
Master Thesis: My Guess is Better Than Yours

Filip Tronarp

5th January 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289940016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Notation
∆Xn : The forward difference of Xn, i.e ∆Xn = Xn+1 −Xn.
pX(x) : The probability density of the stochastic variable X, the subscript is usually omitted.
E{X} : The expected value of X, brackets are omitted when the meaning is obvious.
V{X} : The variance of X, brackets are omitted when the meaning is obvious.
C{X,Y } : The covariance between X and Y .
X ⊥ Y : X and Y are independent.
X ∼ Y : X and Y are equal in sense of distribution.
X ∼ p(x) : X is drawn from the distribution corresponding to the probability density p(x)
{xn′:N} : shorthand for {xn}Nn=n′ .
I : The identity matrix.
AT : The transpose of A.
Ai,j : The element at row i and column j of the matrix A.
A:,j : The j:th column vector of the matrix A.
Ai,: : The i:th row vector of the matrix A.
∂
∂X : Either the partial derivative with respect to X or the jacobian with respect to X.
∇X : The gradient with respect to X.
Tr{A} : The trace of A.

Contents

1 Introduction 4
1.1 Overview . 4

2 Continuous-Time Stochastic Processes 6
2.1 Stochastic Differential Equations . 6

2.1.1 The Wiener Process . 7
2.1.2 Itō Calculus . 8
2.1.3 Discretisation Schemes . 9

3 State Space Models, Filtering and, Prediction 12
3.1 The Filtering Problem . 12
3.2 Approximate Filters . 13

3.2.1 The Extended Kalman Filter . 13
3.2.2 The Unscented Kalman Filter . 14

4 Parameter Estimation 16
4.1 A very brief discussion on estimators in general . 16
4.2 Maximum Likelihood . 16
4.3 Optimisation . 17

4.3.1 Gradient-Based Stochastic Search . 17

5 Results 19
5.1 Filter Performance Evaluation . 19

5.1.1 The Lotka-Volterra System . 19
5.1.2 The Lorenz63 System . 22
5.1.3 The Lorenz96 System . 24

5.2 Continuous-Time UKF vs Exponential UKF In Terms of Computational Speed 26
5.3 Parameter Estimation Experiments . 26

5.3.1 The Ornstein Uhlenbeck Process . 26
5.3.2 The Lorenz63 system . 29

6 Conclusion 33

3

Chapter 1

Introduction

Modeling of and inference in dynamical systems is an issue that frequently arises in a wide array of
disciplines across science and engineering. The biologist may want to understand how the environment
and the interaction of different species causes the population sizes to change over time. The financial
engineer is interested in understanding how the prices of financial products evolve over time. In automatic
control the interest lies in accurate descriptions of processes so that suitable control schemes can be
developed. What all these people have in common is that they’re interested in descriptions of dynamical
systems for the purpose of predicting the future behaviour of said systems. There are different approaches
to describing dynamical systems, the system can be thought of as operating in continuous or discrete time
and it can be thought of as deterministic or stochastic. The aim of this thesis is to survey methods for
dealing with dynamical systems in the case when they evolve stochastically in continuous-time. Though
more specifically models for continuous-time stochastic processes that are measured at a collection of
discrete instants are considered.

1.1 Overview
The stochastic differential equation will in this text be fundamental to the development of a framework in
which the behaviour of a continuous-time stochastic process can be expressed intuitively and compactly.
Chapter 2 offers a very brief overview of the theoretical aspects of defining the stochastic differential
equation. The Wiener process is defined and what it means to integrate a function with respect to
a Wiener process is discussed. This makes it possible to construct stochastic differential equations, of
particular interest is Itō’s interpretation and a modest selection of the more important results are presen-
ted. Discrete time approximations will also be discussed as it is essential when dealing with stochastic
differential equations numerically.

Chapter 3 deals with extending the stochastic differential equation model by letting it be, perhaps indir-
ectly, measured at a collection of discrete instants under noisy conditions. This raises questions such as
"Given the measurements I have up until now, what can I say about the current state of the underlying
process?". This is the filtering problem which will briefly be discussed in general terms and a situation
for when there is an exact filtering algorithm will be presented. Though most of the emphasis will be on
approximate filtering algorithms so that more general classes of state space models can be dealt with.

Chapter 4 considers the case when the behaviour of the stochastic process generated by the stochastic
differential equation as well as the measurements depend on a set of unknown parameters. The obvious
question is "So I have a bunch of measurements, what are the parameters?". This is the problem of estim-
ating parameters and a brief discussion of what constitutes a good estimator is followed by a discussion
of Maximum Likelihood and Quasi Maximum Likelihood for the very frequently occurring situations
when the true likelihood is unavailable. Strategies for maximising the likelihood is also considered with
particular emphasis on a recent method, Gradient-Based Adaptive Stochastic Search, which is based on
stochastic approximation.

4

In order to evaluate the different methods presented in the previous chapters the results of some simu-
lated experiments are presented in Chapter 5. More precisely the performance of some of the filtering
algorithms from Chapter 3 is evaluated. There is also a section evaluating the merits of using the
Gradient-Based Adaptive Stochastic Search to maximise the (Quasi) Likelihood.

This thesis ends with Chapter 6 which features a discussion on how the results should be interpreted,
potential flaws and rooms for improvement.

Chapter 2

Continuous-Time Stochastic
Processes

This chapter outlines the theoretical foundations of the stochastic differential equation which is the
fundamental building for the models considered in this thesis. Section 2.1.1 offers a short description of
the Wiener process and its’ properties. Section 2.1 motivates the need of stochastic differential equations
(SDEs) and uses the material from Section 2.1.1 in order to define what is meant by a SDE. A few
of it’s more fundamental properties are subsequently presented. Section 2.1.3 discusses discretisation of
stochastic differential equations. The methods presented here are essential to developing the approximate
algorithms for state space models in Chapter 3.

2.1 Stochastic Differential Equations

While the classical methods of time series analysis are often sufficient to model dynamic systems there are
some drawbacks. Non-uniformly sampled data may for example cause problems. Since the conditional
mean is linear and the conditional variance is constant in linear time series models heteroscedatic data
will be a bad experience for the modeler. This can be handled employing non-linear time series models
though these models can be hard to interpret. Furthermore it’s cumbersome to incorporate domain
knowledge, coming from e.g physics, in the modeling procedure for these types of models. Hence the
goal of developing modeling techniques with stochastic differential equations is to create a framework in
which the modeler can intuitively express partial knowledge of the system being studied as well as making
it easy to incorporate additional hypothesis of the systems behaviour. Since the solution to a SDE is a
continuous-time process the issue of irregularly sampled data is in principle solved. Though everything
has a cost, the theory of SDEs is a lot more complicated, the same goes for implementing filters/smoothers
and consequently parameter estimation. The idea behind stochastic differential equations is to mimic
the generalisation of deterministic signals governed by a recursive relation to stochastic signals governed
by a recursive relation with noise input in the context of differential equations.

Deterministic Stochastic
Xt = f(t,Xt−1) Xt = f(t,Xt−1) + g(t,Xt−1)Et (2.1)
dXt

dt = f(t,Xt)
dXt

dt = f(t,Xt) + g(t,Xt)
dWt

dt (2.2)

Though since there’s no suitable way to define the derivative of Wt stochastic differential equations are
usually expressed in integral or differential form,

6

Integral form:

Xt = Xt0 +
∫ t

t0

f(s,Xs)ds+
∫ t

t0

g(s,Xs)dWs (2.3)

Differential form:
dXt = f(t,Xt)dt+ g(t,Xt)dWt. (2.4)

2.1.1 The Wiener Process

Before stochastic differential equation in (2.3) can make any sense the properties of the driving noise
Wt need to be discussed. Usually Wt is taken to be the Wiener process though other alternatives are
possible, e.g compound poisson.

Definition 1. The Wiener process.
A stochastic process {Wt}t>0 is said to be a Wiener process if the following conditions are satisfied.
1) W0 = 0 with probability one.
2) For any non-overlapping intervals [t′, t] and [s′, s], Wt −Wt′ ⊥Ws −Ws′ .
3) For any t, t′ such that t > t′ > 0, Wt −Wt′ ∼ N (0, t− t′).
4) The path is continuous.

It is obvious from the definition that the Wiener process can be simulated on a grid {tn}Nn=0, t0 = 0 by
setting w0 = 0 and recursively compute wtn by wtn = wtn−1 + Etn where Etn ∼ N (0, tn − tn−1). The
results of ten such simulations are shown in Figure 2.1.

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w
t

-6

-4

-2

0

2

4

6

8
10 realisations of the wiener process

Figure 2.1: Ten simulations of the Wiener process on a uniform grid with tN = 5 and ∆tn = 1/1000

As the simulation procedure suggests the Wiener process can be thought of as the continuous-time
equivalent of the random walk. Since E{W 2

t } = E{(Wt −W0)2} = t <∞ and limt′→t E{(Wt′ −Wt)2} =
limt′→t |t′−t| = 0 the Wiener process is continuous almost everywhere in the mean square sense. Though
it’s nowhere differentiable which motivates why SDEs are thought of in terms of integral equations.

2.1.2 Itō Calculus
The challenging part in making equation (2.3) meaningful is to define what it means to integrate with
respect to Wt. Recall that the integral with respect to a real valued variable can be constructed as a
Riemann sum,

tf∫
ti

f(t)dt = lim
N→∞

N∑
n=0

f(τn)(tn − tn−1), (2.5)

ti = t0, tN = tf , tn = tn−1 + tf − ti
N

, τn ∈ [tn−1, tn]. (2.6)

The idea is to construct the stochastic integral in a similar manner. Though instead of multiplying with
the time increments, tn − tn−1, the increments of the Wiener process are used, Wtn −Wtn−1 .

tf∫
ti

f(t,Xt)dWt = lim
N→∞

N∑
n=0

f(τn, Xτn)(Wtn −Wtn−1), (2.7)

ti = t0, tN = tf , tn = tn−1 + tf − ti
N

, τn ∈ [tn−1, tn]. (2.8)

In the deterministic integral it doesn’t matter where in the interval [tn−1, tn] the integrand is evaluated.
This is however not the case for stochastic integration. In fact when integrating a Wiener process
with respect to itself choosing either τn = tn−1 or τn = tn yield two quite different answers, namely
(W 2

tf
− W 2

ti − (tf − ti))/2 and (W 2
tf
− W 2

ti + (tf − ti))/2 respectively. To illustrate this consider the
integral of a Wiener process with respect to itself, setting τn = tn−1.

∫ tf

ti

WsdWs = lim
N→∞

∑
n

Wtn−1(Wtn −Wtn−1) = (2.9)

(2.10)

Expressing the first occurrence of Wtn−1 as Wtn−1 + 0 = Wtn +Wtn−1 −Wtn yields the following,

lim
N→∞

∑
n

(Wtn +Wtn−1 −Wtn)(Wtn −Wtn−1) = (2.11)

lim
N→∞

∑
n

(Wtn +Wtn−1)(Wtn −Wtn−1)−
∑
n

Wtn(Wtn −Wtn−1). (2.12)

The first in (2.12) is a telescope sum that simply evalutes to W 2
tf
−W 2

ti . Now to figure out what the
second sum in (2.12) amounts to the same trick is used again, Wtn + 0 = Wtn −Wtn−1 +Wtn−1 , which
results in,

−
∑
n

(Wtn −Wtn−1 +Wtn−1)(Wtn −Wtn−1) = (2.13)

−
∑
n

(Wtn −Wtn−1)2 −
∑
n

Wtn−1(Wtn −Wtn−1). (2.14)

(2.15)

The second sum in (2.14) equals −
∫ tf
ti
WsdWs by definition. As a consequence of the properties of

the Wiener process the first sum in (2.14) has an expected value of (tf − ti), furthermore N
tf−ti (Wtn −

Wtn−1)2 ∼ X 2(1) which implies that the variance of the sum is 2(tf−ti)2

N , hence it converges to tf − ti in
mean square sense. It is thus concluded that,

∫ tf

ti

WsdWs = W 2
tf
−W 2

ti − (tf − ti)−
∫ tf

ti

WsdWs, (2.16)

and hence, ∫ tf

ti

WsdWs =
W 2
tf
−W 2

ti − (tf − ti)
2 . (2.17)

On the other hand,

lim
N→∞

∑
n

(Wtn +Wtn−1)(Wtn −Wtn−1) = (2.18)

lim
N→∞

∑
n

Wtn(Wtn −Wtn−1) + lim
N→∞

∑
n

Wtn−1(Wtn −Wtn−1) = (2.19)

W 2
tf
−W 2

ti , (2.20)

which implies that

lim
N→∞

∑
Wtn(Wtn −Wtn−1) =

W 2
tf
−W 2

ti + (tf − ti)
2 . (2.21)

Clearly the result is different for different choices of τn. When the choice is τn = tn−1 the result is Itō’s
integral. Which is the interpretation used for the remainder of this text unless otherwise specified.

The integral in (2.3) can finally be given meaning by interpreting the deterministic integral as a Riemann
sum and the stochastic integral as an Itō integral for example. Something peculiar happens to the chain
rule when the SDE is interpreted in Itō’s sense, this is the Itō Formula given below.

Theorem 1. The Itō Formula.
Let q ∈ C1,2(R) and Xt be a solution to dXt = f(t,Xt)dt+ g(t,Xt)dWt. Then Yt = q(t,Xt) satisfies the
following SDE.
One dimension:
dYt = (∂q∂t + f ∂q

∂Xt
+ 1

2g
2 ∂2q
∂X2

t
)dt+ g ∂q

∂Xt
dWt

Several Dimensions:
dYt = (∂q∂t + (∇Xq)T f + 1

2 Tr{gT ∂2q
∂X2 g})dt+ (∇Xq)T gdWt

For a motivation why this happens refer to [3]. From Theorem 1 it follows that the state dependence
of the diffusion term, g(t,Xt), can in principle be removed by finding a primitive to 1

g(t,Xt) . This is the
Lamperti Transform given below.

Definition 2. The Lamperti Transform.
Let Xt be a solution to Xt be a solution to dXt = f(t,Xt)dt+ g(t,Xt)dWt.
Then the Lamperti transform of Xt is given by
Yt = q(t,Xt) =

∫ 1
g(t,x)dx

∣∣
x=Xt

, resulting in the following SDE for Yt,
dYt = (∂q∂t + f(t,Xt)

g(t,Xt) −
1
2
∂g
∂Xt

)dt+ dWt

This transform is useful as it’s easier to produce approximate transition densities for systems where the
diffusion term doesn’t depend on the state and it can increase the order of convergence for discrete time
approximations of SDEs, see Section 2.1.3.

2.1.3 Discretisation Schemes
Discrete time approximations are needed in order to simulate and develop filters for systems governed
by SDEs for the many cases where no closed form solution is known or exists. Typically this is accom-
plished by stochastic Taylor expansions which serves as the counterpart to the ordinary Taylor expansion.
According to Theorem 1 f and g can be expressed as stochastic integrals whose solutions are given by,

ft = ft0 +
∫ t

t0

∂f

∂s
+ f

∂f

∂Xs
+ 1

2g
2 ∂

2f

∂X2
s

ds+
∫ t

t0

g
∂f

∂Xs
dWs (2.22)

gt = gt0 +
∫ t

t0

∂g

∂s
+ f

∂g

∂Xs
+ 1

2g
2 ∂

2g

∂X2
s

ds +
∫ t

t0

g
∂g

∂Xs
dWs. (2.23)

This looks a bit messy but is in fact quite useful seeing as the drift and the diffusion are now expressed in
terms of a constant initial value with some added integrals. Since integrating with respect to a constant
either by Riemann or Itoō is trivial analytically the solution can be divided into a part that can be
evaluated exactly and a part containing a bunch of multiple integrals, call the latter R. This results in
the following,

Xt = Xt0 +
∫ t

t0

ft0dt+
∫ t

t0

gt0dWs +R (2.24)

= Xt0 + ft0(t− t0) + gt0(Wt −Wt0) +R. (2.25)

When R is neglected the result is the Euler-Maruyama scheme (EM scheme). This can be thought of
as the SDE counterpart to to Explicit Eulers method from deterministic numerical integration and the
complete algorithm is given below.

Algorithm 1. The Euler-Maruyama Method.
1) Partition the interval [0, T] into N subintervals equal in length, 0 = t0 < t1 < · · · < tN = T
2) Simulate X0 ∼ pX0(x)
3) For n = 1, 2, . . . , N
Xtn = Xtn−1 + f(tn−1, Xtn−1)∆tn−1 + g(tn−1, Xtn−1)Etn , where Etn ∼ N (0, I∆tn−1).

This approximation can be refined by continued application of Itō’s Formula to the terms in R. Doing
it on the term g ∂f∂X from (2.22) results in the Milstein method which is given below.

Algorithm 2. The Milstein Method.
1) Partition the interval [0, T] into N subintervals equal in length, 0 = t0 < t1 < · · · < tN = T
2) Simulate X0 ∼ pX0(x)
3) For n = 1, 2, . . . , N
Xtn = Xtn−1 +f(tn−1, Xtn−1)∆tn−1+g(tn−1, Xtn−1)Etn + 1

2g(tn−1, Xtn−1) dg
dX (tn−1, Xtn−1)(E2

tn−∆tn−1),
where Etn ∼ N (0,∆tn−1).

In order to assess the quality of an approximation there needs to be a notion of error with respect to
the step size, h. If Y ht is a discrete time approximation to the stochastic process Xt then there are two
interesting notions of error,

ε(1)(h) = E|Xt − Y ht |, (2.26)
ε(2)(h) = |Eg(Xt)− Eg(Y ht)|, (2.27)

where g is chosen from some class of polynomials, C. This leads to two different definitions of convergence
corresponding to the errors ε(1) and ε(2) respectively.

Definition 3. convergence.
A discrete time approximation, Y ht , of Xt with maximum step size h is said to converge to Xt if
limh→0 ε

(i)(h) = 0,
and there exists a positive constant C that does not depend on h, and a h0 > 0 such that
ε(i)(h) < Chα

for some α > 0 and ∀h ∈ (0, h0).
Y ht is said to converge strongly when i = 1 and for i = 2 it is said to converge weakly, with ε(i) being
defined in (2.26) and (2.27). The order of convergence is in both cases given by α.

As it turns out the Euler-Maruyama scheme attains a strong order of convergence α = 0.5 while the
Milstein scheme achieves a strong order of convergence α = 1. Though whenever ∂g

∂X = 0 these two
methods are identical which motivates the transfrom in Definition 2. Both attain weak order α = 1. For
a more thorough discussion on convergence and discrete time approximations see [3].

Approximations can also be produced by being a bit more clever than mindlessly applying Itōs Formula
ad infinitum. For example in [7] Carlos M. Mora develops a collection of exponential schemes for the case
when the diffusion term, g, is independent of the state by locally expressing the sought after process, Xt,
as

Xt = Xt0 +
∫ t

t0

At0Xtdt+Rt,t0 , (2.28)

where Rt,t0 is the error process. This procedure results in the Euler Exponential Scheme which achieves
weak order 1.

Algorithm 3. The Euler Exponential Scheme.
1) Partition the interval [0, T] into N subintervals equal in length, 0 = t0 < t1 < · · · < tN = T
2) Simulate X0 ∼ pX0(x)
3) For n = 1, 2, . . . , N
Xtn = exp

(
∂f
∂X (tn−1, Xtn−1)∆tn−1

)(
Xtn−1 +

(
f(tn−1, Xtn−1)− ∂f

∂X (tn−1, Xtn−1)Xtn−1

)
∆tn−1 + . . .

(∆tn−1)1/2g(tn−1)Etn
)
,

where Etn is distributed according to a symmetric law with variance 1 and moments of any order and
∂f
∂X denotes the jacobian of f .

Numerical experiments show that the Euler Exponential scheme performs well when Jabobian of f have
non-positive eigenvalues with large differences in magnitude and when the eigenvalues are imaginary of
large magnitude. The scheme can also be improved upon, leading Mora’s Exponential Scheme 4 that
achieves weak order 2 by calculating second derivatives of f . Another way to improve the Euler Expo-
nential Scheme is through the application of extrapolation methods [7].

There are of course many other ways to develop approximations, for example [10] uses a method for
converting an SDE into a an ODE through a series expansion of the Wiener process with stochastic
coefficients.

Chapter 3

State Space Models, Filtering and,
Prediction

This chapter is concerned with filtering and prediction in state space models. When a stochastic process
is imperfectly measured, e.g noisy or measurements restricted to some subspace, it becomes a partially
observed system. From a series of outcomes from the measurement function the goal is to is to infer
the state of the underlying SDE as well as predicting future states and measurements. This is flexible
way to deal with measurements of a phenomena since it takes cares of a lot of situations, from sensor
imperfections to censored observations and perhaps even more complicated relations between the meas-
urements and the state of the underlying SDE arising from e.g the Lamperti Transfrom in Definition 2.
Though it’s the modelers perogative to assert a measurement function since it’s in a very real sense part
of the model, a state space model is the aim to model the underlying pheonomena and the measurement
of it jointly. More specifically this chapter is concerned with continuous-discrete time filtering, that is
the the underlying stochastic process will be governed by an SDE while the measurements are available
at a collection of discrete instances. In section 3.1 some general filtering theory is presented as well as
the famous Kalman filter which is applicable to linear systems. In section 3.2 Extened Kalman Filters
and Unscented Kalman Filters are discussed which are approximate filters for non-linear systems.

3.1 The Filtering Problem

The mathematical setting of continuous-discrete time state space models is that there’s a latent process,
Xt, governed by a SDE in Itō’s sense together with measurements, Yn, that depend on Xtn and some
stochastic variable, Vn, with Vn ⊥ Vm if n 6= m.

dXt = f(t,Xt)dt+ g(t,Xt)dWt, (3.1)
Yn = h(tn, Xtn) + Vn, Vn ∼ pVn

(vn). (3.2)

Normally in probabilistic state space models a transition density, Xt|Xs = xs ∼ p(xt|xs), t > s, and a
measurement density, Yn|Xtn = xtn ∼ p(yn|xtn), are provided. Here the transition density is implicitly
defined by the SDE and the measurement density is defined by h, t,X, and, V . The ambition in the
context of filtering such a system is that given a set of observations Y1:n find the so called filtering density
of Xtn , that is find the probability density, p(xtn |y1:n). Now Bayes’ rule, the fact that Xtn |Xtn−1 =
xtn−1 , Y1:n−1 = y1:n−1 ∼ Xtn |Xtn−1 = xtn−1 and Yn|Xtn = xtn , Y1:n−1 = y1:n−1 ∼ Yn|Xtn = xtn means
this density can be expressed in relatively simple terms.

12

p(xtn |y1:n) = p(xtn , yn|y1:n−1)
p(yn|y1:n−1) = p(yn|xtn , y1:n−1)p(xtn |y1:n−1)

p(yn|y1:n−1) (3.3)

= p(yn|xtn)p(xtn |y1:n−1)
p(yn|y1:n−1) =

p(yn|xtn)
∫
p(xtn |xtn−1 , y1:n−1)p(xtn−1 |y1:n−1)dxtn−1

p(yn|y1:n−1) (3.4)

=
p(yn|xtn)

∫
p(xtn |xtn−1)p(xtn−1 |y1:n−1)dxtn−1

p(yn|y1:n−1) . (3.5)

The above actually contains all information necessary to produce predictions Yn|Y1:n−k = y1:n−k and
Xn|Yn−k = y1:n−k, k > 0 as well as the filtering densities provided the aforementioned densities are
available and that the integration can be carried out. This is true for Gaussian systems which is the case
when the initial distribution p(xt0) is Gaussian and the SDE and measurement are linear in Xt, i.e

dXt = A(t)xtdt+ g(t)dWt, (3.6)
Yn = H(tn)Xtn + Vn, Vn ∼ N (0, Rtn). (3.7)

Only the mean, and covariance needs to be tracked since Xt begins as a Gaussian and stays that way
forever. This leads to a pair of ODEs for E{Xt, |Xs} and C{Xt|Xs}, t > s which provides the necessities
for the Continuous-Discrete Kalaman Filter given in Algorithm 4. For a more extensive discussion on
filtering and prediction in state-space models, though in the time discrete setting, see [8].

Algorithm 4. The Continuous-Discrete Kalman Filter.
Prediction:
Solve the following differential equations.
d
dtmt|tn−1 = A(t)mt|tn−1 , and
d
dtPt|tn−1 = A(t)Pt|tn−1 + Pt|tn−1A(t)T + g(t)g(t)T ,
on the interval [tn−1, tn] with mtn−1|tn−1 = E{Xtn−1 |yt1:tn−1} and Ptn−1|tn−1 = V{Xtn−1 |yt1:tn−1}.
Update:
Compute the following.
Stn = H(tn)Ptn|tn−1H(tn)T +Rtn
Ktn = Ptn|tn−1H(tn)TS−1

tn
E{Xtn |yt1:tn} = xtn|tn−1 +Ktn(ytn −H(tn)xtn|tn−1)
V{Xtn |yt1:tn} = (I −KtnH(tn))Ptn|tn−1

3.2 Approximate Filters
The world is rarely as simple as one could hope for, it’s frequently non-linear and/or non-Gaussian. When
the system is non-linear the procedure in Algorithm 4 no longer applies. Though since it only operates on
means and covariances a popular approach to approximate filtering is based on approximating these and
then applying the kalman filter update anyway. This section will discuss two such approaches, the first
one being linearisation of the drift function, f(t,Xt), and the measurement function, h(t,Xt), around
the mean of Xt resulting in the Extended Kalman Filter (EKF) which is one of the earlier attempts
at filtering non-linear systems. The second approach is based on the Unscented Transform (UT) which
involves deterministically sampling points from a distribution and to each point associating a weight
such that means and covariances can be computed through a weighted sum, this results in the Unscented
Kalman Filter (UKF). Other approaches involve for example particle methods though that is outside the
scope of this text.

3.2.1 The Extended Kalman Filter
As mentioned the basic idea of the Extended Kalman Filter is simply to produce a linear approximation
to the system and apply the ordinary Kalman Filter procedure to the resulting system,

dXt ≈
(
f(t,EXt) + ∂f

∂Xt
(t,EXt)(Xt − EXt)

)
dt+ g(t)dWt, (3.8)

Yn ≈ h(tn,EXtn) + ∂h

∂Xtn

(tn,EXtn)(Xtn − EXtn) + Vn. (3.9)

When the necessary expectations have been computed the result is the Continuous-Discrete Extended
Kalman Filter.

Algorithm 5. The Continuous-Discrete Extended Kalman Filter.
Prediction:
Solve the following differential equations.
d
dtmt|tn−1 = f(t,mt|tn−1), and
d
dtPt|tn−1 = ∂f

∂Xt
(t,mt|tn−1)Pt|tn−1 + Pt|tn−1

∂f
∂Xt

(t,mt|tn−1)T + g(t)g(t)T ,
on the interval [tn−1, tn] with mtn−1|tn−1 = E{Xtn−1 |yt1:tn−1} and Ptn−1|tn−1 = V{Xtn−1 |yt1:tn−1}.
Update:
Compute the following.
Stn = ∂h

∂Xt
(tn,mtn|tn−1)Ptn|tn−1

∂h
∂Xt

(tn,mtn|tn−1)T +Rtn
Ktn = Ptn|tn−1

∂h
∂Xt

(tn,mtn|tn−1)TS−1
tn

E{Xtn |yt1:tn} = mtn|tn−1 +Ktn(ytn − h(tn,mtn|tn−1))
V{Xtn |yt1:tn} = (I −Ktn

∂h
∂Xt

(tn,mtn|tn−1))Ptn|tn−1

The approximation can of course be refined by keeping higher order terms, when the second derivatives
of the Taylor expansions are kept the result is the second order Extended Kalman Filter, to see what
happens in the case of a discrete time system refer to [8].

3.2.2 The Unscented Kalman Filter
Another approach to approximate filtering in non-linear systems is based on the Unscented Transform
which is inspired by the realisation that it is easier to approximate a probability distribution than an
arbitrary non-linear function. The idea is to deterministically sample a set of so-called Sigma Points
such that the true mean and covariance are exactly recovered by a weighted sum. This approach, at
least in discrete time, guarantees the same performance as a truncated second order filter but with the
same computational complexity as the Extended Kalman Filter and without the need to compute any
derivatives [4].

Algorithm 6. The Unscented Transform.
Let RD 3 X ∼ N (m,P) and q(x) be a function that can be evaluated at X then Eq(X) and Vq(X) can
be approximated by the following procedure.
Set the parameters of the algorithm, α, β, κ, and define the following vectors, called sigma points.
X (0) = m
X (d) = m+ (D + λ)1/2P

1/2
:,d ,

X (d+D) = m− (D + λ)1/2P
1/2
:,d , d = 1, . . . , D

Then Eq(X), Vq(X) are approximated by the following.
EUT q(X) =

∑2D
d=0 w

(m)
d q(X (d))

VUT q(X) =
∑2D
d=0 w

(c)
d (q(X (d))− Eq(X))(q(X (d))− Eq(X))T ,

where λ = α2(D + κ)−D and the weights are defined by the following.
w

(m)
0 = λ

λ+D ,
w

(c)
0 = λ

λ+D + (1− α2 + β)
w

(m)
d = w

(c)
d = 1

2(D+λ) , d = 1, . . . , 2D.

In order to derive a Kalman-type filter for continuous-discrete systems based on the Unscented Transform
there are several approaches. The UT can be applied directly to a discretisation of the SDE resulting in
Algorithm 8. When taking the limit ∆t→ 0 an ODE for the sigma points can be derived as is done using
the EM scheme in [9], this results in Algorithm 7. Another approach is to approximate the SDE by an

ODE with random coefficients and then jointly apply the UT to the state and the random coefficients
[10].

Algorithm 7. The Continuous-Discrete Unscented Kalman Filter.
Prediction:
Solve the following differential equations.
d
dtE{Xt|yt1:tn−1} = EUT {f(t,Xt)|yt1:tn−1},
d
dtV{Xt|yt1:tn−1} = CUT {Xt, f(t,Xt)|yt1:tn−1}+ CUT {f(t,Xt), Xt|yt1:tn−1}+ g(t)g(t)T ,
on the interval [tn−1, tn].
Update:
Compute the following.
Ktn = C{Xtn , Ytn |yt1:tn−1}V{Ytn |yt1:tn−1}−1,
E{Xtn |yt1:tn} = E{Xtn |yt1:tn−1}+Ktn(ytn − E{Ytn |yt1:tn−1}),
V{Xtn |yt1:tn} = V{Xtn |yt1:tn−1} −KtnV{h(tn, Xtn)|yt1:tn−1}KT

tn .
Where the expectation, variances and, covariances are computed with respect to the unscented transform.

Now the ODE in Algorithm 7 may need some additional clarification. Let S : RD×RD×D → RD×(2D+1)

denote the function that transforms the mean,m, and covariance P into a matrix with the sigma points in
the columns, i.e (S(m,P)):,d = X (d). Additionally letmt = E{Xt|yt1:tn−1}, ft =

∑2D
d=0 w

(m)
d f(t, (S(mt, Pt)):,d)

and, Pt = V{Xt|yt1:tn−1} to reduce clutter. The ODE is then given by,

d
dtmt =

2D∑
d=0

w
(m)
d f(t, (S(mt, Pt)):,d), (3.10)

d
dtPt =

2D∑
d=0

w
(c)
d ((S(mt, Pt)):,d −mt)(f(t, (S(mt, Pt)):,d)− ft)T (3.11)

+
2D∑
d=0

w
(c)
d (f(t, (S(mt, Pt)):,d)− ft)((S(mt, Pt)):,d −mt)T

)
+ g(t)g(t)T , (3.12)

with the derivatives of mt and Pt now expressed solely in terms of functions with mt and Pt as arguments
it is now straight forward to apply a suitable numerical scheme for ODEs.

Algorithm 8. The Discretised Unscented Kalman Filter.
Choose your favourite explicit SDE discretisation scheme, Xt+h = F (Xt, Et+h, h), where h is the step
size.
Predict:
Set sn−1 = tn−1 and perform the unscented transform on the augmented vector, Zsn−1 =

(
XT
sn−1

ETsn−1+h
)T ,

and compute
E{Xsn−1+h|yt1:tn−1} = EUT {F (ZXsn−1

, ZEsn−1
, h)|yt1:tn−1},

V{Xsn−1+h|yt1:tn−1} = VUT {F (ZXsn−1
, ZEsn−1

, h)|yt1:tn−1},
if sn−1 + h = tn continue to the update step, otherwise repeat the above computation for sn = sn−1 + h.
The expectations are taken with respect to the unscented transform and ZXt , ZEt are the sub-vectors of Zt
corresponding to Xt and Et+h respectively.
Update:
Use the update procedure from Algorithm 7.

In principle a semi-implicit or implicit scheme can be used in Algorithm 8 though the author makes no
guarantees with regards to theory nor experience that this would be sensible in practice.

Chapter 4

Parameter Estimation

This chapter deals with parameter estimation in state space models driven by a SDE. Section 4.1 features
a very brief discussion on estimators in general and what should be expected from a good estimator.
In Section 4.2 the maximum likelihood estimator is presented along with it’s ugly stepsister, the quasi
maximum likelihood estimator. Section 4.3 ponders different strategies for maximising the likelihood
when a closed form solution is unavailable with particular attention given to the Gradient-Based Adaptive
Stochastic Search algorithm.

4.1 A very brief discussion on estimators in general
This chapter discusses parameter estimation in state space models driven by a SDE. Hence the assumption
is that the system under consideration is described by the following model,

dXt = f(t,Xt; θ)dt+ g(t; θ)dWt, (4.1)
Yn = h(tn, Xtn ; θ) + Vn, Vn ∼ N (0, , Rtn(θ)), (4.2)

where f, g, h and, Rtn all depend on the parameter θ, taken from some parameter space, θ ∈ Θ. The
goal is to given a set of measurements, y1:N , find the parameter θ∗ that in some sense is the best fit to
the measurements of all possible choices of parameters from Θ. This parameter is obviously a function
of the measurements, i.e θ∗ = θ∗(Y1:N). There are a few conditions put on θ∗ to guarantee that it’s a
reasonable estimator of the true parameter, let’s call it θ′,

(1) lim
N→∞

Eθ∗ = θ′, (4.3)

(2) lim
N→∞

Vθ∗ = 0. (4.4)

An estimator for which the first condition holds is called asymptotically unbiased and an estimator
for which the first and the second condition holds is called asymptotically consistent. Together they
ensure that when there’s an unlimited amount of data available the true value, θ′, is recovered. It’s
also preferable that θ∗ is efficient which means that among all unbiased estimators θ∗ has the smallest
variance [6].

4.2 Maximum Likelihood
Suppose the joint density of Y1:N is available then the likelihood function is given by,

L(θ, Y1:N) = p(y1:N ; θ) =
(N∏
n=2

p(yn|y1:n−1; θ)
)
p(y1; θ). (4.5)

Though it’s often more convenient to work with the log-likelihood function,

16

`(θ, Y1:N) = logL(θ) = log p(y1; θ) +
N∑
n=2

log p(yn|y1:n−1; θ). (4.6)

Maximising the log-likelihood function results in the Maximum Likelihood Estimator (MLE),

θMLE = argmax
θ∈Θ

`(θ, Y1:N). (4.7)

The MLE has some nice properties when the data set grows,

IN (θ′)1/2(θMLE − θ′)
d→ N (0, I), N →∞, (4.8)

where IN (θ) is an approximation to the fisher information matrix given by

IN (θ) =
N∑
n=0

E
{(
∇θ`(θ, y1:n)−∇θ`(θ, y1:n−1)

)(
∇θ`(θ, y1:n)−∇θ`(θ, y1:n−1)

)T ∣∣∣∣y1:n−1

}
, (4.9)

where the first term in the sum is defined as E
{
∇θ`(θ, y1)∇θ`(θ, y1)T

}
. For handwavy argument as to

why this is the case see [6].

In the case of state space models driven by a SDE the problem arises that it’s difficult or impossible to
arrive at a closed form expression for the likelihood function. In linear models it can be approximated
by numerical integration using the Kalman Filter in Algorithm 4. However the non-linear case requires
the delusion that the one-step prediction errors are normally distributed, i.e

E{Yn|y1:n−1} − Yn ∼ N (0, Stn), (4.10)

where the prediction mean and covariance are computed using for example Algorithm 5, 7, or 8. The
result of maximising these quasi-likelihoods does not necessarily have the good properties of the MLE,
but it’s typically consistent, see Chapter 5 in [2].

4.3 Optimisation
The conclusion of the previous section is that many times in order to produce an estimator a maxim-
isation/minimisation problem needs to be solved and when this is done on the likelihood function the
result is the MLE but it can also be done on a quasi-likelihood which results in the Quasi Maximum
Likelihood Estimator (QMLE).

The classical methods for finding the MLE (or the maximum of any function) are the gradient methods,
i.e gradient ascent or Newtons method. Though these kinds of algorithms are usually not suitable for
parameter estimation in continuous-time state space models since the derivatives are too difficult to find.
The options are to either approximate the derivatives numerically or to use a derivative free method.
A recent method belonging to the latter category is the Gradient-Based Adaptive Stochastic Search
algorithm that was developed in [1].

4.3.1 Gradient-Based Stochastic Search
The idea behing the Gradient-Based Adaptive Stochastic Search algorithm is to use a parametrised
family of probability distributions, p(θ; γ), γ ∈ Γ, to search for θMLE through sampling. The samples are
then used in updating γ so that the next sampling step is more successful in finding promising candidates
for θMLE . The method was originally not developed for finding the MLE and so there is an assumption
that `(θ, y1:N) is bounded, i.e `(θ, y1:N) ∈ [`lb, `ub], which is not necessarily true for the log-likelihood.
Though in practice this is of little consequence since the optimisation can be performed on some subset
of Θ, Θ̂ ⊂ Θ where this assumption holds. Now let ˆ̀ = `(θ̂, y1:N) be the maximum value of `(θ, y1:N)
with θ ∈ Θ̂. The problem of maximising `(θ, y1:N) is then transformed into the following problem,

γ∗ = argmax
γ∈Γ

∫
θ∈Θ̂

`(θ, y1:N)p(θ; γ)dθ (4.11)

= argmax
γ∈Γ

Ep(θ;γ){`(θ, y1:N)}. (4.12)

Though in order to develop this further `(θ, y1:N) needs to be transformed by a shape function, Sγ(θ),
that is bounded and makes sure the maximisation objective is positive as it will be used to define a
probability density. Obviously Sγ(θ) also needs to be non-decreasing so as to ensure the maxima does
not change. The shape function, Sγ(θ), can also be used to prune some of the least promising samples by
choosing it as a (soft) indicator function and setting the threshold to some quantile of `(θ, y1:N). Though
this quantile will have to be estimated by the samples of p(θ; γ) in which case the shape function will be
referred to as Ŝ if it’s of technical relevancy. the Now the following function can be defined,

L(γ, γ′) =
∫
θ∈Θ̂

Sγ′(`(θ, y1:N))p(θ; γ)dθ. (4.13)

Finally a Newton-type procedure can be carried out by finding an expression for the gradient and the
hessian of L(γ, γi) which can then be estimated from the samples of p(θ; γi). This becomes especially
simple when p is chosen as an exponential distribution, p(θ; γ) = exp(γTT (θ)− φ(γ)), where T (θ) is the
vector of sufficient statistics. Subsequently the following probability distribution is defined,

p′(θ; γ) ∝ Sγ′(`(θ, y1:N))p(θ; γ), (4.14)

which results in Algorithm 9.

Algorithm 9. Gradient-Based Adaptive Stochastic Search.
Choose an exponential density p(θ; γ), a family of step sizes {αi}, a sequence of sample sizes {Ni}, a
tolerance δ, a small constant ε, an initial parameter γ0 and, a maximum number of iterations I.
Sampling:
Generate Ni samples from p(θ; γi),
Update:
γi+1 = γi + αiV

−1
i (E′i{T (θ)} − Ei{T (θ)}).

If ||E′i{T (θ)} − Ei{T (θ)}|| < δ stop, otherwise increment i and go back to the sampling step.
Vi is given by Vi = VT (θ) + εI. Ei and E′i are the expectations with respect to p(θ; γi) and p′(θ; γi)
respectively, the latter can be evaluated through importance weights.

Obviously Algorithm 9 will not converge for any set of parameters fed into it though it is proven in [1]
that it does indeed converge if the following conditions are satisfied.

(1) αi > 0 ∀i, αi → 0 as i→∞,
∞∑
i=0

αi =∞. (4.15)

(2) Ni = N0i
ζ for some ζ > 0, αi

Ni
∈ O(i−β) for some β > 0 (4.16)

(3) T (θ) is bounded in Θ̂. (4.17)
(4) ∀θ, |Ŝγ − Sγ | → 0 with probability 1 as Ni →∞. (4.18)

Furthermore, the convergence rate of Algorithm 9 can be increased by performing Polyak averaging
according to,

γi+1 = γi + αiV
−1
i (E′i{T (θ)} − Ei{T (θ)}) + αic(γ̄i − γi), (4.19)

γ̄i = i− 1
i

γ̄i−1 + 1
i
γi, γ̄0 = 0. (4.20)

Chapter 5

Results

This chapter presents the results of a series of simulation studies used to evaluate the approximate filtering
methods of section 3.2 as well as the optimisation method for finding the (Quasi) MLE of section 4.3. In
section 5.1 the continuous-time UKF, the discretised UKF based on the Euler-Exponential scheme and
the EKF are evaluated on stochastic versions of the Lotka-Volterra-, Lorenz63- and, Lorenz96 systems.
In section 5.3 the Gradient-Based Adaptive Stochastic Search algorithm is evaluated on the Ornstein-
Uhlenbeck process and the Lorenz63 system.

5.1 Filter Performance Evaluation
The performance measures used to assess the relative quality of the approximate filters is in this text
based on the one-step prediction error, yn|n−1 − yn, and the filtering error, xn|n − xn, according to the
following,

εy =
(

1
N

N∑
n=1
||yn − yn|n−1||2

)1/2
, (5.1)

εx =
(

1
N

N∑
n=1
||xn − xn|n||2

)1/2
. (5.2)

In the case of one-dimensional signals this corresponds to the root mean square error (RMSE).

5.1.1 The Lotka-Volterra System
The Lotka-Volterra system is a model intended to capture the behaviour of systems in population ecology
where different species are either classified as prey or predator. The population size of the predator species
ought to increase when there’s an abundance of food available and decrease when there’s food scarcity, i.e
it’s related to the population size of the prey species. On the other hand the population size of the prey
species ought to decrease with the population size of the predator species as it increases their survival
rate. A stochastic version of the system is given below,

dXt =
(

(b1 − a1X
(2)
t)X(1)

t

(b2 − a2X
(1)
t)X(2)

t

)
dt+

(
σ1X

(1)
t 0

0 σ2X
(2)
t

)
dWt (5.3)

Ytn = Xtn + Vn, Vn ∼ N (0, R) (5.4)

where h(t,Xt) = Xt is the function through which the system is observed and Etn is a measurement er-
ror. Though one can also envision just measuring the prey species or the predator species corresponding
to h(t,X) =

(
1 0

)
X and h(t,X) =

(
0 1

)
X respectively.

19

In order to apply the filtering algorithms of section 3.2 the Lamperti Transform needs to be applied
to remove the state dependent diffusion. Choosing q(1)(t,X(1), X(2)) = σ−1

1 log(X(1)) and choosing
q(2)(t,X(1), X(2)) = σ−1

2 log(X(2)) yields the following system,

dZt =

 b1−a1 exp(σ2Z
(2)
t)

σ1
− σ1

2
b2−a2 exp(σ1Z

(1)
t))

σ2
− σ2

2

 dt+
(

1 0
0 1

)
dWt (5.5)

Ytn =
(

exp(σ1Z
(1)
tn)

exp(σ2Z
(2)
tn)

)
+ Vn, Vn ∼ N (0, R). (5.6)

The system given by this form is simulated 1000 times on the interval [0, 3.5] using the Euler-Maruyama
scheme and a step size of ∆t = 1/10000 with parameters the following parameters

a1 = b1 = 3, a2 = b2 = −15, (5.7)
σ1 = 0.25, σ2 = 0.20, (5.8)

R =
(

0.12 0
0 0.12/2

)
. (5.9)

The data size was also reduced by throwing away all measurements between every 100th measurement.
The UKF based on the exponential scheme was tested using ∆t1 = 1/100 while the continuous-time
UKF was tested using ∆t2 = 1/1000 and integrated using a fourth order Runge-Kutta scheme (RK4)
and their parameters were set to α = 10−3, β = 2, κ = 0. The step size for the continous-time was
chosen as a lower to be smaller since the covariance had a tendency to stop being positive definite oth-
erwise. The Extended Kalman Filter (integrated with a RK4 scheme) had a tendency to either crash or
be on it’s way toward crashing under these circumstances so due to the authors’ lack of patience it was
omitted from the comparison. This is consistent with previous experience of the EKF, see for example [6].

As Figure 5.1 illustrates the both the continuous-time UKF and the exponential UKF appear to have
rather similar performance in both the filtering and the prediction tasks. Though the exponential UKF
has slightly worse performance on average, see Table 5.1, and it deviates from the mean performance
with higher frequency. Keep in mind that the step size was 10 times larger for the exponential UKF.

Table 5.1: The mean of the performance measures, εy and εx, taken over the 1000 simulations of the
Lotka-Volterra system.

Continuous-Time UKF Exponential UKF
εy (mean) 0.1413 0.1615
εx (mean) 0.3016 0.3921

Furthermore, to illustrate the systems behaviour graphically a realisation of Xt and Yn are plotted along
with the filter estimate and the one-step prediction respectively. This time the EKF is included and it
is integrated using a RK4 scheme with a step size of 1/1000 (the same as for the continuous-time UKF).
From figure 5.2 it is clear that the EKF has trouble keeping up - it oscillates wildly around the true
value until the covariance matrix goes singular/non-positive definite and at around t = 2.5 when it starts
outputting NaN. The two UT filters behave reasonably though but it can be hard to see since the EKF
output is blocking the view.

error
0.1 0.15 0.2 0.25 0.3 0.35

co
un

t

0

50

100

150

200

250

300

350

400

450
prediction - exponential scheme

(a)
error

0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

co
un

t

0

50

100

150

200

250

300
prediction - ctukf with 4th order RK

(b)

error
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

co
un

t

0

50

100

150

200

250

300

350

400

450
filter - exponential scheme

(c)
error

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

co
un

t

0

50

100

150

200

250

300

350

400

450

500
filter - ctukf with 4th order RK

(d)

Figure 5.1: Histogram of the square root mean norm errors for the Lotka-Volterra system
a) one-step predictions of the exponential scheme b) one-step predictions of the continuous-discrete UKF
c) filter estimates of the exponential scheme d) filter estimates of the continuous-discrete UKF.

time
0 0.5 1 1.5 2 2.5 3

po
pu

la
tio

n
si

ze

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
prey (measured)

realisation
exp
ukf
ekf

(a)
time

0 0.5 1 1.5 2 2.5 3

po
pu

la
tio

n
si

ze

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
predator (measured)

realisation
exp
ukf
ekf

(b)

time
0 0.5 1 1.5 2 2.5 3

po
pu

la
tio

n
si

ze

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
prey (filtered)

realisation
exp
ukf
ekf

(c)
time

0 0.5 1 1.5 2 2.5 3

po
pu

la
tio

n
si

ze

-8

-6

-4

-2

0

2

4
predator (filtered)

realisation
exp
ukf
ekf

(d)

Figure 5.2: The continuous-time UKF, exponential UKF and the EKF compared against the true value
for a) prediction of Y (1)

n b) prediction of Y (2)
n c) filter estimate of X(1)

tn d) filter estimate of X(2)
tn .

5.1.2 The Lorenz63 System
The Lorenz 63 system is a simplified model for atmospheric convection proposed by Edward N. Lorenz
in [5]. This is one of the earlier and certainly most famous examples of a system that may exhibit chaotic
behaviour. A stochastic version with uncorrelated Brownian perturbations is given below.

dXt =

 σ(X(2)
t −X

(1)
t)

X
(1)
t (ρ−X(3)

t)−X(2)
t

X
(1)
t X

(2)
t − βX

(3)
t

dt+

σ1 0 0
0 σ2 0
0 0 σ3

 dWt, (5.10)

Ytn = h(t,Xt) + Vn, Vn ∼ N (0, R) (5.11)

When the parameters are chosen as (σ, β, ρ) = (10, 8/3, 28) the system becomes chaotic. The system
given by this form is simulated 1000 times on the interval [0, 3.5] using the Euler-Maruyama scheme and
a step size of ∆t = 1/10000 with parameters the following parameters,

σ = 10, β = 8/3, ρ = 28, (5.12)
σ1 = σ2 = σ3 = 4.5, (5.13)

h(t,Xt) =
(

1 0 0
0 0 1

)
Xt, (5.14)

R =
(

1 0
0 1

)
. (5.15)

The data size was again reduced by keeping every 100th measurement. The UKF based on the ex-
ponential scheme was tested using ∆t1 = 1/100 while the continuous-time UKF was tested using
∆t2 = 2/10000 and integrated using a fourth order Runge-Kutta scheme (RK4) and their paramet-
ers were set to α = 10−3, β = 2, κ = 0. The EKF was once again excluded from the comparison.

Figure 5.3 reveal that the continuous-time UKF and the exponential UKF have rather similar perform-
ance again in both prediction and filtering though this time the exponential UKF performs slightly better
on average, see Table 5.2. It’s important to note that this time the step size of the exponential UKF is
50 times bigger than that of the continuous-time UKF.

Table 5.2: The mean of the performance measures, εy and εx, taken over the 1000 simulations of the
Lorenz63 system.

Continuous-Time UKF Exponential UKF
εy (mean) 1.7657 1.7648
εx (mean) 1.5652 1.5626

A graphic demonstration of the filer performance can be found in Figure 5.4. Though since the expo-
nential UKF and the continuous-time UKF are so similar in their estimates and predictions the former
is hard to see unless this thesis is read in PDF-format on a computer where the reader can zoom in, a
lot.

error
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

co
un

t

0

50

100

150

200

250

300
prediction - exponential scheme

(a)
error

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

co
un

t

0

50

100

150

200

250

300
prediction - ctukf with 4th order RK

(b)

error
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

co
un

t

0

50

100

150

200

250

300
filter - exponential scheme

(c)
error

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

co
un

t

0

50

100

150

200

250

300
filter - ctukf with 4th order RK

(d)

Figure 5.3: Histogram of the square root mean norm errors for a) one-step predictions of the exponential
scheme b) one-step predictions of the continuous-discrete UKF c) filter estimates of the exponential
scheme d) filter estimates of the continuous-discrete UKF.

t
0 0.5 1 1.5 2 2.5 3 3.5

y t(1
)

-15

-10

-5

0

5

10

15

20

25
prediction of y

t
(1)

realisation
exp
ukf

(a)
t

0 0.5 1 1.5 2 2.5 3 3.5

y t(3
)

-10

0

10

20

30

40

50
prediction of y

t
(3)

realisation
exp
ukf

(b)

t
0 0.5 1 1.5 2 2.5 3 3.5

x t(1
)

-15

-10

-5

0

5

10

15

20

25
filter estimate of x

t
(1)

realisation
exp
ukf

(c)
t

0 0.5 1 1.5 2 2.5 3 3.5

x t(2
)

-20

-15

-10

-5

0

5

10

15

20

25

30
filter estimate of x

t
(2)

realisation
exp
ukf

(d)
t

0 0.5 1 1.5 2 2.5 3 3.5

x t(3
)

0

5

10

15

20

25

30

35

40

45

50
filter estimate of x

t
(3)

realisation
exp
ukf

(e)

Figure 5.4: The continuous-time UKF, exponential UKF and compared against the true value for a)
prediction of Y (1)

n b) prediction of Y (3)
n c) filter estimate of X(1)

tn d) filter estimate of X(2)
tn e) filter

estimate of X(3)
tn .

5.1.3 The Lorenz96 System
The Lorenz 96 system is a model proposed by Lorenz in 1996 that is intended to describe the dynamics
of some atmospheric variable over a single latitude circle. It is thus a spatiotemporal model, continuous
in time and discrete in space, given by,

dX(m)
t = (−X(m−2)

t X
(m−1)
t +X

(m−1)
t X

(m+1)
t −X(m)

t + F)dt, (5.16)

m = 1, . . . ,M, X
(−2)
t = X

(M−1)
t , X

(−1)
t = X

(M)
t , X

(M+1)
t = X

(1)
t . (5.17)

A simple stochastic version is given by,

dX(m)
t = −X(m−2)

t X
(m−1)
t +X

(m−1)
t X

(m+1)
t −X(m)

t + F + σdW (m)
t , (5.18)

Yn = Xtn + Vn Vn ∼ N (0, Iσ2
V), (5.19)

m = 1, . . . ,M, X
(−2)
t = X

(M−1)
t , X

(−1)
t = X

(M)
t , X

(M+1)
t = X

(1)
t . (5.20)

This system is simulated 1000 times on the interval [0, 5] using the EM scheme and a step size of
∆t = 1/10000 with parameters (F, σ, σV , N) = (8, 10, 2, 24). As per tradition only every 100th sample
is kept and the step size for the exponential UKF and the continuous-time UKF were both chosen as
1/100 and their parameters were set to α = 10−3, β = 2, κ = 0.

error
10 10.1 10.2 10.3 10.4 10.5 10.6

co
un

t

0

50

100

150

200

250
prediction - exponential scheme

(a)
error

9.9 10 10.1 10.2 10.3 10.4 10.5

co
un

t

0

50

100

150

200

250
prediction - ctukf with 4th order RK

(b)

error
4.8 4.85 4.9 4.95 5 5.05 5.1 5.15 5.2

co
un

t

0

50

100

150

200

250
filter - exponential scheme

(c)
error

4.75 4.8 4.85 4.9 4.95 5 5.05 5.1 5.15

co
un

t

0

50

100

150

200

250
filter - ctukf with 4th order RK

(d)

Figure 5.5: Histogram of the square root mean norm errors for a) one-step predictions of the exponential
scheme b) one-step predictions of the continuous-discrete UKF c) filter estimates of the exponential
scheme d) filter estimates of the continuous-discrete UKF.

The histograms of Figure 5.5 show that the exponential UKF and the continuous-time UKF have fairly
similar performance though latter comes out slightly ahead which is easier to see when studying the
mean of the performance measures presented in Table 5.3.

In order to get a visual idea of how the Lorenz96 system behaves the system is run with the same
parameters except the number of states is set to M = 4, the resulting filter estimates and one-step
predictions are shown in Figure 5.6.

Table 5.3: The mean of the performance measures, εy and εx, taken over the 1000 simulations of the
Lorenz96 system.

Continuous-Time UKF Exponential UKF
εy (mean) 10.2311 10.2713
εx (mean) 4.9489 4.9863

time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-20

-15

-10

-5

0

5

10

15

20

25
prediction of y

t
(1)

realisation
exp
ukf

(a)
time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-20

-15

-10

-5

0

5

10

15

20
prediction of y

t
(2)

realisation
exp
ukf

(b)

time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-20

-15

-10

-5

0

5

10

15

20
prediction of y

t
(3)

realisation
exp
ukf

(c)
time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-20

-15

-10

-5

0

5

10

15

20
prediction of y

t
(4)

realisation
exp
ukf

(d)

time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-20

-15

-10

-5

0

5

10

15

20

25
filter estimate - x

t|t
(1)

realisation
exp
ukf

(e)
time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-20

-15

-10

-5

0

5

10

15
filter estimate - x

t|t
(2)

realisation
exp
ukf

(f)

time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-20

-15

-10

-5

0

5

10

15

20
filter estimate - x

t|t
(3)

realisation
exp
ukf

(g)
time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ea

su
re

m
en

t

-15

-10

-5

0

5

10

15

20
filter estimate - x

t|t
(4)

realisation
exp
ukf

(h)

Figure 5.6: The realisation compared to the filter output of the continuous-time UKF and the exponential
UKF a)-d) corresponds to the one-step prediction of Y (1)

n , Y
(2)
n , Y

(3)
n and Y (4)

n , e)-h) corresponds to the
filter estimate of X(1)

n , X
(2)
n , X

(3)
n and X(4)

n .

5.2 Continuous-Time UKF vs Exponential UKF In Terms of
Computational Speed

The experience from the previous sections of the chapter indicates that the Exponential UKF can
sometimes tolerate much larger step-sizes than the Continuous-Time UKF though it is not necessar-
ily the case that this translates into much faster run-time. If DX and DW are the dimensions of Xt

and Wt respectively then for non-linear systems the Exponential UKF does an unscented transform on
Zt =

(
Xt Wt+h −Wt

)T but since,

C{Zt, Zt} =
(
C{Xt, Xt} 0

0 C{Wt+h −Wt,Wt+h −Wt}

)
, (5.21)

which implies that C{Zt, Zt}1/2 can be retrieved from computing C{Xt, Xt}1/2 and C{Wt+h−Wt,Wt+h−
Wt}1/2. It means that instead of a computing a (DX +DW)×(DX +DW) matrix square root two matrix
square roots are computed, one of DX ×DX and DW ×DW so the generation of sigma points is more
expensive though not quite as expensive as doing it on a generic vector in RDX+DW . It also needs to
compute an UT-mean and an UT-covariance containing 2DX + 2DW + 1 terms. Furthermore In order to
compute these moments f(t,Xt), ∂f

∂Xt
, exp(∂f

∂Xt
h) and g(t)g(t)T needs to be computed 2DX + 2DW + 1

times.

The Continuous-Time UKF on the other hand, when integrated using a s-stage Runge-Kutta scheme,
requires s DX ×DX matrix square roots, it also needs to compute s UT-means and UT-covariances that
contain 2DX + 1 terms each. It also needs to evaluate f(t,Xt) and g(t)g(t)T in order to compute the
UT-moments. With this in mind the exponential UKF, provided it is allowed a much larger step-size,
is expected to offer a speed-up for low-dimensional systems but as the dimensions of Xt and Wt grow it
will be outrun by the Continuous-Time UKF at some point.

5.3 Parameter Estimation Experiments
5.3.1 The Ornstein Uhlenbeck Process
The Gradient-Based Adaptive Stochastic Search algorithm is tested on the Ornstein Uhlenbeck process
given by

dXt = λ(Xt − µ)dt+ σXdWt, (5.22)
Yn = Xtn + Vn, Vn ∼ N (0, σ2

V). (5.23)

The process is simulated 500 times on the interval [0, 10] with a step size of ∆t = 1/1000, the time
between measurements is tn − tn−1 = 1/10 initial value X0 ∼ N (m, 1) and, the parameters are given
below.

m = 1, λ = 2, µ = 1, σX = 0.3, σV = 0.01. (5.24)

The GASS algorithm with Polyak averaging is run on each realisation using the following parameters,

ρ = 0.3, Ni = 50 + i, αi = (0.6
i

)0.01, ε = 10−3, (5.25)

I = 40, δ = 0.1, c = 0.1 (5.26)
p(θ; γ) = p(θ1; γ1) . . . p(θ5; γ5), (5.27)
θ1 ∼ N (0, 10), θi ∼ Γ(3, 1), i = 2, . . . , 5, (5.28)

where θ = (m,σV , λ, µ, σX) and the likelihood is computed using the Exponential UKF with a step size
of 1/10 and parameters α = 10−3, β = 2, κ = 0. In order to assess the quality of the estimates the
following quantities are computed for each simulation,

l(θGASS)− l(θTRUE), θGASSi − θTRUEi , i = 1, . . . , 5. (5.29)

The histograms of the errors are shown in Figure 5.7 where it can be seen that the likelihood of the
parameters from GASS tends to be higher than the likelihood of the true parameters which agrees
with common sense since it’s unlikely that the optima of the log-likelihood should coincide with the
true parameters in the case of a finite sample. Though there appear to be some bias in the parameter
estimates, most noticeably for σV and µ though a little bias should be expected from the integration
error. The mean of the difference in log-likelihood and parameter errors are presented in Table 5.4.

-20 -15 -10 -5 0 5 10 15 20 25
0

5

10

15

20

25
llerr

(a)

-6 -4 -2 0 2 4 6
0

5

10

15

20

25
m

(b)

-0.05 0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35
<

V

(c)

-2 -1 0 1 2 3 4
0

5

10

15

20

25

30

35
6

(d)

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35

40

45
7

(e)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60
<

X

(f)

Figure 5.7: Histograms of a) l(θGASS)− l(θTRUE), b) mGASS −mTRUE , c) σGASSV − σTRUEV ,
d) λGASS − λTRUE , e) µGASS − µTRUE and, f) σGASSX − σTRUEX .

Table 5.4: The mean of the difference in likelihood and parameter errors for 500 simulations of the OU
process.

l(θGASS)− l(θTRUE) 5.5361
mGASS −mTRUE -0.4385
σGASSV − σTRUEV -0.0132
λGASS − λTRUE 0.2914
µGASS − µTRUE 0.1422
σGASSX − σTRUEX 0.0977

In order to make a comparative assessment the experiment is repeated under the same conditions except
the native MATLAB-function fmincon is used to find the QMLE. The solver is set to the interior-point
algorithm and the optimisation is constrained according to the following,

m ∈ [−5, 5], λ ∈ [0, 3], µ ∈ [−5, 5], σX ∈ [10−6, 3], σV ∈ [10−6, 3], (5.30)

and the initial solution is chosen at random according to a uniform distribution over the constraints.
Histograms of the error are presented in Figure 5.8.

-350 -300 -250 -200 -150 -100 -50 0 50
0

50

100

150
llerr

(a)

-8 -6 -4 -2 0 2 4
0

2

4

6

8

10

12

14

16
m

(b)

-0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30

35
<

V

(c)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3
0

5

10

15

20

25

30
6

(d)

-1 -0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60
7

(e)

-0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40
<

X

(f)

Figure 5.8: Histograms of a) l(θIP)− l(θTRUE), b) mIP −mTRUE , c) σIPV − σTRUEV ,
d) λIP − λTRUE , e) µIP − µTRUE and, f) σIPX − σTRUEX .

Clearly the interior-point algorithm has some problem of getting stuck at bad solutions which translates
into a higher variation in the parameter estimates. The bias is also higher, see Table 5.5.

Table 5.5: The mean of the difference in likelihood and parameter errors for 500 simulations of the OU
process.

l(θIP)− l(θTRUE) -2.0052
mIP −mTRUE -0.7580
σIPV − σTRUEV -0.0139
λIP − λTRUE 0.7282
µIP − µTRUE 0.1758
σIPX − σTRUEX 0.1066

5.3.2 The Lorenz63 system
The experiment in Section 5.3.1 is repeated for the following version of the Lorenz63 system,

dXt =

 σ(X(2)
t −X

(1)
t)

X
(1)
t (ρ−X(3)

t)−X(2)
t

X
(1)
t X

(2)
t − βX

(3)
t

 dt+ σXI3×3dWt, (5.31)

Ytn =
(

1 0 0
0 0 1

)
Xtn + Vn, Vn ∼ N (0, R), R =

(
σV1 0
0 σV2

)
. (5.32)

The system is simulated 500 times on the interval [0, 10] with a step size of ∆t = 1/1000, the time
between measurements is tn− tn−1 = 1/100 initial value X0 ∼ N (m, I3×3) and, the parameters are given
by,

m1 = m2 = m3 = 1, σV1 = σV2 = 1, σ = 10, ρ = 28, β = 8/3, σX = 4.5. (5.33)

The likelihood is approximated using the Exponential UKF with a step size of 1/10 and α = 10−3, β =
2, κ = 0. In order to speed up the experiment GASS is run for 40 iterations with the following starting
parameters,

ρ = 0.2, Ni = 50 + i, αi = (0.5
i

)0.05, ε = 10−3, (5.34)

I = 40, δ = 0.1, c = 0.3 (5.35)
p(θ; γ) = p(θ1; γ1) . . . p(θ9; γ9), (5.36)
θ1, θ2, θ3 ∼ N (0, 10), θi ∼ Γ(3, 1), i = 4, . . . , 9, (5.37)

the resulting distributions is given by,

θ1 ∼ N (−1.2500, 0.0417), θ2 ∼ N (0.6667, 0.0833), θ3 ∼ N (1.9091, 0.0455), (5.38)
θ4 ∼ Γ(68.000, 0.0147), θ5 ∼ Γ(62.000, 0.0149), θ6 ∼ Γ(51.000, 0.2000), (5.39)
θ7 ∼ Γ(119.00, 0.2500), θ8 ∼ Γ(73.000, 0.0435), θ9 ∼ Γ(79.000, 0.0769), (5.40)

which was chosen as the starting distribution for every of the 500 realisations. The remaining parameters
were not altered. Histograms of the errors are shown in Figure 5.9 and once again GASS finds parameters
that yields a higher likelihood than the true parameters on average. Though it appears there is some
bias in the estimates, most prominent in m, sX , ρ and, β, see Table 5.6.

-10 -5 0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
llerr

(a)

-6 -5 -4 -3 -2 -1 0 1
0

2

4

6

8

10

12

14

16

18
m

1

(b)

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

18
m

2

(c)

-2 -1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

18
m

3

(d)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

<
V

1

(e)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

5

10

15

20

25

30

<
V

2

(f)

-3 -2 -1 0 1 2 3
0

2

4

6

8

10

12

14

16
<

(g)

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
0

2

4

6

8

10

12

14

16
;

(h)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

16

18
-

(i)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20
<

X

(j)

Figure 5.9: Histograms of a) l(θGASS)− l(θTRUE), b)-d) mGASS
1:3 −mTRUE

1:3 , e)-f) σGASSV1:2
− σTRUEV1:2

,
g) σGASS − σTRUE , h) ρGASS − ρTRUE , i) βGASS − βTRUE and, j) σGASSX − σTRUEX .

Table 5.6: The mean of the difference in likelihood and parameter errors for 500 simulations of the
Lorenz63 system.

l(θGASS)− l(θTRUE) 2.9829
mGASS

1 −mTRUE
1 -2.1537

mGASS
2 −mTRUE

2 -0.2069
mGASS

3 −mTRUE
3 0.8337

σGASSV1
− σTRUEV1

-0.0240
σGASSV2

− σTRUEV2
-0.0341

σGASS − σTRUE 0.0564
ρGASS − ρTRUE -0.9180
βGASS − βTRUE 0.1762
σGASSX − σTRUEX 0.9629

The experiment is repeated with fmincon used to find the QMLE. The solver is set to the interior-point
algorithm and the optimisation is constrained according to the following,

m ∈ [−5, 5]3, σV1 ∈ [10−6, 3], σV2 ∈ [10−6, 3], σ ∈ [0, 20], (5.41)
ρ ∈ [10, 35], β ∈ [0.5, 10], σX ∈ [10−6, 10], (5.42)

the algorithm is initialised at a point drawn from a uniform distribution over the constraints. The
Histograms of the errors are presented in Figure 5.10 and once again it is discovered that the interior-point
algorithm has some trouble with getting stuck at less feasible solutions (mind the scale!). Furthermore the
histograms show that the parameter estimates of m,σ and σX are not even close to normal distributions
which suggests that the interior-point algorithm is a lousy maximiser of the quasi-likelihood in this case,
maybe due to occurrence of more than one local maxima. As Table 5.7 shows the bias of the inter-point
algorithm is higher than that of GASS almost across the board. A notable exception is β, for which the
interior-point algorithm has a bias that is less than that of GASS by several orders of magnitude.

Table 5.7: The mean of the difference in likelihood and parameter errors for 500 simulations of the
Lorenz63 system.

l(θIP)− l(θTRUE) -532.6439
mIP

1 −mTRUE
1 -1.3609

mIP
2 −mTRUE

2 -1.4833
mIP

3 −mTRUE
3 -1.5872

σIPV1
− σTRUEV1

0.0746
σIPV2
− σTRUEV2

-0.0723
σIP − σTRUE 0.0996
ρIP − ρTRUE -1.3757
βIP − βTRUE 0.0089
σIPX − σTRUEX 3.2630

×104
-6 -5 -4 -3 -2 -1 0 1

0

50

100

150

200

250

300

350

400

450

500
llerr

(a)

-6 -4 -2 0 2 4 6
0

5

10

15

20

25

30

35
m

1

(b)

-8 -6 -4 -2 0 2 4 6
0

5

10

15

20

25

30

35

40

45
m

2

(c)

-8 -6 -4 -2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

50
m

3

(d)

-1 -0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

<
V

1

(e)

-1 -0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

<
V

2

(f)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50
<

(g)

-20 -15 -10 -5 0 5 10
0

5

10

15

20

25

30

35
;

(h)

-4 -2 0 2 4 6 8
0

10

20

30

40

50

60

70
-

(i)

-6 -4 -2 0 2 4 6
0

50

100

150
<

X

(j)

Figure 5.10: Histograms of a) l(θIP)− l(θIP), b)-d) mIP
1:3 −mTRUE

1:3 , e)-f) σIPV1:2
− σTRUEV1:2

,
g) σIP − σTRUE , h) ρIP − ρTRUE , i) βIP − βTRUE and, j) σIPX − σTRUEX .

Chapter 6

Conclusion

This thesis discusses some of the basic theory behind stochastic differential equations and how they’re
incorporated into the framework of state space models by having the states evolve continuously in time
but only having measurement at a set of discrete instances. The merits behind driving a state space
model with and SDE is that one can side step the issue of irregularly sampled data and that it’s fairly
straight forward to incorporate partial knowledge of the system in such models. The issue of approximate
filtering in non-linear state space models driven by SDEs was also considered in terms of Kalman-type
filters such as the Extended Kalman Filter and different ways of producing Unscented Kalman Filters.
The conclusion is that it’s more likely better performance is achieved by using an UKF rather than the
EKF. Furthermore the two different UKFs that were presented, the continuous-time UKF and the Ex-
ponential UKF, were compared and the Exponential UKF has the advantage of being able to take larger
time steps in many cases which in some situations make it computationally faster without necessarily
sacrificing too much in performance.

The issue of parameter estimation was also considered with a brief overview of (Quasi) Maximum Likeli-
hood Estimation and the Gradient-Based Adaptive Stochastic Search algorithm was tested as a method
for maximising the likelihood and compared against the MATLAB implementation of the interior-point
algorithm. It is concluded that GASS is often better at finding a good candidate for the QMLE. The issue
of speed is a little more complicated though a fairly casual stopping-criterion along with the maximum
number of iterations set fairly low meant that GASS would run between roughly for the same amount
of time as the interior-point algorithm and several minutes shorter. This suggests that GASS is likely to
provide a better estimate for the same amount of time spent. The author would like to point out that
the stopping-criterion of GASS in itself is quite dodgy as it measures how concentrated the auxiliary
distribution is around the maxima of the likelihood. Perhaps it would be wiser, if possible, to have a
measure of how likely the algorithm is to make a significant improvement in the solution by continuing.
Furthermore, since the parameters of the UKF, α, β and κ, affect the the higher order terms, i.e the
error, it would probably be a good idea to estimate these as well rather than fixing them arbitrarily as
was done here.

33

Bibliography

[1] Jiaqiao Hu Enlu Zhou. Gradient-based adaptive stochastic search for non-differentiable optimization.
IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL 59(NO. 7), July 2014.

[2] Henrik Madsen Erik Lindström and Jan Nygaard Nielsen. Statistics for Finance. Chapman and
Hall/CRC, 2015.

[3] Henrik Madsen Erik Lindström and Jan Nygaard Nielsen. Statistics for Finance (Pre-Print). Chap-
man & Hall, 2015.

[4] Simon J. Julier. The scaled unscented transform. American Control Conference. Proceedings of the
2002 (Volume:6), 2002.

[5] Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, January
1963.

[6] Henrik Madsen and Jan Holst. Modelling Non-Linear and Non-Stationary Time Series. IMM, 2000.

[7] Carlos M. Mora. Weak exponential schemes for stochastic differential equations with additive noise.
IMA Journal of Numerical Analysis, July 2005.

[8] Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

[9] Simo Särkkä. On unscented kalman filtering for state estimation of continuous-time nonlinear
systems. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, October 2007.

[10] Simo Särkkä Simon Lyons and Amos Storkey. Series expansion approximations of brownian motion
for non-linear kalman filtering of diffusion processes. IEEE Transactions on Signal Processing,
Volume 62, Issue 6, pages 1514-1524, 2014.

34

	Introduction
	Overview

	Continuous-Time Stochastic Processes
	Stochastic Differential Equations
	The Wiener Process
	Ito Calculus
	Discretisation Schemes

	State Space Models, Filtering and, Prediction
	The Filtering Problem
	Approximate Filters
	The Extended Kalman Filter
	The Unscented Kalman Filter

	Parameter Estimation
	A very brief discussion on estimators in general
	Maximum Likelihood
	Optimisation
	Gradient-Based Stochastic Search

	Results
	Filter Performance Evaluation
	The Lotka-Volterra System
	The Lorenz63 System
	The Lorenz96 System

	Continuous-Time UKF vs Exponential UKF In Terms of Computational Speed
	Parameter Estimation Experiments
	The Ornstein Uhlenbeck Process
	The Lorenz63 system

	Conclusion

