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Abstract

The main goal of this master thesis project was to take a manually controlled
consumer quality quadrocopter and build the foundations which allows it to
be autonomously controlled. This was achieved by introducing a exterior
frame of reference through the use of a webcam coupled with image analysis
algorithms. The position and rotation of the quadrocopter was identified,
and several control structures were implemented and tested, which allowed
the quadrocopter to be commanded to move to positions in space. Both
the onboard ultrasound sensor, and an altitude estimation through image
analysis were used to control the altitude of the quadrocopter. Position
control in x, y and orientation (yaw rotation) completely relied on data
extracted and analysed from the video stream. Control of velocity along
a predefined trajectory was also successfully implemented, which enables
future development of an obstacle avoiding path planner. Lastly, the master
thesis also covers work carried out at ABB’s Strategic R&D department for
oil, gas and petrochemicals i Oslo, Norway. Here the focus was on using
a quadrocopter to track and follow the motion of an industrial robot by
analysing the video stream of the onboard camera.





Chapter 1

Introduction

The purpose of this master thesis has been to investigate how vision based
feedback can be used to give an already well stabilized quadrocopter an abso-
lute or relative frame of reference, whereas two separate solutions have been
implemented. The first solution is by utilizing a ceiling mounted camera
which through the means of image processing techniques gives the position
and rotation of the quadrocopter. The second solution is by using a forward
facing onboard camera of the quadrocopter to visually track an industrial
robot to give an estimate of its position relative the quadrocopter. This
information is used to automatically control the quadrocopter to follow the
motion of the robot.

1.1 Visual feedback from external camera

The purpose of this part of the master thesis is to improve the flying capa-
bilities of a quadrocopter by using vision based feedback. The quadrocopter
itself is equipped with two cameras, one frontfacing and one directed toward
the ground. Additionally, one webcamera is mounted on the ceiling of the
room. Glued to the quadrocopter (see Figure 1.1) is an image of a symbol
with known size and characteristics that make it easy to identify. This en-
ables the calculation of the position of the quadrocopter in the room, given
that it is within the view of the camera. This information has been used to
automatically move the quadrocopter in its 4 degrees of freedom, namely ac-
celeration forward/backwards, acceleration left/right, altitude velocity and
yaw rotation velocity. The quadrocopter used in this thesis is the consumer
oriented Parrot AR.Drone [3].

1.2 Autonomous Tracking of Industrial Robots

During the summer of 2011, as a summer student project at ABB Strategic
R&D for oil, gas and petrochemicals, a system for autonomous tracking of
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Figure 1.1: Left: The AR.Drone as viewed from the camera, Right: A photo
of the Parrot AR.Drone equipped with marker

an industrial robot with a quadrocopter has been developed.
New oil and gas fields have in recent years been increasingly difficult

to find. Most accessible fields have already been explored and to keep the
supply high, the industry need to explore its opportunities in, from a safety
perspective, harsh environments. Along with this development in industry,
comes a demand for automation and the use of robotics. In fields with un-
satisfactory health, safety and environment (HSE), the use of robotics is
not only desired, but necessary to enable exploration. This requires a high
level on the automation of the plants but also in the cases where a human
remote operator must interact, on the human machine interface (HMI) to
give the operator feedback to execute a task. The goal is to reach a level
of situational awareness to the extent that the robot is the ears, eyes and
hands of the remote operator. To overcome this obstacle traditionally sev-
eral stationary cameras have been used. In harsh environments it is often
difficult to find room for enough cameras and the limited point of views
are overcome by putting cameras in the hands of industrial robots. While
this also does provide an advantage compared to stationary cameras with
regards to mobility, it is expensive. A camera equipped quadrocopter is a
much more suited tool for this task since it is comparably cost efficient, light
weight and much more mobile.

Also in this part of the thesis, has the Parrot AR.Drone [3] been used.
It has two onboard cameras, one pointing down toward the ground and one
in the forward direction. All control action has been based on analysis of
the video stream from the forward facing camera which sends a new image
15 times per second. The quadrocopter has four degrees of freedom, out of
which, three have been used to position and orient the quadrocopter. The
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goal is to always point toward the robot and also be positioned orthogonally
to the robot. The control signals used to achieve this is acceleration in the
directions right/left (roll) and forward/backward (pitch) as well as rotational
velocity (yaw rate). The fourth and unused degree of freedom is altitude
which is set to a constant. The setup has also been shown as a demonstration
of future technologies at an Open House event at ABB, Oslo. During the
limited time I spent at ABB, focus was on getting the basic functionality
to work and producing presentable results had a low priority. Therefore no
results from this part of the thesis is presented.

1.3 Related Work

In recent years, the development of small remotely controlled quadrocopters
has made an impact in the scientific community as a platform for research
on Unmanned Autonomous Vehicles (UAVs). While the quadrocopter as
a concept was invented as early as in the 1920’s, and some less successful
prototypes were made, it is not until the last 10 years that we have seen
well functioning implementations of quadrocopters. The biggest problem
with the early incarnations of quadrocopters, was the difficulty for a human
to operate them. The success of the design in recent years is in the form
of unmanned small radio controlled vehicles, where the stabilization of the
vehicle is handled by efficient control algorithms instead of by a human.
It is mainly the development of fast processors, long lasting batteries, and
cheaper brushless motors that has enabled the realization of these remotely
controlled quadrocopters.

The scientific community has taken a large interest in quadrocopters
utilizing them as UAVs. Much of the research is focused on enabling the
quadrocopter to navigate autonomously. This field can be divided into two
areas, one which utilizes an external frame of reference, for example Vicon
motion capture [10] used by the GRASP Lab of University of Pennsylva-
nia [6]. The other area is navigation based on input from sensors mounted
on the quadrocopter itself. By using an external frame of reference, you
impose a significant restriction in the working area of the quadrocopter. For
example, GRASP Lab, University of Pennsylvania, uses an indoor lab en-
vironment of 5x5x5 m in their research. While this is a very small space,
the combination of an external tracking system and fast computers enables
some truly spectacular moves [13]. Another example of the usage of a fast
external reference system is the article on Quadrocopter Ball Juggling, car-
ried out at ETH Zürich [14]. A group of methods and algorithms commonly
used when navigating with no external frame of reference and no previous
information about the environment is called “Simultaneous Localization and
Mapping” (SLAM). This field typically utilizes a camera or range camera
to create a model of its surroundings in real-time [11].
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1.4 Outline of Report

The report consists of the following chapters. Below is a small description
of the contents of each chapter.

• Introduction: This chapter contains a description of the two parts
of this master thesis. It also includes a section about related work on
the subject, and the outline of the report.

• Modeling: This chapter describes the dynamics of a general quadro-
copter, and how it is commonly controlled.

• System Setup: An overall description of the control system devel-
oped in this master thesis. It is a broader overview, not getting into
the details of the algorithms.

• Method: Is a detailed description of the control and image processing
algorithms that are necessary to close the loop. This is divided into
the two parts of this master thesis, namely the work conceived at
Department of Automatic Control, LTH, and at ABB Oslo.

• Results: Describes the results of the work at the Department of Au-
tomatic Control, LTH.

• Conclusion: Some concluding words about the thesis work, and a
chapter with suggestions about possible improvements.

• Appendix: Here you’ll find the source code of thesis.
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Chapter 2

Modeling

2.1 The dynamics of a quadrocopter

A quadrocopter has, as the name implies, four rotors, all of them providing
lift force in the same direction. Two rotors in opposing corners provide lift
force by rotating clockwise (CW) and the other two by rotating counter-
clockwise (CCW). This cancels out the moment that otherwise would cause
the quadrocopter to spin out of control. Let Ωi be the total rotor speed
of each motor, and ΩH the rotor speed which stabilizes the altitude of the
vehicle. Different control actions can be achieved by adding and subtracting
to the speed of certain rotors. A positive rotation around the yaw axis is
achieved by adding to the CW rotating rotors a ΔA > 0 and subtracting
a ΔB > 0 from the CCW rotating rotors, while maintaining the same lift
force. This will change the torque of the vehicle around the yaw axis, and
it will start to rotate increasingly. To achieve a change in pitch angle, a
ΔA > 0 is added to the speed of rotors 1 and 2, and rotation speed of rotor
3 and 4 is decreased by a ΔB > 0, see Figure 2.1. A change in roll angle is
achieved in the same manner, however by adding rotation speed of rotor 1
and 4 while decreasing the speed of rotor 2 and 3. Throttle is acceleration in
the direction of the rotors, and is achieved by increasing the rotor speed of
all motors. The combinations for manipulating throttle, roll, pitch and yaw
for a general quadrocopter are summarized in Table 2.1. If the motors are
linear the approximation, ΔA ≈ ΔB can be made. In this thesis the variable
φ represent the pitch angle, θ the roll angle where θ = 0 and φ = 0 is the
angle when the quadrocopter is parallell to the ground. The yaw angle must
be defined in a coordinate system and is often referred to as ψ.
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Figure 2.1: Left: Rotation directions of each rotor, Right: Description of roll,
pitch and yaw rotations for a general quadrocopter

Maneuver Ω1 Ω2 Ω3 Ω4

throttle ΩH +ΔA ΩH +ΔA ΩH +ΔA ΩH +ΔA

pitch ΩH +ΔA ΩH +ΔA ΩH −ΔB ΩH −ΔB

roll ΩH +ΔA ΩH −ΔB ΩH −ΔB ΩH +ΔA

yaw ΩH +ΔA ΩH −ΔB ΩH +ΔA ΩH −ΔB

Table 2.1: Rotor speed deviations resulting in a change of throttle, pitch, roll
and yaw. Here ΔA > 0 and ΔB > 0 represent constant deviation of rotor speed
from the altitude stabilizing rotor speed, ΩH .

6



Chapter 3

The System Setup

3.1 The AR.Drone

The quadrocopter used in this thesis is called AR.Drone and is developed
and built by the french company Parrot [9].

Hardware specification

The AR.Drone is equipped with a 6 degrees of freedom MEMS1 IMU2 pro-
viding measurement of pitch, yaw, and roll movements. An ultrasound sen-
sor pointing downward gives an estimation of the altitude. There is also one
camera pointed forward mainly for the human operator and gaming, and
a camera pointing downward which is used to stabilize the motion in the
xy-plane. It is powered by a 11.1V LiPo battery at 1000mAh which gives
an approximate fly time of 12min. All onboard calculations are handled by
an ARM9 @468 MHz with 128MB RAM on a Linux/BusyBox system. It is
also equipped with a USB port which at the moment can only be used to
update firmware but might allow expansions such as a GPS or 3G-modem
in the future.

Software specification

Stabilization of the AR.Drone is handled internally, which means that there
is no direct access to the motors. All motion is executed by changing ref-
erence values for yaw rate, roll and pitch angles along with rate of climb.
These reference values are controlled internally by the onboard system of the
AR.Drone. The onboard cameras uses a update frequency of 30 Hz which
is used by the onboard controller, however this video stream is also sent
over Wi-Fi to the operating computer at 15 Hz. All sensor values and cam-

1Microelectromechanical systems
2Inertial Measurement System
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era streams are available to the operating computer but at a lower update
frequency than what is used onboard.

It can be controlled by any ad-hoc compatible Wi-Fi device, since the
AR.Drone itself sets up an ad-hoc network. The controlling device commu-
nicates with the AR.Drone by sending AT commands in UDP-packets on
port 5556. Likewise, sensor values and other variables calculated onboard
the AR.Drone are received on port 5554 at 30 Hz. A third port (UDP 5555)
is used to receive a video stream at 15 Hz from either of the two cameras,
but not both at once.

How the AR.Drone is controlled internally is for the most part unknown.
What is known is that the vertical camera is used to estimate the velocity
in the xy-plane by using optical flow [8] estimation. Optical flow is also
used to keep the yaw rotation stationary, however in a room with uniform
color on the floor, yaw rotation has a tendency to drift slightly. There are
also function calls available to set proportional and/or integral gains, which
implies that these are controlled by PI-controllers. Table 3.1 lists available
gains and corresponding control variables. However, it is not known exactly
how the errors for each variable is calculated nor how they mix into motor
speeds.

variable controller

pitch/roll angular rate P Kp

yaw angular rate PI Kp Ki

euler angle1 PI Kp Ki

altitude PI Kp Ki

vertical speed PI Kp Ki

hovering PI Kp Ki

Table 3.1: Tunable gains on the onboard controller

The quadrocopter is controlled by using a wrapper for an AT command
with the C prototype

ardrone_at_set_progress_cmd(int32_t enable, float32_t phi,

float32_t theta, float32_t gaz, float32_t yaw).

The arguments are interpreted by the onboard controller as reference
values. When a command is to be sent, the first argument, “enable”, must
be set to 1, and the remaining floats are variables mapped from -1 to 1
which controls the pitch, roll and climb and angular velocity of the quadro-
copter. The arguments phi and theta correspond to pitch and roll angles of
the quadrocopter, whereas gaz is climb/descent velocity and yaw is angular

1This is, by Parrot’s convention, referring to pitch and roll angles, not yaw.
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velocity. All of the variables are internally scaled with a predefined constant
e.g., sending a command with phi �= 0 means onboard to set φref = phi· eu-
ler angle max. The constant euler angle max can at most be set to 0.52
rad = 30◦ which equals a maximum lateral acceleration of 9.82 · tan 30
m/s2 = 5.67 m/s2 while maintaining altitude and disregarding air resistance.
The input variables to ardrone at set progress cmd() are used as reference
values to the onboard controller developed by Parrot, and are used as con-
trol commands in this thesis. This means that the controls developed will
be of a cascaded structure, i.e., an outer loop to Parrot’s onboard control.
The input reference values to the onboard controller will for the rest of this
thesis be regarded as control signals with names according to Table 3.2.

input value control signal physical meaning

float32 t phi ∼ uy pitch angle
float32 t theta ∼ ux roll angle
float32 t gaz ∼ uz climb/descent velocity
float32 t yaw ∼ uyaw angular velocity

Table 3.2: The meaning of the input variables

A Software Development Kit is provided with the AR.Drone along with
a demonstration program with tools for plotting and accessing sensor values.
This has served as a foundation for the control algorithms developed in this
thesis.
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Chapter 4

Method - Visual feedback
from external camera

4.1 Background

This is the first part of the thesis, which was conducted at The Department
of Automatic Control at Lund University. In this part a camera has been
mounted in the ceiling of a room pointing toward the quadrocopter which
has a black and white symbol mounted on top. The video stream is analysed
and an estimate of the position of the quadrocopter is calculated. By using
this information, control signals are calculated and sent to the quadrocopter
which enables it to fly to different points in space automatically.

4.2 The Setup

The setup, which can be seen in Figure 4.1, consists of the AR.Drone, one
or two computers and a webcam. The AR.Drone sets up an ad-hoc wireless
network to which Computer B connects. That is all that is necessary for
manual control of the AR.Drone. Autonomous flight additionally requires
a webcam connected to Computer A which sends signals to Computer B
over a TCP-socket. Computer A handles all image analysis of the webcam
stream and only sends the extracted data e.g., rotation and the drone’s po-
sition offset relative to the camera center. Recognition of up to two markers
has been implemented where one marker represents the AR.Drone and the
other one a setpoint held in a hand or mounted on another vehicle. Dur-
ing the development the tests have been conducted on computers with the
processors Pentium 4@3.0 GHz (Computer A) and a Pentium M@1.6 GHz
(Computer B). The programming language C has been chosen for both im-
age processing and for the control algorithms. This choice is motivated by
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Figure 4.1: Sketch of the system

the fact that both the SDK1 for AR.Drone as well as ARToolKit [4] are im-
plemented in C. ARToolKit is a framework for detection of binary images,
i.e. an image consisting only of the colors black and white, in a video stream.
The methods included in ARToolKit simplifies the calculation of the position
and orientation of the binary image in the camera frame. ARToolKit is open
source and not in any way related to Parrot AR.Drone. The programs have
been tested and confirmed to work well on Ubuntu for the control algorithm
code (Computer A) and Ubuntu and Fedora for the image processing (Com-
puter A), see Figure 4.1. The webcam used is a logitech c250 which has a
resolution of 640x480 at 30fps but any webcam capable of 30 Hz which also
complies with v4l2 [1] standard should work. The implementation has been
divided into three different modes namely, fly to a point in space, follow a
mobile setpoint and follow a trajectory in the xy-plane. The mobile setpoint
tracking also allows the initiation of the built in landing algorithm, when
the error is small enough. The camera has been mounted in the ceiling of a
room, directed toward the floor. In order to ensure optimal performance of

1Software Development Kit
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the algorithm, the image plane from the camera must be as closely as pos-
sible aligned with the quadrocopters floating plane, i.e., the normal vector
of the image plane must be parallel to the gravity vector. For visualization
of logged data, and prototyping different parts of the algorithms, Matlab [7]
has been used.

4.3 Realtime implementation

The control loop is updated at 30 Hz since this is the frequency at which
the video stream and image analysis operates. Below is a simplified sketch
in pseudocode of how ARToolKit operates:

//visible1 & visible2 are booleans which states whether

//a marker is visible patt_trans1 & patt_trans2 contains

//the translation and rotation of each pattern

waituntil=1/30;

while(1){

start=gettimeofday();

image=getvideoframe();

pattern1=find(pattern1);

pattern2=find(pattern2);

patt_trans1 = gettrans(pattern1);

patt_trans2 = gettrans(pattern2);

writetosocket(patt_trans1,patt_trans2,visible1,visible2);

end=gettimeofday();

sleep(waituntil-end+start);

}

The socket is a non-blocking TCP-socket, meaning that the receiving end
isn’t put in a wait state in case there is no data to receive. A boolean for
each marker is also set which states whether the marker is visible or not. If
a marker is not visible, the most recently calculated orientation data will be
sent. Unfortunately it has been difficult to find a way to guarantee that the
received frame really is new. There is a risk that two consecutive frames are
identical if the camera for some reason temporarily slows down.

4.4 Image Processing

As mentioned earlier, the system used for image analysis and marker de-
tection is called ARToolKit [4]. It is a C library developed mainly for aug-
mented reality applications. However, its marker detection is good and is
well suited for this project. ARToolKit provides some example markers but
it can also be trained on any marker you choose which fulfills the following

12



criterias: The marker must have a thick black border around a white square,
see Figure 4.2. What is inside the white square is a question of design, but
it should consist of only black and white and must not interfere with the
border. For best performance, the imagery inside the white square should
keep a low level of detail and must also not be rotationally symmetric. It
is also good to make a marker in a non-reflective material, since reflections
in the black parts is likely to aggravate marker detection. The image anal-
ysis is sensitive to ambient lighting conditions, and the lighting condition
must be consistent all over the image plane. Therefore, the best scenario
is a room without windows with multiple soft light sources. By default the
cameras are initiated with automatic exposure activated, which in low light
condition leads to long exposure times and motion blur. Therefore an ap-
plication called v4l2ucp has been used to set these parameters manually to
ensure short and fixed exposure time. An exposure time shorter than 30−1 s
is necessary to be able to run the loop at 30 Hz.

Figure 4.2: Example of a marker

The marker detection is a process of several steps. Below is a brief
description of the steps taken from image to identification of marker, marker
position and rotation. This describes the inner workings of ARToolKit, these
image processing algorithms haven’t been developed in this thesis work.

4.4.1 Grayscaling and thresholding

First the image is preprocessed which consist of mixing it to greyscale as
well as thresholding it. In a color image, each pixel is usually represented by
three 8-bit channels for the colors red, green and blue which combined can
represent (28)3 = 16777216 colors. Conversion to a grayscale pixel p̂i for a
pixel pi = {Ri,Gi,Bi} is done by constructing a linear combination of these
channel values p̂i = α1Ri + α2Gi + α3Bi. The simplest choice of weights is
αk = 3−1, for all k. The thresholding operation is a function that takes a
pixel value and returns 255 if the value is above a certain threshold or 0 if
it is below the threshold. It can be described by the Heaviside step function
for a threshold γ as pnew = 255·θ(p−γ), the result is a binary image which is
necessary to find the markers, which are binary as well. Basically, it makes
bright pixels even whiter and dark pixels even darker.

13



4.4.2 Segmentation and contour and edge detection

Furthermore, an algorithm called segmentation detects large areas of con-
nected pixels with the same color and labels these sets of pixels. Different
features are extracted from each such set, such as area, center of mass and
color. A contour detection is executed to find edges in the image, that is,
points where the difference in intensity between two nearby pixels is large.
In this process corners are also identified.

4.4.3 Line fitting

Using the previously extracted data about corners and edges, lines can be
fitted over the whole image. Lines that are connected to form any projective
transformation of a square are identified and the n best candidates will be
regarded as markers.

4.4.4 Marker identification

The patterns within the squares are normalized (transformed back to
squares). The feature set inside the pattern is compared to that of a set of
template patterns, to find the best matches. The markers position tx, ty, tz
have now been identified along with its orientation described by a rotation
matrix R as can be viewed in Figure 4.3. The Figure does not show the
z-axis, which is orthogonal to x and y and directed into the picture.

y

x

ty

tx

uy

ux

Figure 4.3: The camera coordinate system

14



4.5 The visual feedback

At each iteration the video processing outputs whether a marker is detected,
and its pose and position in the coordinate system given by the camera (See
Figure 4.3), i.e.,

[
R | t

]
=

⎡
⎣r1,1 r1,2 r1,3 tx
r2,1 r2,2 r2,3 ty
r3,1 r3,2 r3,3 tz

⎤
⎦ .

R is below expressed in terms of angles around the camera base vectors.
Here ψ represents the rotation of the marker around the cameras z-axis and
φ and θ describe the rotation of the marker in the x and y respectively.
Also, introducing the shorthand notation sx = sinx and cx = cosx, for all
x ∈ θ,ψ,φ, the rotation matrix becomes:

R =

⎡
⎣cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ
−sθ sφcθ cφcθ

⎤
⎦

Of special interest is the yaw-angle ψ since by measuring yaw, and by using
the position information tx and ty, a combination of pitch and roll angles
can be calculated which drives the quadrocopter to points in x and y. The
yaw angle ψ is retrieved by calculating ψ =atan2(r2,1, r1,1). A new rotation
matrix for yaw which is not influenced by roll and pitch is constructed,
namely

R2×2 =

[
cosψ − sinψ
sinψ cosψ

]
(4.1)

Since the camera is always steady with respect to the world, the coordi-
nate system given by the camera is chosen as the main coordinate system.
For a general setpoint in the xy-plane

xref =

[
xref
yref

]

the error in this coordinate system is

ê = xref −
[
x
y

]
=

[
xref − x
yref − y

]
.

To get this error in the drone’s coordinate system, it must be rotated and
get a change of sign in the y-axis.

e = R2×2 ·
[
1 0
0 −1

]
·
[
xref − x
yref − y

]

Additionally, a modified error has also been defined which allows scaling of
the influence from the setpoint. This error is
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eγ = R2×2 ·
[
1 0
0 −1

]
·
[
γxref − x
γyref − y

]
, 0 ≤ γ ≤ 1 (4.2)

and it has been used in situations where it is undesired to differentiate the
change of setpoint. Since the marker has a predefined size, its distance from
the camera can also be calculated. This is the output z from ARToolKit and
it can be used to control altitude without any transformation. The altitude
error is eγz = −(γzzref − z) where the change of sign makes sense since
positive acceleration in uz decreases z.

eγx = x̂ · eγ
eγy = ŷ · eγ

eγz = z − γzzref

4.6 Modeling

In Figure 4.5, the local coordinate system of quadrocopter can be seen. Not
present in the illustration is the altitude direction, z, which is directed as
the negative normal to earth, e.g., x, y and z are orthogonal. By the use
of trigonometry, roll and pitch angles are converted to lateral acceleration
through the equations:

ÿ = 9.82 · tanφ ≈ 9.82 · φ where φ ∈ [−π
6
,
π

6
]

ẍ = 9.82 · tan θ ≈ 9.82 · θ where θ ∈ [−π
6
,
π

6
]

The angles θ and φ are close to linear in this region, see Figure 4.4, therefore
the approximation tanφ = φ has been made.

Since we have chosen π
6 to be the maximum tilt angle; euler angle max

(which was earlier mentioned in Section 3.1), we have φ = π
6uy and θ =

π
6ux.

The relation becomes,

ẍ ≈ 9.82 · π
6
ux where ux ∈ [−1, 1] (4.3)

ÿ ≈ 9.82 · π
6
uy where uy ∈ [−1, 1] (4.4)

Control over yaw has also been implemented due to the onboard con-
troller’s tendency to drift, this controller will be referred to as uyaw(t). The
maximum yaw rate has been defined to 100◦s−1 ≈ 1.74rad/s.

ψ̇ = 1.74 · uyaw where uyaw ∈ [−1, 1] (4.5)
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Figure 4.4: tan θ and θ compared in the range [−π
6 ,

π
6 ]

Figure 4.5: Positive directions for the quadrocopter
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4.7 Control algorithms

In this thesis, a couple of control schemes have been developed to enable
position control in 3D space. For a simpler implementation, it has been
assumed that the three directions (x̂, ŷ, ẑ) are decoupled. This means for
example that the position, in the x-direction does not change when we apply
a control signal uy in the y-direction. Tests have shown that in reality x
and y really are decoupled, however, x with z and y with z are not. This is
revealed when a thrust is applied in y, the quadrocopter at first descends,
but gradually regains its desired altitude due to the built in controller. A
controller has been implemented which closes the loop on the altitude of
the quadrocopter based on the onboard ultrasound measurement, using al-
titude velocity as control signal. Altitude control has further been devel-
oped to instead of using ultrasound, base the measurement on the visual
feedback. Furthermore for x/y, a vision based position controller has been
implemented, and also a trajectory controller in the x/y-plane, with veloc-
ity control along a predefined path. All of these controllers work regardless
of the quadrocopters yaw rotation, however, control of yaw has also been
implemented for completeness.

4.7.1 Altitude control with ultrasound

The altitude is controlled by setting an altitude velocity. This is an intuitive
way for a human to control but for autonomous flight, the possibility to track
setpoints in space is a necessity. This controller has been implemented as
warm up exercise, therefore it is not improved any further. The main goal of
this thesis is the vision based control which naturally includes vision based
altitude control to which this controller is a good complement. Let the
distance to the ground, as measured by ultrasound, be z and the desired
distance be zref . The error is then defined as ez(t) = zref (t) − z(t). A
proportional controller can then be designed as

uz(t) = Kz · ez(t),

which means that (for K > 0), uz(t) > 0 when you are below the setpoint
and uz(t) < 0 when you are above the setpoint. The quadrocopter expects
the control signal to be constrained by −1 ≤ uz(t) ≤ 1, therefore it must
also be saturated within those boundaries. The resulting control scheme is

uz(t) = sat(Kz · ez(t)).

4.7.2 Positioning in the xy-plane

For positioning in the xy-plane, two PD-controllers have been implemented.
The PD-controller is an extension of the previously mentioned proportional
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controller. The main difference is the introduction of a derivative part, i.e.,
the estimated derivative also affects the control signal. The general structure
for PD control is u(t) = Kpe(t) +Kdė(t). Since the setpoint often changes
with large increments, it is not suitable to differentiate it. Therefore the
second error has been modified according to equation 4.2 to

u(t) = Kpe(t) +Kdėγ(t) (4.6)

where γ is a design variable which controls the influence of the setpoint.
Transforming to frequency domain and replacing Kds with a filter NKds

N+Kds

and using the Tustin approximation of the derivative, s = 2
h
z−1
z+1 , gives a new

expression for the equation. That is U(z) = KpE(z)+
NKd

2
h
(z−1)

N(z+1)+Kd
2
h
(z−1)

Eγ(z)

where N is a design parameter which suppresses high frequency noise which
otherwise appear when differentiating a discrete signal. For low frequencies

the expression lim
s→0

NKds

N +Kds
= 0 and for high frequency it is limited to N ;

lim
s→∞

NKds

N +Kds
= N . After some simplification this is

(N(z + 1) +Kd
2

h
(z − 1))U(z) = Kp(N(z + 1)

+Kd
2

h
(z − 1))E(z) + (NKd

2

h
(z − 1))Eγ(z) (4.7)

and setting ⎡
⎣A = (N +Kd

2
h)

B = (N −Kd
2
h)

C = KdN
2
h

⎤
⎦

gives a simple expression to calculate the control signal in each iteration:

u(n+ 1) = Kpe(n+ 1) +
B

A
(Kpe(n)− u(n)) +

C

A
(eγ(n+ 1)− eγ(n)) (4.8)

4.7.3 Altitude control with Visual Feedback

An attempt to control the altitude by using the distance z from the marker
to the camera, has also been made. In Section 4.5 the error

eγz = z − γzzref

has been defined, this is what we base this feedback loop on. As has been
previously mentioned, manipulating uz controls the altitude velocity of the
quadrocopter. The control signal has been calculated also using the same
PD-control structure as in Subsection 4.7.2. By using Equation 4.8, with
these variables, the control signal is:
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⎡
⎣A = (N +Kdz

2
h)

B = (N −Kdz
2
h)

C = KdzN
2
h

⎤
⎦

u(n+ 1) = Kpze(n+ 1) +
B

A
(Kpze(n)− u(n)) +

C

A
(e1z(n+ 1)− e1z(n))

4.7.4 Yaw control

The AR.Drone has an onboard control of yaw. It controls the rotational
velocity about the yaw-axis, based on information received from the bottom
camera and the inertial measurement unit. This control implementation has
shown some tendencies to drift. Therefore an outer control loop has been im-
plemented based on the information received from the external camera. The
rotation about the yaw axis is as previously mentioned (See Equation 4.1)

represented in the rotation matrix R2×2 =

[
r1,1 r1,2
r2,1 r2,2

]
=

[
cosψ − sinψ
sinψ cosψ

]

where −π < ψ < π. The intuitive way to use ψ would be to calculate the
yaw error as eyaw = ψref − ψ, however this would be troublesome if the

desired angle ψref is close to the discontinuity in ψ =

{
π
−π . To be able to

choose a reference yaw angle arbitrarily this must be avoided. The approach
chosen has instead been to define the error as a rotation of the coordinate
system, such that the reference yaw angle is placed in ψ = 0. More precisely,
rotate the rotation matrix with a rotation with the reference angle, that is,
construct a matrix R̂2×2, such that,

R̂2×2 =

[
cosψ − sinψ
sinψ cosψ

]
·
[
cosψref − sinψref
sinψref cosψref

]
,

then extract the error as e = atan2(r̂2,1,−r̂1,1). This way, the reference angle
will always be half a rotation from the discontinuity, and the risk of crossing
it for example due to a disturbance is minimal. A proportional controller
will always drive the angle towards zero away from the discontinuity. The
resulting control signal is uyaw(t) = Kp · e(t).

4.7.5 Trajectory

For autonomous flight it is often desired to be able to set up a route to
follow. The simplest approach to do this would be to define the route as
a list of points to fly to in a certain order, changing setpoints when the
error is smaller than a predefined distance, e.g.,

√
x2 + y2 + z2 < ε. A

disadvantage with this approach is that it is difficult to predict how fast
the vehicle will travel, following a straight line of points would with a small
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derivative gain make it accelerate for a long time, whereas with a large
derivative gain it would brake at each setpoint. It would be difficult to find
a parameter that would give a consistent result along the trajectory. Instead
a different [12] approach has been chosen. The trajectory has been defined
as a set of points p(n),n ∈ [0,N − 1], along with a desired velocity between
each of these points. One controller minimizes the orthogonal distance to
the line segment between p(n + 1) and p(n) (see Figure 4.6) and another
controller keeps the reference velocity along the line segment. As soon as
the quadrocopter crosses the dashed line in the Figure 4.6, n is increased

with one and a new line segment is defined. For p(n) =
[
xref (n) yref (n)

]T
the direction along the current line segment is t̂ = (p(n+1)−p(n))

|(p(n+1)−p(n))| , and its

normal vector is n̂ =
[
t̂y −t̂x

]T
. With this convention, vref is a quantity

along the current line segment vref = vref · t̂ and the velocity error is

eγa = (γvref −
[
ẋ
ẏ

]T
· t̂), (4.9)

where the subscript a implies ”along the line”. The velocity
[
ẋ ẏ

]
is ap-

proximated with a backward difference operation. The crossing error, de-
noted ec is the orthogonal distance from the AR.Drone to the line segment,

eγc = (γp(n+ 1)T −
[
x
y

]T
) · n̂ = (γ

[
xref (n+ 1)
yref (n+ 1)

]T
−
[
x
y

]T
) · n̂ (4.10)

The errors defined in Equations 4.9 and 4.10 are put into Equation 4.6 to
get the control signals:

ua(t) = Kpea(t) +Kdėγa(t) (4.11)

and
uc(t) = Kpec(t) +Kdėγc(t) (4.12)

where ec(t) := e1c(t) and ea(t) := e1a(t). Represented as vectors in the
direction in which they act gives the uc(t) = uc(t) · n̂ and ua(t) = ua(t) · t̂.
They are discretized the same way as in Equation 4.8 so the same controller
can be reused. The only thing left to do is expressing the controller in the
quadrocopters coordinate system, that is setting[

ux
uy

]
= R2×2 ·

[
1 0
0 −1

]
·
[
uc(t)
ua(t)

]
(4.13)

4.8 Parameter tuning

The controllers have been tuned by hand. To find a good combination of
Kp and Kd for each controller, a step response has been evaluated with
Kd = 0. Kp has been increased until a slight overshoot is achieved, then the
overshoot has been decreased by increasing Kd to a reasonable amount.
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Figure 4.6: Illustration of an octagon shaped trajectory and its associated vari-
ables

4.9 Landing

Landing is handled by the internal control loops and can be executed at any
time. When tracking a second marker, a landing command is automatically
triggered if the euclidean distance between the marker and the quadrocopter
is within a certain margin, i.e., if (E2

x+E
2
y) < α2, where alpha is the desired

minimum distance.
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Chapter 5

Method - Autonomous
Tracking of Industrial Robots

5.1 Background

This part of the thesis covers the work conducted at ABB - Strategic R&D
for Oil, Gas and Petrochemicals, Oslo. The development has been com-
pletely separate from the work at The Department of Automatic Control,
Lund University. It however, shares common ground in which tools that
have been used, namely the Parrot AR.Drone. They are also closely related
with regard to the application, improving the autonomous capabilities of a
Quadrocopter. The programming language Microsoft C# 4.0 [5] has been
used during the development, with help from the image processing library
AForge.NET [2]. The quadrocopter has four degrees of freedom, out of
which, three have been used to position and orient the quadrocopter. The
goal is to always point toward the industrial robot and also be positioned
orthogonally to the robot. The control signals used to achieve this is accel-
eration in the directions right/left (roll) and forward/backward (pitch) as
well as rotational velocity (yaw rate). The fourth degree of freedom, which
has not been used, is altitude which is set to a constant. The setup has been
shown as a demonstration of future technologies on an Open House event at
ABB, Oslo. The next section is a description of each step of the algorithm
which ultimately leads to autonomous tracking of an industrial robot.

5.2 Image Processing

5.2.1 Binarization of image

Industrial robots have a tradition of being one-colored and most frequently
orange, but often it is a color which stands out in the working environ-
ment. Therefore, robot identification through the means of color recognition
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has been a natural choice. That is, the pixels most similar to the color of
the robot have been identified. Each pixel in each frame have been con-
verted from RGB color space to HSL, a color representation much more
suitable for discriminating between different colors. In RGB a color is rep-
resented as a blend of the colors red, green and blue, and mathematically for
CR,G,B ∈ [0, 1] as {CR,CG,CB}. For example red is {1, 0, 0} and {1, 1, 0}
would be yellow whereas in HSL, each color is characterised by a Hue value,
amount of Saturation and Luminance which essentially means how bright
a color is. The hue channel is measured in degrees or radians since it is
circular, saturation is a value from 0 to 1 and so is also luminance. Similar
to how we represent the RGB-channels, we can represent a color in HSL as
{CH ,CS ,CL} for CH ∈ [0, 360] and CS,L ∈ [0, 1]. Let us assume we have
measured the mean value of the color of the object we regard as the robot
to be {IH , IS , IL} = {E(RH),E(RS),E(RL)}, then the color of any pixel in
the image can be compared to this color, by calculating the smallest differ-
ence in each channel. For the hue channel the arithmetic mean value does
not make sense since hue is a circular quantity, instead the mean value is
for a set of angles αi calculated as E(αi) = arctan E(sin(αi))

E(cos(αi))
. The smallest

difference in each channel is calculated as,

{εH , εS , εL} = {|min(IH − pH , pH − IH + 360)| , |IS − pS | , |IL − pL|},

where IH , IS , IL is the chosen ideal color. If the sum of the errors ε = εH
360 +

εS+εL, is small enough the candidate color is considered to be close enough
to the robot’s color. However, in this particular case, we are not interested
in differentiating dark from bright orange that much since the robot does
have dark orange parts. It therefore makes sense to put a weight on each
channel error to be able to adjust the error according to our problem. So
an appropriately normed weighting factor w is introduced for each channel,
and we also introduce the euclidean error and the resulting error is instead

ε =
√

(wHεH
360 )2 + (wSεS)

2 + (wLεL)
2. We also decide a threshold T such

that if ε < T the pixel is regarded as the same color as the robot. The
resulting image contains only one channel pixels with 1bit information in
each. Care has to be taken to adjust the parameters for the ideal color, the
weights and the threshold, since the quadrocopter adjusts hue, brightness
and contrast adaptively onboard, so there is no way to find parameters that
always work. Besides, the robot is not perfectly orange colored, there are
tools and wires in the way which makes the identification process even more
difficult.

5.2.2 Blob detection

The binary image is retrieved and a routine called BlobCounter from the
image processing library AForge.NET is used to find the largest area of
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connected equal-colored pixels. This pixel cloud is initially assumed to be
the robot. For the identification to work well, it is important that nothing
else but the robot is orange in the field of view of the camera, therefore
precaution has been taken to visually separate similar colors.

5.2.3 Convex hull of the blob

A convex hull of a blob is defined as the minimal convex set containing the
blob. An algorithm from AForge.NET called HullFinder is used to extract
the convex hull of the blob, which is represented as a set of corner points
on the convex hull, see Figure 5.3. On the very first received frame, by
looking at the center of gravity of the blob we can decide on which side
of the robot the quadrocopter is positioned. On a robot with its tooltip
to the right in the image, the center of gravity will deviate slightly to the
left. We will assume for the sake of describing the algorithm, that this is
the position the quadrocopter is at initially. By using the information in
the convex hull, we can get a good understanding of the robot’s pose. We
have defined and extracted three feature points, namely the position of the
base plate p1, the position of the tooltip p3 and the other end of the robot
arm p2, see Figure 5.2. These points have been chosen for several reasons,
namely p3 since it is the point of operation, p2 has been chosen because it
combined with p3 gives a description of the length of the arm which is a good
measure of distance to the robot. Feature point p1 has been added because
it together with p2 and p3 gives information about the angle of joint 3. In
the next section we will describe how these points have been identified.

Figure 5.1: Binary image and its convex hull

5.2.4 Extraction of robot feature points

The extraction of feature points is performed as follows. For the baseplate,
we look at the convex hull, and choose the point in the convex hull closest
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to the lower left corner. This point, becomes the center point of a circle
with radius r = 0.25

√
A where A is the area of the blob in number of pixels.

The radius is chosen as the square root of the blobs area, to make sure the
algorithm gives consistent result regardless of how large the robot is in the
image (i.e. , how close to the robot the quadrocopter is). The feature point
p1 is defined as the mean value of all hull points inside the circle. To find
feature point p3, we use the same method, however, with a different center
for the circle. In this case we look only in the upper half of the image and
search for the point furthest to the right in this half. This point is, as in the
case for feature point p1, used to create a mean value of all points within a
0.25

√
A radius.

Now we have for most poses and orientations, the baseplate and tooltip
of the robot. Feature point p2, or the back of the arm, is decided by once
again looking at all remaining convex hull points and find the point p2, which

best fulfills the relation ‖−−→p1p2‖
‖−−→p3p2‖ = Q which means the point p2 which gives

the smallest error ε = ‖−−→p1p2‖−‖−−→p3p2‖ ·Q. The point p2 must also be on the
correct side of the line −−→p1p3, i.e., it must be above and to the left of the line
for a robot with its arm pointing to the right as in Figure 5.2, otherwise it
will not be considered. A suitable value for Q, for an ABB industrial robot
model IRB4400, is 1.35. Even if the center points are extracted perfectly
each time, the real quotient will differ a lot from 1.35, mainly since this
model assumes the point p2 is exactly in joint 3 on the robot, but due
to the parallellogram construction of the IRB 4400, it is not. Still, with
this simplification, the model works remarkably well and only rarely gives
erroneous point estimations. The point calculated is, just as with feature
point p1 and p3, used to create a mean value of the hull points within a
radius of r = 0.25

√
A.

Figure 5.2: Binary image with feature points
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5.2.5 Isolation of robot arm

Since we now have extracted feature points p2 and p3, we can be certain
that the arm is somewhere between these points. The arm is a part of
the blob which should have more or less the same shape regardless of the
robot’s pose. It can of course be rotated in different angles, however, there
is always a viewing angle at which it will look more or less the same. By
measuring the center of gravity of this arm divided by its full length, we
get an understanding of how we are positioned relative to the arm. For
example, if we look at the arm slightly from left, the left part of the arm
will be larger than if we look at it from the right. There are other parts on
the robot which also have a fixed shape regardless of pose, but the arm has
the advantage that it is easily distinguished since we already have access
to its end points. Another advantage is that it is the longest part of the
robot which means that we get good resolution on this measure. Keep in
mind though that it is the length of its projection on the x-axis which is
important, so an arm in horizontal orientation has much more resolution
than one in vertical orientation. The rest of this section will refer to the
x-component of the center of gravity even when this is not stated explicitly.

The arm is isolated by measuring the angle with which the arm is rotated
relative to the image’s horizontal axis. This angle is calculated from the
feature points p2 and p3. The blob is rotated and the result is an image of
the robot with the arm completely horizontal. The next step is to crop the
blob in a rectangle around the points p2 and p3. The width of the rectangle
is the distance between points p2 and p3 with some margin, and the height
of the rectangle should be adjusted to include only the arm and nothing
more. A close estimate to the arm’s height is 1

2

√
A since as mentioned

before, including
√
A makes the extraction of the arm scale-invariant. Once

the image has been cropped, the arm is isolated. Doing a blob detection on
this image returns the only available blob in it; the arm, which is used for
further analysis. A method to calculate the center of gravity of this blob is
already available in AForge.NET, however, it is truncated to integer pixel
resolution which is not good enough. The center of gravity of the blob is
also very sensitive to occlusion of parts of the arm. If wires and boxes are
mounted on the arm with a color different from that of the robot, the center
of gravity will deviate significantly. Therefore, rather than calculating the
center of gravity of the blob, the center of gravity of the convex hull of the
blob is calculated. The convex hull of the arm can be seen in Figure 5.3. The
convex hull is less sensitive to occlusions and by writing the algorithm which
extracts the center of gravity ourself, we can also get subpixel resolution.
The center of gravity is calculated by dividing the convex hull into triangles,
calculating the center of gravity of each triangle, and adding them according
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to

C =
1∑
mk

N∑
k=1

mkpk,

where mk is the area of the kth triangle, and pk is the center of gravity of
each triangle.

Figure 5.3: Robot arm with convex hull

The center of gravity has been mapped from -0.5 to 0.5 which means
that if the arm were to be completely uniform, a center of gravity of zero
would mean that we are exactly orthogonal to the arm. However, it is not
uniform, so an offset has been measured and implemented to make sure that
being orthogonal to the robot also gives a center of gravity of zero.

Figure 5.4: The convex hull with center of gravity, from three angles.

5.2.6 The Graphical User Interface

In parallell to the algorithm development, a graphical user interface (GUI)
has been built for testing purposes but also as a possible interface for a
remote operator. The GUI, which can be seen in Figure 5.5, presents but-
tons to activate the automatic control, debug information about the image
processing and a zoomed view of the tooltip. Especially the zoomed view of
the tooltip provides the remote operator with important information about
the ongoing task.

5.3 Control Algorithms

5.3.1 Outlier detection

At times, the algorithm confuses the robot with other orange-like objects
in the image. Sometimes the areas are connected and adds to the robot
blob, and sometimes they are disjunct and a completely different object
is chosen if it is larger. No matter how good detection you have, there
is always the possibility of a misdetection, therefore it is good to have an
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Figure 5.5: Graphical user interface

idea of when this has happened. The values from the last iteration is kept
for some variables, namely center of gravity in x and y of the robot blob,
the height and width of the blob, and the quotient between height and
width referred to as ”portraitness”. By comparing present values with the
former and comparing them each to a constant of maximum allowed change,
erroneous robot identification can be spotted. Or more simply put, if any
of the variables changes too much during an iteration, the result from that
iteration is ignored. If this happens, no control signals are sent and the
algorithm just waits until the error is within tolerance again. If this does
not happen for 100 iterations the mission is aborted and the quadrocopter
is instructed to land.

5.3.2 Coupling between control and data

As have been previously mentioned, control of the quadrocopter is executed
by setting reference angles for roll and pitch and a reference angular velocity
for yaw and reference altitude velocity. The control objective is to always
aim the front camera at the robot, stay orthogonal to the plane spanned by
the arms from joint 2 to joint 4 and to stay at a set distance to the robot
while keeping a constant altitude. The yaw velocity is used to aim at the
robot, or more precisely at a point defined by half-way from the tooltip to
the robot center in the x-coordinate. The distance to the robot is linear
to the length of the robot arm, which is used to calculate the pitch control
signal. This is preferred over using the robot’s area as a measure of distance
in the image, since its area varies with its position and orientation. Finding
an error upon which to control roll angle has been most difficult, the best one
suited is the one calculated in Subsection 5.2.5, namely the center of gravity
of the convex hull of the robot arm. Without this control, the quadrocopter
will drift along a circle around the robot, and eventually reach an angle to
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the robot where the image analysis does not make sense since the arm is
indistinguishable from the rest of the robot.

5.3.3 Controllers

For all control action, PI-controllers or P-controllers have been used since
they are quick to implement, intuitive to tune and give good enough per-
formance. The object of this project has mainly been finding good enough
measures to base control on. A derivative part on the roll controller has been
considered and would be the next natural step to improve performance.
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Chapter 6

Results

This chapter covers the results from the work conceived at Department of
Automatic Control, LTH.

6.1 Positioning in the xy-plane

Below is the result after doing a step response test in the x-direction. The
reference values have been set by clicking in the video frame. It tracks
the position fairly well, however there appears to be a small and negligible
stationary error.

Figure 6.1: Step response in x-direction, when using PD position control.
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6.2 Altitude control

6.2.1 Vision and ultrasound feedback compared to just ul-
trasound feedback

A box with the height 28 cm, see Figure 6.2, has been placed on one of the
sides along a square shaped trajectory. The purpose of this test is to see
how the altitude control of the quadrocopter reacts to this disturbance, and
whether the vision based altitude control implemented in this thesis is able
to reject it. The quadrocopter was programmed to follow the trajectory
for several laps and the Figures 6.3 and 6.4 show 2-3 of these cycles, that
are approximately 20 seconds of length. Figure 6.3 shows the effects when
relying only on the onboard ultrasound altitude control. Figure 6.4 shows
how the altitude changes when also using an outer loop of vision based
altitude control. It is not obvious that the vision based control has any
effect rejecting the disturbance, however it can be argued that with the
vision based control, the altitude exhibits a more periodic and thus a more
predictable behaviour.

Figure 6.2: The position of the box in the square trajectory.

6.3 Tracking a square trajectory

Figure 6.5 is the results from tracking a square with the desired velocity
of 300 mm/s along the trajectory. The direction of flight along the trajec-
tory is clockwise. Figure 6.6 shows the velocity of the quadrocopter in the
x component. The reference signals were not available at the time of log-
ging, therefore lines have been plotted at 0.3 and -0.3 to indicate where the
maximum and minimum of the reference should be.
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Figure 6.3: Flying over an obstacle
without vision based altitude control

Figure 6.4: Flying over an obstacle
using vision based altitude control

Figure 6.5: Position [mm] when
tracking a square trajectory

Figure 6.6: The measurement of ẋ
[mm/s] over time [s] when follow-
ing a trajectory with the shape of a
square

6.4 Tracking a circular trajectory

Figure 6.7 shows the performance when following a circular trajectory. The
circle is on purpose simplified as a polygon with 15 edges to allow for eas-
ier tracking. Due to the nature of the controller, it will not perform well
with high resolution trajectories since it has no knowledge about how the
trajectory will change, it only acts on the current error. Therefore, when
tracking a circle, it never settles on the trajectory, it has a constant error.
Adding a feed-forward controller based on the quadrocopter inertia, would
likely improve this. Another approach might be to have a integral part in
the controller, making sure it isn’t reset on every new line segment would
help when tracking a circle.
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Figure 6.7: A circular trajectory with radius 500 mm, discretized into 15 line
segments. The x and y axes are measured in [mm].
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Chapter 7

Conclusion

One of the main drawbacks with this quadrocopter is its tendency to react
to uneveness on the ground due to its ultrasound based design. Especially
when flying over an object like a box or table, it will immediately ascend
towards the ceiling to a new point, approximately the height of the obstacle.
When the object is no longer below the quadrocopter, it will descend the
same distance, at best. Most of the time it does not ascend as much as it
descends, and when flying over an object over and over again, the altitude
will change significantly from its initial state. In Figure 6.3 this effect can be
seen. It is questionable if the implemented vision based altitude controller
rejects the disturbance of the box. It is possible that the controller had a
too slow response time, and maybe the effect of it would be more visible
if it had more time to settle in. The position and speed controller in xy,
however, show satisfactory results. The quadrocopter follows its path with
a maximum deviation of 154.2 mm when tracking one of the test paths.

7.1 Future Work

The work in this thesis merely scratches the surface on vision based Quadro-
copter control. A possible improvement on the control design is introducing
a LQG-controller. Another natural improvement on the control structure, is
feedforward control and iterative learning control. On the vision part, an in-
teresting problem would be to have several cameras covering a larger space,
with the camera views partly overlapping. It would also be an challenging
task to develop an obstacle avoiding path planner.
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Chapter 8

Appendix

8.1 Source Code

This Section contains the source code for the work carried out at The De-
partment of Automatic Control, LTH. It is split into the parts executed by
Computer A which is an implementation of ARToolKit and Computer B
which is compiled within the AR.Drone SDK version 1.5, (See Figure 4.1).

8.1.1 Computer A

#ifdef _WIN32

#include <windows.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#ifndef __APPLE__

#include <GL/gl.h>

#include <GL/glut.h>

#else

#include <OpenGL/gl.h>

#include <GLUT/glut.h>

#endif

#include <AR/gsub.h>

#include <AR/video.h>

#include <AR/param.h>

#include <AR/ar.h>

#include <time.h>

#include <stdio.h>

#include <string.h>

#include "goserver.h"
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#include "netapi.h"

#define DEFAULTSERVERIP "130.235.83.248"

#define PACKETLENGTH 120

#define PRINT 0

#define YMAX 480

#define XMAX 640

#define LOOPCONTROL 1

//

// Camera configuration.

//

char *vconf = "v4l2src device =/dev/video0 !

capsfilter caps=video/x-raw -rgb ,width =640, height

=480,bpp=24,fps =30 ! ffmpegcolorspace ! identity

name=artoolkit ! fakesink"; //use for logitech

webcam

char *vconf1 = "v4l2src device =/dev/video1 !

capsfilter caps=video/x-raw -rgb ,width =640, height

=480,bpp=24,fps =30 ! ffmpegcolorspace ! identity

name=artoolkit ! fakesink"; //use for logitech

webcam

char *vconf2 = "v4l2src device =/dev/video2 !

capsfilter caps=video/x-raw -rgb ,width =640, height

=480,bpp=24,fps =30 ! ffmpegcolorspace ! identity

name=artoolkit ! fakesink"; //use for logitech

webcam

int xsize , ysize;

int thresh = 120;

int count = 0;

int mode =1;

int ucount = 0;

char *cparam_name = "Data/camera_para.

dat"; //use for logitech webcam

ARParam cparam;

char *patt_name1 = "Data/patt.hiro";

char *patt_name2 = "Data/patt.kanji";

int patt_id1;

int patt_id2;

int sock;

FILE* handle;
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double patt_width1 = 100.0; // width of

pattern in mm

double patt_width2 = 100.0; // width of pattern

in mm

double patt_center [2] = {0.0, 0.0};

double patt_center2 [2] = {0.0, -400.0};

double patt_trans1 [3][4];

double patt_trans1past [3][4];

double patt_trans2 [3][4];

double patt_trans2past [3][4];

double xref;

double yref;

double zref;

struct timeval pst;

struct timeval curr;

int dt;

int frequency; // desired frequency <=1000 , 30hz

int waitatleast;

int servernconnected;

int visible1;

int visible2;

// //////////////////

int mouseDown = 0;

float xmouse = 0.0f;

float ymouse = 0.0f;

// //////////////////

static void init(char*);

static void cleanup(void);

static void keyEvent( unsigned char key , int x,

int y);

static void mouseEvent( int button , int state , int

x, int y);

static void mainLoop(void);

static void draw( double M[3][4]);

static void drawred(double M[3][4]);

static void dot(double M[3][4]);

static int gettimedifference(struct timeval ,

struct timeval);

static void printtrans(double M[3][4]);

int main(int argc , char **argv)

{
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glutInit (&argc , argv);

frequency =30;

waitatleast =(int) 1000000/ frequency; //

microseconds

gettimeofday (&pst , NULL);

gettimeofday (&curr ,NULL);

if (argv [1]== NULL){

init(DEFAULTSERVERIP);

} else {

init(argv [1]);

}

char filename [20];

sprintf(filename ,"logfile%d.txt", pst.tv_usec);

handle=fopen(filename ,"wb");

fprintf(handle ,"timestamp; patt1x; patt1y; patt1z;

patt2x; patt2y; patt2z; rot00; rot01; rot10;

rot11; patt1visible; patt2visible \n");

arVideoCapStart ();

argMainLoop( mouseEvent , keyEvent , mainLoop );

return (0);

}

static int gettimedifference(struct timeval first ,

struct timeval last){

int diff = last.tv_sec *1000000 - first.tv_sec

*1000000 + last.tv_usec -first.tv_usec;

return diff;

}

static void mouseEvent(int button , int state , int x,

int y){

if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN

)

{

mouseDown = 1;

xmouse = x - XMAX /2;

ymouse = y - YMAX /2;

}

else

mouseDown = 0;
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}

static void keyEvent( unsigned char key , int x,

int y)

{

/* quit if the ESC key is pressed */

if( key == 0x1b ) {

printf("*** %f (frame/sec)\n", (double)count/

arUtilTimer ());

cleanup ();

exit (0);

}

if( key == ’c’ ) {

printf("*** %f (frame/sec)\n", (double)count/

arUtilTimer ());

count = 0;

mode = 1 - mode;

if( mode ) printf("Continuous mode: Using

arGetTransMatCont .\n");

else printf("One shot mode: Using

arGetTransMat .\n");

}

}

/* main loop */

static void mainLoop(void)

{

static int contF1 = 0;

static int contF2 = 0;

ARUint8 *dataPtr;

ARMarkerInfo *marker_info;

int marker_num;

int j, k;

// write message and send (loop)

gettimeofday (&pst ,NULL);

/* grab a vide frame */

if( (dataPtr = (ARUint8 *) arVideoGetImage ()) ==

NULL ) {

arUtilSleep (2);

printf ("NULL\n");

return;

}
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if( count == 0 ) arUtilTimerReset ();

count ++;

if (mouseDown ==1){

// printf ("x=%f, y=%f \n",xmouse ,ymouse);

xref =1.25*3* xmouse*patt_trans1 [2][3]/2880; //

measured scaling

yref =1.25*3* ymouse*patt_trans1 [2][3]/2880;

zref=patt_trans1 [2][3];

printf("xref=%f, yref=%f, zref=%f, xmouse =%f,

ymouse =%f \n",xref ,yref ,zref ,xmouse ,ymouse);

}

argDrawMode2D ();

// argDrawMode = AR_DRAW_BY_GL_DRAW_PIXELS; //

image unaffected by camera parameters

argDispImage( dataPtr , 0,0 );

/* detect the markers in the video frame */

if( arDetectMarker(dataPtr , thresh , &marker_info ,

&marker_num) < 0 ) {

cleanup ();

exit (0);

}

arVideoCapNext (); // probably not necessary

if(PRINT){

for( j = 0; j < marker_num;j++ ) {

printf("marker confidence is %f and id is :%d\n"

,marker_info[j].cf ,marker_info[j].id);

}

}

/* check for object visibility */

k = -1;

for( j = 0; j < marker_num; j++ ) {

if( patt_id1 == marker_info[j].id ) {

if( k == -1 ) k = j;

else if( marker_info[k].cf < marker_info[j].cf

) k = j;

}

}

if( k == -1 ) {

visible1 =0;

contF1 =0;

drawred(patt_trans1);
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} else {

visible1 =1;

if (mode == 0|| contF1 == 0){

arGetTransMat (& marker_info[k], patt_center ,

patt_width1 , patt_trans1);

// printf (" arGetTransMat\n");

}

else {

arGetTransMatCont (& marker_info[k], patt_trans1

, patt_center , patt_width1 , patt_trans1);

// printf (" arGetTransMatCont\n");

}

}

k = -1;

for( j = 0; j < marker_num; j++ ) {

if( patt_id2 == marker_info[j].id ) {

if( k == -1 ) k = j;

else if( marker_info[k].cf < marker_info[j].cf

) k = j;

}

}

if( k == -1 ) {

visible2 =0;

contF2 =0;

draw(patt_trans2);

}else {

visible2 =1;

if (mode == 0|| contF2 == 0){

arGetTransMat (& marker_info[k], patt_center2 ,

patt_width2 , patt_trans2);

// printf (" arGetTransMat\n");

}

else {

arGetTransMatCont (& marker_info[k], patt_trans2

, patt_center2 , patt_width2 , patt_trans2);

// printf (" arGetTransMatCont\n");

}

}

if (PRINT){

printf("%d markers | visible 1:%d 2:%d | ",

marker_num ,visible1 ,visible2);

}
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patt_trans1 [0][3] ,

patt_trans1 [1][3] ,

patt_trans1 [2][3] ,

patt_trans2 [0][3] ,

patt_trans2 [1][3] ,

patt_trans2 [2][3] ,

patt_trans1 [0][0] ,

patt_trans1 [0][1] ,

patt_trans1 [1][0] ,

patt_trans1 [1][1] ,

contF1 = visible1;

contF2 = visible2;

/* send message over tcp */

char message[PACKETLENGTH ]; //11+ 9 for each float

if(xref !=0 && yref !=0){ //send mouse coords

instead of marker2

sprintf( message ,

"%010d %010.4f %010.4f %010.4f %010.4f

%010.4f %010.4f %07.4f %07.4f %07.4f

%07.4f %1d %1d",

(int) (( double) 1000* arUtilTimer ()),

patt_trans1 [0][3] , patt_trans1 [1][3] ,

patt_trans1 [2][3] ,

xref ,yref ,zref ,

patt_trans1 [0][0] , patt_trans1 [0][1] ,

patt_trans1 [1][0] , patt_trans1 [1][1] ,

visible1 ,visible2);//wa ,wb ,wc);

fprintf(handle ,

"%010d %010.4f %010.4f %010.4f %010.4f %010.4f

%010.4f %07.4f %07.4f %07.4f %07.4f %1d %1d \

n",

(int) (( double) 1000* arUtilTimer ()),

patt_trans1 [0][3] , patt_trans1 [1][3] , patt_trans1

[2][3] ,

xref ,yref ,zref ,

patt_trans1 [0][0] , patt_trans1 [0][1] ,

patt_trans1 [1][0] , patt_trans1 [1][1] ,

visible1 ,visible2);
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} else {

sprintf( message ,

"%010d %010.4f %010.4f %010.4f %010.4f %010.4

f %010.4f %07.4f %07.4f %07.4f %07.4f %1d

%1d",

(int) (( double) 1000* arUtilTimer ()),

patt_trans1 [0][3] , patt_trans1 [1][3] ,

patt_trans1 [2][3] ,

patt_trans2 [0][3] , patt_trans2 [1][3] ,

patt_trans2 [2][3] ,

patt_trans1 [0][0] , patt_trans1 [0][1] ,

patt_trans1 [1][0] , patt_trans1 [1][1] ,

visible1 ,visible2);//wa ,wb ,wc);

fprintf(handle ,

"%010d %010.4f %010.4f %010.4f %010.4f %010.4f

%010.4f %07.4f %07.4f %07.4f %07.4f %1d %1d \

n",

(int) (( double) 1000* arUtilTimer ()),

patt_trans1 [0][3] , patt_trans1 [1][3] , patt_trans1

[2][3] ,

patt_trans2 [0][3] , patt_trans2 [1][3] , patt_trans2

[2][3] ,

patt_trans1 [0][0] , patt_trans1 [0][1] ,

patt_trans1 [1][0] , patt_trans1 [1][1] ,

visible1 ,visible2);

}

int size = sizeof(message);

if(! servernconnected){

int i = write(sock ,message ,sizeof(message));

//int i = write(sock ,o1,sizeof(o1));

}

// printf ("Sent %d bytes to tcp socket %d\n", i

, sock);

if (visible1) draw(patt_trans1);

if (visible2) drawred(patt_trans2);

double ctr [3][4];

ctr [0][0]=1;

ctr [0][1]=0;

ctr [0][2]=0;
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ctr [0][3]=0;

ctr [1][0]=0;

ctr [1][1]=1;

ctr [1][2]=0;

ctr [1][3]=0;

ctr [2][0]=0;

ctr [2][1]=0;

ctr [2][2]=1;

ctr [2][3]=700;

dot(ctr);

printf("tx:%f ty:%f tz:%f \n",patt_trans1 [0][3] ,

patt_trans1 [1][3] , patt_trans1 [2][3]);

argSwapBuffers ();

gettimeofday (&curr ,NULL);

dt =gettimedifference(pst , curr); // returns an int

representing time between pst and curr in ms

if(LOOPCONTROL &&dt <waitatleast){ // waitatleast is

an int which represents how long each cycle

shall take at most

usleep(waitatleast -dt);

}

// printf (" | elapsed time is %d , should be larger

than %d ,slept %d| \n",dt ,waitatleast ,

waitatleast -dt);

}

static void printtrans(double M[3][4]){

/* printf ("************ Calib_pat

********************\n");

printf ("r11:%f r12:%f r13:%f \n",M[0][0] ,M

[0][1] ,M[0][2]);

printf ("r21:%f r22:%f r23:%f \n",M[1][0] ,M

[1][1] ,M[1][2]);

printf ("r31:%f r32:%f r33:%f \n",M[2][0] ,M

[2][1] ,M[2][2]);

printf

("******************************************\

n");

*/

printf("tx:%f ty:%f tz:%f \n",M[0][3] ,M[1][3] ,M

[2][3]);
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}

static void init( char* serverip )

{

ARParam wparam;

// start TCP socket

sock = tcpsock ();

servernconnected=sockconn(sock ,serverip ,12345);

if (servernconnected ==0){

printf("success\n");

} else {

printf("must start server !!\ nmessages won’t be

sent\n");

}

/* open the video path */

struct stat st;

if(stat("/dev/video0",&st) == 0){

printf(" /video0 is present\n");

if( arVideoOpen( vconf ) < 0 ) {

exit (0);

}

} else if(stat("/dev/video1" ,&st) == 0){

printf(" /video1 is present\n");

printf("trying video1 instead of video0\n");

if(arVideoOpen(vconf1) < 0) {

exit (0);

}

} else if(stat("/dev/video2" ,&st) == 0){

printf(" /video1 is present\n");

printf("trying video2 instead of video0\n");

if(arVideoOpen(vconf2) < 0) {

exit (0);

}

}

/* find the size of the window */

if( arVideoInqSize (&xsize , &ysize) < 0 ) exit (0);

printf("Image size (x,y) = (%d,%d)\n", xsize ,

ysize);

/* set the initial camera parameters */

if( arParamLoad(cparam_name , 1, &wparam) < 0 ) {

printf("Camera parameter load error !!\n");

exit (0);
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}

arParamChangeSize( &wparam , xsize , ysize , &cparam

);

arInitCparam( &cparam );

printf("*** Camera Parameter ***\n");

arParamDisp( &cparam );

if( (patt_id1=arLoadPatt(patt_name1)) < 0 ) {

printf("pattern1 load error !!\n");

exit (0);

}

if (( patt_id2=arLoadPatt(patt_name2)) < 0){

printf("pattern2 load error !!\n");

exit (0);

}

/* open the graphics window */

argInit( &cparam , 1.0, 0, 0, 0, 0 );

}

/* cleanup function called when program exits */

static void cleanup(void)

{

arVideoCapStop ();

arVideoClose ();

argCleanup ();

//exit

fclose(handle);

close(sock);

}

static void drawred( double M[3][4]){

double gl_para [16];

GLfloat mat_ambient [] = {0.0, 0.0, 0.0,

1.0};

GLfloat mat_flash [] = {0.0, 0.0, 0.0,

1.0};

GLfloat mat_flash_shiny [] = {50.0};

GLfloat light_position [] =

{100.0 , -200.0 ,200.0 ,0.0};

GLfloat ambi[] = {0.1, 0.1, 0.1,

0.1};

GLfloat lightZeroColor [] = {0.6, 0.1, 0.3,

0.1};
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argDrawMode3D ();

argDraw3dCamera( 0, 0 );

glClearDepth( 1.0 );

glClear(GL_DEPTH_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);

glDepthFunc(GL_LEQUAL);

/* load the camera transformation matrix */

argConvGlpara(M, gl_para);

glMatrixMode(GL_MODELVIEW);

glLoadMatrixd( gl_para );

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glLightfv(GL_LIGHT0 , GL_POSITION , light_position);

glLightfv(GL_LIGHT0 , GL_AMBIENT , ambi);

glLightfv(GL_LIGHT0 , GL_DIFFUSE , lightZeroColor);

glMaterialfv(GL_FRONT , GL_SPECULAR , mat_flash);

glMaterialfv(GL_FRONT , GL_SHININESS ,

mat_flash_shiny);

glMaterialfv(GL_FRONT , GL_AMBIENT , mat_ambient);

glMatrixMode(GL_MODELVIEW);

glTranslatef( 150.0, -150.0, 0.0 );

// glutSolidCube (50.0);

glutSolidTorus (40,80, 10, 10);

// glutSolidTetrahedron ();

glTranslatef( -300.0, 0.0, 0.0 );

glutSolidTorus (40,80, 10, 10);

glTranslatef( 0.0, 300.0, 0.0 );

glutSolidTorus (40,80, 10, 10);

glTranslatef( 300.0, 0.0, 0.0 );

glutSolidTorus (40,80, 10, 10);

// glutSolidIcosahedron ();

// glutSolidSphere (50.0 ,20 ,20);

glDisable( GL_LIGHTING );

glDisable( GL_DEPTH_TEST );

}

static void draw(double M[3][4])

{

double gl_para [16];
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GLfloat mat_ambient [] = {0.0, 0.0, 1.0,

1.0};

GLfloat mat_flash [] = {0.0, 0.0, 1.0,

1.0};

GLfloat mat_flash_shiny [] = {50.0};

GLfloat light_position [] =

{100.0 , -200.0 ,200.0 ,0.0};

GLfloat ambi[] = {0.1, 0.1, 0.1,

0.1};

GLfloat lightZeroColor [] = {0.9, 0.9, 0.9,

0.1};

argDrawMode3D ();

argDraw3dCamera( 0, 0 );

glClearDepth( 1.0 );

glClear(GL_DEPTH_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);

glDepthFunc(GL_LEQUAL);

/* load the camera transformation matrix */

argConvGlpara(M, gl_para);

glMatrixMode(GL_MODELVIEW);

glLoadMatrixd( gl_para );

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glLightfv(GL_LIGHT0 , GL_POSITION , light_position);

glLightfv(GL_LIGHT0 , GL_AMBIENT , ambi);

glLightfv(GL_LIGHT0 , GL_DIFFUSE , lightZeroColor);

glMaterialfv(GL_FRONT , GL_SPECULAR , mat_flash);

glMaterialfv(GL_FRONT , GL_SHININESS ,

mat_flash_shiny);

glMaterialfv(GL_FRONT , GL_AMBIENT , mat_ambient);

glMatrixMode(GL_MODELVIEW);

glTranslatef( 150.0, -150.0, 0.0 );

// glutSolidCube (50.0);

glutSolidTorus (40,80, 10, 10);

// glutSolidTetrahedron ();

glTranslatef( -300.0, 0.0, 0.0 );

glutSolidTorus (40,80, 10, 10);

glTranslatef( 0.0, 300.0, 0.0 );

glutSolidTorus (40,80, 10, 10);

glTranslatef( 300.0, 0.0, 0.0 );

glutSolidTorus (40,80, 10, 10);

// glutSolidIcosahedron ();
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// glutSolidSphere (50.0 ,20 ,20);

glDisable( GL_LIGHTING );

glDisable( GL_DEPTH_TEST );

}

static void dot(double M[3][4])

{

double gl_para [16];

GLfloat mat_ambient [] = {0.0, 0.0, 1.0,

1.0};

GLfloat mat_flash [] = {0.0, 0.0, 1.0,

1.0};

GLfloat mat_flash_shiny [] = {50.0};

GLfloat light_position [] =

{100.0 , -200.0 ,200.0 ,0.0};

GLfloat ambi[] = {0.1, 0.1, 0.1,

0.1};

GLfloat lightZeroColor [] = {0.9, 0.9, 0.9,

0.1};

argDrawMode2D ();

argDraw3dCamera( 0, 0 );

glClearDepth( 1.0 );

glClear(GL_DEPTH_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);

glDepthFunc(GL_LEQUAL);

/* load the camera transformation matrix */

argConvGlpara(M, gl_para);

glMatrixMode(GL_MODELVIEW);

glLoadMatrixd( gl_para );

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glLightfv(GL_LIGHT0 , GL_POSITION , light_position);

glLightfv(GL_LIGHT0 , GL_AMBIENT , ambi);

glLightfv(GL_LIGHT0 , GL_DIFFUSE , lightZeroColor);

glMaterialfv(GL_FRONT , GL_SPECULAR , mat_flash);

glMaterialfv(GL_FRONT , GL_SHININESS ,

mat_flash_shiny);

glMaterialfv(GL_FRONT , GL_AMBIENT , mat_ambient);

glMatrixMode(GL_MODELVIEW);

glutSolidCube (20.0);
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glDisable( GL_LIGHTING );

glDisable( GL_DEPTH_TEST );

}

8.1.2 Computer B

#include <gtk/gtk.h>

#include <gtk/gtkcontainer.h>

#include <stdio.h>

#include <gdk -pixbuf/gdk -pixbuf.h>

#include <sys/time.h>

#include <VP_Os/vp_os_malloc.h>

#include <VP_Os/vp_os_print.h>

#include <ardrone_api.h>

#include <VP_Api/vp_api_thread_helper.h>

#include <string.h>

#include <VP_Os/vp_os_malloc.h>

#include <VP_Os/vp_os_print.h>

#include <config.h>

#include "common/common.h"

#include "ihm/ihm.h"

#include "ihm/ihm_vision.h"

#include "ihm/ihm_stages_o_gtk.h"

#include "ihm/view_drone_attitude.h"

#include "navdata_client/navdata_ihm.h"

#include "mocha.h"

#include <math.h>

#include "/home/martin/EXJOBB/OpenCV -2.1.0/ include/

opencv/cv.h"

#include "/home/martin/EXJOBB/OpenCV -2.1.0/ include/

opencv/highgui.h"

#include "goserver.h"

#include "netapi.h"

#include "/home/martin/EXJOBB/OpenCV -2.1.0/ include/

opencv/cxtypes.h"

#include "/home/martin/EXJOBB/OpenCV -2.1.0/ include/

opencv/cvcompat.h"

extern double ndata [10];

extern int32_t internalstate;

extern int ac_on;

double translx ,transly ,translz;

int Tcpts[MSIZE];

float cs_b ,cs_c , cs_d , cs_e , e;
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double Ex[MSIZE];

double Ey[MSIZE];

double Ez[MSIZE];

double Eyaw[MSIZE];

double Exbeta[MSIZE];

double Eybeta[MSIZE];

double Ezbeta[MSIZE];

double Eyawbeta[MSIZE];

double Tx[MSIZE];

double Ty[MSIZE];

double Tz[MSIZE];

double Spx[MSIZE];

double Spy[MSIZE];

double Spz[MSIZE];

double Spyaw[MSIZE];

double R00[MSIZE];

double R01[MSIZE];

double R10[MSIZE];

double R11[MSIZE];

double Ux[MSIZE];

double Uy[MSIZE];

double Uz[MSIZE];

double Uyaw[MSIZE];

int visible1;

int visible2;

void savejpg(GdkPixbuf* pbuf , int j){

int success;

char buff [104];

sprintf(buff , "/home/martin/EXJOBB/

ARDrone_SDK_1_5_Version_20101004/Examples/

Linux/Build/Release/record/mocha %05d.jpg", j);

printf("%s\n",buff);

success = gdk_pixbuf_save (pbuf , buff , "jpeg",

NULL , "quality", "25", NULL);

if(success){

printf("image successfully saved");

} else {

printf("image not saved");
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}

}

void getmarkerposition(uint8_t *data , int32_t width

, int32_t height , int32_t rowstride){

typedef struct points{

int x;

int y;

} points;

points mrkrpos;

mrkrpos.x=0;

mrkrpos.y=0;

}

void testfunction(uint8_t *data , int32_t width ,

int32_t height , int32_t rowstride){

extern double ndata [10];

printf("%f \n",ndata [4]);

int k;

char imdata[height*width *3];

for (k=0;k<height*width *3;k++){

imdata[k]=( char) data[k];

}

IplImage* currframe = cvCreateImage(cvSize(width ,

height), IPL_DEPTH_8U , 3);

IplImage* dst = cvCreateImage(cvSize(width ,height

), IPL_DEPTH_8U , 3);

currframe ->imageData=imdata;

cvCvtColor(currframe , dst , CV_BGR2RGB);

struct CvPoint2D32f center;

center.x=width /2;

center.y=width /2;

CvMat *tMat = cvCreateMat (2, 3, CV_32FC1);
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cv2DRotationMatrix(center , -ndata [4], 1.0, tMat);

cvWarpAffine(dst , currframe , tMat ,

CV_INTER_LINEAR + CV_WARP_FILL_OUTLIERS ,

cvScalarAll (0));

cvReleaseMat (&tMat);

cvShowImage("mainWin", currframe);

return;

}

void printstate (){

extern int keyb_start;

extern double altitude , altitude_ref;

extern double translx ,setpointx ,transly ,setpointy

,setpointz ,translz;

printf("

|-----------------------------------------

-----------------------------|\n");

printf("|start |AC |altitude |altitude_ref|

translx|setpointx|transly|setpointy |\n");

printf("|%1d |%1d | %8.3f| %8.3f |%8.3f

|%8.3f|%8.3f|%8.3f |\n",

!keyb_start ,ac_on , altitude , altitude_ref , translx ,

setpointx ,transly ,setpointy);

printf("

|-----------------------------------------

-----------------------------|\n");

printf("\033[4A");

}

int gettimedifference(struct timeval first , struct

timeval last){

int diff = last.tv_sec *1000000 - first.tv_sec

*1000000 + last.tv_usec -first.tv_usec;

return diff;

}

54



float flimit(float p,float lo, float hi){

if(p!=p){

exit (0);

printf("nan");

return 0;//not a nan (not a not a number)

}

if (p<lo) return lo;

else if (p>hi) return hi;

else return p;

}

int land(){

while(ac_on && (internalstate &32) ==32){

ardrone_tool_set_ui_pad_start (0);

}

return 1;

}

struct FloatPoint {

float x;

float y;

};

struct traj {

float nextSPx;

float nextSPy;

float thisSPx;

float thisSPy;

float v;

float length;

float tangX;

float tangY;

float normX;

float normY;

float vref;

float ea[MSIZE ];

float ec[MSIZE ];

int count;

};

float PDtust(float Kp,float Kd,int tcpdt , float N,

float Upst , float Enow , float Epst ){

float A=(2*Kd/tcpdt+N);

55



float B=(2*Kd/tcpdt -N);

float C=(Kp*N+2*Kd*Kp/tcpdt +2*N*Kd/tcpdt);

float D=(Kp*N-2*Kd*Kp/tcpdt -2*N*Kd/tcpdt);

float Unow = B*Upst/A+D*Epst/A+C*Enow/A;

return Unow;

}

float PDtust2(float Kp,float Kd,int tcpdt , float N,

float Upst , float Enow , float Epst , float

Ebetanow ,float Ebetapst){

float A=tcpdt*N+2*Kd;

float B=tcpdt*N-2*Kd;

float C=2*N*Kd;

float Unow=B/A*(Kp*Epst -Upst) +Kp*Enow + C/A*(

Ebetanow -Ebetapst);

return Unow;

}

int paintmap(struct traj t,float Tx ,float Ty){

float mapheight =600;

float mapwidth =600;

struct CvPoint p0;

struct CvPoint pT;

struct CvPoint pSt;

struct CvPoint pSn;

if( abs(t.nextSPx) >2*mapwidth || abs(t.nextSPy)

>2* mapheight ) { // check if points are within

boundaries

return 0;

}

p0 = cvPoint(mapwidth/2, mapheight /2);

pT = cvPoint(mapwidth /2+Tx/4, mapheight /2+Ty/4);

pSn = cvPoint(mapwidth /2+t.nextSPx/4, mapheight

/2+t.nextSPy /4);

pSt = cvPoint(mapwidth /2+t.thisSPx/4, mapheight

/2+t.thisSPy /4);

struct CvPoint pU;

pU = cvPoint ((int) mapwidth *(0.5+ cs_b /2) ,(int)

mapheight *(0.5+ cs_c /2));

IplImage* mycircle = cvCreateImage(cvSize(

mapwidth ,mapheight), IPL_DEPTH_8U , 3);
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cvLine(mycircle ,p0 ,pU ,CV_RGB( 34, 200, 150 )

,1,8,0);

cvCircle(mycircle , pT, 3,CV_RGB( 90, 100, 200 )

, 2, 8, 0);

cvCircle(mycircle , pSn , 3,CV_RGB( 90, 50, 100 )

, 2, 8, 0);

cvCircle(mycircle , pSt , 3,CV_RGB( 150, 200, 100 )

, 2, 8, 0);

cvShowImage("helpWin", mycircle);

cvReleaseImage (& mycircle);

}

struct FloatPoint p1;

static float line(int p){

return (float) 20*((p%28) -14);

}

static struct FloatPoint circle(int p,float radius ,

int N, float shift){

struct FloatPoint fp;

fp.x = radius*cos(p*2* M_PI/N)+shift;//+30;

fp.y = radius*sin(p*2* M_PI/N)+shift;//+30;

return fp;

}

static float xsquare(int p){

float points [4];

points [0]= -500;

points [1]= -500;

points [2]=500;

points [3]=500;

return points[p%4];

}

static float ysquare(int p){

float points [4];

points [0]= -500;

points [1]=500;

points [2]=500;

points [3]= -500;

return points[p%4];

}
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struct traj trajectory(struct traj t, float

velocity_ref){

if(SQUARE){

t.nextSPx = xsquare(t.count +1);

t.nextSPy = ysquare(t.count +1);

t.thisSPx = xsquare(t.count);

t.thisSPy = ysquare(t.count);

}

if(CIRCLE){

t.nextSPx = circle(t.count +1 ,400,16,0).x; //(,

radius ,number of nodes ,shift)

t.nextSPy = circle(t.count +1 ,400,16,0).y;

t.thisSPx = circle(t.count ,400 ,16 ,0).x;

t.thisSPy = circle(t.count ,400 ,16 ,0).y;

}

if(LINE){

t.nextSPx=line(t.count +1);

t.nextSPy=line(t.count +1);

t.thisSPx=line(t.count);

t.thisSPy=line(t.count);

}

t.tangX = (t.nextSPx - t.thisSPx); //400* cos(idx

*2*pi /300) +200;

t.tangY = (t.nextSPy - t.thisSPy); //400* sin(idx

*2*pi /300) +600;

t.length = sqrt(pow(t.tangX ,2)+pow(t.tangY ,2));

t.tangX = t.tangX/t.length;// vector in tangent of

trajectory

t.tangY = t.tangY/t.length;// normed

t.normX = -t.tangY;// rotated 90 clockwise

t.normY = t.tangX;

t.vref = velocity_ref /1000; //0.1mm/ms=0.1m/s

printf("count is %d\n",t.count);

return t;

}

void controlmain ()

{

int frequency =30; // desired frequency <=1000 ,

probably 50-60hz

int waitatleast =1000000/ frequency; // microseconds
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double alt_sat =1;

struct timeval pst;

struct timeval curr;

int dt;

cs_b =0; //left/right (x)

cs_c =0; // forward/backward (y)

cs_d =0; // altitude (z)

cs_e =0; // rotation

extern double altitude;

extern double setpointx;

extern double setpointy;

extern double setpointz;

extern double altitude_ref;

extern double r00;

extern double r01;

extern double r10;

extern double r11;

int iter=MSIZE;

int received;

int tcpdt =30;

int glseq =0; // global sequence number used in

control commands

//all past data stored in arrays of size MSIZE

(5), values are

// stored and accessed in a circular manner

// gains

const float Kpx =0.14;

const float Kpy =0.14;

const float Kpz =0.4;

const float Kpyaw = 0.35;

//

const float Kdx =120.0;

const float Kdy =120.0;

const float Kdz =6.0;

//

const float Kpa =120.0;

const float Kpc =0.25;

//
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const float Kda=0;

const float Kdc =190;

//

const float Nc=3;

const float Na=4.5;

//

float Axy=1;

float Bxy=1;

float Cxy=1;

float Dxy=1;

float Az=1;

float Bz=1;

float Cz=1;

float Dz=1;

float beta=BETA; //zero for no derivative of

setpoint

const float Nxy=6;

const float Nz=7;

int idx[MSIZE];

register int i;

gettimeofday (&pst , NULL);

gettimeofday (&curr ,NULL);

for(i=0;i<MSIZE;i++){

Ux[i]=0;

Uy[i]=0;

Uz[i]=0;

}

struct traj t1;

t1.count =0;

t1=trajectory(t1 ,VREF);

for(;! gs_quit ;){

received = get_tcp_dta (& coms_cons[coms_cons_idx

[0]], iter);

iter+= received;

printf("%d samples received\n",received);

//set indexes idx [1] corresponds to -1, and so

on

for (i=0;i<MSIZE;i++){

idx[i]=(iter -i)%MSIZE;

}

tcpdt=Tcpts[idx[0]]- Tcpts[idx [1]];
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if (tcpdt ==0){

tcpdt =30;

}

printf("time elapsed since last sample %d\n",

tcpdt);

altitude=ndata [3];

switch (1){

case TRAJECTORY:

//t1=trajectory(t1);// updates setpoint if

necessary

if(t1.tangX*(Tx[idx [0]] - t1.thisSPx) + t1.

tangY*(Ty[idx [0]] - t1.thisSPy) > t1.

length){ // scalar product

t1.count=t1.count +1;

}

t1=trajectory(t1 ,VREF);

// velocity calculated with central

difference

t1.v = (t1.tangX*(Tx[idx[0]]-Tx[idx [2]]) +

t1.tangY*(Ty[idx[0]]-Ty[idx [2]]))/2/

tcpdt; //the projection of velocity on t

-direction.

t1.ea[idx [0]] = t1.vref -t1.v; // error along

, velocity error

t1.ec[idx [0]] = t1.normX*(t1.nextSPx -Tx[idx

[0]]) + t1.normY*(t1.nextSPy -Ty[idx [0]])

; // error cross , position error

//here Ex isn’t error but control signal in

the path coordinate system

Ex[idx [0]]= PDtust(Kpc ,Kdc ,tcpdt ,Nc ,Ex[idx

[1]], t1.ec[idx[0]], t1.ec[idx [1]] );//

filtered control signal

Ey[idx [0]]= PDtust(Kpa ,Kda ,tcpdt ,Na ,Ey[idx

[1]], t1.ea[idx[0]], t1.ea[idx [1]] );

if(0&& CIRCLE) Ex[idx [0]]+=6000* atan(pow(t1.

vref ,2) /(9.82*400))/3.14;

61



// rotate to camera system

float v1 = (Ex[idx [0]]* t1.normX+Ey[idx [0]]*

t1.tangX);

float v2 = (Ex[idx [0]]* t1.normY+Ey[idx [0]]*

t1.tangY);

// rotate and scale to quadrotor system

Ux[idx [0]] = (float) (R00[idx [0]]*v1+R01[

idx [0]]*v2)/1000.0f; // webcam control.

Uy[idx [0]] = (float) -(R10[idx [0]]*v1+R11[

idx [0]]*v2)/1000.0f; // the coordinate

systems upside down with respect to

eachother , therefore a minus sign is

necessary

/*

Ez[idx [0]]= (float) (Tz[idx[0]]- setpointz)

/800;

Ez[idx [1]]= (float) (Tz[idx[1]]- setpointz)

/800;

Uz[idx [0]]= PDtust(Kpz ,Kdz ,tcpdt ,Nz , Uz[idx

[1]],Ez[idx[0]],Ez[idx [1]]);

*/

break;

default:

if (FOLLOW){

//write control signals now

Ex[idx [0]]= (float) (R00[idx [0]]*( Spx

[0]-Tx[ idx [0] ])+R01[idx [0]]*( Spy[0]-

Ty[ idx [0] ]))/1000; // webcam control.

Ey[idx [0]]= (float) -(R10[idx [0]]*( Spx

[0]-Tx[ idx [0] ])+R11[idx [0]]*( Spy[0]-

Ty[ idx [0] ]))/1000; // the coordinate

systems upside down with respect to

eachother , therefore a minus sign is

necessary

Ex[idx [1]]= (float) (R00[idx [1]]*( Spx

[1]-Tx[ idx [1] ])+R01[idx [1]]*( Spy[1]-

Ty[ idx [1] ]))/1000;

Ey[idx [1]]= (float) -(R10[idx [1]]*( Spx

[1]-Tx[ idx [1] ])+R11[idx [1]]*( Spy[1]-

Ty[ idx [1] ]))/1000;
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Exbeta[idx [0]]= (float) (R00[idx [0]]*(

beta*Spx[0]-Tx[ idx [0] ])+R01[idx

[0]]*( beta*Spy[0]-Ty[ idx [0] ]))/1000;

// webcam control.

Eybeta[idx [0]]= (float) -(R10[idx [0]]*(

beta*Spx[0]-Tx[ idx [0] ])+R11[idx

[0]]*( beta*Spy[0]-Ty[ idx [0] ]))/1000;

// the coordinate systems upside down

with respect to eachother , therefore

a minus sign is necessary

Exbeta[idx [1]]= (float) (R00[idx [1]]*(

beta*Spx[1]-Tx[ idx [1] ])+R01[idx

[1]]*( beta*Spy[1]-Ty[ idx [1] ]))/1000;

Eybeta[idx [1]]= (float) -(R10[idx [1]]*(

beta*Spx[1]-Tx[ idx [1] ])+R11[idx

[1]]*( beta*Spy[1]-Ty[ idx [1] ]))/1000;

} else {

Ex[idx [0]]= (float) (R00[idx [0]]*( Spx

[0]-Tx[ idx [0] ])+R01[idx [0]]*( Spy[0]-

Ty[ idx [0] ]))/1000; // webcam control.

Ey[idx [0]]= (float) -(R10[idx [0]]*( Spx

[0]-Tx[ idx [0] ])+R11[idx [0]]*( Spy[0]-

Ty[ idx [0] ]))/1000; // the coordinate

systems upside down with respect to

eachother , therefore a minus sign is

necessary

Ex[idx [1]]= (float) (R00[idx [1]]*( Spx

[0]-Tx[ idx [1] ])+R01[idx [1]]*( Spy[0]-

Ty[ idx [1] ]))/1000;

Ey[idx [1]]= (float) -(R10[idx [1]]*( Spx

[0]-Tx[ idx [1] ])+R11[idx [1]]*( Spy[0]-

Ty[ idx [1] ]))/1000;

printf("does not follow\n");

}

if(! TUSTINS){

Axy=Kdx/( tcpdt*Nxy+Kdx);

Bxy=Kpx+Kdx*Nxy/( tcpdt*Nxy+Kdx);
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Cxy=-(Kpx*Kdx+Kdx*Nxy)/( tcpdt*Nxy+Kdx);

// ---------------------------//

Az=Kdz/(tcpdt*Nz+Kdz);

Bz=Kpz+Kdz*Nz/( tcpdt*Nz+Kdz);

Cz=-(Kpz*Kdz+Kdz*Nz)/( tcpdt*Nz+Kdz);

// ---------------------------//

Ux[idx [0]]= Axy*Ux[idx [1]]+ Bxy*Ex[idx [0]]+

Cxy*Ex[idx [1]];

Uy[idx [0]]= Axy*Uy[idx [1]]+ Bxy*Ey[idx [0]]+

Cxy*Ey[idx [1]];

Uz[idx [0]]= Az*Uz[idx [1]]+Bz*Ez[idx [0]]+Cz

*Ez[idx [1]];

printf("not tustins\n");

// ---------------------------//

} else {

if(FOLLOW){

Ux[idx [0]]= PDtust2(Kpx ,130,tcpdt ,3,Ux[

idx[1]],Ex[idx[0]],Ex[idx[1]],

Exbeta[idx[0]], Exbeta[idx [1]]);

Uy[idx [0]]= PDtust2(Kpy ,130,tcpdt ,3,Uy[

idx[1]],Ey[idx[0]],Ey[idx[1]],

Eybeta[idx[0]], Eybeta[idx [1]]);

// printf (" tust2x %f tust2y %f\n", Ux[

idx[0]],Uy[idx [0]]);

} else {

Ux[idx [0]]= PDtust(Kpx ,Kdx ,tcpdt ,Nxy ,Ux[

idx[1]],Ex[idx[0]],Ex[idx [1]]);

Uy[idx [0]]= PDtust(Kpy ,Kdy ,tcpdt ,Nxy ,Uy[

idx[1]],Ey[idx[0]],Ey[idx [1]]);

// printf (" tustx %f tusty %f\n", Ux[idx

[0]],Uy[idx [0]]);

}

printf("tustins\n");

}

break;

}

//no tracking in z, keeps setpoint defined by "

E" regardless of control setting

Ez[idx [0]]= (float) (Tz[idx [0]] -2400) /800;

Ez[idx [1]]= (float) (Tz[idx [1]] -2400) /800;
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Uz[idx [0]]= PDtust(Kpz ,Kdz ,tcpdt ,Nz , Uz[idx[1]],

Ez[idx[0]],Ez[idx [1]]);

printf("ucontrol is %f \n", Uz[idx [0]]);

//yaw contrl

// Eyaw [0] = (float) (atan2(R10[idx[0]],-R00[idx

[0]]));

//yaw control ref

float yawref = M_PI;

printf("yawreference is %f",yawref);

Eyaw [0]= atan2(R10[idx [0]]* cos(yawref)+R11[idx

[0]]* sin(yawref),-R00[idx [0]]* cos(yawref)-R01

[idx [0]]* sin(yawref));

printf("angle is: %f\n",atan2(R10[idx[0]],-R00[

idx [0]]));

cs_b=Ux[idx [0]];

cs_c=Uy[idx [0]];

cs_d=Uz[idx [0]];

cs_e = Kpyaw * Eyaw [0];

// printf ("cs_d is %f\n",cs_d);

cs_b = flimit(cs_b , -0.3 ,0.3);

cs_c = flimit(cs_c , -0.3 ,0.3);

cs_d = flimit(cs_d , -0.2 ,0.2);

cs_e = flimit(cs_e ,-1,1);//yaw

if(ac_on){ //&& (( FOLLOW && visible1 && visible2)

||(! FOLLOW && visible1 ) )){

// control signal being sent

printf("signal is: %f, %f, %f, %f \n", cs_b ,

cs_c ,cs_d ,cs_e);

ardrone_at_set_progress_cmd(visible1 ,cs_b ,

cs_c ,ZCONTROL*cs_d ,cs_e);

// checks how close to landing spot we are and

lands if close enough

if(LAND &&( pow(Ex[idx [0]] ,2)+pow(Ey[idx [0]] ,2)

<0.02) ){

land();

}

}

if(0){
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printstate ();

}

if (1){// print all translations , rotations and

control signals in memory

for(i=MSIZE -1;i>=0;i--){

printf("vars are: %d|%d|%d |%8f %8f %8f |

%8f %8f %8f |%8f %8f | %8f | %8f %8f |

%d %d| %d| %d\n",

iter ,tcpdt ,

Tcpts[idx[i]],

Ex[idx[i]],Ey[idx[i]],Ez[idx[i]],

Tx[idx[i]], Ty[idx[i]], Tz[idx[i]],

t1.nextSPx , t1.nextSPy ,

t1.v,

cs_b ,cs_c ,

visible1 ,visible2 ,

t1.count ,ac_on); // verifies that we

have access to webcam values.

those are received in goserver.c

}

printf("description: it ,tcpdt ,time ,Ex ,Ey ,Ez ,

Tx,Ty,Tz,nextspx ,nextspy ,v,cs_b ,cs_c ,

visible1 ,visible2 ,count ,ac_on\n");

}

if(MAP){

paintmap(t1,Tx[idx[0]],Ty[idx [0]]);

}

gettimeofday (&curr ,NULL);

dt = gettimedifference(pst , curr); // returns an

int representing time between pst and curr

in ms

if(dt <waitatleast){ // waitatleast is an int

which represents how long each cycle shall

take at most

usleep(waitatleast -dt);

// printf ("s\n");

}

// printf (" | elapsed time is %d , should be

larger than %d ,slept %d| \n",dt ,

waitatleast ,waitatleast -dt);
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gettimeofday (&pst ,NULL);

}

}

DEFINE_THREAD_ROUTINE(mocha ,data) //macro says

thread_mocha ()

{

printf("\n mocha initialisation\n\n");

cvNamedWindow("helpWin", CV_WINDOW_AUTOSIZE);

cvMoveWindow("helpWin", 100, 100);

init_server ();

printf("\n Server initialized\n\n");

connect_server ();

printf("\n Connected to client\n\n");

printf("retrieve navdat\n");

//pcfg = (mobile_config_t *)data;

/* MOCHA main loop */

printf("\n Control loop starts\n");

controlmain ();

close(gs_ctrl_skt);

close(gs_coms_skt);

printf("sockets going down\n");

return 0;

}
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