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Abstract

With a novel path index design, called the Shortcut Index, we partially solve
the problem of executing traversal queries on dense neighborhoods in a graph
database. We implement our design on top of the graph database Neo4j but
it could be used for any graph database that uses the labeled property graph
model.

By using a B+ tree, the Shortcut Index can achieve what we call neighbor-
hood locality and range locality of paths. This means that data that belongs
to the same part of the graph is located in the same space on disk. We em-
pirically evaluate how this affects performance in terms of response time. In
our benchmarks we use two different datasets, one that simulates a real world
use case and a "lab environment" that makes it possible to vary neighborhood
density and percent of neighborhood interest to more accurately examine how
it affects performance. Our experiments show that response time of the in-
dex scales very well with neighborhood density and percent of neighborhood
interest when compared to Neo4j without the index.

We put focus on making the Shortcut Index useful in an OLTP (online
transaction processing) environment, which enforces restrictions on update
overhead which in turn restricts how long paths that can be indexed. The pre-
sented design can index arbitrary long paths but in our implementation we only
index paths of length one.

We conclude that the Shortcut Index improves response time at a reason-
able cost and is especially useful when indexing dense neighborhoods that are
often queried with limitations on some property value.

Keywords: path index, labeled property graph, graph database, neighborhood local-
ity, range locality, neighborhood density, percent of neighborhood interest, oltp, B+
tree, ldbc, neo4j, graph density
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Chapter 1
Introduction

We present the purpose of this project in section 1.1. In section 1.2 we define most of
the terminology and define some useful notation and concepts. We present briefly what
a graph database is and how it differs from a relational database in section 1.3. In that
section we also talk about what a query is. We define the problem statement in section
1.4. Finally in section 1.5 we present what previously has been done on the subject of
indexing in databases and in particular path indexes.

Before we continue with the actual report we want to point out that our full implemen-
tation is available in a public repository on GitHub, see [18].

1.1 Purpose
The purpose of this project is to investigate if and how the density problem in graph
databases can be solved by indexing paths. The density problem is further described in
section 1.4.1 but we can think of it like this: When we query a graph database for some
data that belongs to a neighborhood (group of neighboring nodes) with a lot of nodes and
the data is only a fraction of the entire neighborhood, we end up doing a lot of unnecessary
work which slows down the query execution. Our hypothesis is that by indexing paths in
such a "dense" neighborhood we can get around this problem and we can expect better
performance in terms of query execution time or response time.

To make sure our proposal is of relevance to database vendors we also analyze and
adapt our solution to the restrictions enforced by an OLTP environment.

1.1.1 Typical use case
We will now introduce a typical use case to give you, the reader, a sense of direction
in the following sections. Our hope is that this will make it easier for you to digest the
terminology and definitions by having some concrete example to attach them to.
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1. Introduction

1

Person

name:"Raph"

1

KNOWS

since:1984

2

Person

name:"Leo"

3

Comment

content:"Hi!"

4

Comment

content:"Exited"

2

CREATED

3

CREATED

Figure 1.1: A simple example of a social network illustrated as a
graph.

The scenario: You develop and maintain a social network website. This social network
consist of "Persons" that "know" each other and "Comments" that are "created" by the
"Persons". We use quotation marks here because we will later introduce a more rigid
syntax. A very small subset of this domain is shown in figure 1.1.

The number of "Comments" created by each "Person" is typically large. To keep track
of all this data you use a graph database. You want to "ask" your database for data, e.g.
"give me all comments created by Raph’s friends". The database is expected to answer
these questions, or queries as they are called, within a very short amount of time even if
the number of "Persons" and "Comments" is large.

1.2 Terminology and declarations
This section introduces useful terminology around graphs that will be used in this paper.
In 1.2.1 we give a quick overview of what a graph is and in particular the features of the
property graph model. Some notation is introduced in section 1.2.2. Section 1.2.3 and
1.2.4 explains the concept of a path, segment and pattern. And finally in section 1.2.6 we
describe what a dense node / neighborhood is.

1.2.1 Property graph model
The mathematical definition of an undirected graph is an ordered pair G = (V, E) where
V is a set of vertices and E is a set of edges. Every edge e ∈ E is an unordered pair of
vertices v ∈ V . Two vertices both belonging to the same edge are said to be incident to
each other and end points of the edge. In this description the edges do not have a direction
and thus G is said to be an undirected graph. By letting the edges instead be an ordered
pair of two vertices, a directed graph is acquired.

This is how a graph as presented in [19]:

10



1.2 Terminology and declarations

1

Person

name:"Raph"

2

Person

name:"Leo"

1

KNOWS

since:1984

Figure 1.2: A simple graph illustrating a social network

Formally, a graph is just a collection of vertices and edges - or, in less in-
timidating language, a set of nodes and the relationships that connect them.
Graphs represent entities as nodes and the ways in which those entities relate
to the world as relationships.

We will use "node" and "relationship" consistently in this report in favor over "vertex" and
"edge", as this is the terminology used by the graph database neo4j which this project is
closely tied to. Further readings about neo4j can be found in section 1.3.2.

Depending on what the graph of interest is used for, different graph models are used.
Directed and undirected graphs are such examples. However, they all have nodes and
relationships as their common core. In this project we work with "The Labeled Property
Graph Model" as described by [19], and when we talk about graphs from here on it is a
"Labeled Property Graph" that we mean. The Labeled Property Graph Model has a set of
features:

• A graph is made up of nodes, relationships, labels and properties.

• Both nodes and relationships can have properties in the form of key-value pair. A
string is used as key and the value can be a string, a primitive data type or arrays of
the same.

• Nodes can have zero or more labels that are used to group nodes together.

• Relationships connect nodes and they always have a direction and a name, or more
formally, a relationship type.

• A relationship always has a start and an end node indicating the direction. There are
no dangling relationships.

Seen from a node’s perspective a relationship can have the directions INCOMING (mean-
ing the node is the end node of the relationship) or OUTGOING (meaning the node is
the start node of the relationship). To uniquely identify a node or relationship they have id
numbers. In the small example graph in figure 1.2 the node with id 1 is labeled as "Person"
and has a property with key name and value "Raph". The relationship between the nodes
indicates that Raph knows Leo and has done so since 1984. In this way relationships give
semantic knowledge about how the nodes relate to each other.

11



1. Introduction

1.2.2 Notation
To make it easy to talk about nodes and relationships, we introduce a formal notation.
Nodes will be surrounded by parentheses and relationships will be surrounded by square
brackets. To indicate a relationship’s relation to nodes a dash (-) will be used and brackets
(< or >) will show the direction of the relationship. If no brackets are used, direction is
not important. Inside nodes ()and relationships [] we can have three different types of
information:

• Some identifier that could be thought of as a variable name, (Raph).

• A label for nodes or relationship type for relationships. Those are always preceded
by a colon (:), e.g. (Raph:Person) or [friendship:KNOWS].

• A list of properties surrounded by curly brackets, (Raph:Person {age:15}).

Any of those three can be left out. The graph in figure 1.2 can with this notation be written
as:

(raph:Person {name:"Raph"})-[:KNOWS {since:"1984"}]->(leo:Person {name:"Leo"}).
This representation is quite detailed and often a simpler description will suffice, for

example (Raph)-[:KNOWS]->(Leo). Another way to refer to nodes and relationship
is to use the ids. We will do this in a similar way. Instead of identifier, label / relationship
type and property, we use only the id. Figure 1.2 can then be written as (1)-[1]->(2).

The notation described here is derived from the syntax used in the Cypher query lan-
guage. Cypher is a language used and developed together with the graph database neo4j.
More about Neo is presented in section 1.3.2 and queries are presented in section 1.3.3.

1.2.3 Paths and segments
Let ni denote a node and r j denote a relationship. A path is a sequence of alternating nodes
and relationships that begins and ends with at node, [n0, r0, n1, ..., nn]. Relationship r j need
to have nodes n j and n j+1 as endpoints. All relationships and nodes need to be distinct (not
appearing more than once), which in graph theory is called a simple path. The length of a
path is defined to be equal to the number of relationships in the path.

We define a segment to be a sequence of alternating nodes and relationships, without it
having to start or end in a node. A sequence could thus look like [n0, r0, n1, ..., rn]. We can
think of a segment as "part of a path". A segment from figure 1.2 could be (1)-[1]->.

1.2.4 Patterns
A pattern is a sequence of node labels, relationship types with direction and property keys.
As a pattern does not point to any specific nodes or relationships, identifiers and property
values are never needed. This allows us to use a less cluttered notation when talking
about patterns. Labels and relationship types will not be preceded by colons and only the
property key will reside inside of the curly brackets. Multiple property keys can be used in
the same pattern and even within the same curly brackets. To indicate that any relationship
or node can be matched, parts of the pattern can be left without a label or relationship type.
Using this slightly modified notation, some patterns are listed in figure 1.3.

12



1.2 Terminology and declarations

1. (Person)

2. (Person) <-[HAS_CREATOR]- (Comment {date})

3. (Person {name}) -[]-> ()

4. (Person) -[LIKES]->

Figure 1.3: A list of example patterns

We say that a segment or a path matches a pattern if and only if it has the same labels
and relationship types in the same order and also has the property keys of interest on the
corresponding node or relationship. Looking at figure 1.4 as an example graph, pattern one
would be matched by (1), (2) and (4). There are a few unique paths that would match
pattern two, path (2)<-[2]-(3) being one of them. Pattern three could be matched by
e.g. path (4)-[3]->(1) or (2)-[5]->(5). Pattern four is matched by (4)-[7]-
>, which is a segment since it does not end in a node.

Consider pattern (Comment {date})-[HAS_CREATOR]->(Person). This is
pattern two from figure 1.3, but reversed. The same paths that matched that pattern will
also match the reversed one. That does not make the patterns equivalent however, as the
order in the pattern will indicate how matching paths should be sorted. This is further
explained in section 2.1.4.

1.2.5 Schema
In general, there are no restrictions on what types of relationships, nodes and properties
that can exist in a graph and how they relate. When you use a graph to model or describe a
domain however, you would normally define some rules on your data domain. We call this
collection of domain rules the schema of the domain. The schema shows exactly how nodes
of different types can relate to each other, what types of relationships that can be attached
and what property types each type of node or relationship can have. In figure 1.5 we can
see the schema for the graph in figure 1.4. Note that a schema has a comparable syntax
to a pattern. If the domain is very simple, as for the graph in figure 1.2, we can "draw"
the schema with a pattern, in this case (Person {name})-[:KNOWS {since}]-
>(Person {name}).

1.2.6 Dense nodes and neighborhoods
A dense node is a node with many relationships. This is an extremely vague definition,
but we can at least argue that one node can be more dense than another. Another way to
describe a dense node would be that "it is costly to enumerate all of its relationships".

We define the k-hop neighborhood, or just k-neighborhood, of a node to be all nodes
and relationships that can be reached with k-hops from that node.

We combine those two definitions to get dense k-neighborhoods. To illustrate, imagine
a graph where every node has 1,000 neighbors. The 1-hop neighborhood of a node has

13



1. Introduction

1

Person

name:"Raph"

2

Person

name:"Don"

3

Comment

date:"2014"

4

Person

name:"April"

5

Comment

date:"2013"

6

Comment

date:"2015"

7

Comment

date:"2014"

8

Comment

date:"2015"

9

Comment

date:"2016"

10

Comment

date:"2016"

1

KNOWS

2

HAS_CREATOR

3

KNOWS

6

HAS_CREATOR

8

HAS_CREATOR

9

HAS_CREATOR

10

HAS_CREATOR

11

HAS_CREATOR

4

HAS_CREATOR
5

LIKES

7

LIKES

Figure 1.4: A small example graph illustrating a social network
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1.3 Graph database

LABEL

propertyKey: propertyType

:RELATIONSHIP_TYPE

Node

Person
Person

Comment
Comment

date: Long

:HAS_CREATOR

:LIKES

:KNOWS

name: String

Figure 1.5: An example schema

size 1,000 (small), the 2-hop neighborhood has size 1,000,000 (large), the 3-hop neigh-
borhood has size 1,000,000,000 (huge). This keeps growing exponentially. A dense 1-hop
neighborhood is a dense node.

When we talk about density we will typically talk about the average density for all
neighborhoods that match a pattern or the exact density of one of those neighborhoods.
We say that a neighborhood has density n if there are n nodes in the neighborhood. In the
same fashion we say that the average density for neighborhoods covered by some pattern
is n if those neighborhoods have n nodes on average.

1.3 Graph database
In this section we will discuss what a database is and differentiate a graph database from
a relational database. The relational database is presented in section 1.3.1 and the graph
database, using neo4j as an example, in section 1.3.2. Finally in section 1.3.4 we briefly
talk about the typical usefulness and trade-off with an index in a database.

1.3.1 Relational database
A database management system (DBMS), henceforth called a database, is a tool used to
handle all storage and retrieval of persistent data. All software that uses some sort of
persistent data has a database as back end. The first databases evolved from file systems
in the late 1960’s. The programmers using these first systems needed to directly interact
with the storage structure which complicated development [12].

In 1970 Ted Codd suggested that data should be stored in tables called relations with
the storage structure abstracted away from the user behind a high level query language,
[9]. This model is called the relational model or relational database management system
(RDBMS). For a long time, the relational database has been the default alternative and it
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1. Introduction

is still by far the most popular choice, [1].
Relational databases are extremely efficient when storing data with fixed schemas of

isolated data but when it comes to connected data they struggle, [19]. Connected data as
described in [19]:

Connected data is data whose interpretation and value requires us first to un-
derstand the ways in which its constituent elements are related.

Graph databases are an attempt at handling and make reason out of this type of data.

1.3.2 Neo4j
To make modeling and querying of connected data simpler and faster a graph database
can be used. In a graph database the data is modeled as a graph which makes it easier to
reason about the data in terms of dependencies and how data relate to other data.

It also has the advantage of local / index-free adjacency which means that if we are
looking at node A and are also interested in the neighbors of A, w e do not need to search
the entire database for those neighbors because we can reach them directly by traversing
A’s relationships. More about neighborhoods is presented in section 1.2.6.

For a graph database, no schema is needed, the data structure is described by the data
itself. This creates a more flexible environment compared to relational databases. It re-
moves the need for users to define the entire domain space up front and instead lets it
emerge as the understanding of the domain grows [19].

Graph databases are built to manage data in an online transactional processing (OLTP)
environment, more on OLTP in section 2.2.2. This is in contrast to graph compute engines
that are used to make graph analysis or online analysis processing (OLAP), [19].

Neo4j [4] [5], is the current market leader in the graph database space [2]. It is an open
source project driven by Neo Technology that implements a native labeled property graph
model. Native meaning that the storage is designed and optimized to store and manage
graphs. Included in neo4j is the development of Cypher, a graph database query language.
All queries in this report are examples of Cypher.

1.3.3 Result rows and database queries
Queries are used to retrieve data from databases, whether it is a graph, relational or some
other type of database. There are a lot of different query languages, like SQL (Structured
Query Language) and Cypher. The result from a query can often be delivered as a table
and we can then talk about the number of "result rows", the number of rows in the result
table. We can also talk about the intermediate number of result rows in the middle of a
query execution. When we have executed a query up to "this" point we have some number
of result rows that could potentially be part of the final result. Later in the execution some
of those rows can be proven to not match all of the requirements that the query has and are
therefore filtered out. An example of this is described in section 1.4.1.
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MATCH ( p : Pe r son )− [ :KNOWS]− ( f r i e n d : Pe r son )
<− [ :COMMENT_HAS_CREATOR]− ( comment : Comment )

WHERE id ( p ) = {1} AND comment . c r e a t i o nD a t e <= {2}
RETURN f r i e n d . i d AS f r i e n d I d ,

comment . i d AS commentId ,
comment . c r e a t i o nD a t e AS c r e a t i o nD a t e

ORDER BY c r e a t i o nD a t e DESC
LIMIT 20

Query 1.1: The Holy Grail

1.3.4 Database indexes
Indexes are used in databases to speed up lookup time. The trade off for keeping an index
is storage space and update overhead. The index needs to be stored somewhere and thus
it takes up storage space and when we perform updates to the graph we need to keep the
index up to date with the changes which adds an update overhead, [12] page 352.

1.4 Problem statement
When querying a database, performance in terms of response time is extremely important
and improving execution time even when datasets get larger is a challenge for database de-
velopers. This work discusses a graph property that makes good performance particularly
hard to achieve, namely graph density.

The purpose of the work is: Develop a path index to be used to achieve good perfor-
mance in terms of response time, even in very dense graphs and evaluate the solution.

1.4.1 Density is hard
The idea with graph databases is to only touch data of interest through local / index-free
adjacency. That is, the neighbors of a node can always be found without doing scans.
However, even if only local data (data that is within the neighborhood of where the result
will be found) is considered, it breaks down if the amount of local data is large, as for
dense nodes / neighborhoods.

Let us use query 1.1, from here on called "The Holy Grail", as an example to highlight
why this is difficult. We call this query "The Holy Grail" because it is one of our main
goals to improve response time of this query. (We go into more detail about why this query
is a suitable choice in section 1.4.2.) As we see in query 1.1 there are five different clauses.
We briefly explain what they mean:

MATCH In this clause we describe what pattern to match paths or segments against.
We bind some of the nodes or relationships that we find to variables, p, friend and
comment in this example.
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WHERE Here we can introduce some limitation or criteria on the matched paths or seg-
ments.

RETURN Here we say what is to be returned when the query is finished.

ORDER BY With this clause we define how the result should be ordered.

LIMIT With this clause we say that we are only interested in a limited number of result
rows.

The Holy Grail touches (Comment)-[COMMENT_HAS_CREATOR]->(Person)
which is a dense part of the LDBC dataset, presented in section 1.4.2 and 3.4.1. We
examine how it is executed.

On average, every person has 177149 · 2/9987 ≈ 35 friends, using statistics for SF001
in table C.1 in the Appendix. Every friend has created 2015590/9987 ≈ 200 comments on
average. Using these metrics execution will look like the numbered list below. We write
the number of result rows in each step within parenthesis and the multiplicative cost of
expanding relationships within square brackets.

1. Seek some assumed index for (Person id:{1}). (1)

2. Expand all [KNOWS] [x35]

3. Filter out nodes that are not (Person) (35)

4. Expand all [COMMENT_HAS_CREATOR] [X200]

5. Filter out nodes that are not (Comment) (7000)

6. Project {comment.creationDate}

7. Filter out (Comment) that does not fulfill the range predicate (<7000)

8. Sort the result

9. For results within limit, project {friend.id} and {comment.id} (20)

The result set we end up with is only 20 rows, but we still need to examine 7000 (Com-
ment)s. This is why density makes execution unnecessary hard and slow.

1.4.2 About LDBC
The Linked Data Benchmark Council (LDBC) is a non-profit organization with members
from companies, non-profit organizations and individual members that are all involved in
the graph computation sphere. They are "dedicated to establishing benchmarks, bench-
mark practices and benchmark results for graph data management software" [3] and in
this work they have put together the LDBC Social Network Benchmark (SNB). In short,
SNB is a collection of queries combined with a generated dataset aimed to benchmark the
execution of particularly difficult tasks. More about the SNB can be found in [11].

Query 1.1 is a simplification of Query 2 from the LDBC Social Network Benchmark
[6]. This query illustrates the density problem well and is also a good example of a real
world use case.
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MATCH ( x )− [ :KNOWS]−>( y )− [ :CREATED]−>( z )
RETURN ID ( x ) , ID ( y ) , ID ( z )

Query 1.2: A cypher query that k-path index handles well

1.4.3 Our statement
We state that by indexing the paths that make up the dense neighborhood we can improve
performance in terms of response time. The goal of this work is to create such a path index
and evaluate the reached solution. We expand on how we do this in chapter 2.

We aim to answer the following questions:

• How can we create a path index?

• Can we improve response time by indexing paths?

• Is a path index a good tradeoff to improve response time in a graph database?

1.5 Previous work
In this section we present some previous work done in the field of database indexes and
specifically path indexing.

1.5.1 K-path indexing
The k-path index developed by Jonathan M. Sumrall in his Master’s thesis [22] is an in-
dex on all paths of length equal to or smaller than k. A path is described by the pat-
tern of relationship types within the path. For example the path (Person)-[KNOWS]-
>(Person)-[CREATED]->(Comment) has the pattern <KNOWS,CREATED>.

The keys stored in the index is a "path identifier" that deterministically describes the
path pattern and the graph node ids in the path. It allows for wild card search on, for
example "find all paths with this pattern that starts in graph node with id i". The index
shows great performance for queries like the one presented in query 1.2.

To store keys, the k-path index uses a variation of the B+ tree. Instead of storing keys
mapped to values it only stores keys which by themselves make up the entire indexed path.

Our work is largely based on and inspired by this indexing technique and a lot of simi-
larities can be found between them. Most of all when it comes to syntax, implementation
and the choice to use a B+ tree. The major difference between the k-path index and the path
index presented in this report is the use of node and/or relationship properties and what
type of queries it aims to improve. The k-path index focuses on graph global queries, e.g.
query 1.2, while the path index introduced in this report focuses on graph local queries
where you have a specified set of or single start node(s).
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1.5.2 Database cracking and adaptive merging
Database cracking was first introduced in [15] and it is built around the observation that
not all data is of interest. There is skewed "interest rate" between data in a database. The
idea is to let the data store adapt to the executed queries. Every query is interpreted as an
advice to crack the database store into smaller pieces. Eventually, data that is frequently
queried together will be stored in a continuous sequence and indexed. Data that has never
been queried will be left out and not rearranged or indexed until it becomes interesting.

Adaptive merging, presented in [13], builds on the same idea as database cracking, that
an index should be incrementally optimized for the data that is queried. While database
cracking has a low cost for initialization, it takes a long time for the index to converge
to a fully optimized state. Adaptive merging tackles this problem by storing the data in
a partitioned B-tree and merging the queried ranges in every partition together on query
execution time.

The main difference between adaptive merging and database cracking is the
rate of adaptation, i.e., the number of times each record is moved before it is
in its final location. [13]

A hybrid approach is presented in [16]. It seeks to combine the low initialization cost of
database cracking with the fast adaptation rate of adaptive merging.

These techniques are interesting and could possibly be used for a path index, especially
if the interest rate between different paths is skewed.

1.5.3 B+ trees
A thorough introduction to different variations of the B tree is given in [10]. In particular
the B+ tree, which is the data structure used in this project, is analyzed. In short a B+ tree
is a tree structure with more than one key per tree node that is guaranteed to be balanced.
We go into more detail in section 2.1.3, 2.1.4 and 2.1.5. B-trees and B+ trees are also
covered by [12].

1.5.4 Bitmap index
Assume that you have records numbered from 1 − n. A bitmap index over field F is a
collection of bit-vectors of length n, one vector for each possible value associated with F.
The easiest example would be a boolean field that only takes values of true or false. Then
only two bit-vectors are needed. If record i has the value represented by some vector, then
that vector will have the bit number i set to 1, otherwise it would be 0. In this way, all
values for the targeted field for every record can be stored in a compact way. The basics
of how a bitmap index works is covered in [12].

However, it is not certain that any of the records will share values for the targeted field.
If in fact the field is unique for every record then n different bit-vectors are needed and
storage for the index is n2.

The bitmap index was first introduced in [24] together with a number of encoding
schemes and has since then been widely covered in multiple articles, see [25] for a list. An
analysis on optimal time and/or space bitmap indexes is given in [8].
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As described in [20] the bitmap is best suited for DSS (Decision Support Systems) and
not for OLTP environments. Thus this technique is not used in this project.

1.5.5 R-Tree
The R-tree (region tree) was presented in [14] and is used to index spatial data, that is,
data that represent some spatial object in any dimension. It is fully dynamic and supports
intermixed inserts, deletes and reads. It always stay completely balanced using the same
strategy of merging and splitting nodes as the B-tree. Instead of using splitting values to
guide traversal down the tree, like what the B-tree does, the R-tree uses spatial bounding
boxes as intermediate guidance points in the internal nodes. When searching the tree for
some spatial object with bounding box S you find all index records in the current node of
the tree that completely overlaps the S. Hopefully there is only one such index record, but
there might be many and in the worst case all of the records in the current node. In the
normal case such scenarios can be avoided with a good insertion algorithm that makes it
easy to exclude regions that are not interesting to search, but it is not guaranteed. R-trees
are also covered by [12].

The idea of using bounding boxes as guidance points is interesting. If we want a path
index sorted and queried on more than one property this could correspond to indexing in
more than one dimension, ergo spatial indexing. So instead of first sorting on the first
property and then on the second property we could sort on the first along one dimension
and along the second in another. Of course, as the property values do not likely have a
natural spacial equivalent, creating bounding boxes may or may not make any sense at all.
For example if we index a path and want to sort on some creation date of a node and weight
of a relationship, what does it mean to have a bounding box of (5 sept − 8 sept)X(1 − 5)
(date range X weight range)?

This idea is not further investigated in this project.

1.5.6 Composite indexes
Assume that you have a relational database with a person table with columns: lastName,
firstName and socialSecurityNumber as the primary key. If we want to search this table
for every person with last name x or last name x and first name y we need to do a complete
table scan.

A composite index, briefly described in [17], is an index on multiple columns in one
table, for example on columns lastName and firstName (in that order). This index will be
ordered firstly on last name and secondly on first name. This makes it possible to search
for every person with last name x or last name x and first name y much quicker compared
to a complete table scan.

Indexing on multiple properties of a path and multiple properties of a table row is quite
similar and we will examine this further in section 2.2.3.

21



1. Introduction

22



Chapter 2
Approach

In this chapter wewill present our approach to at least partially solve the problem presented
in section 1.4. We begin by presenting a novel path index design in section 2.1. We then
analytically evaluate this design in section 2.2. Finally, in section 2.3, we explain how we
implement the presented path index design.

2.1 The Shortcut Index
We present the "Shortcut index", a suggestion for how a path index could be designed to
solve at least part of the density problem stated in section 1.4. We start by giving a detailed
view of the design in section 2.1.2 and describe the core data structure, the B+ tree in 2.1.4.
We then continue to motivate the choice of using a B+ tree in section 2.1.5.

2.1.1 Defining a Shortcut index
The objective of the index is to store instances of paths that match a specified pattern in
some sorted order. The terminology when initiating an index defined by a pattern is that
you "create an index on pattern x" or simply "index pattern x". It means that every path or
substructure in the graph that matches the pattern should be indexed. Patterns are defined
in section 1.2.4. Paths will be divided into keys and values as explained in section 2.1.2
and stored in the index.

The idea of creating an index on a specified pattern was inspired by the "path signa-
tures" introduced by Max Sumrall in [22].

Note the similarities between indexing a complete path and a composite index as de-
scribed in section 1.5.6 and 2.2.3.
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Matching path Key Value Combined
(1)<-[4]-(5) <1,"2013"> <4,5> <1,"2013" : 4,5>
(2)<-[2]-(3) <2,"2014"> <2,3> <2,"2014" : 2,3>
(2)<-[6]-(6) <2,"2015"> <6,6> <2,"2015" : 6,6>
(4)<-[8]-(7) <4,"2014"> <8,7> <4,"2014" : 8,7>
(4)<-[9]-(8) <4,"2015"> <9,8> <4,"2015" : 9,8>

(4)<-[10]-(9) <4,"2016"> <10,9> <4,"2016" : 10,9>
(4)<-[11]-(10) <4,"2016"> <11,10> <4,"2016" : 11,10>

Table 2.1: Table illustrating how keys and values are formed from
paths

2.1.2 Keys and values
Wewill here talk about two different types of "value". Property value is a value associated
with a property key in a graph node or a relationship. This is a part of the data in the graph
database. The index will have index keys and index values. These are not to be confused
for property keys or property values. An index key will contain property value(s), as we
will see below.

Keys and values are tuples. Given a path that matches pattern P, we represent the path
with an index key and an index value. Together they will make up the entire path. The
key will be the id of the first node in the path and the property values associated with the
property keys included in P, <firstNodeId, propValue1, propValue2,...>. This allows index
keys to be sorted in lexicographic order which will turn out to be an important feature.
Lexicographic order means first ordered by comparing the first part, then by the second
part and so on.

The index valuewill be ids of the remaining relationships and nodes from the matching
path, <relId, nodeId,...>. Note that it does not hold the id of the first node as it is already
included in the index key.

When writing index keys and index values in combination we separate them with a
colon. Like this: <firstNodeId, propValue... : relId, nodeId,...>, where the first part is the
key and the second part is the value (relationship id and node id) mapped by the key.

Given pattern two from figure 1.3 and the graph from figure 1.4 the mapping would
look like in table 2.1.

2.1.3 What is a B+ tree?
The B+ tree, that we introduced briefly in section 1.5.3, is the core data structure used by
the Shortcut index. In this section we explain what a B+ tree is and how it works, using
figure 2.2a as an example.

Note that a node in the context of a binary search tree or a B+ tree is not the same as a
node in a graph. If the context does not make it clear what is meant, "graph node" or "tree
node" will be used to differentiate between them.

The choice of using a B+ tree as the core data structure was influenced by the design
of the k-path index introduced in [22].
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Binary search tree
Even if we assume that the reader is familiar with the ordinary binary search tree we want
to make a short recap of how they work to make a nice bridge towards the B+ tree. In
figure 2.1 we have an example of a binary search tree. The tree has nodes that hold keys.
We call the nodes internal nodes and leaf nodes. A node is a leaf node if it does not have
any children, otherwise it is an internal node. The top node is called the root and in the
example the root holds number 5. Every key lower than 5 is located in the left subtree
and every key greater than or equal to 5 is in the right subtree.This is the mechanism that
keeps the tree ordered. Note that we do not have unique keys. This is not usually the case
in binary search trees but it will make sense when we look at how we use the B+ tree.
There are three different operations that we want to use on the tree: find, insert and delete.

Find If we wanted to find number 6, we would start at the root, find out that 6 > 5
and traverse down to the right subtree. Then continue this traversal until we reach
number 6 in the very left leaf of this subtree. This was a successful find, a hit. A
find operation on number 22 would end up at number 21 in the very right leaf. As
22 is larger than 21 we would want to traverse down the right subtree, but it does not
exist so the find would end in a miss.

Insert Insertion in a binary search tree is fairly straightforward. Execute a find for the
key you want to insert. If it results in a hit the new node is inserted where the hit
occurred. The left subtree is moved to the new node and we let the hit node together
with its right subtree become the right subtree to the new node. We "squeeze" the
new node in and push the right subtree down. If it results in a miss, compare the
insert key to the key in the leaf where the find terminated and insert it as a new node
to the left or the right depending on if it is less than or greater than the key in the
node. If we were to insert number 8 we would traverse down to number 7, see that
there is no subtree to the right and therefore create a new node for number 8 and
insert it as the right child to number 7.

Delete Wewill not discuss the deletion algorithm here, but there is a rather straightforward
way of doing deletions and the algorithm can be found in most books about data
structures that cover binary search trees.

There are multiple different variants of the binary search tree, like the self-balancing
trees: AVL tree and red-black tree. The only variant we will discuss in this report is the
B+ tree.

How does the B+ tree work
In figure 2.2a we see an example of a B+ tree. We will now briefly explain how a B+ tree
works but for a detailed description we refer to [10].

We first list the key features of the B+ tree. Then we continue with how the "find",
"insert" and "delete" operations work, comparing and contrasting this with how they work
in a binary search tree.

Key features that differentiate a B+ tree from a binary search tree are as follows:
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Figure 2.1: A binary search tree with unique keys

Multiple keys per node The order d of a B+ tree decides how many keys and children
each node can have. If the order is d, internal nodes contain between d and 2d keys
and between d + 1 and 2d + 1 children, always one more pointer than the number
of keys. Leaf nodes contain between d and 2d keys. The root node is an exception,
it can contain between 0 (if the B+ tree is empty) and 2d keys. The tree in the
picture has order 1 which is not the usual case. It is not unusual to see B+ trees
of order 50 or more. We only use order 1 in these examples for simplicity. The
order affects the height of the tree. A higher order means more keys per node which
means a lower height. See "Time complexity analysis" in section 2.1.5 to see how
this affects performance.

Sorted The keys are always stored in some sorted order. In this example we use ascending
order, that is, a key is always greater than or equal to the key to the left and less than
or equal the key to the right, much like in a binary search tree. This holds for leaves
as well as internal nodes.

Linked leaves Every leaf holds a pointer to its right and left sibling which makes it possi-
ble to do sequential scans along the leaves in any directionwithout traversing through
the internal nodes to find the next leaf. To make this work, all keys in the tree need
to be located among the leaves, even the ones that are stored higher up in the tree.
Note that this is different compared to the binary search tree where keys were "only"
stored where they fitted in the tree. In the B+ tree a key can be stored both in an
internal node and in a leaf.

Balanced A B+ tree is always completely balanced, all leaves are on the same depth from
root. This is achieved by letting the tree "grow" upwards instead of downwards.

All of those features are key ingredients as to why the B+ tree was chosen for this
project and we expand on this in section 2.1.5.

Below is a short explanation of how the different operations are performed in a B+
tree.
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Find You perform a find operation on a B+ tree to find the location of given search key,
S. Starting at the root node, n, you compare S with the first key in n, let us call it
K . If S <= K follow the pointer to the left of K , else let K be next key in n. Repeat
until you find a pointer to follow or you reach the last key in n, in that case follow
the pointer to the right of K . Repeat until you reach a leaf node. Scan the leaf until
you find an exact match or you find a key that is greater than your search key. If the
last key in the leaf is still less than your search key, continue scanning in the right
sibling. In figure 2.2b we illustrate a successful find on key 25. Note that even if
you find an exact match to your search key among the internal nodes you still need
to traverse all the way down to the leaf to be certain that the key actually exists in
the tree. The only purpose of the keys among the internal nodes is to split the key
interval into sub-intervals and thus guide the seek. Note also that a linear search
is performed in every node. It would of course be beneficial to use binary search
instead and this is suggested as future work.

Insert To insert a key you first perform a find on the key to be inserted. Then insert the
key on the position where the find terminated. If this leaf is already full an overflow
occurs and the leaf has to be split. In figure 2.3 a split occurs after inserting 26.
First we initiate a find for 26 which terminates in a miss in the second position in the
right-most leaf. This is where the key should be inserted. Because the leaf is full we
get an overflow and we need to split the node in two, dividing the keys between them.
The left-most key in the new leaf is sent upwards in the tree together with a pointer
to the new leaf to be inserted in the parent node. This again results in an overflow
and a split. The same procedure of splitting is repeated with a slight difference,
the middle key that is sent upwards does not need to be kept in the internal node,
which was the case in the leaf node. Remember that all keys need to exist among
the leaves. The tree only grows in height when a split occurs in the root, thus the
tree grows upwards.

Delete The delete operation is done in a similar way to insert but instead of overflow you
can get an underflow when you leave a node with less than d keys. If possible we
then collect the keys from a neighboring node and divide the keys evenly, this only
works if there are at least 2d keys in total among the two nodes. If not, a merge or
concatenation occurs. That is, we move all of the keys to one node and remove the
other. A more detailed description is given in [10].

2.1.4 How do we use the B+ tree
We use a B+ tree to store index keys and the mapped index values. We explain here how
we use the B+ tree.

As explained in section 2.1.2 a path matching a pattern, in this case of length one, is
divided into a key and a value like this: key: <firstNodeId, propValue>, value: <relId,
secondNodeId> and in combination: <firstNodeId, propValue : relId, secondNodeId>.
Recall that we use lexicographic ordering for the keys and that values do not affect ordering
at all. We use the B+ tree not only to store keys, but also to store the mapping from key to
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(a) Illustrating the different parts. Only keys are shown.
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(b) Search for key 25. Chosen path is bold.

Figure 2.2: A simple B+ tree
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(a) Key 26 should be inserted in the right most leaf. There is an overflow so a new leaf is created.
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(b) The keys in the previously right most leaf are split and half is moved to the new leaf together
with 26. The middle key, 26, is sent to the parent together with a pointer to the new leaf. Note that
26 is still kept in a leaf node.
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(c) Inserting 26 and a new pointer results in a split in the internal node. The keys and pointers are
divided and the middle key is inserted in the parent without causing a split. Note that the middle
key is not kept in the internal node.

Figure 2.3: Step by step insertion of 26.
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value. As all keys are stored among the leaves there is no point in storing the values in the
internal nodes. Therefore they are only stored in the leaves.

The reason we let keys exist in duplicates in the tree is because they can still map to
different values. However the combination of key and value need to be unique, we do not
want to keep multiple instances of the same path in the index.

A B+ tree with keys and values from table 2.1 is shown in figure 2.4a. This is the
complete Shortcut index for pattern (Person) <-[HAS_CREATOR]- (Comment
{date}) on the graph in figure 1.4. If we were to create an index on the reversed pattern,
(Comment {date}) -[HAS_CREATOR]-> (Person) instead, the stored paths
would be the same but the ordering would be different, see figure 2.4b. For example,
the first key, value pair in figure 2.4a <1,2013:4,5> represents the same path as the second
key, value pair in figure 2.4b <5,2013:4,1>. The only difference is how the node ids are
ordered among the index key and the index value.

2.1.5 Why do we use a B+ tree?
First a quick recap. We want to index paths. We do this by storing the id of the first node
as the first part of the key and the ids of the remaining relationships and nodes as value.
We also store some property value(s) in the key which allows for further sorting. The B+
tree has some features that makes it suitable for this index.

Neighborhood locality The B+ tree stores the key in sorted order which means that all
paths starting in the same nodewill be located next to each other, both logically in the
B+ tree and physically on disk. We call this feature neighborhood locality. Therefore
we can read an entire neighborhood of paths in one or a few blocks depending on if
it is spread across multiple leaf nodes, like paths starting in node 4 in figure 2.4a.

Range locality The keys can also contain one or more property values. Because of this,
the keys within a neighborhood (starting with the same node id) can be sorted on
some feature(s) of interest. For example creation date of the comment in the path,
as in figure 2.4a. This makes it easy to read all paths that have this property value
within some given range. You just need to find the first and the last path within the
range and every path in between should also fit the range. We call this feature range
locality. Note that range locality is something that exists within a neighborhood. We
could achieve range locality on the entire graph by sorting first on property value and
then on node id. That however will break neighborhood locality. Depending on the
use case this can still be useful though.
Once we have read the first key in a range it is not much more expensive to read the
key following immediately after, as long as we do not have to jump to the next leaf
(which could of course be the case). As there are at least d (the order of the B+ tree)
keys per leaf we only need to jump to the next leaf once for every d keys we read
in sequence. Reading a range of k keys means on average that we need to read k

d
different leaves. This is not including the internal nodes that we need to read while
traversing down the tree from the root.

Memory utilization Memory access is fast. Disk access is slow. We want to minimize
the number of disk accesses. Therefore we want to keep the most often accessed
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<1,2013:4,5><2,2014:2,3>

<2,2015:6,6>

<4,2014:8,7><4,2015:9,8>

<4,2016:10,9> <4,2016:11,10>

<4,2014>

<2,2015> <4,2016>

Index on pattern: (Person)<-[HAS_CREATOR]-(Comment {date})

(a) Note that keys and values are the same as in table 2.1

<6,2014>

<8,2015>

<9,2016>

<3,2014:2,2><5,2013:4,1>

<6,2014:6,2> <7,2014:8,4>

<8,2015:9,4>

<9,2016:10,4> <10,2016:11,4>

Index on pattern: (Comment {date})-[HAS_CREATOR]->(Person)

(b) Shorcut index on the reversed pattern compared to (a)

Figure 2.4: Shortcut indexes on graph from figure 1.4

31



2. Approach

data in memory. The tree structure makes it easy to predict what data that is. It is
of course the top internal nodes as all access to nodes further down in the tree need
to pass through them. So by keeping the top internal nodes in memory you are sure
to utilize it as good as possible.

Low operation overhead

Let T be a B+ tree of order d with n keys in total and k be the size in bytes of a key. The
find operation must then visit at most logd(n) tree nodes before reaching the leaves.

The cost of a find operation is dominated by the number of disk accesses needed and
each node in the B+ tree will occupy one block of data or "page" and can be read into
memory with one access to disk. This is covered in more detail in section 2.3.2 and 2.3.3.

If all nodes in the tree reside only on disk, which is the worst case, the cost grows
proportionally to logd(n). This would suggest that a larger d is always better. This is true
to some extent, but the system restricts how large blocks of data that can be read from
disk with only one disk access. So if d · k is larger than this block size the number of
disk accesses needed is suddenly doubled. The optimal order will therefore be different
on different machines.

The worst case when doing an insert is when a split occurs at every level of the tree. In
this case twice as many nodes are touched compared to when only doing a find. The cost
for an insert thus also grows proportionally to logd(n). The same holds for delete which
also obeys the time complexity logd(n).

To summarize, the B+ tree has a low overhead for all relevant operations.
There are of course other data structures that could be considered; for example, a hash

structure, that has constant overhead on all operations. This is obviously superior to the
B+ tree, but a hash set does not keep the data in sorted order, which is a complete necessity
for the use cases we are looking at. There are hash structures like the "linked hash map"
that can be used to keep the insertion order of the entries but that is not good enough to be
considered for our use case.

A bitmap could be considered. They are however better fitted for DSS (Decision Sup-
port Systems) and not so well for OLTP environments because of the high overhead on
write, referring to [20]. One could argue that bitmaps are only useful when the number of
unique values is limited and considerably less than the number of records but this is not
entirely true as shown by [20].

2.2 Usefulness
In this part we discuss the usefulness of the Shortcut index in an analytic way without
presenting any results. Section 2.2.1 considers the immediate question, does it solve the
problem? We also reason about what demands and limitations an OLTP environment puts
on the index in section 2.2.2. In section 2.2.3 we reason about how the Shortcut index
could be used as a composite index.
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2.2.1 Solve the problem
We attempt to solve the density problem explained in 1.4.1 with a path index, sorted by
some property value. This allows us to only read the data in the range that we are actually
interested in and ignore the rest of the neighborhood.

To illustrate we use "The Holy Grail", query 1.1, as an example and revisit the execu-
tion described in section 1.4.1, now assuming we have a Shortcut index on (Person)<-
[COMMENT_HAS_CREATOR]-(Comment {creationDate}). The query will ini-
tially be executed exactly the same as if we did not have the index, but when we reach the
indexed pattern we will switch from the database to instead get data from the index. This
is how the execution will look step by step.

1. Seek some assumed index for (Person id:{1}). (1)

2. Expand all [KNOWS] [x35]

3. Filter out nodes that are not (Person) (35)

4. Instead of expanding all [COMMENT_HAS_CREATOR] we perform a find and
scan the index (the B+ tree) for all entries within the range and limit reads to
20 (700)

5. Sort the result

6. For results within limit, project {friend.id} and {comment.id} (20)

As seen, we reduce the number of "touched" (Comment) with at least one order of mag-
nitude which should improve performance, at least in terms of response time. This is not
the only benefit. As we saw in section 2.1.5 it is also less effort to read each Comment
because of neighborhood locality and range locality.

2.2.2 Indexing in an OLTP environment
The number of index entries that needs to be updated when the graph is changed grows
exponentially with the length of the indexed pattern. Let us illustrate this with an example.

Assume we have a graph with this schema: (A)-[TO_B]->(B)-[TO_C]->(C),
and the fan out on every level is f . There are f number of (B) connected to every (A)
and the same for (C) and (B). To the left in figure 2.5 you can see an example graph with
f = 4. Let us now assume we create a Shortcut index on pattern (A)-[TO_B]->(B)-
[TO_C]->(C) and that we have some property we can sort on, which one does not matter
in this example. Every [TO_B] relationship is part of 4 indexed paths, so removing one of
themmeans removing 4 entries from the index. As all of those paths start in the same node
they will be located adjacent to each other in the index, so the deletion could be optimized
to only use one find operation. Let us now imagine that every (B) node is connected to
4 (A) nodes as well, as shown to the right. The [TO_C] relationships are also part of
4 different indexed paths, however all of the paths have different start nodes which means
4 completely separated index entries will have to be removed. This will require 4 find
operations.
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Figure 2.5: A graph with fan out 4.

Now, we assume that we have a graph with fan out f on every node and we create a
Shortcut index on a pattern with length l, then every relationship is part of at least f l−1

indexed paths. Removing any of those relationships then of course means updating f l−1

index entries. Adding a relationship that fits in the pattern likewise mean adding f l−1 index
entries.

In an online transaction processing (OLTP) environment, where nodes and relation-
ships are constantly added and removed, such overhead for updates is unacceptable and
the Shortcut index should not be used for patterns longer than one.

The index size also grows by a factor of f l−1 which is another reason to not index
patterns longer than one.

2.2.3 Using path index as composite index
We recall the composite index used in relational databases as described in section 1.5.6.
We created an index on multiple columns of a single table. This is very similar to creating
an index on a pattern of length 0, that is a single node. To bridge over from the person
table example, let us assume that we have (Person) nodes with properties lastName
and firstName. We can then create a Shortcut index on pattern (Person {lastName,
firstName}). If we instead of storing the node id as first part of the key, we store
the property value of lastName and firstName, the index would be sorted on lastName
and firstName. We could then store the node id as the value instead. One entry in the
index would then be < "Sanzio", "Raffaello" : 1 >. We then have an index very similar
to a composite index on the "person table". Of course we do not have a table as we are
working with a graph database, but rather a composite index on nodes with label Person.

2.3 Implementation
In this section we describe how the Shortcut index has been implemented. In section 2.3.1
we describe what parts of the complete Shortcut index design that have been implemented.
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We then go into detail about the store format in section 2.3.2. Finally we describe how we
let the page cache implemented by neo4j handle all file access in section 2.3.3.

The full implementation can be found in a public repository on GitHub, see [18].

2.3.1 Partial implementation
We implement the Shortcut index with three restrictions for simplicity.

1. For reasons presented in section 2.2.2, our implementation can only index paths of
length one.

2. The indexed pattern must contain one and only one property key and the property
value must be of type long.

3. We do not implement the delete operation.

We have restriction two because a general purpose implementation would take longer to
implement and would not add any knowledge about how efficient this approach is.

We have restriction three since the purpose of this work is to examine the potential
performance enhancement for read queries that the Shortcut index provides. To bench-
mark this we do not need the delete operation and it is therefore not implemented. An
investigation of the overhead for deletes is of course of great interest, however outside the
scope of this project. We present suggestions for further work in section 5.7.

2.3.2 Store layout
We show an illustration of the store format in figure 2.6. In 2.6a we see a simple example
of an index file containing internal and leaf nodes together with child pointers.

Page
Virtual memory is a way for an operating system to simulate that it has more memory than
it actually has. It makes it possible for a program to access data as if it were loaded into
memory, even if it is not. A page is a fixed size block of virtual memory. Virtual memory
and paging are discussed further in [7]. This is how the page concept is described and
used by neo4j in [23]:

A "page" is a space that can fit a quantity of data, and is part of a larger whole.
This larger whole can either be a file, or the memory allocated for the page
cache. We refer to these two types of pages as "file pages" and "cache pages"
respectively. Pages are the unit of what data is popular or not, and the unit of
moving data into memory, and out to storage. When a cache page is holding
the contents of a file page, the two are said to be "bound" to one another.

We think about a page as fixed sized blocks in a file that can be loaded into memory. Each
page has a unique id and this id is what we use as a pointer between nodes in the B+ tree.
The concept of pages is of huge interest to us as accessing a page can be expensive, if the
page is not loaded into memory. We discuss how we handle pages in section 2.3.3.
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One node per page
The first thing to notice is that the index files are divided into pages with unique ids ranging
from 0. Every node occupies one page. The internal nodes use the page id of its children
as pointers to make traversal down the tree possible.

There is no ordering among the nodes, when a new node is created (when a split occurs)
the index simply allocates a new page at the end of the file.

In figure 2.6b and 2.6c we see the store layout of an internal and a leaf node. These
are the components:

Type A simple one byte flag where 1 means the page holds a leaf node and 0 means
internal node.

Key count A big endian integer, the number of keys the node currently has.

Right and left sibling The page id of the node’s right/left sibling, stored as a big endian
long, or −1 if no right/left sibling exists.

Key A key is two big endian longs. The first one is the id of the first graph node in the
path and the second one is the property value of the property included in the indexed
pattern.

Child This is only present in internal nodes and is the page id of the child, a big endian
long. If the internal node holds k keys then it also holds k + 1 child pointers.

Value This is only present in leaf nodes and is two big endian longs. The first long is the
relationship id of the path and the second is the last graph node id in the path. If a
leaf holds k keys it also holds k values.

Depending on the fixed page size a node can hold a fixed number of keys, values and
children blocks. This number will be different for internal and leaf nodes as value blocks
are twice as large as child blocks. That means internal and leaf nodes will have different
orders in this implementation.

As seen in the figure, value and child blocks are kept at an offset from the key blocks.
This is so that we are not forced to move all values or all children every time a key is added.
When a page is filled up, the empty space between the keys and values / children is 0. It
is likely that there is some unused space left after the last value or child block. This is at
most 16 + 16 − 1 = 31 bytes, just short of one key and one value block.

One could imagine a store format that more closely mapped to how we think about
nodes in a B+ tree, with the child blocks being entwined in between the keys like in figure
2.7. This has one major disadvantage though. The typical way we visit nodes is we read
the key count then we read the keys until we find what we are looking for and finally read
a child block to traverse down the tree. So the majority of the reads are done on keys in
sequential order. By having the keys stored next to each other we only store information
in the cache that is likely to be read next. The same reasoning holds for leaf nodes as well.
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Node
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Node

Leaf

Node

Leaf

Node

Leaf

Node

Leaf

Node
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Page Page

(a) File with child pointers

Header

Type 1B Key count 4B Right sibling 8B

Keys Children

Key 16B Key 16B Child 8B Child 8BLeft sibling 8B Child 8B

(b) Internal node

Header

Type 1B Key count 4B Right sibling 8B

Keys Values

Key 16B Key 16B Value 16B Value 16BLeft sibling 8B

(c) Leaf node

Figure 2.6: Store format

Header

Type 1B Key count 4B Right sibling 8B Key 16B Child 8BChild 8B Key 16B Child 8B

Keys and children

Left sibling 8B

Figure 2.7: Entwined store format
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2.3.3 Neo4j page cache and page fault
As explained in section 2.1.5 all operations on the tree are dominated by the number of disk
accesses needed and keeping the most frequently accessed pages in memory will minimize
the effort. To do this, all file access is done with the page cache implemented by neo4j.

The purpose of the page cache is to abstract away the fact that you are handling two
different stores, disk and memory and simulate that everything is in memory. The algo-
rithm makes sure that the most frequently referenced pages are always kept in memory
while the rest of the pages are swapped in and out as they are accessed.

When we want to access a page that is not currently loaded into memory by the page
cache this is called a page fault. The page cache then needs to get rid of one of the pages it
currently has cached and write it back down to disk, this is called "evicting" a page. Then
it has to read the newly referenced page into memory. As a page fault leads to expensive
I/O operations we want to avoid this as much as possible and there are a few different page
replacement algorithms that aim to do this.

The neo4j page cache implements the "GCLOCK" algorithm as presented in [21].
This is a simple explanation of the algorithm: Every page has a reference counter that
is incremented on access and decremented by a dedicated "eviction thread". When the
reference counter reaches zero the page can be released from memory and written back to
disk. This only happens when a new page needs to be loaded from disk but the page cache
does not have enough space left. In this way, reference history is kept.

It is not possible for the operating system to swap out a page that has been marked as
internal memory by the page cache.
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Chapter 3
Evaluation

This chapter is about the evaluation process. In section 3.1 we explain what we measure
and how we measure it. Section 3.2 considers the topic of execution environment. In sec-
tion 3.3 we present our environment setup. We discuss the datasets used in section 3.4. In
section 3.5 we present how we evaluate usefulness in an OLTP environment by looking at
response time on insert and finally in section 3.6 we discuss memory overhead for keep-
ing an index. In chapter A in the appendix we present the queries we use to benchmark
execution.

3.1 How do we evaluate performance?
In this project when we talk about performance we talk about query execution time. In
particular we are interested in how much better or worse the performance gets when we
use the Shortcut index compared to when we are not.

To distinguish between runs with and without the use of the Shortcut index we will
use the slightly misleading terminology of Kernel and Shortcut, for example, "query x is
4 times faster on Shortcut compared to Kernel." This means execution time for query x
is 4 times faster when using the Shortcut index compared to when only using the Kernel
engine in neo4j. This is misleading because usually we cannot execute an entire query
with only the Shortcut index, and we still use the neo4j Kernel. But we use the index as
much as possible, typically to expand the last hop in the query.

3.1.1 The workload
A workload is a list of queries and a list of input values for every query, typically this is
the start node id. Each query is executed once for every input value in the workload.

The workload is executed twice. The first run is used as a warm up and on the second
we measure execution time. We use the warm up to simulate a production environment
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where the database has been up and running for some time. This means that often used data
is loaded into memory and the different caches, like the page caches used by the Shortcut
index and neo4j Kernel. Before executing a workload it is assumed that all necessary
indexes exist and loading the index from file is part of the warm up.

We use We are interested in two response times: Average response time and the re-
sponse time for the query to return the first time, with the first input parameter.

3.2 Machine and tools
All experiments are executed with the machine described in table 3.1 with neo4j version
2.3.0-M03 and java compiler 1.8.0_60.

Machine: MacBook Air
OS: OS X Yosemite 10.10.2
Processor: 1.3 GHz Intel Core i5
Memory: 8 GB 1600 MHz DDR3

Figure 3.1: System specifications

3.3 Environment setup
In all of our benchmarks we use the following configuration for the Shortcut Index and the
JVM.

Page size We use a page size of 8192 B. An internal node can then at most fit (8192−21−
8)/24 ≈ 340 keys and will at least contain 340/2 = 170 keys. The leaf nodes can at
most fit (8192 − 21)/32 ≈ 255 keys and will contain at least 255/2 ≈ 127 keys.

Index page cache size The page cache used by the Shortcut Index is configured to be
1024 MBwhich in our experiments means that it will fit the entire index. This setup
is not used for the "insert time" explained in section 3.5.

VM params We configure the heap size to be at least 1024 MB (-Xms 1024M) and at
most 2048 MB (-Xmx 2048M).

Neo4j also uses a page cache and it is automatically configured to be half of the free
memory after maximum heap size has been removed. This means the Neo4j page cache
used in our experiments has a maximum size of (8− 2)/2 = 3 GB. This is enough to fit the
datasets that we use in memory.

3.3.1 No benchmarks on limited RAM
We state disc access to be the dominating cost when executing queries, if not all data can
be kept in memory. Even so, all of the benchmarks that we run on queries is executed in an
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environment that does fit all data in memory. The goal was to also perform these queries in
an environment with less memory to see if the analysis matched reality. The limited time
we had for this project did not allow us to do this however. We expand on this in section
5.4.4.

3.4 Datasets
We are working with two different types of datasets, LDBC and LAB. They are described
in section 3.4.1 and 3.4.2 respectively.

3.4.1 LDBC Dataset
The Linked Data Benchmark Council (LDBC) has put together a benchmark suite called
the Social Network Benchmark (SNB) that includes a way to generate datasets simulating
social networks. More on LDBC and why we think it is a valid choice is discussed in
section 1.4.2. The LDBC SNB datasets, from here on called LDBC datasets or just LDBC,
can be generated in different sizes and the size is given by the "scale factor" (SF). SF001
means the dataset in comma separated value (CSV) representation has size 1GB. In this
project we only use LDBC_SF001. The datasets are generated but much effort has been
put into making them look and behave "real" [11].

In figure 3.2 we show the schema for LDBC and statistics of the dataset can be found
in table C.1 in the Appendix.

3.4.2 LAB Dataset
The dataset family called LAB is used as a "laboratory environment", an environment that
is not necessarily representative to real use cases but is well adapted to test specific features.
It was designed by us specifically to be used in this project. It is purely synthetic and inten-
tionally generated to be predictable. It consists of 10000 (Person) that have [:CRE-
ATED] (Comment)s, making up 10000 isolated islands of nodes. Every (Person)’s
(Comment)s has {date} evenly distributed in the interval [0, 8000). When generating
a LAB dataset you provide a fan out value that determines the number of (Comment)
for every (Person). If fan out is 8, every (Person) has 8 (Comment). The schema
for LAB is shown in figure 3.3 and statistics for all the generated LAB datasets are shown
in table C.2 in the Appendix.

The fan out of a specific LAB dataset is given by a number at the end. A LAB dataset
with fan out 200 is thus called LAB200. By running our benchmarks on LAB datasets
with different fan out we can see how neighborhood density affects response time.

The fact that the dates of the (Comment)s are evenly distributed in some range allows
us to very accurately query for a precise percentage of the neighborhood volume. For
example we can query for a range that only covers 1% of the total range and then we know
that we will only get 1% of the neighborhood as a result. This is what we call percent of
neighborhood interest.
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Figure 3.2: LDBC schema
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Person
Person

Comment
Comment

date: Long

LABEL

propertyKey: propertyType

:RELATIONSHIP_TYPE

Node

:CREATED

Figure 3.3: LAB schema

3.4.3 Cost analysis of range queries
We use LAB query 1 as an example query to analyze how the cost should scale for Kernel
and Shortcut respectively. As we have stated in section 2.1.5 and 2.3.3 the cost of accessing
the index and accessing data in the dataset is dominated by the number of disk accesses
that is necessary. Therefore we analyze the cost of performing range queries with the
assumption that not all data can fit inside memory.

In our experiments however, we can fit all data inside memory. The analysis made here
and the results from our experiments should therefore be seen as complimentary.

We do not analyze the cost of performing queries when all data can fit inside memory
because it is not very clear what dominates execution.

Not all data in memory
We analyze the cost with respect to the number of different pages we read from in the worst
case. This is a reasonable approach because our assumption is that reading new pages into
memory is what dominates execution time and for each new page we read from we risk
a page fault. Let p be the cost of one page read from disk. Let d be the density of the
neighborhood, n be the number of paths indexed in the Shortcut index and k <= d the
number of keys in the query range.

Kernel needs to expand the "created" relationship, read the Comment node and read
the "date" property. All of this data can possibly be scattered among different pages so it
adds up to 3 page reads in the worst case. Kernel needs to examine the entire neighborhood
so the cost for LAB query 1 is 3dp for Kernel.

Shortcut needs to run a find operation on the B+ tree. Let the B+ tree have order o.
The find operation then has complexity logo(n). When the first key in the range is found
we need to do a sequential scan until we find the last key in the range, that means reading
k keys. The cost for this is d k

oep. In total the cost for Shortcut is (logo(n) + d k
oe)p.
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The order of the B+ tree is (pageSize−headerSize)/(2∗(keySize+childPointerSize)).
If we assume that we have a page size of 8192B, which is what we use in our implemen-
tation, then the order of the B+ tree is o = 8192−21

2·(16+8) ≈ 85. If we use a LAB dataset then
we know that we have 10000d paths indexed. The time complexity for Shortcut is then
(log85(104d) + d k

85e)p and Kernel still has 3dp. As k <= d it is clear that Shortcut scales
better than Kernel in the worst case scenario.

It is worth noting that this worst case scenario is highly unlikely to occur with warm
caches, both for Shortcut and for Kernel and we should not expect the actual results to
map very well to this analysis. We try to capture a "typical" production behavior with our
benchmarks. Performing a theoretical analysis of a "typical" execution is hard because it
depends on:

• How the data is stored on disk, which depends on the order in which it was created.

• What pages are already cached by the page cache, which depends on what data has
been accessed previously.

3.5 Insert time
As discussed in section 2.2.2 overhead for index updates cannot be too high if the index
is to be used in an OLTP environment. To see if our implementation could be a suitable
candidate we measure response time on insert.

3.5.1 What is insert time overhead?
The overhead of the insert operation is the time it takes to insert a new entry into the index.
We want to simulate the scenario where a new node or a new relationship has been added
to the database that enforces a single index entry to be added. We measure the insert time
in an index that has been up and running for a while, not a completely new index. So we
measure insert time for 100,000 entries on an index that already has 10,000,000 entries.
This way, each single insert does not make the relative difference between each insert that
large and we think this is typical in a production environment. We also measure how page
cache size affects insert time by letting the page cache cover a specified percentage of the
index size.

The index keys and index values are produced with a random generator. We do not do
any measurements on inserting sequential entries.

Because we know that the topmost nodes in the B+ tree will be visited much more
frequently compared to nodes further down in the tree, especially the leaf nodes, we do
not expect the insert time to scale linearly with the page cache coverage percentage.

As we only measure overhead of the actual insert operation we do not cover the entire
overhead of maintaining the index on updates to the database. Other things that are also
part of the overhead but not covered in this project are as follows.

• When creating a new relationship we need to see if a path is created that matches
some indexed pattern.
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Table 3.1: Index size compared to dataset size

Dataset Dataset size Index size
LAB8 7.4 MB 5.2 MB
LAB40 36 MB 26 MB
LAB200 180 MB 130 MB
LAB400 360 MB 260 MB
LAB800 720 MB 520 MB

• When we have decided that a new entry needs to be inserted into the index, all the
necessary data, node ids, relationship id and property value, needs to be read from
the store.

3.6 Memory overhead
Keeping the Shortcut index in memory is a cost in itself. In table 3.1 we a size comparison
between the LAB datasets and respective Shortcut index. Note that all data in the LAB
datasets is indexed. This is of course not usually the case as you would normally have a
lot of data that should not be indexed, such as properties or nodes and relationships that
are not part of dense neighborhoods and / or is not frequently queried for.
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Chapter 4
Result and discussion

In this chapter we will present and discuss the results from the benchmarks described in
chapter 3. We start by briefly expand on how we decided what queries to run in section
4.1. In section 4.2 we talk about the result tables that can be found in the Appendix. In
section 4.3 we analyze the performance in terms of response time. This will be done one
query at a time. In section 4.4 we will discuss insert times and finally in section 4.5 we
will briefly comment on the memory overhead of keeping an index.

4.1 Howdidwe decidewhat queries to run?
First we decided to run a small set of fairly simple queries that tested different interesting
features, such as order by, limit and so on. We also decided to do this on neighborhoods
with different density. Those are the LDBC queries. We ran those on LDBC_SF001 and
got the results shown in table B.1 in the Appendix. We sawwhat seemed to be a correlation
between neighborhood density and increase in query performance. For example, LDBC
Query 2 touches a much denser part of the graph compared to LDBC Query 4 and the
speedup when using the Shortcut index is much better for LDBCQuery 2. We will expand
on this in section 4.3.

To further investigate how neighborhood density actually affected performance we cre-
ated the LAB environment and we discuss this more in section 3.4.2 and A.2.

4.2 Result tables
We present the benchmark results in the following tables which can all be found in chapter
B in the Appendix:

Table B.1 Results for LDBC queries 1-6 on LDBC_SF001.
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Neighborhood Avg Touched by
density query

(:Person)<-[:HAS_CREATOR]-(:Comment) 202 Holy Grail,
LDBC query 1, 2

(:Person)-[:LIKES_POST]->(:Post) 71.6 LDBC query 3
(:University)<-[STUDY_AT]-(:Person) 1.24 LDBC query 4
(:Company)<-[WORK_AT]-(:Person) 13.9 LDBC query 5
(:Forum)-[:CONTAINER_OF]->(:Post) 11 LDBC query 6
(:Person)-[:KNOWS]-(:Person) 35 Holy Grail

Table 4.1: Interesting neighborhood densities in LDBC_SF001

Table B.2 Results for LAB queries 1-3 on LAB8.

Table B.3 Results for LAB queries 1-3 on LAB40.

Table B.4 Results for LAB queries 1-3 on LAB200.

Table B.5 Results for LAB queries 1-3 on LAB400.

Table B.6 Results for LAB queries 1-3 on LAB800.

Table B.7 Results for the Holy Grail Query on LDBC_SF001.

For all queries except LDBC query 1, which is a complete scan, we execute the query
multiple times with different input data. What we see in the tables is the response time for
the query to return the first time (first) and the average response time for the query (avg).
We log this both for Kernel and for Shortcut. We also include the "speedup" which simply
is the Kernel response time over the Shortcut response time.

4.3 Query analysis
In this section we revisit the list of queries presented in section A in the appendix and
discuss the result for each query to see if we got the result we expected. We start off
by looking at the LDBC queries in section 4.3.1. We then move on to the LAB queries in
section 4.3.2. We take a look at the Holy Grail Query in section 4.3.3 and finally in section
4.3.4 we discuss the "first" results from all the result tables.

4.3.1 The LDBC queries
We start with the LDBC queries. In figure 4.1 we can see a chart showing the comparison
between Kernel and Shortcut in terms of response time for the different queries. Note the
difference between the y-axis scales. In table 4.1 we see the densities of the neighborhoods
that LDBC query 1-6 touches.
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LDBC Query 1 Scan
As expected, it is much faster to scan all the leaves in the Shortcut index compared to
expanding all "has creator" relationships, by more than an order of magnitude, 13x.

LDBC Query 2 Seek
We have an average performance improvement that is very similar to LDBC Query 1,
15x. Note that they touch the same neighborhood, namely (Person)<-[COMMENT_HAS_CREATOR]-

(Comment) which has density 202.

LDBC Query 3 Order by
We have a speedup of 9x and the density is 71.6. It is not clear if we get any immediate
performance gain by not having to sort the result. If we compare to query 2 we get some
sense of correlation between neighborhood density and performance gain.

LDBC Query 4 Exact match
Here we see a performance regression when using the index. The interesting neighbor-
hood, (University) <-[STUDY_AT]- (Person), only has density 1.24 which
is the lowest of all queries. This could be an explanation as to why we see this poor per-
formance. We expected performance to be better because we have limit the percent of
neighborhood interest and this should work to the advantage of the Shortcut index.

LDBC Query 5 Range
For this query we see an average speedup of 6.6x and the density of the neighborhood
is 13.9. The performance improvement was expected. Although when we compare it to
the speedup we got in query 2, which was 15x, it seems a little high. Recall that query 2
touched a neighborhood with avg density 202, more than one order of magnitude larger.
This could be related to the fact that query 5 limits the percent of neighborhood interest.

LDBC Query 6 Range
The same reasoning we used for LDBC query 5 applies to LDBC query 6 as well. We see
an average speedup of 2.5x and the neighborhood has average density 11.

What did we learn and how to proceed?
The LDBC queries let us "test the water". We still do not have a clear view over what
affects performance and how much, but a few questions were raised.

• How does neighborhood density affect performance?

• How does sorting affect performance?

• How is performance affected when we limit the amount of data in a neighborhood
that we are interested in, the percent of neighborhood interest?
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Figure 4.1: Average response time plot for LDBC queries 1-6

We will answer those questions using the LAB environment queries.

4.3.2 The LAB queries
In this section we discuss benchmark results for the LAB queries. In general we have two
variables to consider when we do our benchmarks and try to make sense out of the results.
Those two variables are neighborhood density and percent of neighborhood interest. This
is illustrated with clarity using LAB Query 1 and 2. We also want to investigate how
sorting affects performance and this is what LAB query 3 does.

LAB Query 1 "percent of range"
LAB query 1 limits percent of neighborhood interest and from a quick look at the result ta-
bles covering the LAB queries, table B.2-B.6 in the Appendix, we see two things. A higher
density gives a higher performance gain and the more restricted percent of neighborhood
interest the better performance gain.

In figure 4.2 we see how Kernel and Shortcut response times scale different when we
increase the percent of neighborhood interest and fix the density. The values come from
table B.4 and B.6. Kernel does not scale at all, it always hits the worst case scenario
where the entire neighborhood needs to be considered. Shortcut on the other hand has
linear scaling. This is because the amount of data that needs to be considered increases
linearly with percent of neighborhood interest. Note that Kernel and Shortcut are not
plotted against the same y-axis and that the scale difference is of one order of magnitude.

When we fix the percent of neighborhood interest and instead vary density we get the
charts shown in figure 4.3 and 4.4. It is quite clear that both Kernel and Shortcut response
times scale linearly with density. Although the constant of the linear scaling varies with
percent of neighborhood interest for Shortcut, it remains the same regardless for Kernel.

50



4.3 Query analysis

0 20 40 60 80 100
0

200

400

600

0

20

40

60

0 20 40 60 80 100
0

50

100

150

200

0

5

10

15

20

LAB query 1 on LAB 200, 800

% of neighborhood on LAB 800

% of neighborhood on LAB 200

K
E
R
N

E
L
 a

v
g
 r

e
s
p
o
n
s
e
 t

im
e
 (

µ
s
)

K
E
R
N

E
L
 a

v
g
 r

e
s
p
o
n
s
e
 t

im
e
 (

µ
s
)

S
H

O
R
T
C
U

T
a
v
g

re
s
p
o
n
s
e

ti
m

e
(µ

s
)

S
H

O
R
T
C
U

T
a
v
g

re
s
p
o
n
s
e

ti
m

e
(µ

s
)

Shortcut 800

Kernel 800

Shortcut 200

Kernel 200

Figure 4.2: Average response time for LAB query 1 on LAB200
and LAB800. Note the scale difference between the two y-axes.

This again is due to the amount of data that needs to be considered both for Kernel and
Shortcut.

LAB Query 2 "limit"
As described in section A in the appendix, LAB query 1 does not portray a likely real
world use case, we are more often interested in some fixed number of "top x" values. This
is what LAB query 2 does and we run it with limit 4 and limit 40, which of course means,
"top 4" and "top 40" of some ordering. In figure 4.5 we see how the response time scales
with density.

We are quite surprised to see that the last data points differ so much between Kernel
limit 4 and Kernel limit 40 as the only difference in execution should be to limit the sorted
result list to 4 instead of 40 which should not have any additional cost. This unusual
behavior can have multiple explanations, but our bet is that the JVM hit a major garbage
collection on this particular run. In theory, Kernel limit 4 and limit 40 should behave
almost identically.

That being said, Kernel limit 40 seems to scale linearly with density which aligns well
with previous experiments.

Shortcut does not seem to scale at all but is rather stable around 6µs. This further
strengthens our belief that both Kernel and Shortcut response times scale with the amount
of considered data.

It is surprising to us that Shortcut limit 40 does not have a higher response time than
Shortcut limit 4, as the results from LAB query 1 quite clearly showed that Shortcut re-
sponse time scales linearly with the amount of considered data. Although, if we look at

51



4. Result and discussion

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

0

10

20

30

40

50

60

LAB query 1 100% of neighborhood

Neighborhood density

K
E
R
N

E
L
 a

v
g
 r

e
s
p
o
n
s
e
 t

im
e
 (

µ
s
)

S
H

O
R
T
C
U

T
 a

v
g
 r

e
s
p
o
n
s
e
 t

im
e
 (

µ
s
)

Shortcut

Kernel

Figure 4.3: Average response time for LAB query 1 100% on
varying density levels. Note the scale difference between the two
y-axes.
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the first two data points for Shortcut in figure 4.3 we see that the scaling actually does not
start until after density 40. It seems likely that up until that density the response time is
dominated by something other than traversing the index tree. That would explain both the
results for LAB query 2 and LAB query 1.

LAB Query 3 "order by"
The goal of LAB query 3 is to examine how sorting affects response time. Recall that
we expected that only Kernel’s response time would be affected by sorting. In figure 4.6
we have plotted the response times for LAB query 3 and LAB query 1 100%. The only
difference between those is that LAB query 3 sorts the result. Looking at the plot we
see that Kernel query 3 has a higher response time compared to Kernel query 1 on all
densities. We also see that the difference seems to grow with the density. As sorting has
time complexityO(n log(n)) we can safely say that this is how the difference grows as well.
For Shortcut however, response time seems to be the same for Lab query 3 and 1, which
is expected because execution is identical.

4.3.3 The Holy Grail
TheHolyGrail touches the neighborhood (Person)-[KNOWS]-(Person)<-[COMMENT_HAS_CREATOR]-

(Comment) which has density 35 · 202 = 7070. We do not have the whole neighbor-
hood indexed though, only the last hop: (Person)<-[COMMENT_HAS_CREATOR]-
(Comment). In section 1.4.1 and 2.2.1 we explained how Shortcut only needs to consider
35 ·20 = 700 Comments while Kernel needs to consider all 7070. As explained in section
3.4.3 the cost of reading a small range of keys is often the same as reading only one key
due to range locality. To read 20 keys at most two B+ tree leaves will have to be visited

53



4. Result and discussion

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

0

10

20

30

40

50

60

70

LAB query 3 vs LAB query 1 100%

Neighborhood density

K
E
R
N

E
L
 a

v
g
 r

e
s
p
o
n
s
e
 t

im
e
 (

µ
s
)

S
H

O
R
T
C
U

T
 a

v
g
 r

e
s
p
o
n
s
e
 t

im
e
 (

µ
s
)

Shortcut query 1 100%

Kernel query 1 100%

Shortcut query 3

Kernel query 3

Figure 4.6: Average response time for LAB query 3 and LAB
query 1 100%. Note the scale difference between the two y-axes.

and in most cases only one. So while Kernel in the worst case scenario needs to read from
7070 pages, only including the last and dominant hop in the query, Shortcut only needs to
read from at most 35 · 2 = 70 pages. This maps very well to the average speedup of 103x
that we see in table B.7.

4.3.4 Result for first query to return
If we compare the "first" with "avg" response times for Shortcut, in tables B.1-B.7 in
the Appendix, we see that "first" consistently has a significantly higher response time. We
unfortunately cannot explain what causes this. It is not caused by the data not being loaded
into the caches because we run the exact same workload as warm up right before we start
measuring execution.

It could be the case that the JVM decides to do a just in time compilation after the
first query returns but it seems unlikely that this happens for every query, every time,
independently of what queries and what dataset is being used.

It could also be the case that the JVM optimizes some object allocation that we cannot
foresee.

The code is available in a public repository on GitHub [18].

4.4 Insert times
This section covers the overhead for performing insertions into the Shortcut index and how
it relates to the size of the used page cache. We talk about page cache size in terms of how
large a percentage of the entire index it can cover. We call this page cache coverage.
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4.4.1 Page cache hit rate vs page cache coverage
In figure 4.7 we see the page cache hit rate plotted against the page cache coverage. The
values come from table B.8. We see that the hit rate is already quite high, at 80%, for
a cache coverage of only 1% and with cache coverage of 50% we get a hit rate of 90%.
This is of course due to the structure of the B+ tree. The topmost nodes in the tree will
be visited for every insert and thus kept in the page cache. They are very few in number
compared to the leaf nodes and can therefore be kept in memory even if the size of the
page cache is relatively small compared to the size of the entire index.

4.4.2 Insert time vs page cache coverage
In figure 4.8 we see how the insert time is affected by the page cache coverage. We plot
the average insert time together with the 99th, 95th, 90th and 50th percentile. In figure
4.9 only the average insert time is plotted. There are some interesting things that we can
deduce from these plots and the table.

• The average insert time is almost halved when increasing the page cache coverage
from 1% to 100%.

• The 99th percentile is roughly quartered when increasing the page cache coverage
from 1% to 100% and almost cut to one third when going from 50% to 100%.

• When increasing the page cache coverage from 0.01% to 1% the 50th, 90th, 95th
percentile and average insert time drops to between one half and one third. The
99th percentile however almost does not drop at all. It is not until the page cache
covers 50-100% of the index size that we see a larger drop in insert time. In particular
whenmoving from 50% to 100%, we see a huge improvement for the 99th percentile.
When looking at figure 4.8 and 4.9 it is quite apparent that the improvement in insert
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time is quite large when going from 0.01% to 1%. This also matches well with the
"hit rate plot" in figure 4.7. This tells us that we can get an average performance
that is quite reasonable even if that page cache can only hold parts of the index in
memory but to get rid of the worst case scenarios you need to have it all in memory.

An average insert time of between 11 and 35 µs should be acceptable in most use cases.

4.5 Memory overhead
As shown in section 3.6, the size of the index does not grow beyond the size of the dataset,
even if all data is kept in the index. Of course, the scenario where all data is indexed is
very extreme and is not likely to occur in a real use case.
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Chapter 5

Conclusions

In this project we have made an attempt at solving the node density problem by indexing
paths. We have presented a novel path index design and evaluated our implementation on
a small number of queries and datasets. Here are our conclusions.

5.1 Response time improvement
Our results suggest that our design could improve query execution performance in terms
of response time and for reasonably dense neighborhoods an improvement of between one
and two orders of magnitude is not unusual.

In particular, a path index of this kind would be beneficial for queries for which the
following statements are true.

• The query limits the percent of neighborhood interest with a range predicate on a
property value or by having the result sorted on the property value and only return
some limited number of result rows.

• The query touches a neighborhood with large density.

The response time can be limited because we can limit the number of different pages
that we need to read data from by utilizing the neighborhood locality and range locality.
Those are concepts introduced by us and they simply mean that all data that belongs to
the same neighborhood is stored together and within that neighborhood all data within the
same property range is stored together on disk.
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5.2 Scaling with percent of neighborhood
interest

What makes our solution extra appealing is that it lets response time scale with the percent
of neighborhood interest of the query by actually limiting the amount of data that needs to
be considered. By contrast, without the index you would always hit the worst case scenario
of considering all the data in the neighborhood.

5.3 Insert time
Depending on howmuch of the entire Shortcut Index the page cache could keep inmemory
at the same time we saw an average insert time between 11 and 35 µs. For most use cases
this should be an acceptable trade off and we conclude that the Shortcut Index could be
used in a real production environment.

5.4 Limitations and unknowns
We have made limitations to our implementation, how we measure performance and what
we consider performance to be. This is what we discuss in this section.

5.4.1 Implementation
Our implementation of the Shortcut Index is purely single threaded and cannot handle
concurrent work of any kind. This is of course a complete necessity if it should be used
in a real production environment. This means that the workloads we use to benchmark
performance is also single threaded and we only execute one query at a time. It is not
realistic to assume that this is the typical case for a real workload on a database. It is not
very clear how this will affect performance of the Shortcut Index and more investigation
should be done in this area.

5.4.2 Linear vs binary search
Our design has an obvious flaw in that it uses linear search when finding keys in the tree
nodes. It would be interesting to know how much we could improve performance by in-
stead using binary search.

5.4.3 Response time as performance
We have only measured performance in terms of response time. It is not obvious however
that this is the most reasonable approach. Response time is affected by things like, but not
limited to, the following.

• How high memory pressure is from the rest of the system.
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• How high pressure is on the CPU from the rest of the system.

• How warm the different components of the system are.

Another way to measure performance could be to count the number of page accesses and
page faults needed for each query. This would make sense since we assume that this is the
dominating cost during execution.

The most sensible thing would be to measure both response time and number of page
accesses and page faults. That would give us the possibility to actually correlate the re-
sponse time and disk access. As far as we reached in this work, the assumption that disk
access is what dominates execution time is still just an assumption.

5.4.4 Configuration
When testing the response time on insert we varied page cache size. This should have
been done when we benchmarked response time on query execution as well to get a better
understanding of how the index works when varying the availability of memory. This
would be especially interesting if we also measured the number of page accesses and page
faults as discussed in the section above.

We should also have made more adjustments to the size of the page cache used for
Neo4j. It is not obvious that we can keep the entire database or index in memory in a
production environment and this should have been reflected in our benchmarks. Especially
since disc access is assumed to be the dominating cost when executing queries.

5.4.5 Datasets and environment
Our design and implementation is only tested on a very limited set of queries and datasets,
both in terms of structure and size, and only tested on one single machine. It is not neces-
sarily the case that the same performance gain can be expected on other machines as well.
What we feel is missing in particular are benchmarks on a much more powerful machine,
like something typically used in a real production environment, on much larger datasets
of different kinds.

5.4.6 Response time for "first" query
In section 4.3.4 we discussed a result that we do not understand. This is the fact that it is
always slower for a query to return for the first input data compared to the average. This
remains an unknown for us and it makes us doubt if our results really are as good as they
seem. It could be that we execute our workload in much too "streamlined" a way that
makes optimization easy for the JVM and thus we see results not realistic under a more
randomized workload.

Further testing with a more randomized workload could be part of future work.
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5.5 Did we solve the problem?
One of the main goals and motivations for this work was to improve the Holy Grail query,
see query 1.1. From the result shown in table B.7 in the Appendix and from the discussion
in section 4.3.3 we can conclude that this goal was achieved.

5.6 Final conclusion
Within our limitations we can conclude that the Shortcut Index improves response time at
a reasonable cost and is especially useful when indexing dense neighborhoods that is often
queried with limitations on some property value. It is our firm belief that further research
in this area could bring great academic value and open up many opportunities for graph
database vendors. In section 5.7 we list suggestions for future work.

5.7 Future work
There are of course some questions that have not been addressed in this work for different
reasons. The questions we would suggest for future work in this area are as follows.

Concurrent environment How does the Shortcut index perform in a multi-threaded en-
vironment? Every reasonable database allows concurrent transactions and it is not
completely obvious that the same performance can be expected on parallel work-
loads as on single threaded execution.

Page size How does the page size of the page cache affect performance? From the analysis
made in this work it is clear that the page size has some impact on how the time
complexity scales for the Shortcut index. We do not investigate how large this impact
is and we feel that this is a shortcoming in our work.

Page faults, page accesses and profiling Measure the number of page faults and page
accesses on a per query basis and correlate it with the execution time. This should
be done to confirm that the number of page faults and page accesses is what actually
dominates execution time and potentially find other bottlenecks not discovered in
this project. As an extension to this, profiling execution could also be done to further
analyze where optimization would be most useful.

Garbage collection Howmuch does garbage collection affect performance for the Short-
cut index? Some efforts not presented in this work have been made to limit the
number of java objects created during execution and the results indicate that garbage
collection has a significant impact on execution time. This is not confirmed and the
question could serve as a basis for a new project.

Execution environment We only execute our experiments on a single machine with a
very limited number of datasets and queries and with a quite "streamlined" work-
load. It would be interesting to see if the same performance gain manifests on a more
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powerful machine and larger datasets on a more randomized and perhaps more re-
alistic workload.
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Appendix A
Target queries

In this chapter we present the queries used to benchmark the Shortcut index. We discuss
what is interesting about them and how they are executed by Shortcut and Kernel respec-
tively.

A.1 LDBC Queries
First, to explain how the different queries are executed we need to know what Shortcut
indexes we have. Here are the patterns indexed on LDBC. They will be referred to as
index 1-5:

1. (Person)<-[COMMENT_HAS_CREATOR]-(Comment {creationDate}).

2. (Person)-[LIKES_POST {creationDate}]->(Post)

3. (University)<-[STUDY_AT {classYear}]-(Person)

4. (Company)<-[WORKS_AT {workFrom}]-(Person)

5. (Forum)-[CONTAINER_OF]->(Post {creationDate})

LDBC query 1-6 is used to "test the grounds" for the Shortcut index. In what areas does
it seem to work well? When does it not work well? Here is an overview of the LDBC
queries, how they are executed on Kernel and Shortcut respectively and why they where
chosen:

LDBC Query 1 Scan Find all Persons and all Comments they have created. This is the
only query that does not take a start node as input and is therefore only executed
once. Query A.1
For Shortcut this correspond to an index scan on index 1, see the list of indexed
patterns above. That is, we need to go straight to the leaves in the B+ tree and scan
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A. Target queries

/ / QUERY 1 − SCAN
/ / A l l comments w r i t t e n by a l l p e r s o n s
MATCH ( p : Pe r son ) <− [ r :COMMENT_HAS_CREATOR]− ( c : Comment )
RETURN id ( p ) , i d ( r ) , i d ( c ) , c . c r e a t i o nD a t e

Query A.1: LDBC Query 1

/ / QUERY 2 − SEEK
/ / A l l comments w r i t t e n by pe r son
MATCH ( p : Pe r son ) <− [ r :COMMENT_HAS_CREATOR]− ( c : Comment )
WHERE id ( p ) = {1}
RETURN id ( p ) , i d ( r ) , i d ( c ) , c . c r e a t i o nD a t e

Query A.2: LDBC Query 2

through all of them.
Kernel on the other hand finds all Persons and expands all[:COMMENT_HAS_CREATOR]
relationships to find all Comments.
Why this query?: This is the simplest query we can imagine but it is in general not
an easy query to execute because of the amount of data that is asked for. We expect
that scanning all leaves in the B+ tree is a lot faster than expanding all of the "has
creator" relationships.
How many times?: We run this query only once as it does not take any input data.

LDBC Query 2 Seek Find Person with some given id and find all Comments created by
that Person. Query A.2.
For Shortcut this is a find on index 1 for the first key with the given id, then a range
scan until the last key with that id has been found.
As for LDBC Query 1 Kernel needs to expand the "has creator" relationships at-
tached to Person with the given id to find the Comments.
Why this query?: This is a slightly more complex query compared to LDBCQuery
1. It reads less data but has the important difference that Kernel will execute it in
a similar manner as LDBC Query 1 while Shortcut will use a different approach,
namely search the tree for a specific key instead of just scanning the leaves. We want
to investigate how this affects performance.
How many times?: We run this query with 9987 different input parameters.

LDBC Query 3 Order by Find all Posts liked by Person with the given id and order the
result by creationDate in descending order. Query A.3.
Shortcut index is sorted in ascending order so Shortcut does a find on index 2 for
the last key with the given id and then range scan "backwards" to find the first key
with the id. In this way, the result will be delivered in descending order.
Kernel uses the same approach as for LDBC Query 2 but we need to sort the result
list.
Why this query?: The "order by" feature makes this query interesting. As the
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/ / QUERY 3 − ORDER BY
/ / Most r e c e n t l y l i k e d po s t by pe r son
MATCH ( p : Pe r son ) − [ r : LIKES_POST ]−> ( s : Po s t )
WHERE id ( p ) = {1}
RETURN id ( p ) , i d ( r ) , i d ( s ) , r . c r e a t i o nD a t e
ORDER BY r . c r e a t i o nD a t e DESC

Query A.3: LDBC Query 3

/ / QUERY 4 − EXACT MATCH
/ / A l l s t u d e n t s s t u d y i n g a t u n i v e r s i t y 2010
MATCH ( u : U n i v e r s i t y ) <− [ r :STUDY_AT]− ( p : Pe r son )
WHERE id ( u ) = {1} AND r . c l a s sY e a r = 2010
RETURN id ( u ) , i d ( p ) , r . c l a s sY e a r

Query A.4: LDBC Query 4

Shortcut index is already sorted, we expect better performance compared to Kernel
which has to sort the result.
How many times?: We run this query with 9987 different input parameters.

LDBC Query 4 Exact match For University with the given id find all Persons who stud-
ied there during 2010. Query A.4.
Shortcut needs to do a find on index 3 for the first key with the given id and property
equal to 2010 then range scan for all of the similar keys.
Kernel needs to expand all [:STUDY_AT] relationships to find the ones with
{classYear} equal to 2010
Why this query?: By using r.creationDate = 2010 we limit the part of the
neighborhood that we are actually interested in. Our expectation is that this should
work in favor of Shortcut as it can limit the total amount of data considered while
Kernel still needs to touch everything in the neighborhood.
How many times?: We run this query with 6421 different input parameters.

LDBC Query 5 Range Find all Persons who started working at Company with the given
id before 2010. Query A.5.
Shortcut performs a find on index 4 for the first key with the given id and range
scan up to the first key with {workFrom} equal to or greater than 2010.
Kernel expands all [:WORKS_AT] relationships and filters out the ones outside
the range.
Why this query?: The range limitation limits the amount of interesting data in the
neighborhood, just as LDBC Query 4. LDBC Query 5 target a different part of the
graph with a different density though. We expect this to affect performance gain.
How many times?: We run this query with 1575 different input parameters.

LDBC Query 6 Range Find all Posts created between two given times that is part of Fo-
rum with the given id. Query A.6.
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/ / QUERY 5 − RANGE prop <
/ / Employees s i n c e b e f o r e 2010
MATCH ( c : Company ) <− [ r :WORKS_AT]− ( p : Pe r son )
WHERE id ( c ) = {1} AND r . workFrom < 2010
RETURN id ( c ) , i d ( p ) , r . workFrom

Query A.5: LDBC Query 5

/ / QUERY 6 − RANGE <= prop <
/ / P o s t s p o s t e d t o a forum in a t ime i n t e r v a l
MATCH ( f : Forum ) − [ r :CONTAINER_OF]−> ( p : Po s t )
WHERE id ( f ) = {1} AND {2} <= p . c r e a t i o nD a t e < {3}
RETURN id ( f ) , i d ( r ) , i d ( p ) , p . c r e a t i o nD a t e

Query A.6: LDBC Query 6

Shortcut performs a find on index 5 for the first key with the given id and property
higher than or equal to the lower bound of the range, then range scan for the last key
with the id and property lower than the upper bound of the range.
Kernel expands all [:CONTAINER_OF] relationships and filters out all Posts that
do not fit the range.
Why this query?: Same reason as for LDBC Query 4 and 5 but targeting another
different part of the graph. This query is very similar to LDBC Query 5 and the
major reason for using this is to test the feature of having a double sided range.
How many times?: We run this query with 10000 different input parameters.

A.2 LAB Queries
On LAB we have obviously indexed pattern (Person)-[CREATED]->(Comment
{date}). All of the LAB queries are executed with 10000 different input parameters.

LAB Query 1 percent of neighborhood For a Personwith the given id, find all the Com-
ments written by that Person with a date less than some given value. QueryA.7.
As the date property is evenly distributed we can easily control how large a per-
centage of the Person-Comment neighborhood we are querying for by changing this
range. In our experiments we query for 100, 75, 50, 25, 1% of the range, ergo neigh-
borhood. Querying for only some part of a neighborhood is something that we call
percent of neighborhood interest and we expand on this in section 3.4.2.
Query execution is similar to how LDBC Query 5 is executed, both for Shortcut and
for Kernel.

LAB Query 2 limit For a Person with the given id, find all the Comments written by that
Person and return the {2} oldest. QueryA.8.
In a real use case you would rarely query for a fixed percentage of the result set, you
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/ / LAB Query 1
/ / Range cov e r s % of t o t a l r ange
/ / 100% , 75% , 50% , 25% , 1%
MATCH ( p : Pe r son )− [ r :CREATED]−>( c : Comment )
WHERE id ( p ) = {1} AND c . d a t e < {2}
RETURN id ( p ) , i d ( r ) , i d ( c ) , c . d a t e

Query A.7: LAB Query 1

/ / LAB Query 2
/ / L im i t r e s u l t coun t t o 4
MATCH ( p : Pe r son )− [ r :CREATED]−>( c : Comment )
WHERE id ( p ) = {1}
RETURN id ( p ) , i d ( r ) , i d ( c ) , c . d a t e
ORDER BY c . d a t e ASC
LIMIT {2}

Query A.8: LAB Query 2

would instead ask for some "top x". This query lets you do that and therefore we
believe it has more resemblance with a real use case. We run this query with "top 4"
and "top 40". The "limit" feature still restricts the percent of neighborhood interest
just as LAB query 1 does. Query execution is similar to that of LDBC Query 3.

LAB Query 3 order by For a Person with the given id, find all the Comments written by
that Person and return them in ascending order by date. QueryA.9.
This query should clarify how "order by" affects response time. Our expectation is
that Kernel should suffer from sorting and that Shortcut should not be affected at
all. Execution is similar to LAB Query 2 except we return the entire result set.

/ / LAB Query 3
/ / Order by
MATCH ( p : Pe r son )− [ r :CREATED]−>( c : Comment )
WHERE id ( p ) = {1}
RETURN id ( p ) , i d ( r ) , i d ( c ) , c . d a t e
ORDER BY c . d a t e ASC

Query A.9: LAB Query 3
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B. Result tables

Table B.1: Result table for LDBC_SF001

Query Kernel (µs) Shortcut (µs) Speedup

LDBC Query1 first 2,641,692 199,476 13.24x
avg 2,640,536 196,624 13.43x

LDBC Query2 first 362 112 3.23x
avg 230 15 15.37x

LDBC Query3 first 139 57 2.44x
avg 86 9 9.35x

LDBC Query4 first 23 45 0.51x
avg 2 3 0.78x

LDBC Query5 first 43 37 1.16x
avg 15 2 6.62x

LDBC Query6 first 34 27 1.26x
avg 13 5 2.52x

Setup
Dataset LDBC_SF001

Table B.2: Result table for LAB8

Query Kernel (µs) Shortcut (µs) Speedup

Lab Query1 001% first 115 148 0.78x
avg 9 5 1.67x

Lab Query1 025% first 78 62 1.26x
avg 12 6 1.93x

Lab Query1 050% first 48 34 1.41x
avg 9 5 1.59x

Lab Query1 075% first 28 54 0.52x
avg 8 6 1.26x

Lab Query1 100% first 31 28 1.11x
avg 7 5 1.40x

Lab Query2 limit 4 first 29 70 0.41x
avg 8 3 2.85x

Lab Query2 limit 40 first 127 82 1.55x
avg 8 4 2.11x

Lab Query3 order by first 147 400 0.37x
avg 8 4 2.28x
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Table B.3: Result table for LAB40

Query Kernel (µs) Shortcut (µs) Speedup

Lab Query1 001% first 188 116 1.62x
avg 33 4 9.31x

Lab Query1 025% first 76 53 1.43x
avg 36 3 13.32x

Lab Query1 050% first 50 27 1.85x
avg 33 4 9.26x

Lab Query1 075% first 57 48 1.19x
avg 33 3 9.42x

Lab Query1 100% first 46 42 1.10x
avg 28 5 6.03x

Lab Query2 limit 4 first 94 66 1.42x
avg 40 3 12.57x

Lab Query2 limit 40 first 148 58 2.55x
avg 39 6 6.77x

Lab Query3 order by first 146 429 0.34x
avg 47 7 7.02x

Table B.4: Result table for LAB200

Query Kernel (µs) Shortcut (µs) Speedup

Lab Query1 001% first 188 118 1.59x
avg 164 3 59.16x

Lab Query1 025% first 172 112 1.54x
avg 153 5 28.89x

Lab Query1 050% first 148 39 3.79x
avg 153 11 14.12x

Lab Query1 075% first 145 51 2.84x
avg 142 13 11.04x

Lab Query1 100% first 150 66 2.27x
avg 134 17 8.00x

Lab Query2 limit 4 first 376 211 1.78x
avg 172 6 29.83x

Lab Query2 limit 40 first 231 139 1.66x
avg 175 6 27.88x

Lab Query3 order by first 316 251 1.26x
avg 169 14 12.19x
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Table B.5: Result table for LAB400

Query Kernel (µs) Shortcut (µs) Speedup

Lab Query1 001% first 309 185 1.67x
avg 270 3 84.97x

Lab Query1 025% first 527 126 4.18x
avg 274 7 39.51x

Lab Query1 050% first 327 81 4.04x
avg 274 12 21.96x

Lab Query1 075% first 243 46 5.28x
avg 324 17 19.33x

Lab Query1 100% first 276 72 3.83x
avg 264 24 10.80x

Lab Query2 limit 4 first 1,418 176 8.06x
avg 315 5 61.76x

Lab Query2 limit 40 first 397 78 5.09x
avg 354 5 72.06x

Lab Query3 order by first 657 245 2.68x
avg 356 24 15.09x

Table B.6: Result table for LAB800

Query Kernel (µs) Shortcut (µs) Speedup

Lab Query1 001% first 547 153 3.58x
avg 611 5 121.05x

Lab Query1 025% first 528 84 6.29x
avg 608 16 38.25x

Lab Query1 050% first 486 109 4.46x
avg 543 27 19.94x

Lab Query1 075% first 552 71 7.77x
avg 555 41 13.39x

Lab Query1 100% first 488 77 6.34x
avg 605 52 11.59x

Lab Query2 limit 4 first 1,288 145 8.88x
avg 965 7 138.19x

Lab Query2 limit 40 first 584 134 4.36x
avg 703 7 100.28x

Lab Query3 order by first 1,140 264 4.32x
avg 698 46 15.23x
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Table B.7: Result table for Holy Grail on LDBC_SF001

Query Kernel (µs) Shortcut (µs) Speedup

Holy grail first 22,796 693 32.89x
avg 26,495 257 102.99x

Table B.8: Insert time and page cache hit rate depending on page
cache coverage

Cache coverage Page cache hit rate Avg (µs) Percentile (µs)
99th 95th 90th 50th

0.01% 51.67% 35 180 108 83 23
0.1% 62.57% 24 185 74 35 15
1% 79.10% 20 171 48 28 12
10% 81.93% 20 179 52 29 12
25% 85.08% 19 163 41 27 11
50% 90.33% 16 124 29 19 9
100% 99.88% 11 46 19 15 8
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C. Dataset statistics

Statistic SF001 (1.6 GB)
Nodes 3,158,994
Relationships 16,800,936
(:Comment) 2,015,590
(:Post) 1,015,594
(:Forum) 92,210
(:Tag) 16,080
(:TagClass) 71
(:Person) 9,987
(:Company) 1,575
(:University) 6,421
(:City) 1,349
(:Country) 111
(:Continent) 6
(:Person)-[:LIKES_COMMENT]->(:Comment) 1,219,614
(:Comment)-[:HAS_CREATOR]->(:Person) 2,015,590
(:Forum)-[:CONTAINER_OF]->(:Post) 1,015,594
(:Person)-[:LIKES_POST]->(:Post) 714,592
(:TagClass)-[IS_SUBCLASS_OF]->(:TagClass) 70
(:Comment)-[HAS_TAG]->(:Tag) 2,597,375
(:Forum)-[HAS_MEMBER]->(:Person) 1,599,016
(:Post)-[HAS_CREATOR]->(:Person) 1,015,594
(:Tag)-[HAS_TYPE]->(:TagClass) 16,080
(:Comment)-[:IS_LOCATED_IN]->(:Country) 2,015,590
(:Forum)-[HAS_MODERATOR]->(:Person) 92,210
(:Person)-[:HAS_INTEREST]->(:Tag) 233,336
(:Person)-[STUDY_AT]->(:University) 7,983
(:Post)-[:HAS_TAG]->(:Tag) 693,027
(:Comment)-[:REPLY_OF]->(:Comment) 1,024,042
(:Forum)-[:HAS_TAG]->(:Tag) 315,559
(:Person)-[:IS_LOCATED_IN]->(:City) 9,987
(:Person)-[WORK_AT]->(:Company) 21,930
(:Post)-[IS_LOCATED_IN]->(:Country) 1,015,594
(:Comment)-[:REPLY_OF]->(:Post) 991,548
(:Person)-[:KNOWS]->(:Person) 177,149

Table C.1: Statistics for LDBC SF001 dataset
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Statistic LAB008 (7.4 MB)
Nodes 90,000
Relationships 80,000
(:Comment) 80,000
(:Person) 10,000
(:Person)-[:CREATED]->(:Comment) 80,000

Statistic LAB040 (36 MB)
Nodes 410,000
Relationships 400,000
(:Comment) 400,000
(:Person) 10,000
(:Person)-[:CREATED]->(:Comment) 410,000

Statistic LAB200 (180 MB)
Nodes 2,010,000
Relationships 2,000,000
(:Comment) 2,000,000
(:Person) 10,000
(:Person)-[:CREATED]->(:Comment) 2,000,000

Statistic LAB400 (360 MB)
Nodes 4,010,000
Relationships 4,000,000
(:Comment) 4,000,000
(:Person) 10,000
(:Person)-[:CREATED]->(:Comment) 4,000,000

Statistic LAB800 (720 MB)
Nodes 8,010,000
Relationships 8,000,000
(:Comment) 8,000,000
(:Person) 10,000
(:Person)-[:CREATED]->(:Comment) 8,000,000

Table C.2: Statistics for the LAB datasets
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Den data som skapas, hanteras och analyseras idag är allt mer “kopplad”. För att 
hantera den sortens data krävs grafdatabaser. Vi visar i detta arbete hur vi kan 
göra svarstiderna 10100 gånger snabbare.

Typen av data som vi hanterar har förändrats mycket 
sedan slutet av 90´talet. Framför allt på grund av 
internet. Då använde vi datorer för att digitalisera 
lönelistor och svar på formulär. Denna typen av data är
isolerad och har ett eget värde i sig självt. Men den 
data som skapas på internet ser annorlunda ut. Den är 
“kopplad” och mycket av informationen ligger i hur 
datan relaterar till sin omvärld. 
 Ta Facebook som exempel. Jag har en profil med lite 
information om mig själv. Men du är mer intresserad av 
vilka gemensamma vänner vi har. Dvs, våra relationer 
till andra människor. Jag har också skrivit kommentarer, 
men vad som är mer intressant är vad jag har kommenterat 
på. Alla dessa kommentarer, profiler och bilder är 
små noder av data och de relaterar till varandra med 
relationer. T.ex likes och vänrelationer. Dessa noder och 
relationer bildar tillsammans ett nätverk av data. När vi 
hämtar data från detta nätverk så “traverserar” vi från en 
nod längst med dess relationer ut till nya noder. T.ex när 
du öppnar min Facebookprofil så vill du även se vilka 
mina vänner är. Då traverserar du från min “profil”nod 
via “vän”relationer ut till andra “profil”noder. På så sätt 
kan du sätta mig i ett sammanhang och lära dig mer om 
mig.
 För att traversera i detta nätverk av information i 
realtid krävs det att datan är sparad på ett smart sätt. 
Traditionella databaser, så kallade relationsdatabaser, 
använder tabeller med rader och kolumner för att spara 
data. Men den modellen passar dåligt för den här typen 

av “kopplad data”. Det är här som grafdatabaser kommer 
in i bilden. Ordet graf är det matematiska namnet på ett 
nätverk av noder och relationer och det är så grafdatabaser 
sparar all data, som noder och relationer. Det gör det 
enkelt att “traversera” i informationsnätverket.
 MEN! Även grafdatabaser stöter på problem när 
noder har extremt många relationer. Speciellt svårt är 
det om vi endast är intresserade av en liten del av alla 
“grann”noder. T.ex kanske det endast är de tio nyaste 
vännerna som skall visas på profilsidan. Men för att hitta 
de tio senaste så måste vi först plocka fram alla vänner 
och sedan sortera dem efter när vänrelationen skapades. 
Om jag har 200 vänner så innebär det en otrolig mängd 
onödigt arbete och försämrade svarstider för databasen.
 I detta arbete visar vi hur vi kan komma runt problemet 
genom att hålla ett sorterat register, eller index, över de 
mest kritiska traverseringarna. Svarstiderna kan på så 
vis bli mellan 10100 gånger snabbare. Tricket för att nå 
denna förbättring är att vi använder oss av ett B+ träd, 
en datastruktur som länge har använts för indexering i 
databaser. Vad som är nytt är hur vi använder den för 
att indexera en hel substruktur av grafen istället för bara 
en enda nod.
 Genom att minska svarstiden för täta grafdatabaser 
öppnar vi upp möjligheter att utföra mer avancerad 
analys av data i realtid. Vilket är mycket värdefullt 
eftersom data i sig själv inte är värt något förrän vi kan 
tolka den.
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