is adaptable to hardware implementation it is selected for the hardware
implementation.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Data

D
en

si
ty

 Ziggurat Implementation
Density Fit

Matlab randn Density Fit

Figure 4.6: Normal distribution random number output comparision
of ziggurat implementation and Matlab library function

4.5 gamrnd- Gamma distributed random numbers

The algorithm used for generating the gamma distributed random numbers by the
Matlab is proposed by Marsaglia and Tsang in [9]. The algorithm draws a random
numbers from the normal distribution and applies following steps to generate the
gamma distribution.

• 1. Setup : item d=a-1/3 where a is the scale factor

• 2. Calculate c = 1/
√
9d

• 3. Calculate v = (1+c*x)∧3, with x standard normal distributed random
number. Repeat if v <= 0

• 4. Generate uniform random number U

• 5. U<1-0.0331*x∧4 return d*v

• 6. ln(U) < 0.5*x∧2+d-d*v+d*ln(v) return d*v (ln -natural logarithm)

• 7. Repeat step 3

[9] also provides an implementation of the algorithm in C code. The C code
was adapted into a Matlab implementation and the results are calculated. Figures
?? and 4.7 shows the output of both Matlab library function and the gamma
implementation output for 10000 random numbers for the same shape and scale
factors generated fit into a curve and also the PDF is shown respectively. It can be
seen from the plots that the distribution curves are following each other closely and

Analysis and adaption of Matlab library functions 33

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

16

18

20

Data

D
en

si
ty

Gamma based output fit

Matlab Lib gamma fit

Figure 4.7: PDF of Gamma distributed Random number outputs
from Matlab function and Ziggurat based implementation

0 0.05 0.1 0.15
0

5

10

15

20

25

Data

D
en

si
ty

10−bit
 10−bit fit
11−bit
 11−bit fit
12−bit
 12−bit fit
19−bit
 19−bit fit
18−bit
 18−bit fit
17−bit
 17−bit fit
16−bit
 16−bit fit
15−bit
 15−bit fit
14−bit
 14−bit fit
13−bit
 13−bit fit
matlab value
 matlab value fit

Figure 4.8: pdf overlapped with histogram of data of Matlab output
and fixed point output for different word lengths

also scaled accordingly. Since the algorithm satisfies both ease of implementation
on hardware and very good result it is selected for hardware implementation.

The gamma random number generator internally uses the normal random
number generator for the calculation, hence the final output comparison of the
gamma distribution output is a test for verification for both the gamma and normal
distributed algorithms. Figure 4.8 show the curve fit output and the pdf output for

34 Analysis and adaption of Matlab library functions

comparison between the Matlab output and the fixed point output for various word
lengths of the gamma distributed random number. From the plots it is observed
that the different word lengths have very little effect on the output generated but
higher the word length the closer the curve is following the Matlab output. As the
outputs are matching each other closely, the fixed point implementation of gamma
distributed and normally distributed random number generators is successfully
verified.

4.6 log, exp - cordic algorithm

The Cordic algorithm was initially developed for basic trigonometric operations.
Cordic Algorithm was proposed by Jack.E.Volder in 1959 for use in the real-time
digital computer for computing the trigonometric functions [10]. CORDIC is an
acronym for Coordinate Rotation Digital Computer. The cordic algorithm works
in two computing modes, rotation and vectoring.

Cordic algorithm does step by step rotations to calculate the angle or coordi-
nates depending on the mode of operation. For the calculation of the logarithm,
and exponent functions, the vectoring mode is used. In the vectoring mode the
coordinate components are given and the magnitude and angle of original vector
are computed. In 1971, J.S Walther proposed a unified algorithm for calculating
linear, trigonometric and the hyperbolic functions [12]. The details of the cordic
algorithm can be read more at [10], [15], [?].

xk+1 = xk −mdkyk2
−k (4.9)

yk+1 = yk + dkxk2
−k (4.10)

zk + 1 = zk − dkσk (4.11)
m = 0, 1,−1 (4.12)
dk = sgn(zk)forrotationmode (4.13)
dk = −sgn(yk)forvectoringmode (4.14)

(4.15)

A modified version of the cordic algorithm was implemented for calculating
the log, and exp functions and the plots 4.9, 4.11 show the comparison between
the Matlab and the implemented cordic algorithms. As it can be observed from
the plots the difference is negligible. Hence the algorithms implementation is
successful.

Figure 4.10 shows the error between the output of logarithm of various word
lengths and the Matlab library function. It can be seen that the error reduces
as the word length increases. Also the error is in tolerable level for all the word
lengths. The results show that the fixed point implementation of logarithm is
generating output comparable to Matlab library function and the implementation
is successfully verified.

Figure 4.12 shows the error between the output of exponent for various word
lengths and the Matlab library function. It can be seen that the error reduces
as the word length increases. Also the error is in tolerable level for all the word

Analysis and adaption of Matlab library functions 35

0.01 250.01 500.01 750.01
−6

−4

−2

0

2

4

6

8

x

lo
g(

x)

Plot of log(x)

Matlab log Function
Cordic log Function
Difference

Figure 4.9: Comparison between cordic algorithm and Matlab im-
plementation for Calculation of logarithm

0 1 2 3 4 5 6 7 8 9 10
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Data

O
ut

pu
t E

rr
or

11−bit
12−bit
13−bit
14−bit
15−bit
16−bit
17−bit

Figure 4.10: Error plot of difference between the logarithm Matlab
output and the fixed point output for different word lengths

lengths. The output generated by the exponent function is closely matching with
the actual output and low error. The results thus verify that the implementation

36 Analysis and adaption of Matlab library functions

0 2.5 5 7.5 10
−0.5

0

0.5

1

1.5

2

2.5
x 10

4

x

ex
p(

x)

Plot of exp(x)

Matlab exp Function
Cordic exp Function
Difference

Figure 4.11: Comparison between cordic algorithm and Matlab im-
plementation for Calculation of exponent

of the exponent in fixed point is successful.

0 10 20 30 40 50 60 70 80 90 100
−80

−60

−40

−20

0

20

40

60

80

Sample Data

O
ut

pu
t D

iff
er

en
ce

11−bit
12−bit
13−bit
14−bit
15−bit
16−bit
17−bit

Figure 4.12: Error plot of difference between the exponent Matlab
output and the fixed point implementation output for different
word lengths

4.6.1 sqrt - square root

The square root method implemented is from the libfix_math. The results of the
implementation are shown in plots 4.13 and 4.14.

Observing the plots it is understood that the higher word length generates

Analysis and adaption of Matlab library functions 37

0 250000 500000 750000 1000000
−200

0

200

400

600

800

1000

x

sq
rt

(x
)

Plot of sqrt(x)

Matlab sqrt Function

Cordic sqrt Function

Difference

Figure 4.13: Comparison between cordic algorithm and Matlab im-
plementation for Calculation of square root

the lesser output error. The error values are within the tolerable level making the
fixed point implementation verification successful

0 1 2 3 4 5 6 7 8 9 10
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Data

O
ut

pu
t E

rr
or

11−bit
12−bit
13−bit
14−bit
15−bit
16−bit
17−bit

Figure 4.14: Error plot of difference between the square root Matlab
output and the fixed point implementation output for different
word lengths

38 Analysis and adaption of Matlab library functions

4.7 division, randsample, randperm

The analysis of various division algorithms showed that it is effective to directly
implement the algorithm in fixed point than implementing a floating point and
converting it to fixed point. Hence a fixed point algorithm based on non restoring
division mechanism is implemented.

The randsample implementation is derived from the code from Matlab library.
Random sampling is achieved by generating the requested number of uniformly
distributed random numbers. The random numbers are sorted along with the
position indexes. The first N- Position indexes form the N-random samples.

The Division, randsample, and randperm algorithms are successfully converted
to the fixed point and the outputs have been verified. The division algorithm used
is borrowed from the libfixmath. Finally the sorting algorithm used is the insertion
sort. The insertion sort algorithm is very flexible and easily implemented on a
hardware hence it is used.

Chapter 5
Hardware Design of the Simulator

5.1 Hardware Implementation at Glance

Designing a system for implementation on an Application Specific Integrated Cir-
cuit (ASIC) or a Field-Programmable Gate Array (FPGA) requires a complete
understanding of the system being implemented at both macro and micro levels.
Figure 5.1 presents the hardware design overview of the simulator. The overview
shows the design at a simple level with emphasis on the representation of the data
flow to generate the output.

Figure 5.1: Simulator Overview

39

40 Hardware Design of the Simulator

Implemented Hardware design of the simulator should generate of a recorded
signal, and a ground truth signal that can be used as input for the subsequent
stages in a BMI system. Feasibility of implementation, Ease of development and
reasonably accurate output are the three basic design rules followed during the
hardware design of the Neural Simulator.

The system consists of two parts, "Simulator Controller" and "Data Process-
ing Unit". Simulator Controller issues the control signals that enables and disables
various functional blocks in the data processing unit. Data Processing Unit Inter-
prets the control signals to perform desired operations then informs the controller
via status signals.

Simulator controller reads the input data, stores it in the memory and enables
the data processing unit to perform data operations. Simulator controller also acts
on the status signals from the data processing unit. Status of each operation is
analyzed and next operation is selected via the control signals. It is implemented
as a Finite State Machine (FSM).

In Data Processing unit, unit selector randomly selects target and noise spike
waveforms used in the simulation. The times at which the target and noise units
are placed in the final recording is generated by the Inter-Spike Interval generator,
the inter-spike intervals generated are based on the firing rates of the target and
noise units from the firing rate calculator. Standard deviation estimation unit
calculates the estimated standard deviation for the noise recording. The ratio
of the estimated standard deviation to the expected standard deviation is used
as final normalization value for the noise recordings. Finally the Target spike
samples, noise unit samples, and the thermal noise samples are added together to
produce the simulator output.

Following sections will explain the detailed design of the hardware implemen-
tation of the simulator.

5.2 Top Level View of the Hardware Design

Figure 5.2 shows the detailed top level view of the simulator. To start the simula-
tor, the input ports are provided with the simulation parameters and start signal
resulting in the start of the Simulator controller. The simulator controller can be
run in two modes, one where the recordings are continuously generated and the
other is a timing mode with a maximum of 3600 seconds of recording generation.
These modes can be selected via the input to the simulator. Simulator controller
reads in the parameters for the simulation and stores them in the registers. Read-
Only Memory contains 2000 spikes of 13-bit resolution. Once the input data is
read, simulator controller enables the preprocessing unit. In the preprocessing
unit, first the spikes id’s for the target and noise units are selected randomly. Af-
ter the spike id generation, firing rates are calculated for the target and the noise
units. Calculating the amplitude for the noise units will complete the preprocess-
ing stage. Selected spike id’s, Amplitude for the noise units and the firing rates
for target and noise units are stored in the Random Access Memory (RAM). The
requirement on the RAM for the simulator implementation is a size of 16kB with
13-bit resolution. After the preprocessing stage the standard deviation estimation

Hardware Design of the Simulator 41

is performed for the noise units and stored in register.
In the output generation stage interspike interval for the target units and noise

units is continuously generated to facilitate both continuous and timing mode
of the simulator. Physiological noise output generation block scales the noise
spikes with the calculated amplitude and adds them to generate the physiological
noise signal. The generated physiological noise is scaled to the required standard
deviation. The generated physiological noise is added to the target and the thermal
noise to generate the output. The output generation stage also generates the
ground truth of the output recording.

Design of these blocks is explained in detail in current chapter and chapters 6
and 7.

Figure 5.2: Simulator Overview

The major functional blocks are the simulator controller, preprocessing unit,
standard deviation estimator, Output Generator, Uniform Random Number Gen-
erator, Math functional blocks, memory blocks RAM and ROM, finally input and
output ports.

To reduce the implementation area, the design has only one RAM, one ROM
and a single instance of the uniform random number generator and the math
functional blocks. This implies that there are multiplexers between the Data
processing unit and these units. Every time the thesis mentions any of these

42 Hardware Design of the Simulator

units, it is assumed all of them refer to the same instance.
Simulator controller is responsible for the generation of the control signals and

reading of the input data. Data is transmitted in and out of the simulator via the
Input and Output Ports (I/O Ports). preprocessing unit is responsible for selection
of the spike id’s for the target and noise units, firing rate calculation and Ampli-
tude calculation for the noise units. Standard deviation estimation for the noise
units is done in the standard deviation estimator. Finally the interspike intervals,
output recording and ground truth are generated in the output generator. To-
gether the preprocessing unit, standard deviation estimator, and output generator
forms the data processing unit, explained in detail in chapter 5. Random Num-
ber Generators: Simulator requires multiple implementations of random numbers
with uniform, normal and gamma distributions. Since the hardware implemen-
tation of each of these more than once is expensive, they are implemented as a
block and multiplexed among various data processing units. Chapter 6 explains
the hardware design of these random number generators Math functional blocks
contains implementation of mathematical functions of Natural logarithm, square
root, exponent, and divider used in data processing. Design of the mathematical
functional blocks is implemented but out of scope of this report.

5.3 Simulator Controller

Primary task of simulator controller is to enable and disable different functional
blocks in the data processing unit to facilitate the flow of data among them. It is
implemented as a finite state machine, Figure 5.3 shows a simplified version of the
state machine. Transition from each state to next state is facilitated by the status
signals, while the transition triggers the control signals to the data processing unit.
A stop signal to the simulator at any time transits initiates the transition to the
idle states from all the other states, though not shown in the state machine for a
simpler view.

5.4 I/O Ports

I/O ports are the mechanism to feed the input data, and collect the output from
the simulator. Since I/O ports translate to I/O pads on the hardware and the I/O
pads take huge area on the FPGA, it is good to keep the I/O ports as minimum
as possible. It should be noted that the simulation parameters to the hardware
design of the simulator is different from the Matlab script. Inputs spike library
name and save_file name are dropped since they are not relevant, inputs like spike
id selection of the target is also dropped since it increases the complexity of the
implementation for little flexibility, but in cases where the target id need to be
specified they can be specified via the ROM.

Hardware Design of Neural Simulator has 15 1-bit inputs, eight 1-bit outputs
and two 13-bit outputs. Functionality of each pin is explained in detail in the
tables 5.1 and 5.2

Hardware Design of the Simulator 43

Idlestart ReadInputs

StartPreprocessing

EstimateStandardDeviation

GenerateOutput

reset=0

simulator_start=1/clk=1

read_finish=1/en_preprocess =1

preproc_finish=1/est_sd =1

sd_finish=1/gen_out=1

ou
t_

fin
is

h=
1

/s
im

_
co

m
p=

1

Figure 5.3: Simulator Controller Finite State Machine

44 Hardware Design of the Simulator

clk 1-bit Simulator clock
rst 1-bit Simulator reset
start 1-bit A high on this pin drives Sim-

ulator Controller from idle to
read state

stop 1-bit A high on this pin drives Sim-
ulator Controller to stop state

num_unit 8-bit serial Target unit number, maxi-
mum 140

duration 12-bit serial Duration of recording in sec-
onds, maximum 3600. 0 to
run until a high stop signal

samplerate 4-bit serial Sample rate of the output
recording in kHz, maximum
value is 10kHz

phy_noise_sel 1-bit 1-Enable/0-disable physiolog-
ical noise generation

th_noise_sel 1-bit 1-Enable/0-disable physiolog-
ical noise generation

t_noise_param 13-bit serial Calculated square root of
kTBR

isi_gam_def 13-bit serial Isi distribution shape parame-
ter(k)

p_noise_def 13-bit serial Standard deviation of the
physiological background
noise

k_amp_def 13-bit serial Amplitude decay factor in the
far field

meanu 13-bit serial Mean firing rate for the target
units

meann 13-bit serial Minimum and the maximum
value of the noise unit firing
rate. The input order is min-
imum value followed by maxi-
mum value

target_dist 13-bit serial Minimum and maximum
value of the distance of target
units. The input order is
minimum value followed by
maximum value

Table 5.1: Input ports of the simulator

Hardware Design of the Simulator 45

scal_amp_start 1-bit flag which is high when the
target units amplitude scaling
factor values for the target are
available on the sim_out out-
put. Each of the 13-bit val-
ues are mapped to the 13-
bit target index values one to
one where first 13-bit output
amplitude scaling factor corre-
sponds to the first 13-bit tar-
get index output.

tar_index_start 1-bit which is high when the index
values of the target units are
available on the sim_out out-
put. The 13-bit output val-
ues of target index is mapped
to the amplitude scaling factor
values.

scal_target_start 1-bit which is high when the ampli-
tude scaled target spikes are
available on the sim_out.

spike_times 13-bit serial data output which outputs the
inter-spike intervals of the tar-
get units corresponding to the
target unit indexes.

sim_out 13-bit which is multiplexed to send
out target unit amplitude scal-
ing factor, target index values,
amplitude scaled spike values
and finally the actual simula-
tor output. The output is at
the given sampling rate.

sim_out_start 1-bit which is high when the simu-
lator output is available on the
sim_out.

target_10k 13-bit serial output of the generated tar-
get recording values at 10kHz
sample rate.

noise_10k 13-bit serial output of the generated physi-
ological background noise val-
ues at 10kHz sample rate.

thermal_10k 13-bit serial output of the generated ther-
mal noise values at 10kHz
sample rate.

Table 5.2: Output ports of the simulator

46 Hardware Design of the Simulator

Chapter 6
Data Processing Unit

Data processing unit processes the spike data and the simulation parameters to
generate the recording output and the ground truth. Preprocessing unit, standard
deviation estimator and the output generator form constitute the data process-
ing unit. Design of the individual hardware blocks is explained in the following
sections.

6.1 Preprocessing unit

6.1.1 Unit Selector

First part of preprocessing unit is the Target and Noise unit selector. This unit
generates the index for the spike waveforms used for target and noise units. This
is the equivalent for the Matlab function rand_sample. The output indexes gener-
ated by this unit is stored in RAM for use by the other units in the data processing
unit.

Figure 6.1 shows the block diagram of the unit selector. The process of unit
selection involves reading of the uniformly distributed random number, sorting
the random numbers and finally storing the id’s in the RAM. The sorting logic is
implemented as a finite state machine.

Figure 6.2 shows the flow chart of the unit selection algorithm followed for the
implementation. The unit first generates 2000 uniform random numbers and stores
them along with the sequence number of generation. These generated random
numbers are stored in the RAM, thus each stored value in RAM has both the
random number and the sequence number. The random numbers are sorted in
ascending order placing the corresponding sequence number in random order. The
first ’M’ sequence numbers form the target unit id’s where M is the number of
target units. Rest 960 sequence numbers form the noise unit id’s.

6.2 Firing Rate Calculator

Firing rate generator calculates the firing rates for the target and noise units.
The target firing rate calculation is simple as it involves the generation of uniform
random number and multiplying it with mean target firing rate. This process is
repeated for all the target units. The reciprocal of the calculated firing rates which

47

48 Data Processing Unit

Figure 6.1: Target and Noise spike id Selector Block Diagram

Figure 6.2: Flow chart of Target and Noise Unit Selection Process

Data Processing Unit 49

is the mean interspike interval is stored in the RAM. Firing rate calculation for
noise unit involves the minimum and maximum firing rate values that are input
to the simulator. The process of generation of the firing rates for the noise units
involve generation of a uniform random number and scaling to fall between the
minimum and maximum firing rates. Reciprocal of firing rate for each target unit
is calculated, the reciprocal is the mean inter spike interval for that noise unit.
Each of the mean ISI’s are stored back in the RAM for all the noise units. Figure
6.3 shows the data path for the firing rate generator.

Figure 6.3: Noise Firing rate Generator Data Path

6.3 Noise Amplitude Calculator

Noise Amplitude calculator is responsible for generating the scaling factors for
the Amplitude of noise spike wave forms. The amplitude is calculated according
the equation 6.3. Radial distance of the noise unit is used for calculating the
amplitude scaling factor, radial distance is dependent on the position of the noise
unit in the far field. Also a unit is considered to be in far field if its distance is

50 Data Processing Unit

greater than 50 Micrometers and less than 140 micrometers. Distance calculation
process generates random position of the noise unit, calculates the radial distance
to the unit and verifies if it is in the far field. If the unit is in the far field, the unit
is considered as noise unit else the process is repeated. Flow chart for amplitude
calculation is shown in the figure 6.4. Once the radial distance is calculated, the
amplitude scaling factor is calculated according to the following equation.

A =
1

(Kr + 1)n

n is between 2 and 3
K is the scaling factor that specifies the rate of decay

r is the radial distance of the noise unit from the electrode

Figure 6.4: Noise Amplitude Calculator

Figure 6.4 shows the block diagram for the noise unit amplitude calculator.
The calculator consists of a controller implemented in FSM, and a datapath. The
controller is responsible for enabling and disabling of the datapath, while the data-
path performs simple arithmetic operations to generate the output. The controller
also reads in the random numbers, feeds them to the datapath. After generation of

Data Processing Unit 51

each scaling factor, the controller reads the corresponding noise unit from ROM,
scales the amplitude and stores the scaled samples in the RAM. This process is
repeated for all the noise units.

Figure 6.4 shows a section the data path diagram for the noise amplitude
scaling factor calculator. The section shown here is used to calculate the radial
distance for the random position of the noise unit. The position in 3-dimensional
plane requires (x,y,z) coordinates which are generated by the random number.
Each coordinate generated is processed and stored in the registers and once all the
co-ordinates are generated, processed and stored in Registers. The registers are
enabled by controller with control signal En_r2 and the output from registers is
fed to the adder to generate the radial distance. The radial distance thus generated
is used by the rest of the data path to generate the amplitude.

To generate the amplitude, a 2.9th root of the Kr+1 need to be calculated. The
calculation is performed by calculating a natural logarithm of the same and then
calculating the exponent of the logarithm result. The natural logarithm calculation
and the exponent calculation is performed by the Exp and Log calculator.

6.4 Standard Deviation Estimator

Matlab script scales the generated physiological noise output to match the input
standard deviation. This requires the calculation of the standard deviation of the
standard deviation of the generated physiological noise. This is not feasible in the
hardware since it would require huge memory to store the output and also can’t
be run in forever loop. To avoid this a standard deviation estimate is calculated
as explained in section 4.2. The final equation for estimation is given below. In
the equation L represents samples per spike and fn is the mean firing rate of the
nth neuron, An Amplitude of the n-th spike.

variance = E(V 2
n)−E(Vn) = (fn/fs) ∗L ∗A2

n ∗E(S2
0n)− (fn/fs) ∗L ∗ (E(S0n))

2

(6.1)

stddev =
√

(sumn(variance)) (6.2)

The data required to compute such as the mean squared amplitude, mean
amplitude is read from the ROM and the ISI mean is read from the RAM. The
communication to the mathematical functions is performed via the math function
ports. Also the ports are 15-bit for the math functions since the standard deviation
unit needs a different word length which is explained in the chapter 3. Also all
the internal calculations involve 15-bit arithmetic and data.

6.5 shows the data path for the generation of the standard deviation. The
data path only calculates the variance and the standard deviation is calculated
applying the square root to it. The square root calculation is done by the square
root function implemented in the Math function block.

52 Data Processing Unit

Figure 6.5: Standard Deviation Calculator Data Path Diagram

6.5 Output Generator

Output generator is responsible for generating the target recording, and the ground
truth. Figure 6.6 shows the block diagram of the output generator. The output
generation is a two part process, the first part is the management of the Interspike
intervals and the second part is the management of output recording generation.

The Management of interspike intervals involves continuous generation of in-
tervals for the target and noise units. The interspike interval generation process
is handled by the Interspike Interval controller. At initialization the interspike
controller generates intervals for all the noise and target units and stores them in
the Interspike Interval Buffer. After the initialization phase, further requests for
interspike interval generation are handled by reading interval request buffer. The
Interspike interval buffer holds the interspike interval for all the target and noise
units. Interval request buffer holds all the requests for the generation of interspike
intervals. The interspike interval generation is achieved by applying the scale
factor and the mean interspike interval to the interspike interval generator. The

Data Processing Unit 53

In
te

rv
al

Re

qu
es

t
Bu

ffe
r

11
00

x1
-b

it

In
te

rs
pi

ke

In
te

rv
al

Ge

ne
ra

to
r

In
te

rv
al

Co

un
td

ow
n

Bu
ffe

r
(1

10
0x

13
-b

it)

In
te

rs
pi

ke

In
te

rv
al

Bu

ffe
r

11
00

x1
3-

bi
t

+

Ta
rg

et

Un
it

Ge
ne

ra
to

r

No
ise

 U
ni

t
Ge

ne
ra

to
r

Th
er

m
al

No

ise

Ge
ne

ra
to

r
RAM 16kB

In
te

rs
pi

ke
 In

te
rv

al

Co
nt

ro
lle

r

1

r e s a m p l e

Gr
ou

nd
Tr

ut
h

-
Sp

ik
ei

d,

In
te

rs
pi

ke
 In

te
rv

al

10
KH

z F
re

qu
en

cy

Do
m

ai
n

Sp
ik

e
Co

nt
ro

lle
r6

1

4
3

5

5
2

O u t p u t

Gr
ou

nd
 T

ru
th

Figure 6.6: Output Generator Data path for target, noise and ther-
mal noise generation along with final output

interspike interval generator consists of a gamma distributed random number gen-
erator and a output handler. Output handler sends out the generated interspike

54 Data Processing Unit

interval and corresponding spike id to the output as a ground truth values.

Figure 6.7: Output Generation Process Flow Chart

Spike Controller handles management of the output recording generation and
the corresponding ground truth generation. Output generation process is shown
in figure 6.7. Interspike intervals are loaded into the Countdown buffer. The
Interspike intervals in the countdown buffer are counted down for each clock cycle.
When the count for the interval reaches a value of 1 a request for generation of
interspike interval for that unit is placed in the interval request buffer. When
the count reaches zero recording generation for particular target/noise unit is
enabled. The process continues until the end of the simulation. Target Recording
Generator reads the samples from the RAM for the target units that are firing
at that instance, adds them and loads it in the output register. Noise Recording
Generator also reads the samples from the RAM for the Noise units that are firing
at that instance, adds them, scales them to the standard deviation and loads them
into the output register. Each of the output samples from the target, noise and
thermal noise generators is stored in corresponding output registers clocked at
a speed of 10KHz. The clocking of the output registers at 10KHz. The output
registers output is directly fed to the adder that generates the output recording.
The output recording is then downsampled to the required output sampling rate.
The output from the registers at 10KHz is also fed to the corresponding ground
truth output ports.

6.5.1 Thermal Noise Generator

Thermal Noise Generation unit is used to generate the thermal noise as part of
the output generator. The thermal noise is generated by multiplying a normal

Data Processing Unit 55

distributed random number and with the input rms value of the thermal noise to
generate the final thermal noise output. 6.8 shows the thermal noise generator
block diagram. The process is to read the normal random number generated,
multiply with the rms value and send the data out. The whole process controlled
by the controller implemented in state machine.

Figure 6.8: Thermal Noise Generator Block Diagram

56 Data Processing Unit

Chapter 7
Random Number Generators

This chapter explains in detail the design of the Random Number generators.
There are three different distributions of random number generators used in the
design of Real Time Neural Simulator. The uniformly distributed random number
generator is used in the noise amplitude scaling factor generation, random sampling
and firing rate calculation. The normally distributed random number generator is
used in the generation of thermal noise. Finally the Gamma distributed random
number generator is used in the inter-spike interval generation unit.

Figure 7.1: Random Number Generator Initialization Data Path
Diagram

57

58 Random Number Generators

7.1 Uniformly Distributed Random Number Generator - Mer-
sanne Twister Algorithm

The design of the Simulator uses the Mersenne Twister algorithm for the uni-
form random number generation. The MT algorithm hardware design contains
a controller and two data paths controlled by the controller. The controller is
implemented via state machine and its task involves enabling the data paths and
controlling the data flow between them. The MT random number generator has
an initialization phase during which the input seed is processed to generate the
runtime data used in random number generation. After the initialization phase
the generator can be used to generate any number of random numbers distributed
uniformly. Also moving the generator between initialization phase and generation
phase is handled by the controller.

Figure 7.2: Random Number Generator Main Data Path Diagram

Figure 7.1 shows the data path diagram for the initialization of the random
number generator. The seed and input values are provided by the controller and
once the calculation is finished the initialized data is stored in the RAM and it
continues for 624 times to generate the initial working area for the algorithm to

Random Number Generators 59

start generating random numbers. The 624 number working area is because of the
623-distributional property of the algorithm.

Figure 7.2 shows the data flow diagram for the main generator, it can be
observed that the generator is split into two parts. The first part is started with
the controller providing the mt1 and mt2 values read from RAM and then input
to the first part of the data flow diagram. The second part of the diagram is the
data path for generating the 32-bit random number. To generate the final 13-bit
random number, the 32-bit random number generated first is shift by 20 bits and
sent as output.

7.2 Normally Distributed Random Number Generator

The generation of random numbers with normal distribution is implemented by
the Ziggurat algorithm. The ziggurat hardware design contains a controller and
three data paths enabled and controlled by the controller. The controller also
handles the data flow between the data paths. Each of the data paths has a
specific purpose explained below. The ziggurat algorithm in essence generates a
uniformly distributed random number that is processed to determine if it is inside
or outside the required distribution curve. The ziggurat algorithm uses two sets of
equations to select the rectangles to generate the random number from. One set
of equations for selection from the top rectangles and the second set for the trail
rectangle of the ziggurat.

Figure 7.3: Normally Distributed Random Number Data Path

60 Random Number Generators

The design of the ziggurat algorithm must handle the random selection of
either top rectangles or the trail of the ziggurat. Figure 7.3 shows the data path
diagram for both the cases. Left part of the datapath generates the output if one
of top rectangles of ziggurat is selected. Right Datapath generates the random
number form the trail. The selector determines if the random number has to be
taken from the top rectangles or the trail, it also validates if the generated value
is inside the distribution. If the selected value is inside the ziggurat, it is sent to
the output.

7.3 Gamma Distributed Random Number Generator

Figure 7.4: Gamma Distributed Random Number Data Path

The simulator uses gamma distributed random numbers in the calculation of
inter-spike intervals. Gamma distributed random number generation is based on
the algorithm proposed in [9]. The algorithm is simple for implementation and
requires the normal distribution random number generator to provide the random
number for calculation of gamma distribution. The generator consists of data path
that process the data to generate the random number, managed by the controller.
The controller is implemented in state machine and is in a specific state at any
given point of processing. Figure 7.4 shows the data path and the controller.
The datapath design is the fixed point implementation of the gamma algorithm
discussed in chapter 4.

Chapter 8
Results and Conclusions

The Original Matlab code is successfully adapted to include the user defined algo-
rithms mathematical functions, and random number generators. Another major
step in adapting the code is the conversion to fixed point implementation. Initially
the code is converted into fixed point implementation with adaptable word length.
The adaptable word length helps in understanding the effects of finite word length
on the simulator output for different word lengths. In order to verify the finite
word length effects there is a need for some measurable quantity of the signal for
benchmarking. The bench marking is done by measuring the total energy of the
resulting signal as a metric. Assuming an error tolerance of 10 percent is allowed
between the energies of the signal of the original Simulation output and the Fixed
Point Converted code. The simulator uses signed representation of word length
and output word length represented in Q form is Q6.6. This accounts for a max-
imum of 40 target units with maximum amplitude, translating to 6 decimal, 6
fraction and 1 sign bit.

During the adaptation to fixed point system it is found that the standard
deviation calculation requires a special attention for calculation of required word
length and is discussed in detail in the next section. Section 8.2 will describe the
selection of final word length. Final section concludes with the analysis of results.

8.1 Standard Deviation Calculation Unit Word Length

To select the proper word length the fixed point code was run in parallel with
the floating point code for exactly same simulation parameters, this requires pre-
generation of random numbers wherever required, also all the library functions
were replaced by fixed-point versions. To calculate the word length required the
simulator is run by varying the word length between 11-bits to 17-bits and the
standard deviation calculated value is stored. Once all the word lengths output is
calculated then the percent deviation from the floating point value is calculated
and plot in a graph. Figure 8.1 shows that results and it can be seen that the word
length of 16-bits is required to keep the error tolerance at 5 percent. The error
tolerance for this hardware unit is chosen specially to be low since a small percent
change in here causes a huge percentage deviation in the final energy difference
since the error is spread across all the noise signal values.

61

62 Results and Conclusions

11 12 13 14 15 16 17
−180

−160

−140

−120

−100

−80

−60

−40

−20

−5
0

Word Length

st
an

da
rd

 d
ev

ia
tio

n
di

ffe
re

nc
e

ra
tio

(%
)

Percentage difference of standard deviation for various bitlengths

(%)loss

Figure 8.1: Percentage Difference of the Standard Deviation for
varying Word Length

7 8 9 10 11 12 13 14 15 16 17
−80

−60

−40

−20

−10

0

20

40

Word Length

%
 E

ng
er

gy
 D

iff
er

en
ce

(%) Difference of Signal Energy for different Word Lengths

Calculated Energy Difference

Figure 8.2: Calculated Energy Difference in percent between Origi-
nal and Fixed Point Converted Simulator Outputs

8.2 Word length for Overall Simulator

Using the 15-bit word length for the standard deviation calculation module the rest
of the simulation is run for various word lengths varying from 6-bit to 16-bit and
the energy difference of the floating point signal and fixed point signal is calculated
and plot in a graph as shown in Figure 8.2. It can be seen from the figure that

Results and Conclusions 63

a 12-bit value for word length provides the agreed 10 percent tolerance of percent
of calculated signal energy of the outputs of original and fixed point adapted
simulator. One extra bit is added to compensate for parameter variations and
other propagated finite word length effects making the final word length selection
as 13-bits.

8.3 Simulation Output

The final simulation was run with 13-bit word length for all the modules and 16-bit
for standard deviation calculation and the final result is plotted in figure 8.3, the
graph contains portion of the output signal with target spike overlapped. It can
be seen that the noise has contributed to some increment in the final combined
signal when compared to target only output.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Duration(s)

A
m

pl
itu

de

Total Recording Output
Target Spike

Figure 8.3: Fixed Point Converted Simulator Output with Target
spike signal Overlapping

Figure 8.4 shows the comparison between the original simulator output and
the fixed point adapted simulator output. It can be seen that the signals are
following each other closely but not exactly same because of the randomness in
the generation of the scaling factors and other parameters.

Figure 8.5 shows the comparison of the power spectral density between the
original simulator and fixed point adapted simulator output. Considering that the
calculation of inter spike intervals, and random scaling factors for the noise signal
the two outputs show a good match. Figure 8.6 shows the autocorrelation of the
original and fixed point simulator outputs and they show very strong similarities.

8.4 Conclusion

The result of the fixed point implementation simulator is very satisfactory and is a
major milestone for the hardware design and implementation. Based on the fixed

64 Results and Conclusions

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Duration(s)

A
m

pl
itu

de
Fixed Point Simulator Output

Original Simulator Output

Figure 8.4: Comparison of the Original Simulator output and the
fixed point Simulator Output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

Frequency(Hz)

P
S

D

original simulation
fixed point implementation

Figure 8.5: Comparison of the Power Spectral Density between Orig-
inal Simulator output and the Fixed point Simulator Output

point implementation of simulator, the hardware design is made and is explained in
detail in previous chapters, the design included the entity diagrams for each of the
hardware blocks, data path and state machine to achieve the required functionality
supported by the memory.

The design was performed to keep the area of implementation low, this is

Results and Conclusions 65

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−3

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Original Matlab Output
13−Bit Fixed Point Output

Figure 8.6: Comparison of the Autocorrelation between Original
Simulator output and the Fixed point Simulator Output

achieved by multiplexing the mathematical modules and random number gener-
ators. Also wherever the usage of additional hardware block provides the speed
advantage which outperforms the area advantage, the speed is given the priority
and the multiple blocks of same functionality is used. All in all the design was a
balance between area and speed performance of the hardware.

The simulator hardware design in its current form has few limitations such
as elimination of few of the input parameters, The spike waveforms are stored in
ROM requiring the ROM to be re flashed with new data every time a new wave
form data is required. Also dynamic generation of the spike wave forms is one more
possibility. When it comes to algorithms, in the current implementation mostly
the algorithms used in Matlab are used, these algorithms can be replaced with
much faster and smarter algorithms. Also the future work should be to implement
the design on hardware and verify the results.

The hardware design of the Real Time Neural Simulator is the first step to-
wards implementing it on hardware. Work done in this thesis can be continued
in multiple dimensions like optimizing algorithms, hardware implementation, and
hardware implementation specifically aiming for area and speed optimization. Also
the design can be extended to be interfaced to a Computer with software providing
user interface to dynamically program the parameters input data.

The idea of the simulator was to support the evaluation and benchmarking of
the signal processing algorithms in the different stages of a BMI system, which
means the simulator requires the implementation on a hardware. The hardware
design proposed in this thesis is very much feasible for implementation on suffi-
ciently large FPGA’s. Though the implementation sacrifices some flexibility of
controlling the input parameters. A successful implementation of the presented
design on an FPGA can generate the signals that can be fed to a BMI system fa-
cilitating the evaluation of performance of the algorithms in that system justifying
the proposed intention of the Neural Simulator.

66 Results and Conclusions

References

[1] P.T. Thorbergsson and H.Jorntell and F.Bengtsson and M.Garwitcz and
J.Schouenborg and A.J Johansson, Spike Library Based Simulator for Ex-
tracellular Single Unit Neuronal Signals,

proc. Annual International Conference of IEEE Engineering in

Medicine and Biology Society,Minneapolis, Minesota, USA, sep,

2009, 6998-7001

[2] P.T. Thorbergsson, M.Garwitcz and J.Schouenborg and A.J Johansson, Sta-
tistical Modelling of Spike Libraries for Simulation of Extracellular Recordings
in the Cerebellum,

proc. Annual International Conference of IEEE Engineering in

Medicine and Biology Society,Beunos Aires, Argentina, , sep,

2010, 4250-4253

[3] Eric R. Kandel, James H.Schwartz, Thomas M.Jessell, Steven A.Siegelbaum,
A.J. Hudspeth, Principles of Neural Science, McGrawHill,Newyork, USA

[4] S.G. Mason and A. Bashashati and M.Fatourechi and K.F.Navarro and
G.E.Birch, A Comprehensive Survey of Brain Interface Technlogy Designs,

proc. Annual International Conference of IEEE Engineering in

Medicine and Biology Society,Vol 35, No 2, Feb, 2007,137-169

[5] Bernhard Graimann, Gert Pfurtscheller and Brendan Allison, Brain-
Computer Interfaces Revolutionizing Human-Computer Interaction,

Springer,Heidelberg, Germany, 2010

[6] Tan D.S, Brain-Computer Interfaces: Applying our Minds to Human-
Computer Interaction, Springer Verlang,Heidelberg, Germany, 2010

[7] Makoto Matsumoto and Takuji Nishimura, Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator,

ACM Transactions on Modeling and Computer Simulation

(TOMACS),8, Issue 1, Jan, 1998, 3-30

67

68 References

[8] George Marsaglia and Wai Wan Tsang, The Ziggurat Method for Generating
Random Variables,

Journal of Statistical Software,5 Issue 8, Feb, 2000, 1548-7660

[9] George Marsaglia and Wai Wan Tsang, A Simple Method for Generating
Gamma Variables,

ACM Transactions on Mathematical Software , 26, September,

2000, 363-372

[10] Jack E.Volder, The cordic trignometric computing technique,

IRE Trans. Electron. Comput. , 8, Jan, 1959, 330-334

[11] Jack E.Volder, The Birth of Cordic,

Journal of VLSI Signal Processing 25, 101-105, 2000

[12] J.S.Walther, A Unified algorithm for elementary functions,

AFIPS (Spring) of the may 18-20, 1971, spring joint compuer

conference, 25,May, 1971,379-385

[13] Bruce H.Edwards, Robert T.Jackson, Jeremy M.Underwood, How do caclu-
lators calculate

[14] Israel Koren, Computer Arithmetic Algorithms, A.K.Peters, MA, 2000

[15] Matlab, Matlab, www.matlab.com

H
ard

w
are D

esig
n

 o
f R

eal-Tim
e N

eu
ral Sig

n
al G

en
erato

r

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Hardware Design of Real-Time
Neural Signal Generator

Anil Kumar Metla

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-484

http://www.eit.lth.se

A
n

il K
u

m
ar M

e
tla

Masters’s Thesis

