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Sammanfattning 
 
Egenskaper hos lillhjärnan som en krets inom ett återkopplat system vid adaptation 
och reglering 
 
 
Människans motoriska reglersystem är både robust och stabilt, trots långa fördröjningar 
och en hög komplexitet hos det motoriska systemet, med ett överflöd av ställdon, givare 
och frihetsgrader. Det verkar som lillhjärnan hjälper till att åstadkomma detta genom 
att kompensera för yttre belastningar och inre störningar genom att skapa en invers 
modell av the styrda systemet. Lillhjärnan uppvisar också en generell och relativt 
välbeskriven nätverksstruktur, vilket gör det än mer passande att studera den. I den 
här studien modelleras en liten del av lillhjärnan med bio-fysikaliskt detaljerade 
nervcellsmodeller i kombination med escape-rate-modeller, och använder det 
konstruerade nätverket för att reglera en två-ledad arm i ett plan. De enskilda 
nervcellsmodellerna kalibreras med hjälp av data från in-vivo försök. Deras beteende 
när de utsätts för spiktåg från primärafferenter, under tiden dessa blev mekaniskt 
stimulerade, används för att validera modellerna. Mindre delar av nätverket används 
också för att undersöka möjliga funktioner hos det granulära lagret och hos 
återkopplade inhibitoriska kopplingsmönster mellan interneuroner i det molekylära 
lagret 
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1. Introduction

1.1 Background

The cerebellum is a structure of the brain that resides beneath and separate from the

cerebral hemispheres. Since the beginning of the 19th century, it has been known

to play a crucial role in movement control, preventing end point oscillations and in-

creasing coordination, precision and timing. This was based upon cases of cerebellar

lesions, where it could be shown that it was the coordination of movements rather

than their strength that was affected by the lesion [Manto, 2008].

By current knowledge, the cerebellum is involved in motion control and learning,

but is not responsible for initiating movement. However, even though the cerebellar

anatomy is to large extent known and gives evidence of a highly regular structure, the

details of the cerebellar functionality is still debated.

The anatomical structure of the cerebellum, with a small amount of Purkinje cells

receiving input from a large set of sensory and motor command sources, has lead to

the hypothesis that the cerebellum works as an adaptive filter. In accordance with this,

individual synaptic weights has been observed to change in correlation with proposed

error signals from climbing fibers through Long Term Depression (LTD) and Long

Term Potentiation (LTP) [Jörntell and Ekerot, 2002].

From a control theory perspective it has been proposed that the trained cerebellum

mimics the forward or/and inverse dynamics of the plant that it is controlling. The

forward dynamics can be used similar to a Smith predictor, cancelling some of the

error due to slow feedback, while the inverse dynamics can work as a feed forward

controller. More advanced proposed abstract models of the cerebellar functionality

include both the inverse and forward dynamics, in order to build cascaded linear

controllers used during different circumstances, such as different arm positions or

loads [Kawato, 1999].

Analysing the cerebellum and the abundance of biological sensors and actuators

it uses for control can yield interesting perspectives into how highly adaptive sys-

tems can be built and how deficient sensory information can be used. The system

also suffers from its, in comparison with modern control systems, slow feedback and

muscle response times, giving rise to another set of classical control problems that is

somehow solved within the cerebellar control loop.

By building and using a biologically plausible simulation toolbox, different fea-

tures of the cerebellar microcircuitry can be explored. Such a tool could also be used

to analyze the simultaneous behaviour of larger sets of neurons than possible during

in vivo/vitro studies. Currently, even though the anatomical structure of the cerebel-

lum is known, the behaviour of several neurons in concert is not as well studied.

1.2 Thesis outline

This thesis work can be divided into two consecutive steps. First, suitable models

for all neuron types have to be selected based on the characteristics of the neurons.

These models then have to be fitted to known data and validated through simulation,

comparing the result to real measurements.
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1.3 Method overview

Secondly, two cerebellar microzones should be modelled using the neuron mod-

els, connecting the networks output and input according to the experimental setup in

[Schweighofer et al., 1998, I]. The microzones should be responsible for controlling

one joint each in the double joint arm, and the number of neurons in each microzone

should be determined by simulation speed requirements, but still be large enough to

give valid simulation results.

The aim of the work is to create a working simulation environment for the cere-

bellum, with models of the major neuron types. This can then be used to further

investigate the behaviour and limitations of the cerebellar network and the simulation

results can be used to validate or discredit existing hypotheses.

1.3 Method overview

The entire simulation environment is written in the Java language1, using its built

in multi-threading capabilities. Because of the relatively long delays of neural net-

works and the signaling system between individual neurons, the system is ideal for

asynchronous simulation. A simple syntax that feeds the network structure to the sim-

ulation environment is also defined and used to create different experimental setups.

Most of the resulting data generated from the simulations are manipulated and put

into graphs using Matlab2.

Suitable neuron models are chosen to each of the neurons types using in vivo data,

taking their proposed role within the network into consideration. The neurons that are

modelled with stochastic spike generation uses some of the results from [Dürango,

2010] to choose suitable ISI distributions. An extended model of bursting neurons

building upon the work in [Smith et al., 2000] is used to simulate the bursting be-

haviour of neurons in the cunate nucleus. All the models are validated against in vivo
measurements at the different layers of the network with standardized afferent tactile

and current pulse stimuli.

In order to evaluate the performance of an entire network, the setup from

[Schweighofer et al., 1998, II] is used, where the cerebellum model is adapted into an

inverse model of a double joint arm. The network is used to improve the performance

of a slow feedback and linear feed-forward controller that acts in parallel to the net-

work on the arm. The synaptic weight update rules from [Schweighofer et al., 1996]

are used to train the model, using a multi-modal error signal containing the position,

speed and acceleration error.

All experimental data used in the work is in vivo recordings from the cat cere-

bellum, provided by Henrik Jörntell at the Department of Experimental Medical Sci-

ences, Section for Neurophysiology, Lund University.

1http://www.java.com/
2http://www.mathworks.com/products/matlab/
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2. Spiking neuron models
The foundation of information processing in all biological nervous systems relies on

the electrical properties of the neuron. It reacts to synaptic inputs from other neurons,

transmitted through specialized ion-channels in the cell membrane. The informa-

tion is sent between the neurons as depolarized potential spikes or action potentials,

which activates ion-channels at the synapses connecting the neuron to subsequent

neurons. In turn, the ion-channels cause depolarization of the membrane potential if

the synapse is excitatory, or hyperpolarization if it is inhibitory. Enough excitatory

input will cause the subsequent neuron to generate an action potential of its own,

sending the information further down through the network.

The basic structure of simulated neural networks make few assumptions regarding

the functions of the individual neurons and how they communicate. The least detailed

neuron model, the perceptron, which is used extensively in artificial neural networks,

works as a simple binary classifier. To determine whether it is active or not, all inputs

are summed, and the perceptron is activated if the sum reaches a given threshold. The

binary state of each perceptron, and the fact that the network has no memory or time

dependencies, makes them suitable for classification tasks and to study fundamental

properties of neural networks [Widrow and Walach, 2007].

In the other range of the spectrum, a neuron can also be modeled in detail, taking

many of the its bio-physical aspects into consideration. The Hodgkin-Huxley model,

first presented in [Hodgkin and Huxley, 1952], uses several internal states to model

the non-linear membrane potential dependant behaviour of the different ion-channels

populating the neuron cell membrane. The complete model can be seen in Eq. (2.1),

where the membrane current is described by a leak current and two ion-channels,

whose conductivity depends on the three states m, n and h. The model can also be

extended to support additional types of ion channels, other than the sodium and potas-

sium channels shown in Eq. (2.1).

Cm
dVm

dt
=−Iion + Iext

Iion = ḡNam3h(Vm −ENa)+ ḡKn4 (Vm −EK)+ ḡL (Vm −EL)
m
dt

= αm (V )(1−m)−βm (V )m

h
dt

= αh (V )(1−h)−βh (V )h

n
dt

= αn (V )(1−n)−βn (V )n

(2.1)

Even though the Hodgkin-Huxley model manages to emulate the membrane po-

tential of a single neuron in great detail, including the formation of action potentials,

it includes no description of how the neurons interact. Under the common assumption

that the shape of the action potential has no influence over the behaviour of the acti-

vated synapses, an action potential can be viewed as a discrete event, fully described

by the time it was generated. Furthermore, if the information carried by the axons

can be fully described by the spiking intensity, the intensity or spike rate could be

used in the network model instead of actual spikes to carry the information between

connected neurons.

As the intensity is the average firing rate, it requires the introduction of a artificial

time constant governing the length of the averaging interval. This time constant im-
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2.1 Synaptic transmissions

poses restrictions to the signal that would not be needed if the actual spike times were

used to transmit the information. Using the spike times, the first spike of a spike train

is transmitted immediately, while the time constant used to calculate the intensity

would impose delays as the intensity will not change immediately after a spike event.

In the other direction, high frequency content of the firing intensity could make it im-

possible to translate the intensity back to spike trains. The performance disadvantage

of using spikes to transmit information lie in the synapses, which need to translate the

spikes into membrane currents. Before the reduction to rate-based models can be car-

ried out, the behaviour of spiking models should be investigated in order to validate

if the reduction is not degrading the accuracy of the models.

Choosing an appropriate model need to balance the gains and cost of the follow-

ing three points

• The model should be sufficiently advanced to capture or investigate all the

interesting aspects of the neuron from the perspective of the simulation that is

carried out.

• The resources available from of the underlying hardware.

• There has to be enough experimental data to fit the model parameters.

The first point is self-evident, if the chosen model does not capture any of the in-

teresting or sought-after characteristics of the system, the simulation has no purpose.

It is a important point nonetheless, and it needs to be addressed when the model is

created.

The resource demand of a model should also be considered, even though it is

often hard to evaluate the strain on a large complex model merely by analysing the

complexity of a single component. Looking at the Hodgkin-Huxley model and the

four differential equations in Eq. (2.1), it could be argued that the model is too com-

plex to be simulated efficiently. In the real case however, some neurons will receive

synaptic input from more than a thousand axons. Each of theses synapses will be

modeled by one differential equation, making the four differential equations in the

Hodgkin-Huxley model seem rather bleak in comparison.

Still the bio-physical nature of the Hodgkin-Huxley model requires that many of

the parameters and functions of the model have to be fitted through implicit methods,

since the internal states, m, n and h can not be explicitly seen in ordinary experi-

mental data. Instead of trying to describe the behaviour of a neuron as bio-physically

accurate as possible, the phenomenological models that are described in the follow-

ing sections, and used in this thesis, are constructed to emulate the behaviour of the

neuron. Such an approach makes it more straightforward to fit the parameters of the

models to the data. It also allows for expansions to handle complex neuron behaviour

such as spike bursts, post-spike refractory periods and calculating membrane poten-

tial equilibriums.

2.1 Synaptic transmissions

As all neuron models used in this thesis transmit information through their generated

spike trains, the behaviour of the synapse receiving a spike needs to be modeled.

When a spike reaches the synapse from a another neurons axon, it triggers the release

of chemicals called neurotransmitters. The neurotransmitters do in turn trigger the

opening of ion channels through the targeted neurons cell membrane. Introducing the

7



2.2 Fixed threshold models

state r as the ratio between the number of open and closed channels, the conductance

through the membrane due to the open channels can be described by Eq. (2.2).

gsyn
i (t) = ḡir (t) (2.2)

where ḡi is the maximum possible conductance induced by the synapse. The be-

haviour of the state r can be modelled by describing the transitions between the open

and closed states of the individual ion channels. Introducing α and β as the transition

rates between the two states and [T ] as the concentration of neurotransmitters, the

ratio r can be defined as in Eq. (2.3).

dr
dt

= α[T ](1− r)−β r (2.3)

By approximating the release of neurotransmitters by pulses of size Tmax and

duration td at t0, the following analytical solution to Eq. (2.3) can be found

r(t) =

{
r∞ +(r (t0)− r∞)exp(−(t − t0)/τr) t ∈ [t0, t0 + td ]

r (t0 + td)exp(−β (t − t0 − td)) t > t0 + td
(2.4)

where

r∞ =
αTmax

αT +β
and τr =

1

αTmax +β
The outlined approach, described in detail in [Koch and Segev, 1998], has the

advantage that it is simple, yet it is well behaved even during high synaptic activity.

As some of the constructed networks have more than 10 times as many synapses than

neurons, an efficient and simple model like this is required.

It should be noted than real synaptic activity is highly stochastic. The pulses of

neurotransmitters will not be of the same size and there is no guarantee that the pres-

ence of neurotransmitter in the synaptic cleft will stimulate individual ion channels

to transition between being closed to open [Hille, 2001]. Simulation of individual

ion-channels are completely unrealistic and the stochastic nature of the channels can

to some degree be compensated by other stochastic components of the network.

2.2 Fixed threshold models

All the models described in the following section are based upon the membrane po-

tential as the fundamental state, just as the Hodgkin-Huxley model. The used approx-

imations will however remove the implicit behaviour of generating action potentials.

Instead, explicit methods for spike generation, involving fixed thresholds are intro-

duced in all the models. The thresholds are chosen to emulate the behaviour of regis-

tered neurons, but having the thresholds fixed introduces problems when the input to

the models forces the membrane potential to stay above a threshold for a long period

of time. This limits the region where the model results stay valid, but is somewhat

remedied by the soft thresholds introduced with the exponential integrate and fire

model.

Furthermore, most neurons have a maximum fire rate caused by a refractory pe-

riod after each spike during which no spikes are generated. In the escape rate models

presented later on, the refractory period is implicitly built into the model, but the

fixed threshold models need to keep track of the refractory period explicitly. This is

8



2.2 Fixed threshold models

done by completely disregarding the spike generation thresholds during the refractory

period.

Integrate and fire
Integrate and fire (IF) is one of the earliest and the most primitive models used to

simulate spike generation within neurons [Abbott, 1999]. Even though it lacks many

of the detailed characteristics describing a generic neuron, it still illustrates the con-

ceptual behaviour of all neurons. It can also be seen as the first step towards more

advanced phenomenological models. The membrane potential of the model is calcu-

lated by integrating the synaptic input, and as the potential reaches a fixed threshold,

a spike is generated and the membrane potential is reset to the neuronŠs resting po-

tential. The membrane potential of the IF model is described by

Cm
dVm

dt
= I (t,Vm) (2.5)

where Vm is the membrane potential, Cm the capacitance over the membrane and I
the current over the membrane. The current can either be a time-dependent bias or

caused by open synaptic ion-channels that depend on the membrane potential. The

total external current can thus be calculated by

I (t,Vm) = Ibias (t)+∑
i

gsyn
i (t)

(
Vm −Esyn

i

)
(2.6)

where Ei is the equilibrium potential for the ion-channel and gi the time-dependent

conductance described in Eq. (2.2). Depending on the sign of the conductance, the

synapse will either inhibit the target neuron by hyperpolarizing its membrane poten-

tial or excitate it by depolarizing the membrane. The resulting shape of the membrane

potential shape is called an Excitatory Post Synaptic Potential (EPSP) or an Inhibitory

Post Synaptic Potential (IPSP).

If addition to Eq. (2.5), the IF model also needs both a threshold, which deter-

mines whether or not a spike has been fired, and a reset potential, to which the mem-

brane is reset after the spike has been fired.

Leaky integrate and fire
Even though simulating the ion channels through the cell membrane in detail might

be going too far towards simulating the underlying biological system, the IF model

lacks one basic aspect of the electrodynamic features describing the cell membrane.

Since there is a conductance through the membrane, there will always be a leak cur-

rent, pushing the membrane potential back to its equilibrium. Extending the IF model

with a leak term leads to

Cm
dVm

dt
=−gL (Vm −EL)+ I (t,Vm) (2.7)

where gL is the leak conductance over the membrane and EL the membranes resting

potential or equilibrium where I (t,Vm) = 0. Due to the addition of a leak term this

model is called Leaky Integrate and Fire (LIF). The leak term also ensures that Eq.

(2.7) has a steady state solution, which can be seen as the membrane potential equi-

librium. As it makes sense to reset the membrane potential to such an equilibrium

after a spike has been generated, it is used instead of the explicit reset potential from

the IF model. Using Eq. (2.6), the equilibrium of Eq. (2.7) becomes

9



2.2 Fixed threshold models

Veq =
1

gL −∑gsyn
i

(
Ibias +gLEL −∑gsyn

i Esyn
i

)
(2.8)

Exponential integrate and fire
Both of the previous models are based on the assumption of a static capacitance

and conductance of the cell membrane of the neurons. As the conductance of the

different ion channels of the membrane is not static, but varies with several different

enviromental factors, some of the behaviour of the neurons is not captured using the

models above. The most obvious such behaviour is the generation of spikes, which

is triggered by depolarization, leading to a cascade of sodium channels opening and

generating a spike trough the resulting rapid depolarization.

The Exponential Integrate and Fire model (EIF) [Fourcaud-Trocme et al., 2003]

shown in in Eq. (2.9), mimics this behaviour by introducing another term into Eq.

(2.7), imitating the current caused by the cascade of opening channels. The simulated

depolarizing cascade is initiated when the membrane potential, Vm grows larger than

the threshold Vt and the speed of the cascade can be modified by ΔT .

Cm
dVm

dt
=−gL (Vm −EL)+gLΔT exp

(
Vm −Vt

ΔT

)
+ I (t,Vm) (2.9)

As the growth introduced by the additional term is large enough to reach as-

tronomical values within a time-step of simulation, no explicit firing threshold is

needed. Instead, a spike is considered to be generated whenever the membrane po-

tential reaches out of bounds. In order to comply with the refractory period from the

modeled neuron, the exponential term cannot be used during the refractory period

following a generated spike. The resulting model exhibits close to identical timing of

generated spike compared with the Hodgin-Huxley model [Fourcaud-Trocme et al.,

2003], which makes it a suitable phenomenological model to use.

Using the membrane potential within the exponent of added term, leads to the

implicit formula for Veq in Eq. (2.10). The equation can be solved for Veq numeri-

cally, using the Newton-Raphson method with the equilibrium from the LIF model

as an initial predictor value. Because of convergence issues, a diverging result is dis-

carded and replaced with the equilibrium of the LIF. This approach has yielded good

enough results, but a algorithm which always converges would of course improve the

behaviour of the model in the few cases where the iterations diverges.

Veq =
1

gL −∑gsyn
i

(
Ibias +gLEL +gLΔT exp

(
Veq −Vt

ΔT

)
−∑gsyn

i Esyn
i

)
(2.10)

Integrate and fire or burst
Some neurons exhibit more elaborate spike patterns than those generated by the pre-

viously described models. Bursting neurons fire bursts or clusters of spikes with short

Inter Spike Intervals (ISI), while the ISIs between the bursts can be several times

longer. The biophysical cause of this behaviour is most likely calcium (Ca2+) chan-

nels that open during bursts leading to depolarization, forcing additional spikes to be

generated with short ISIs until the calcium channels are depleted and the burst stops.

The Integrate and Fire or Burst (IFB) model from [Smith et al., 2000], models

this with calcium channels, whose membrane current contribution is described by

Eq. (2.11). The activity of the channel is governed by the state rCa in Eq. (2.12).
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2.2 Fixed threshold models

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−55

−50

−45

−40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−55

−50

−45

−40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−55

−50

−45

−40

0 nAbias 40 nA 80 nA 120 nA

time [s]

po
te

nt
ia

l [
m

V
]

Figure 2.1 Simulation of a IF, LIF and EIF model.

When the membrane potential reaches above VCa the ion channels open, causing ex-

tra depolarization, and at the same time rCa starts to deplete. In order for rCa to be

replenished, the membrane potential has to fall below VCa again.

ICa (t,Vm) = ḡCarCa (t)H (Vm −VCa)(Vm −ECa) (2.11)

drCa

dt
=

{
−rCa/τ−

Ca Vm >VCa

(1− rCa)/τ+
Ca Vm <VCa

(2.12)

where H denotes the Heaviside function.

The IFB model can be extended with the exponential part of the EIF model, cre-

ating an Exponential Integrate and Fire or Burst (EIFB) model instead. Using the

basic EIFB setup, the external input to the neuron has to allow the membrane po-

tential to fall below VCa, or no new bursts will be generated. In the EIFB simulation

shown in Fig. 2.2, the bias current applied to the model does not allow the mem-

brane potential to fall back below VCa, leading to just a single burst just after the

bias current is first introduced. To manage this, some neurons will actively hyper-

polarize their membrane potential after a burst, by activating strong hyperpolarizing

potassium (K+) channels. The potassium channels can be modeled as synaptic ion-

channels described in Eq. (2.6), but instead of reacting to incoming spikes it releases

its neurotransmitters whenever rCa is below the threshold εCa at the same time as a

action potential is generated by the neuron. Simulation results where the potassium

channels are incorporated into the EIFB model can be seen in Fig. 2.2.
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Figure 2.2 Simulation of an EIFB, with (below) and without (above) the simulated potas-

sium channels. Notice how the model only bursts once during the simulation when the potas-

sium channels are not used.
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2.3 Escape rate models

2.3 Escape rate models

The models that have been described so far, where the action potentials of a neuron

is generated by explicit thresholds or equations describing the membrane potential

during the generation of a spike, are the most frequently and successfully used to

model real neurons. In order to mimic the random behaviour of the modeled neurons,

they can be further extended with stochastic terms in the various equations, creating

stochastic differential equations [Saarinen et al., 2008].

As the purpose of the models used in this thesis is to construct networks of neu-

rons, and not to study the individual neuron in great detail, information about the

actual behaviour of a neuron during a spike is not needed. Assuming that neurons

only communicate by discrete spikes with no inherent information but the time they

were generated, the actual information needed from a single neuron model to describe

the behaviour of the entire network can be drastically reduced. Instead of simulating

the actual behaviour of the membrane potential, some basic relationship between in-

put spike patterns and output spike patterns could be used to construct even simpler

models.

When the spike patterns of some types of regular neurons are examined, they ex-

hibit a high amount of spikes even during rest, when they receive no synaptic input.

This can be modeled using stochastic differential equations, but a more straightfor-

ward approach would be to describe the spiketrains using statistical methods. This

has been thoroughly covered using point process or Escape Rate (ER) models in

[Dürango, 2010], and the results from that work is used to motivate the models cho-

sen for some of the neurons. The remaining part of this chapter will describe how such

ER models can be used to describe the generated spike pattern in relation to synaptic

input, establishing a simple input output relationship of the modeled neuron.

Renewal processes
If the ISI following a spike can be determined without any knowledge of prior spike

times, the spike train can be described by a renewal point process. The activity of

such a neuron at rest is fully described by its ISI Probability Density Function (PDF).

By choosing a skewed distribution, such as the gamma or log-normal distribution,

the PDF will implicitly handle the refractory period following a generated spike as

almost no extremely short ISIs will be generated. The skewed shape of the log-normal

distribution can be seen in Fig. 2.3.

Since the log-normal distribution described in Eq. (2.13) is shown to fit mea-

sured ISI distributions sufficiently well in [Dürango, 2010], no other distributions

are used during the this thesis. The assumption that the ISIs can be modelled as re-

newal processes are both validated and invalidated for different neurons of the same

type in [Dürango, 2010]. This should be noted and is worth investigating, but is not

researched any further other than for neurons which exhibit bursting behaviour.

f (x|μ,σ) =
1

xσ
√

2π
exp

(
−(lnx−μ)2

2σ2

)
(2.13)

Non stationary processes
Using the previously outlined methods, a neuron at rest or with a static bias can be

simulated using a single distribution describing its ISIs. As all real neurons work

under non-stationary conditions, the shape of the distribution has to be related to the

synaptic input of the neuron. The log-normal distribution is fully described by the

underlying normal distributionŠs mean μ and standard deviation σ , which calls for
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Figure 2.3 Example distributions and sigmoid curves. The PDFs are constructed using mean

and standard deviation values from the two curves at -60, -54, -52, -50 and -45 mV.

relations between those variables and the membrane potential of the neuron. As μ
and σ are variables of the underlying normal distribution, it is more straight forward

to relate the mean and standard deviation of the actual log-normal distribution to the

membrane potential. The pairs can be transformed between each other with the help

of Eq. (2.14).

E [X ] = exp

(
μ +

1

2
σ2

)
Var [X ] =

(
expσ2 −1

)
exp

(
2μ +σ2

) (2.14)

where X is a stochastic variable from the log-normal distribution.

A common way to relate the activity of a neuron to its input is to use its spike

rate, which equals the inverse of the ISI mean. In the operative range of the neuron,

the relationship between a current bias and the intensity can be approximated as lin-

ear. However, when the input reaches outside of the operative range, the intensity

saturates and reaches a maximum firing frequency diverging from the linear approxi-

mation. Similarly the intensity reaches a minimum firing frequency or zero when the

input bias falls below the operative range.

In order to model the behaviour when the intensity saturates, the linear approxi-

mation can be exchanged against a sigmoid shaped curve. The curve generated by Eq.

(2.15) has the advantage that the parameters, p1 to p4, explicitly give some features

of the curve. Here, p1 equals the minimum intensity asymptote and p1 + p2 equals

the maximum intensity asymptote, while p3 and p4 determine the shape and slope of

the linear region.

I (Vm) = p1 +
p2

1+ exp(p3 −Vm)/p4
(2.15)

The complete neuron model is given by two sigmoid curves as the one above. One

which gives the intensity and thereby the ISI mean and one which gives the inverse of
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2.3 Escape rate models

the ISI standard deviation. Using them, a distribution describing the firing behaviour

of the neuron can be constructed at any synaptic or bias input. In Fig. 2.3, such a

model has been fitted to real neuron data.

Bursting neurons

a

ISI time

short long

b

ISI time

short long

c

ISI time

short long rebound

Figure 2.4 Three example multimodal PDFs from spiketrains containing bursts. a) Bimodal

PDF where the two underlying distributions (����� and ����) are well separated and can be

separated by a simple threshold. b) The two underlying distributions partly overlap making

it harder to separate them. c) Contains a third distribution (�	
����) e.g. caused by the high

hyperpolarizing rebound following a burst.

Since bursting neurons also exhibit spontaneous and stochastic activity, there is rea-

son to extend the basic ER model to enable it to emulate bursting neurons as well.

Fig. 2.4 illustrates some different distributions of ISIs that bursting neurons can ex-

hibit. The distributions show at least two peaks, one from the short ISIs during bursts

and one for the long ISIs between bursts. If such a histogram can be constructed from

measurements of the neuron, the shape of the histogram could be described by one

unimodal distribution for each peak.

If the process is strictly renewal, the model could be constructed by superimpos-

ing several distributions on top of each other, constructing a multi-modal PDF that

can be used in an ordinary ER model. If the process is not a renewal process, as most

of the investigated bursting neurons will be shown to not to be, the model has to be

extended.

This can be done by using a Hidden Markov Model (HMM) with at least two

states, one for regular firing, and one for bursts. Different burst lengths can then

be modeled by introducing more states, modeling the probability of different burst

lengths through the state transition probabilities as in Figs.2.4 a-b. Some bursting

neurons with an extra strong hyperpolarizing rebound do show a third peak in their

ISI histograms as in Fig. 2.4 c. This behaviour can be included to the model with

another state, where the ISI is picked from the third distribution. This could of course

be used for all peaks, as long as the transition probabilities can be determined.

To simplify the visualization of the models, discrete distributions determining the

length of bursts or periods without bursts can be constructed, reducing the amount of

states to one for each peak in the original PDF. Whenever such a state is reached, the

amount of successive ISI from that states PDF is picked from its discrete distribution.

Figs. 2.5 a-b show two different HMMs and their corresponding burst length dis-

tribution. This method has been successfully employed in [Ekholm and Hyvärinen,

1970], where methods to separate overlapping peaks as those in Fig. 2.4 b are also

discussed.

The advantage of using an ER model to model bursting neurons is the models

ability to explain spontaneous activity, and that it does not depend on any artificial

fixed thresholds. The main problem with them is to fit them to non-stationary pro-

cesses, as much more data is needed in order to find the different PDFs and how they
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2.3 Escape rate models

in turn depend on the current membrane potential of the neuron. The experimental

data, measured at different induced membrane potentials, do also have to be collected

during stationary conditions. This might lead to a loss of important dynamics if it is

not done carefully.

short ISI states long ISI states

rebound

LS

S1 LR L2

Nbr of spikes prob. in burst
50%

50% 50%

50%

S1S2S3 L1

33%50%100%

66%50%

50%

0%

33%

0%
2 3 4

2 5

a

b

c

Figure 2.5 Different configurations of the Markov models. a) The model has two states,

� picks short ISIs and � picks long ISIs. Note the exponential decay of the nbr. of spike

probability. b) Additional short states, �� - ��, are introduced to create a equal probability for

bursts containing 2, 3 and 4 spikes. c) A rebound state �� is introduced which picks ISIs from

the rebound distribution (see Fig. 2.4 c)
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3. The cerebellar topology

Purkinje cell

Parallel fibers Purkinje cell

Molecular layer

Purkinje cell layer

Granular layer
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Figure 3.1 a) The gray area is where the cerebellar cortex is located within the human brain.

b) The overall structure and different types of neurons within the cerebellum. [Purves et al.,

2004]

While the cerebellum contains billions of neurons, its neural circuitry demonstrates a

surprisingly simple structure. Its general structure has lead to the belief that it should

be possible to characterize the exact function of the cerebellum as it seems to be

involved in a wide range of task within the brain, from motion control to internal

models explaining intuition and implicit thought [Ito, 2008]. All the different neurons

types and their position within the layers of the cerebellum can be seen in Fig. 3.1 b.

The cerebellum receives input through two different neural pathways. The first

carry afferent sensory information and efferent motor commands through several mil-

lion mossy fibers, reaching the granule cells within the granular layer [Ito, 1984]. The

second source is through Climbing Fibers (CF) that originate from the Inferior Olive

(IO), and terminate in the molecular layer, where they innervate Purkinje cells with

multiple synapses climbing through the dendritic tree of the Purkinje cells. The Purk-

inje cells do finally send axons to the Deep Cerebellar Nuclei (DCN), constituting the

only output from the cerebellum [Ito, 1984].

3.1 Mossy fibers

The Mossy Fibers (MF) originate from the pontine nucleus, the spinal cord and the

vestibular system. The signals from the vestibular system are involved in the vestibu-

ocular reflex, which is a thoroughly studied control loop where the cerebellum is

the main controller, regulating the eye position in order to obtain stable vision [Ito,
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3.2 Granular layer

1984; Kawato and Gomi, 1992; Schweighofer et al., 1996]. The signals from the

pontine nucleus carry efferent motor commands from the motor cortex, while all

afferent proprioceptive and tactile sensory information is carried through the spinal

cord and cuneate nucleus. Some of the mossy fibers also form collaterals directly to

the DCN, but that is beyond this thesis.

The cuneate nucleus
Even though no afferent sensory information is used in the complete simulated net-

work, the individual neuron models are validated against data derived through in vivo
measurements of the different neurons during tactile stimulation. In order to cap-

ture that behaviour and also investigate the information processing capabilities of

the cuneate nucleus, the cuneate neurons and their behaviour is also investigated and

modeled.

The cuneate nucleus receive afferent tactile information through primary affer-

ents, which innervate cuneate neurons. The cunate neurons do in turn send axons be-

coming mossy fibers that reach the cerebellar granular layer. Other than the synaptic

connections between primary afferents and cunate neurons, the cuneate nucleus also

contains inhibitory interneurons which are also innervated by the primary afferents.

They do in turn form inhibitory synapses against the cuneate neurons [Bengtsson

et al., 2011].

In this thesis, the cuneate neurons make up the periphery of the simulated net-

work. Even though the interactions between interneurons and primary afferents are

interesting from a feature extraction standpoint, it is not investigated further. Instead,

recorded spiketrains from both interneurons and primary afferents are fed to the net-

work making it superfluous to investigate their behaviour or model them.

The cuneate neurons do on the other hand show interesting behaviour that is fur-

ther investigated. The spike trains they generate during tactile stimulation of their

receptive fields do often, but not always, contain bursts [Sánchez et al., 2006]. Their

resting potential does also lie very close to their firing region, with a fair amount of

spontaneous activity as a result. The combination of these two features mean that they

react with a substantial activity even with small primary afferent input. This makes

them ideal for reacting to small sensory changes [Bengtsson et al., 2011].

Efferent trajectory references
There is evidence that the desired trajectory of planned movements is generated

within the central nervous system and reaches the cerebellum through mossy fibers.

The signal shows little correlation with load disturbances applied to the limbs in-

volved in the motion, which suggests they encode the desired trajectory and not ac-

tual motor commands, which must include the disturbances in order to be able to

compensate for them [Schweighofer et al., 1998, II].

The signals have been shown to correlate with both the desired position and ve-

locity and the activity of some cells appears to be related to acceleration. As the

desired position, velocity and acceleration are all needed by an inverse model, this

corroborates the view where the cerebellum is seen as a feed forward controller that

compensate for both poor original control and disturbances from external factors.

3.2 Granular layer

All of the MFs that reach the cerebellum terminate in the granular layer in glomeruli,

where they innervate both granule cells and Golgi cells. A simplified illustration of
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3.2 Granular layer
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Figure 3.2 Simplified structure of the granular layer

the connection pattern can be seen in Fig. 3.2, where emphasis was put to the recep-

tive fields of the different granule cells and their neighbouring Golgi cells.

In the somatosensory system, a receptive field can be a certain skin area or a

region of an internal organ. The four different receptive fields in the figure, denoted

A+, A−, B+ and B−, are thought to receive their input from tactile sensors on skin

areas close to two different joints A and B. The two receptive fields of each joint is

located opposite each other, thus having opposite reactions to changes in joint angles.

When the +-area is stretched, the −-area will contract. This feature leads to important

evidence of the cerebellar function later on in this chapter.

As mossy fibers carrying signals from the same receptive field or modality reach

the cerebellum together, they innervate the same granule cells and they will in turn

carry information from those receptive fields through their axons up to the molecular

layer [Bengtsson and Jörntell, 2009]. In the molecular layer, the granule cell axons

turn into parallel fibers (PF).

Granule cells
The cerebellar granule cells are among the smallest neurons in the brain and also the

most numerous. A human brain contains around 10 to 100 billion granule cells and

occupy roughly one third of the cerebellar mass. The great number of granule cells

compared to the number of incoming MFs leads to each MF innervating around 2000

granule cells, while each granule cell only receives input from 4-5 different mossy

fibers [Ito, 1984].

The large amount of granule cells carrying the same information as the much less

numerous incoming MFs, does also point towards some kind of signal transformation

capabilities within the glomeruli. This is one of the corner stones of the adaptive filter

interpretation discussed later on in this chapter.

As opposed to the cuneate neurons that fire at the slightest depolarization, the

granule cells have resting potentials that lie much lower than the region where they

start to form action potentials. In order for them to reach that region they require that

at least two of the MFs that innervate them fire simultaneously. This feature could be

used to filter out spontaneous MF activity [Dean et al., 2010] or as a method to extract

features from the MF signals. There are also evidence of other feature extracting

capabilities within the glomeruli, including high-pass and low-pass filtering [Mapelli

et al., 2010].
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3.3 Molecular & Purkinje cell layer

Golgi cells
Golgi cells are located together with the granule cells in the granular layer. They

have an inhibitory effect on the granule cells and receive excitatory synapses from

MFs and also back from the granule cells, both in the granular layer and from par-

allel fibers in the molecular layer. The Golgi cells achieve the inhibitory effect by

forming synapses onto the mossy fiber granule cell excitatory synapse, modulating

the strength of the synapse. The strongest input synapses are made by mossy fibers,

of which the majority arrive from the same receptive field [Palay and Shan-Palay,

1974; D’Angelo, 2008; Jörntell and Ekerot, 2006].

The inhibitory effect upon the granule cell activity permits the Golgi cell to reg-

ulate the intensity of the granule cells it innervates, keeping them from being com-

pletely quiet or saturated due to low or high input from the surrounding mossy fiber

and granule cell activity [Dean et al., 2010]. This allows the granule cells to stay

within their preferred region of activity.

Moreover, the strength of the inhibitory effect varies with the distance between

the inhibited granule cell and the Golgi cell, which is called the center-surround effect

[D’Angelo, 2008]. This will keep the activation threshold of all granule cells in the

vicinity to a Golgi cell varied, something that could be of use to extract features from

the mossy fiber signals.

3.3 Molecular & Purkinje cell layer

Parallel fibers

Purkinjecell Purkinjecell 

InterneuronInterneuron

Excitatory synapse

Inhibitory synapse

To deep cerebellar nuclei Climbing fiber Climbing fiber

A+

A-

B+

B-

Figure 3.3 Microcircuitry within the molecular and Purkinje cell layer

Basket & stellate cells
Other than the parallel fibers and dendritic trees of the Purkinje cells, the molecular

layer also contains interneurons that form inhibitory synapses upon the Purkinje cells

and also to some extent each other. They are usually divided into basket cells and

stellate cells due to their location and the appearance of their dendritic trees and

axons, illustrated in Fig. 3.1 on page 16 [Palay and Shan-Palay, 1974].

Their difference in appearance has given rise to some proposed differences of

their function within the cerebellar microcircuitry. The widespread dendrites of the

basket cells along the Purkinje cell layer are proposed to collect information from

a larger receptive field than that of the Purkinje cells, enabling different types of

feature extraction [Schweighofer et al., 1998; Kitazawa et al., 1998]. The interneuron
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3.3 Molecular & Purkinje cell layer

cell bodies are spread across the molecular layer, but can be labeled as (1) deep

(2) middle and (3) superficial , to describe their depth within the layer and space they

occupy with their dendritic arbors [Ito, 1984].

Recent studies have shown that the stellate and basket cells share the same re-

ceptive field. They have also been found to share the same basic properties, both

regarding their membrane parameters and the parallel fiber input synapse character-

istics [Jörntell et al., 2010]. This leaves different connectivity patterns to be explored.

The activity from a superficial stellate cell recorded during in vivo experiments shown

in Fig. 3.4 exhibit some interesting behaviour that must be due to the incoming in-

hibitory synapses from other interneurons. A short time after the tactile stimulation

the interneuron becomes quiet, seemingly inhibited by another interneuron.

There are no detailed investigations into which connection patterns that do exist

within the molecular and Purkinje cell layer. The basket and stellate cells do at least

innervate the Purkinje cells with inhibitory synapses [Schweighofer et al., 1998, II],

but the data in Fig. 3.4 indicate that there are also inhibitory connections between the

interneurons. This is corroborated by dyed basket cells which show axons reaching

into the molecular layer [Palay and Shan-Palay, 1974]. The most efficient way for the

basket cells to innervate the Purkinje cells would be within the Purkinje cell layer,

indicating that the basket cells reach for stellate cells within the molecular layer and

not the dendritic trees of the Purkinje cells.

Innervating superficial stellate cells with basket cells is most likely not enough

the explain the data in Fig. 3.4. The innervating basket cell do in some sense also

need to be slower than the stellate cell to delay the main inhibitory effect until around

100 ms after the stimulation onset, which is when the superficial interneuron in the

figure goes quiet.

−200 −100 0 100 200 300 400 −200 −100 0 100 200 300 400

Time after stimulation [ms] Time after stimulation[ms]

Spike histogram Spiketrains

Figure 3.4 Spiketrains registered from a stellate interneuron during tactile stimulation and a

histogram combining them.

Purkinje cells
Purkinje Cells (PC) are one of the largest neurons within the human brain. They are

innervated by up to 200,000 parallel fibers that pass through their dendritic trees in the

molecular layer. Furthermore, both basket cell and stellate cell interneurons provide

inhibitory input. In addition to the input originating from the mossy fibers, climbing

fibers from the inferior olive innervate 1 to 10 different Purkinje cells forming several

excitatory synapses onto each of their synaptic trees. The Purkinje cells are however

only innervated by a single climbing fiber each [Ito, 1984].

During periods without climbing fiber activity, Purkinje cells generate action po-

tentials at rates between 17-150 Hz, with a non-negligible spontaneous activity at 40

Hz on average [Dean et al., 2010]. The simple spikes are interrupted whenever the

climbing fiber is activated. Instead, due to the CFs many synapses and strong excita-
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3.4 Cerebellar microzones

tory effect, the Purkinje cell fires a complex pattern of spikes, followed by a period

of suppressed spontaneous activity.

Climbing fiber activity has also been shown to modify the synaptic strengths of

parallel fiber synapses innervating the Purkinje cells, but also nearby interneurons

that are innervated by climbing fiber collaterals [Jörntell and Ekerot, 2003].

The actual distribution of those weights, measured during in vivo experiments and

illustrated in Fig. 3.3, show patterns that corroborate the adaptive filter hypothesis.

Many of the synapses are silent with negligible strength, but more importantly, if the

PF carrying signal from a receptive field have strong PC synapses (A+ and B−), the

PFs with the opposite receptive fields (A− and B+) will have strong synapses against

the interneurons innervating the PC [Jörntell and Ekerot, 2002]. Such a configuration

is what would be expected from an adaptive filter with positive weights and explicit

sign changers.

3.4 Cerebellar microzones

The connection pattern of both the climbing fibers, the parallel fiber receptive fields

and the projection of the Purkinje cells upon the DCN allows for the partition of the

cerebellar cortex into microzones [Dean et al., 2010]. Fig. 3.5 shows where such a

microzone could be located within a unfolded part of the cerebellar cortex. Note how

the Purkinje cell dendritic tree spreads perpendicularly to the parallel fiber direction.

Cerebellar cortex Microzone

Parallel fibers

Purkinje cell 
dendritic tree

Figure 3.5 The organization of cerebellar microzones within the cerebellar cortex

Each microzone contains a couple of hundred Purkinje cells. They are located

in strips that lie perpendicular to the direction of the parallel fibers. Each parallel

fiber will thus reach through several microzones. Due to the placement and size of

the microzones and the incoming MFs, the microzones mostly receive input from the

same receptive field [Jörntell and Ekerot, 2006].

What defines the microzone is its incoming climbing fibers. As each climbing

fiber does contact 10 different Purkinje cells, each microzone receives several climb-

ing fibers. They all originate from the same area in the inferior olive, where the in-

ferior olive neurons terminating in the same microzone are coupled by electrical gap

junctions, synchronizing their spiking behaviour [Dean et al., 2010; Schweighofer

et al., 2004]. Finally the axons from Purkinje cells within the same microzone termi-

nate at the same location within the DCN, which implies that their output is somehow

converging there and is used to control the same system outside of the cerebellum

[Dean et al., 2010].
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3.5 Plasticity of the parallel fiber synapses

3.5 Plasticity of the parallel fiber synapses

The long term effect the climbing fiber activity has on the synaptic strength of the

PF synapse, both against the Purkinje cells and interneurons, makes it important to

investigate the information content sent though the climbing fibers.

The most striking feature of their activity is their unusually slow firing rate. Usu-

ally the IO neurons do not fire much more than one time each second. If the signal is

only used to modify the synaptic strengths, the slow firing rate could be to avoid inter-

fering with the actual motor control [Schweighofer et al., 2004]. On the other hand,

there is evidence the climbing fiber signal is used to initiate movements, sending a

spike at the onset of the movement [Kitazawa et al., 1998].

Since climbing fiber activity also leads to plasticity of the PF synapses, assuming

the cerebellum is used to correct compound motions, the climbing fiber signal should

code for the error during the movements. This will essentially decorrelate the Purk-

inje cell output with the motion error, improving the motor control the next time the

motion is performed. The signal has been shown to contain both the target position at

the onset of movement, and the error as the motion is completed, corroborating both

the hypotheses [Kitazawa et al., 1998]. The spike at onset of movements is explained

as an acceleration error by [Schweighofer et al., 1998, I], but this assumes the error

calculation uses actual values with fairly large delays.

In [Kitazawa et al., 1998], the initial signal is both correlated to the end position

and shown not to be calculated through vision feedback by obscuring the movement

from the subject of the experiments. The end position is however related to the initial

acceleration, and assuming that proprioceptive and tactile feedback can be used to

calculate the error, it could still be some kind of error signal. It should be noted that

the two options are in no way mutually exclusive as there is no apparent reason the

cerebellum could not be used for both tasks.

Since all signals through the nervous system suffer from substantial delays, ex-

cluding the even longer delays caused by the muscle system, an adaptive controller

needs to account for those delays in order for the adaptation to be stable. The plastic-

ity of the PF synapses shows some evidence of such a behaviour. The timing between

PF activity and CF activity play a crucial role in determining the size of the synap-

tic update, where the order of activation also matters [Sarkisov and Wang, 2008].

In simulations, delays between 50ms [Schweighofer et al., 1998, II] and 150 ms

[Schweighofer et al., 1996] have been used successfully to train networks.

The slow rate of spikes through the CFs does of course deteriorate the informa-

tion content of the transmitted signal. In [Schweighofer et al., 2004] small regions

of the IO were simulated to investigate the characteristics of the CF signals. It was

shown that chaotic elements generated by the electrical gap junctions between the

IO neurons increased the information content of the signal during the simulation. No

model of the IO is constructed during this thesis, but it would be a natural extension

in order to investigate the behaviour of the CF signal.

3.6 Cerebellum as an adaptive filter

Both the anatomical structure of the cerebellum and the synaptic configurations of

PF synapses from in vivo studies have lead to the idea that the cerebellum works as

an adaptive filter [Dean et al., 2010; Fujita, 1982; Ito, 1984]. Fig. 3.6 shows the how

the basic structure of the cerebellum can be transformed into a basic adaptive filter,

while the apparent receptive field specific weight distributions seen in Fig. 3.3 gives
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3.6 Cerebellum as an adaptive filter

evidence of actual training. As both LTD and LTP of PF synapses exist, both upon

interneurons and Purkinje cells, most of the fundamental criteria required to build the

adaptive filter structure in Fig. 3.6 are met [Dean et al., 2010].

Feature extraction
(Basis functions) Variable positive

 weights

Sign change

Sum

-1

-1

-1

-1

Figure 3.6 Adaptive filter interpretation of the cerebellar function

Since the synaptic weights are not allowed to change sign, they are either in-

hibitory or excitatory, the interneurons play a crucial role in allowing the signals

carried by the PF to have an inhibitory effect upon the Purkinje cells. Furthermore,

the plasticity of of the PF synapses upon the interneurons are reversed compared to

those innervating the Purkinje cells [Jörntell et al., 2010]. This gives further evidence

of the adaptive filter hypothesis.

In order for the filter to create the inverse models necessary for motor control, it

also has to be able to approximate non linear functions. This could be attributed to

the granule cells if they can be shown to perform transformations from input spike

rate to output spike rate, resembling some kind of basis functions. This would also

explain the abundance of granule cells.

Depending on the input available, some derivative and integrating action might

also be required. Some signs of such capabilities has been found in the cuneate nu-

cleus [Forsberg, 2010], where derivative action was found by analysing histograms

obtained from in vivo experiments. Derivative action has also been attributed to the

interactions between mossy fibers and granule cells [Fujita, 1982]. It has also been

shown that some granule cells receive functionally equivalent input from all four

mossy fibers, indicating that they function as coincidence detectors, gating out noise

from the mossy fibers [Bengtsson and Jörntell, 2009].

Because of the slow Golgi cell behaviour, they could be involved in integrating

action [D’Angelo, 2008], and also in low pass filtering of the MF inputs [Fujita,

1982]. Their center-surround effect upon the strength of the synapses between MF

and granule cells could also be used modulate the activity of the granule cells creating

a large set of different basis functions that could be used by the Purkinje cells to

approximate non-linear functions.

It is tempting to see the adaptive filter interpretation of the cerebellar function
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3.6 Cerebellum as an adaptive filter

as the final model of the cerebellar function. A generic adaptive filter is, just like

the cerebellum, extremely versatile, and can be used to approximate a wide range

of different functions and systems. It does however move much of the responsibility

to the teaching signal, which in the cerebellum is attributed to the CF signals. The

nature of that signal is still controversial, and while there is evidence of correlations

with movement errors, much of the higher level abstract models assume the kind of

teaching signals that corroborate their model. This includes the plasticity model from

[Schweighofer et al., 1998, II] which is used in this thesis in a slightly modified form.

The adaptive filter does also require a higher-level model to explain how motor

control is possible, as one single inverse model cannot be used in all situations, coun-

teracting different external force-fields or loads applied to the controlled limb. Yet the

nervous system can manage instantaneous switches between different external force-

fields without loss of control performance [Yamamoto et al., 2007]. The model in

[Kawato, 1999] tries to explain how this is accomplished. It uses several cascaded in-

verse and forward models to switch between different situations depending on special

contextual signals.

Both the issue regarding the CF signal and possible higher-level abstractions are

important research topics, whose answers will greatly improve the understanding of

the cerebellar function. They are however beyond the scope of this thesis.
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4. Simulation setup
The purpose of this thesis work is to develop the basis of a cerebellar simulation

toolkit that can be used to investigate cerebellar behaviour involving up to thousands

of neurons forming large networks. The path to reach such a goal can be divided into

the following tasks, divided into two subsequent steps.

1. Model individual cerebellar neurons

(a) Choose the basic model that should be used for each cerebellar neuron

type based upon their known behaviours.

(b) Fit the model parameters to experimental data.

(c) Validate the simulation results against experimental data during standard-

ized afferent input.

2. Use the neuron models to construct networks, investigating the behaviour of

neurons in concert.

• Investigate subsets of the cerebellar micro circuitry to examine different

hypotheses of cerebellar function.

• Construct a complete network and train it to perform a simple task, en-

abling analysis of neural pathways through the entire cerebellum.

Even though the first step deals with individual neurons and how to model them,

small networks has to be created to be able to validate the models. This is mainly

due to that the afferent input used for validation has to pass through all prior neurons

before it reaches the neuron in question. In some cases though, the network structure

can be seen as a part of the neuron model in order to fit the simulation results to the

validation data.

During the second step a complete network is created, built upon the structure

from [Schweighofer et al., 1998, II], where the network is trained to mimic the in-

verse dynamics of a double joint arm. The overall network structure, the number of

neurons and the number of synapses used in the network are similar to that used in

the Schweighofer article, but the following main differences exist

• Spiking neuron models are used instead of rate-based models

• No muscle model is used.

• The generated trajectory is generated in joint space.

• No afferent input is used as it would contain the same information as the gen-

erated trajectory, but delayed.

• Other than the LTD of PF-PC synapses modelled in [Schweighofer et al.,

1996], LTP of PF-PC synapses and LTD/LTP of PF-interneuron synapses are

added leading to another weight normalization rule.

• In [Schweighofer et al., 1998, II], all neurons have coordinates placing them

at different positions within their cerebellar layer. Here, all Purkinje cells and

interneurons have synapses to a subset of all granule cells with no regard to

their position within the molecular/granular layer.

• No DCN and thus no MF collaterals innervating the DCN or the output of the

network.
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4.1 Neuron models

• Golgi cells are assumed to have only long term effect, regulating the activity

of the granule cells in the network. This is included into the model by varying

the resting potentials of all granule cells and also the synaptic strength of the

mossy fiber input instead of explicit Golgi cell models.

4.1 Neuron models

0 20 40 60 80 100 120 140 160 180 200

time after stimulation [ms]

Interneuron

Primary afferent

Figure 4.1 The primary afferent and interneuron spike trains used as input to calibrate the

models

A variety of the neuron models described in chapter 2 are used to model the different

neuron types introduced in chapter 3. The purpose of not using a single model for

all neurons is to enable the chosen model to emulate the interesting behaviour of the

different neurons, which varies both due to their location within the network, and

their bio-physical nature.

When a model is chosen, some parameters are fairly well established; such as

the membrane capacitance and conductance, and also the time constants of synap-

tic differential equations. Other parameters have to be calibrated against a known

behaviour, where standardized afferent input is fed to the periphery of the network.

Recorded spike trains from primary afferents and interneurons can be seen in Fig. 4.1

after mechanical stimuli has been applied to tactile skin sensors. These spike trains

are used as input to test the neuron models and compare them to experimental data

during the same stimulation.

As the tactile stimulation and the behaviour of the primary afferents is highly

stochastic, there is no extra gain from recreating the exact behaviour found in the

experimental data. Instead, either the simulated result should exhibit the same qual-

itative behaviour, or an average spike intensity histogram over several runs can be

created, where the simulated result should be very close the actual behaviour.

Cuneate neurons
The cuneate neurons have the most complex firing pattern of the cerebellar cells.

They can both exhibit bursting behaviour, but some cuneate cells will never or seldom

burst. As most of them also exhibit activity during rest, an escape rate model would
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4.1 Neuron models

be preferred over a deterministic model. Hence, the first step of selecting a model for

the cuneate neurons is to investigate whether or not a escape rate model is a viable

choice; is there enough data to fit all distribution parameters, and can a typical cuneate

neuron behaviour be found among the experimental data, or would it require several

different models?

If the escape rate model cannot be used, the second choice is to use the EIFB

model. It too requires some extra attention, as it is much more complex than the EIF

model. Suitable values to the parameters from both the extra calcium channel and the

potassium channel have to be chosen to make the model behave as a regular cuneate

neuron.

As it is the complex bursting behaviour that make the cuneate cells interesting, the

model is validated by comparing the simulated result to experimental result, without

averaging over several runs.

Granule cells

Table 4.1 Setup used to calibrate and validate the granule EIF model

Type # Model Input Output

Cuneate 4 EIFB

or ER

Recorded spiketrains from 4

primary afferents and 8 in-

terneurons

1 granule cell

Granule 1 EIF 4 mossy fibers

As the granule cells acts as noise gates with a firing threshold that is high above

the neurons resting potential, they can be seen to act in a completely deterministic

manner. That makes EIF the most suitable model to use.

Table 4.1 summarizes the simple network that is used to calibrate and validate the

model. Four cuneate neuron models, constructed according to the previous step, are

connected to the granule cell EIF model. If the cuneate cells are modeled with com-

pletely deterministic models, either their input or parameters have to be chosen so that

they do not fire completely synchronized, since that would invalidate the calibration

of the granule model.

Other than the calibration of a single granule cell, the setup does also allow for in-

vestigating some of the feature extracting capabilities of the cerebellar granule layer.

By feeding the cuneate cells with a monotonically increasing bias current, its influ-

ence on the firing rate of the granule cells can be determined. Using different con-

figurations of the granule models, e.g. changing the resting potential or the synaptic

weights of the incoming MFs, the possibility of granular layer basis functions, used

by the PC to approximate non-linear functions, could be investigated.

Molecular layer interneurons
Because of their high spontaneous activity, ER models should be able capture the

behaviour of the interneurons better than deterministic models. Using different pat-

terns of inhibitory connections between the interneurons, the behaviour in Fig. 3.4

on page 20 should also be recreated. As it requires that some of the neurons exhibit

a slower and lingering response to the stimulation, the neurons are divided into two

groups, (1) deep neurons with a slow response and (2) superficial neurons with a

faster response , inspired by the molecular layer anatomy. The behaviour from Fig.

3.4 should appear in some of the superficial neurons that are inhibited by the deep
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4.1 Neuron models

Table 4.2 Setup used to calibrate and validate the molecular layer interneuron escape-rate

models

Type # Model Input Output

Cuneate 8 EIFB

or ER

Recorded spiketrains from 4

primary afferents and 8 in-

terneurons

∼ 5 granule cells

Granule 10 EIF 4 mossy fibers 10 interneurons

Interneuron 10 ER 2-3 other interneurons and 10

granule cells

2-3 other interneurons

neurons, causing the period without spikes at around 100 ms past the stimulation

onset.

The speed of the response is modeled by changing the EPSP of the PF synapses

onto the interneurons. This is not corroborated by experimental results, which instead

indicate similar time constants at all PF interneuron synapses [Jörntell et al., 2010].

The best solution would be to use different ISI PDFs for the deep and superficial

neurons, but modifying the EPSP time constants should yield a similar result.

The network setup in table 4.2 shows the basic structure, but leaves the actual con-

nection pattern between the interneurons to be decided through the actual simulation

results. The four different connection paths that can be used between the interneurons

are (1) from deep to superficial (2) from superficial to deep (3) between two superfi-

cial and (4) between two deep. The behaviour within the interneuron population can

be be investigated using different patterns of these connections, ultimately looking

for the behaviour shown in Fig. 3.4.

Purkinje cells
Escape rate models are suitable to model Purkinje cells due to their high spontaneous

activity. The network structure in table 4.3 is similar to that used for the interneurons,

with an added Purkinje cell model receiving synaptic input from 10 parallel fibers

and 5 interneurons.

Table 4.3 Setup used to calibrate and validate the Purkinjecell escape rate models

Type # Model Input Output

Cuneate 8 EIFB

or ER

Recorded spiketrains from 4

primary afferents and 8 in-

terneurons

∼ 5 granule cells

Granule 10 EIF 4 mossy fibers 1 Purkinje cell and 10 in-

terneurons

Interneuron 10 ER 2-3 other interneurons and 10

granule cells

∼ 0.5 Purkinje cells and 2-3

other interneurons

Purkinje cell 1 ER 5 interneurons and 10 granule

cells

28



4.2 Complete network setup

4.2 Complete network setup

To reach the objective of being able to investigate how several neurons in the cere-

bellar network behave in concert, a much larger network than the previous presented

has to be constructed. The size of the network is limited by available hardware and

time, but should still be large enough to emulate the behaviour that is due to the

large amount of neurons present within the cerebellum. The network size used in

[Schweighofer et al., 1998, II] allowed the network to be trained, leading to clear

improvements of the controlled arm model. Constructing the network to be of ap-

proximately that size, should at least allow it to be trained, and perhaps show other

interesting properties as well.

Cuneate
neurons

Cuneate
neurons

Granule
cells

Granule
cells

Golgi
cells

Inter-
neurons

Inter-
neurons

Purkinjecells

Purkinjecells

Climbing fibre

Climbing fibre

Excitatory synapse
Inhibitory synapse

Figure 4.2 Illustration of how the cerebellar microzone structure can be interpreted. In the

constructed network, the Golgi cells are modeled implicitly through their long term effect upon

the synaptic weights in the glomureli.

The actual setup used is presented in table 4.4, where the amount of neurons and

their connections are shown. The actual pattern of connections does, however, still

need to be established. Fig. 4.2 illustrates how information channels carrying differ-

ent modalities are constructed, and does not converge until the PF create synapses

upon the Purkinje cells or molecular layer interneurons. Just like real afferent input,

each modality has both a positive and a negative channel, emulating proprioceptive

and tactile sensory feedback from agonist/antagonist sensors. As a result of this sim-

plification, the modalities do not cross paths either in the cuneate nucleus or in the

granule layer.

In the real system, afferent input could contain state information that is not de-

ducible from the trajectory reference, but since no muscle model or any biologically

plausible tactile or proprioceptive sensors are used in the simulation, there is no mo-

tivation for afferent input to the network.

The network is further simplified by connecting each interneuron to Purkinje cells

from only one microzone, further enhancing their role as sign changers in the hypoth-

esized adaptive network shown in Fig. 3.6 on page 23.

The results from the interneuron simulations could then be used to construct the

connection pattern between the interneurons, and the result from the granule cell ex-
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4.3 Double joint plant

periment could be used to calibrate the distribution of the granule cell rest potential

and the MF synapses. Each Purkinje cell receives input from 720 parallel fibers and

4 interneurons chosen at random from the entire set of parallel fibers and interneu-

rons. The interneurons do in turn receive input from 100 granule cells also chosen at

random.

Since the input to the 4 groups of Purkinje cells are chosen at random from the set

of all granule cells and thus all input channels, all the groups will behave equivalent

in the untrained network. By connecting climbing fibers to the Purkinje cells and their

respective interneurons, changing the PF synaptic weights, the Purkinje cell groups

should start to converge. Since each group also has a antagonist group, Purkinje cells

from those two groups could be compared to see if the training is successful. If this is

the case, they should start to exhibit opposite reactions to input, where the antagonist

output is at its largest when the agonist output reaches its minimum.

As the network is used to control the double joint arm described in the next sec-

tion, it recieves both a positive and negative version of the angular acceleration, an-

gular velocity and the joint angle for both the joints in the arm. In total the network

receives 12 input channels, divided over 240 MFs. The output of the network is gen-

erated by four groups of Purkinje cells with 9 cells in each group. They generate

both agonist and antagonist joint torque signals for both joints. The continuous out-

put signals, τCB+
s , τCB−

s , τCB+
e and τCB−

e , are computed by counting all spikes from

the respective 9 Purkinje cells during the previous 5 ms.

Table 4.4 The complete network

Type # Model Input Output

Mossy fiber 240 EIF ±θ̈ ref
s , ±θ̇ ref

s , ±θ ref
s , ±θ̈ ref

e ,

±θ̇ ref
e and ±θ ref

e

∼ 1.1 ·104 granule cells

Granule 2916 EIF 4 mossy fibers ∼ 5.5 interneurons and ∼ 9

Purkinje cells

Interneuron 162 ER 100 parallel fibers and 2-3

other interneurons

∼ 0.8 Purkinje cells and 2-3

other interneurons

Purkinje cell 36 ER 720 parallel fibers and 4 in-

terneurons

τCB+
s , τCB−

s , τCB+
e and τCB−

e

.

4.3 Double joint plant

The planar double joint plant used as the controlled system is illustrated in Fig. 4.3

and is completely described by Eq. (4.1). The equation shows the inverse dynamics

form, which is the form that the cerebellar network should learn to approximate. The

model is also used in [Schweighofer et al., 1998, I], with the same parameters as

those used in [Katayama and Kawato, 1993].

τs =
(
I1 + I2 +2M2L1Lg2 cos(θe)+M2L2

1

)
θ̈s

+(I2 +m2L1Lg2 sin(θe)) θ̈e

−M2L1Lg2 sin(θe) θ̇ 2
e −2M2L1Lg2 sin(θe) θ̇eθ̇s

τe = I2θ̈e +(I2 +M2L1Lg2 cos(θe)) θ̈s +M2L1Lg2 sin(θe) θ̇ 2
s

(4.1)

30



4.4 Controller structure

θe
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Figure 4.3 The planar double pendulum in mixed coordinates used to model the human arm.

The points T1 to T5 are used as start and stop coordinates for the motions used during the

simulation. The five motions used can be seen within the dashed rectangle to the right.

The difference compared to the setup in [Schweighofer et al., 1998, I] is the ab-

sence of a muscle model. Since the network acts in joint space, the transformation to

torque space in the setup by Schweighofer is attributed to a region in the CNS called

C3/C4. By assuming that the transformation from joint to torque space in that region

is perfect, implementing an exact inverse model of the muscle dynamics, the muscle

model and inverse muscle model cancel out, allowing for the complete removal of

the muscle model.

This simplifies the simulation setup, and since the objective of the thesis work

does not contain a detailed description or investigation of the muscle model, it is a

feasible simplification. Even without the muscle model, the network has to learn the

inverse dynamics of the arm, and despite that the human arm is much more complex,

with more actuators, sensors and degrees of freedom, the result will be a trained

network, and its properties can be investigated.

The motions used to train the network originates from [Koike and Kawato, 1995],

and the trajectories are miminum jerk trajectories generated in joint space as opposed

to the trajectories used in [Schweighofer et al., 1998, I] which are in task space. This

leads to slightly more curved trajectories. The start and end point of all motions can

be seen in Fig. 4.3, labelled T1 to T5.

4.4 Controller structure

Other than the network, the arm is also controlled by an ordinary PD-controller and

one additional simple feed-forward controller. The entire setup can be seen in Fig.

4.4. The arm is controlled through the torque to the shoulder joint, τs and the torque

to the elbow joint, τe, which are calculated as the sum of the control signals from the

three controllers according to Eq. (4.3).

The feed-forward controller is a simplification of the inverse dynamics in Eq.

(4.1), leading to Eq. (4.2). The same structure is also used in [Schweighofer et al.,

1998, I].
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Figure 4.4 The controller structure of the simulation setup

(
τFF

s

τFF
e

)
=

(
αFF +βFFθe 0

0 λFF

)(
θ̈ ref

s

θ̈ ref
e

)
(4.2)

τs = τFF
s + τPD

s + τCB+
s − τCB−

s

τe = τFF
e + τPD

e + τCB+
e − τCB−

e

(4.3)

4.5 Plasticity model

The plasticity model used to train the complete network borrows its main features

from the setup in [Schweighofer et al., 1996]. The similarities allow for comparisons,

but the model also contains some serious flaws. The most important being that it

cannot explain the bidirectional timing properties between PF and CF inputs found

in [Sarkisov and Wang, 2008].

Weight update rule
The basis for many neural plasticity models uses what is called Hebbian theory to

update the synaptic weights in relation to their recent activity. The rules were first

introduced by Donald Hebb in [Hebb, 1949], hence the name. The theory states that

synapses between cells that fire simultaneously are strengthened. In the case of paral-

lel fiber synapses upon Purkinje cells, the opposite is true, which is corrected through

the inserted negation in the original learning rule, leading to

dḡsyn
i

dt
=−λψi (t)

(
rsyn
CF (t)−θM (t)

)
(4.4)

where λ is a learning coefficient, ψi is described later, but depends on the activity of

the PF synapse, rsyn
CF is the synaptic activity from the climbing fiber, and θM sets the

threshold between LTP and LTD of the synapse.

The threshold θM is added as an implicit normalization of the synaptic weights. In

[Schweighofer et al., 1996], an explicit weight normalization is applied at each step,

increasing all weights so that the sum of all weights stay constant. Since both LTP

and LTD are connected to the activity of the incoming PF, using a explicit approach
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4.5 Plasticity model

to normalizing the weights is not biologically plausible. It is however necessary to

include some kind of normalization rule to keep all weight from reaching zero, or

being to large, saturating the Purkinje cell.

The type of Hebbian learning rule using a threshold to regulate the balance be-

tween potentiation and depression is called a BCM rule after the authors of [Bienen-

stock et al., 1982]. Usually, the rule inludes a quadratic rsyn
CF term, and consequently

θM should be the moving average of (rsyn
CF )

2. To keep the linear normalization from

the Schweighofer article, this is not the case here. Instead, θM is the moving average

of rsyn
CF leading to

τM
dθM

dt
= rsyn

CF (t)−θM (4.5)

By having a large enough time constant τM, the threshold θM will stay close to

the time average of the CF synaptic activity, without large fluctuations when the CF

is activated. This will give close to the same result as a normalization rule that keeps

the sum of all synaptic weights constant as the ratio between LTP and LTD regulated

by Eq. (4.4) will strive to be 1 .

Error signal
The error signal that drives the activity of the climbing fibers contain the acceleration,

velocity and angular error according to

e = αe (θ −θ ref)+βe
(
θ̇ − θ̇ ref

)
+ γe

(
θ̈ − θ̈ ref

)
(4.6)

where αe, βe and γe are coefficients that can be used to stabilize learning rate. Since

the errors are simply added, this resembles the feedback error of the control loop.

Because of this it is called Feedback Error Learning (FEL) and allows for training

of the model without access to the errors in joint space, using the actual feedback

error[Gomi and Kawato, 1990]. Motivation for the bio-physical validity of FEL can

be found in [Kawato and Gomi, 1992].

The slow firing rate of the climbing fibers can be modeled by an ER model, which

uses the error signal instead of membrane potential to calculate the current distribu-

tion of ISI. Using the same sigmoid function as in the original ER models, two equa-

tions like that shown in Eq. (4.7) can be used to describe the mean firing rate and

inverse ISI standard deviation.

ICF (e) = p1e +
p2e

1+ exp(p3e − e)/p4e
(4.7)

The error signal delays, caused by muscle reaction times and neural transmission

delays, are counteracted by the introduction of an additional second order state, ψ .

The method is also used in [Schweighofer et al., 1998, II] and originates from

[Schweighofer et al., 1996]. Eq. (4.8) contain the definition of ψ , which can be seen as

an autoregressive process with the synaptic activity as input. It works by delaying the

plasticity caused by the synaptic input, synchronizing the time it takes for the state

to reach its maximum with the delay of the error signal. This creates an eligibility

window, open for a short period after the synapse receives input spikes, during which

plasticity is possible. The dynamics and timing of the window is controlled by the

parameters αψ , βψ , γψ and they should be chosen so that Eq. (4.8) reaches it peak

after 60 ms, which is the combined delay from the control loop in Fig. 4.4.

αψ
d2ψi

dt2
+βψ

dψi

dt
+ γψψi = rsyn

i (4.8)
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4.5 Plasticity model

The eligibility window approach does not take the bi-directional timing found in

experimental studies into account. Neither does it explain how the eligibility window

is synchronized with the error signal in the first place. These two flaws in the model

need to be addressed to create a detailed biologically plausible model for plasticity

caused by climbing fiber activity, but that work is beyond the scope of this thesis.
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5. Results

5.1 Cuneate neurons

A 2

B 22

C 20

D 15

E 1

F 3

G 9

H 16

I 17

J 19

ISI Histogram # succ. long ISI # succ. short ISI

1 5 10 15 1 5 10 155 200 ms0

78.7 % 21.3 %

93.9 %
6.1 %

63.7 % 37.3 %

52.8 % 47.2 %

28.0 % 72.0 %

76.1 % 33.9 %

93.0 % 7.0 %

61.8 % 38.2 %

59.6 % 40.4 %

20.0 % 80.0 %

Figure 5.1 Properties of ten different cuneate neurons under no external input displayed

in histograms showing the distribution of their ISIs (left), the likelihood of successive long

ISIs (middle) and the likelihood of successive short ISIs (right). The percentages show the

total distribution between long and short ISIs, the red arrowheads denote significant overflows

in the figure and the gray arrows show where the border between short and long ISIs is (5

ms). The dashed box (neuron �) show a rebound peak, which is completely made up of ISIs

following a short ISI.

Spontaneous activity from 30 different cuneate neurons registered in vivo was ana-

lyzed to decide whether it would be possible to build a bursting ER model. The found

behaviour of the different neurons, shown in Fig. 5.1 using ten of them, does exhibit

some common characteristics, but is in general to diverse to allow the construction

of a generic bursting ER model. It would be possible to construct several different

models, but since all the models are also required to work under non-stationary con-

ditions, each model would require data from the same cuneate neuron at several dif-

ferent membrane potentials. This would require an enormous amount of data that

is currently not available. Further analysis is also needed to describe how the state

transition probabilities of the underlying HMMs change depending on the neuronŠs

membrane potential.

Looking further at the dynamics of responses to different input, such as bias cur-

rent steps, it is clear that the transient behaviour following input is very interesting.
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5.1 Cuneate neurons
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Figure 5.2 A cunate neurons response to bias current steps. a) The depolarizing current step

followed after a long period of hyperpolarization (800 ms). b) The depolarizing current step

followed a short period of hyperpolarization (150 ms).

Approaching the model from the steady-state behaviour might lead to a loss of im-

portant dynamic properties of the bursting neuron. While the spontaneous behaviour

and the response to sensory stimulus is highly stochastic, the responses to controlled

input steps follow a strict pattern shown in Fig. 5.2. It might be that the responses

from the cuneate neuron is not that stochastic, but that the mechanical sensory stim-

ulus and the neural pathways leading to the cuneate neuron are the primary causes

of the stochastic behaviour. As the cuneate neurons have resting potentials very close

to their firing thresholds, it could also be caused by the stochastic components of

the inhibitory input from cuneate interneurons. The spontaneous input from cuneate

interneurons can be seen in Fig. 4.1 on page 26 after 160 ms have passed since the

onset of the stimulation.
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Figure 5.3 Evolution of the different simulation models for cuneate neurons, showing their

difference simulated with primary afferent and interneuron input from in vivo data.

Using the assumption of a deterministic behaviour, or at least that the stochastic
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5.2 Granule cells

behaviour of the cuneate neuron does not influence the important dynamics, the EIFB

model can be used. This model does however fail to explain the neuronŠ spontaneous

activity. Fig. 5.3 contains simulation results from the used EIFB model, including

results from a real registration in vivo.

5.2 Granule cells
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Figure 5.4 Comparing the output of the EIF-model with real in vivo measurements from a

granule cell.

Fig. 5.4 show the simulation results of the constructed EIF model and in vivo mea-

surements of a granule neuron. The shape of the action potentials and the EPSPs have

a similar appearance, while the overall activity of the model is much higher. This is

due to slightly higher synaptic weights and in addition to that the in vivo measurement

was made during a much lighter stimulation than that used to create the spiketrains

used as input to the simulations. Notice how the membrane potential is reset to a level

10-15 mV below the equilibrium.

5.3 Interneurons

ISIs registered in vivo from one interneuron at five different membrane potentials

were used to create PDFs describing the spike rate. The different membrane poten-

tials were induced by applying a bias current through the membrane of the neuron.

Histograms of the ISI distributions at the different membrane potentials can be seen

in Fig. 5.5 together with the fitted log-normal PDFs.

The sigmoid curve described in Eq. (2.15) on page 13 was then fitted to the mean

and standard deviation of the found PDFs. Fig. 5.6 shows the different relationships,

where the ISI mean and standard deviation can be found in the top graph, the sigmoid

curve in the middle graph, and the mean and standard deviation of the underlying

normal distributions in the bottom graph.

Different connection patterns between five superficial and five deep interneurons

were investigated, with the result found in Fig. 5.7. Using a random pattern of connec-

tions where all the interneurons received inhibitory connections from three random

other interneurons, the superficial neurons showed no signs of the sought after quiet

period. In Fig. 5.7 b the connection pattern was segmented between the superficial

and deep neurons, resulting in a quiet period resembling the one found in the experi-

mental data.
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5.3 Interneurons
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ron at five different membrane potentials. The corresponding histograms and distributions are

shown in Fig. 5.5.
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5.4 Purkinje cells

During the simulation yielding the result in figure b, each superficial interneurons

received three connections from randomly selected deep interneurons, while the deep

neurons received two connections from superficial interneurons and one from another

deep interneuron.
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b Segmented innervation pattern
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Figure 5.7 Comparing two simulation results with different connection patterns. Both show

the behaviour of interneurons with fast EPSP time constants. a) generated with all interneurons

receiving three completely random inhibitory connections, as opposed to b) where the three

connections were chosen depending on the speed of the interneuron EPSP time constants. The

red line marks the tactile stimulation onset.
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5.4 Purkinje cells

The Purkinje cell ER model was constructed using the same procedure that was used

modeling the interneurons. The ISI histograms and fitted log-normal PDFs at five

different membrane potentials can be found in Fig. 5.8, and the fitted sigmoid curves

in Fig. 5.9. Fig. 5.10 shows the simulation result, displayed as spiketrains and a his-

togram summing them up, compared to spike trains from a Purkinje cell registered in
vivo.
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Figure 5.9 Sigmoid function fitted to the mean and std dev. of the spike rate of a Purkinje cell

at 5 different membrane potentials.The corresponding histograms and distributions are shown

in Fig. 5.8.
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Figure 5.10 Comparing real Purkinje cell spiketrains with those generated by the ER model.

The red line marks the tactile stimulation onset.
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5.5 Granular basis functions

5.5 Granular basis functions
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Figure 5.11 Simulation results from a small network with four cuneate neurons connected

to one granule cell. The red curves in both the figures are have the same synaptic weight and

resting potential setup.
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Figure 5.12 Simulation results from a small network with four non-bursting mossy fibers

connected to one granule cell. The red curves in both the figures are have the same synaptic

weight and resting potential setup.

The setup used to construct and validate the granule cell EIF model was also used

to investigate the basis function properties of the junctions between the incoming

MFs and the granule cells. The results can be seen in Fig. 5.11, where the MFs were

modelled as bursting cuneate neurons, and in Fig. 5.12, where the MF were mod-

elled as non-bursting neurons. The influence of Golgi cells was assumed to be static,

only affecting the distribution of the synaptic weights between the MFs and the gran-

ule cells. Additionally, the influence of varying granule resting potentials was also

investigated.

5.6 The complete network

Fig. 5.13 show the five motions the arm performed during the simulations. The end

point error is improved only in the second motion, while it is clearly worsened in

both motion four and five. The error signal history during 200 simulations, including
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5.6 The complete network
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Figure 5.14 The mean of the error e at each run. The red curves illustrate the overall trend.

all five motions, can be seen in Fig. 5.14. The trend of both joint errors show clear

improvements, but the shoulder error reaches its minimum after 100 simulations,

after which its starts to grow again. This problem arose during all simulation trials,

implying it is a inherent limitation of the current simulation setup.

Fig. 5.15 and 5.16 show the membrane potential of simulated Purkinje cells in-

volved in shoulder and elbow control. As long as the membrane potential is within

the linear region of the used intensity function, it can be seen as the control output of

the network model. After 200 simulations, the activity is clearly related to the ideal

inverse model torque. There are however no clear signs of any non-linear approxima-

tions using the granule basis functions in Fig. 5.12. Most of the correlation is due to

high synaptic weights against signals containing acceleration references.
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5.6 The complete network
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Figure 5.15 Membrane potential of two Purkinje cells involved in controlling the shoulder
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which generates the τCB+
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to the antagonist microzone generating τCB−
s signal. The bottom graph illustrates how τCB+
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s interacts and compares them to the ideal torque τ ref
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Figure 5.16 Membrane potential of two Purkinje cells involved in controlling the elbow

joint after 200 simulations. The Purkinje cell shown in the top graph belongs to the microzone

which generates the τCB+
e signal, while the Purkinje cell shown in the middle graph belongs

to the antagonist microzone generating τCB−
e signal. The bottom figure illustrates how τCB+

e
and τCB−

e interacts and compares them to the ideal torque τ ref
e − τFF

e (solid line), the elbow

acceleration reference θ̈ ref
e (dotted line) and the shoulder acceleration reference θ̈ ref

s (dashed

line). All components of the bottom graph are normalized so that their largest absolute value

equals 1.
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6. Discussion
The purpose of the thesis was to continue the work of [Dürango, 2010], by extending

it with models describing all neurons within the cerebellar microcircuitry, and con-

necting the constructed network to perform a proof-of-concept control task. During

the work suitable models were found, and in the case of Golgi cells, their behaviour

was modeled indirectly through the MF granule cell synapses. The work is not com-

plete, and all the models require some further development and validation. Most of

the validation data was from a single neuron only, and even though the data qualita-

tively represented the average case neuron behaviour, the extreme cases are equally

important.

The models and the network setup were chosen using the basic, but not sole pre-

vailing viewpoint, that the cerebellum acts as an adaptive filter. The purpose was to

make it possible to decide which neuronal behaviour should be emphasized and used

to select models that also exhibited the same kind of behaviour. It reduces the appar-

ent complexity of the neuron, which could of course also lead to loss of important

features. This makes further validation of the individual neuron models, and their

behaviour in concert, even more important.

6.1 About the results

The cuneate nucleus
The behavioural diversity among the analysed neurons does almost completely rule

out the use of a ER HMM to model the behaviour of the cuneate neurons. Since the

cuneate neurons seem to have a almost deterministic response when stimulated, it

might also be hard to actually find states with ISIs that can be considered renewal. If

further analysis manages to find relationships between the membrane potential and

state transition probabilities and the ISI peak PDF shapes, the ER model is at least

very good at describing spontaneuos activity. The analysis might also lead to the

classification of different types of cuneate neurons, which could be of interest even if

other neuron models are used.

The simulated response to the primary afferent and interneuron input to the

cuneate EIFB model have a clear resemblance to measurements made in vivo. The

biggest issue with the EIFB model is its lack of stochastic components and absence

of spontaneuos activity. It can be induced by changing the resting activity either close

enough to Vt or above VCa. This will however only lead to a completely deterministic

and completely regular behaviour of the spikes generated (see Fig. 2.2 on page 11),

which does not resemble the ISI distributions which was found from real cuneate

neurons in Fig. 5.1 on page 35.

The spontaneous activity could also be attributed to activity from cuneate in-

terneurons which also exhibit relatively high spontaneous activity. As the cuneate

neurons require very little excitatory stimulation to burst, the spontaneuous activ-

ity from the interneurons in combination with a resting potential within the spiking

range of the neuron might be enough to cause the spontaneous activity of the cuneate

neurons.
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6.1 About the results

Molecular layer interneurons
The interneuron model was created using in vivo data from one single superficial in-

terneuron. The number of registered ISIs from the neuron varied greatly between the

different potentials, but never reached a large enough number to validate the fitted

PDFs using e.g. the Kolmogorov-Smirnov test. While results in Fig. 5.5 and 5.6 on

page 38 look reasonable, the use of the log-normal distribution and the renewal hy-

phothesis should be further investigated using measurements from several different

interneurons.

The fitted curves in Fig. 5.6 are in addition to this used for extrapolation, propa-

gating small errors of any individual PDF from Fig. 5.5 into much larger errors when

the ER model operate at potentials lower than -60 mV or higher than -45mV. This

could be remedied by using the minimum and maximum firing rate of the neuron,

creating a strict interpolation task as those values in theory are reached at membrane

potentials of negative and positive infinity respectively.

The investigated interneuron connection pattern that lead to simulation results

(see Fig. 5.7 on page 39) resembling experimental data was constructed with the

actual molecular layer anatomy in mind. Even though there is no clear anatomical

evidence that the interneurons innervate each other, it is hard to explain the histogram

in Fig. 3.4 on page 20 in any other way. The simulation results further corroborate

this assumption even though it cannot be used to confirm one specific pattern.

It should also be noted that the simulation results show a binary oscillatory be-

haviour, which is also present in the experimental data during periods of no stimu-

lation. It can be seen as short periods with little or no activity in the histogram and

spiketrains in Fig. 3.4 between 170-200 ms and 280-330 ms. The behaviour is present

during at least 30-50 % of the registered spike trains. The same type of periods with

almost no activity can be found in the simulation results in Fig. 5.7. In the simula-

tions the behaviour was caused by interaction between the entire group of superficial

neurons and the entire group of deep neurons. Only one of the groups was active at

a time, leading to the oscillatory behaviour where one of the groups suppressed the

other.

The difference between the superficial and deep neurons was modelled by chang-

ing their EPSP speed, leading to a fast response from the superficial neurons and a

slow response from the deep neurons. While this does explain the experimental re-

sults, there seems to be no such distinction between superficial and deep neurons in
vivo. It is possible that the same effect could be reached using two ER-models, or per-

haps with another connection pattern. Currently, none of the setups are corroborated

by any experimental evidence.

Finally, both the histograms in Fig. 5.7 have a sharp peak at the onset of stimu-

lation which is not present in the histogram in Fig. 3.4. This could be due to that the

interneuron with the response in Fig. 3.4, receive input from several other receptive

fields surrounding the primary receptive field, which is the only source during the

simulations. Since all cuneate neurons receive input from the same type of primary

afferents, and have no spontaneous activity, they will all be inactive and ready to re-

act with a burst when the first primary afferent spike arrives. As can be seen in Fig.

4.1 on page 26, the primary afferent spiketrains show an extra high intensity during

the first 20 ms of the stimulation. This peak, together with all cuneate models being

primed an ready to fire, could be what is causing the peak in the simulation results as

well.
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6.1 About the results

Purkinje cells
The Purkinje cell model resembles the model used for the molecular layer interneu-

rons, and suffers from the same difficulties. Just as with the interneuron model, a

single Purkinje cell provided all the data used to fit the model parameters, and none

of the ISI histograms in Fig. 5.8 had enough ISIs to enable any statistical methods to

validate or reject of the log-normal distributions.

The simulation results do also show evidence of the same initial peek (see Fig.

5.10 on page 40), which is also present in the interneuron results. In addition to the

initial peek, the simulation results fail to have the trail of slightly higher activity

between 120 and 250 ms found in the experimental data. Just as the initial peek, this

could be due to input from neighbouring receptive fields, that respond to the tactile

event slightly before and after the main receptive field.

Network behaviour
The adaptive filter hypothesis assumes that some kind of signal transformation takes

place before the signals reach the PFs and the PCs. There is a clear need to be able

to approximate non-linear functions if the cerebellum is to be able to approximate

the inverse dynamics of any of the motor systems within the body. The signal trans-

formation properties of the simulated granular layer show some promising behaviour

that can in fact be used as basis functions to approximate any continuous functions.

In Fig. 5.12 on page 41, the resulting bias to intensity relationship, when the

granule model was connected to four non bursting mossy fibers closely resemble

the simplified basis functions in Fig. 6.1. Fig. 6.1 does also show how such basis

functions can be used to approximate a quadratic equation, but they can in theory be

used to approximate any given function perfectly as long as enough different basis

functions are availiable. This could of course help explain the large amount of granule

cells.
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Figure 6.1 Sketch showing the possible use of the found granule basis functions in Fig.

5.12 on page 41. a) Five basis function sketches, that could be created either by varying the

resting potential of the granule cells. Varying the synaptic weights would also lead to different

slope angles. b) The five basis functions are combined with varying weights to approximate a

quadratic function (dashed).

The result when the non-bursting MF were replaced by bursting cuneate cells (see

Fig. 5.11) show a completely different behaviour. Instead of the linear growth found

using the non-bursting neurons, the cuneate cellsŠ tendency to burst even at very

small stimulations lead to an immediate high intensity of the granule cells, disregard-

ing the synaptic weights or granule cells resting potential. The different responses

indicate that bursting MFs and non-bursting MFs might be used for different pur-

poses.

The most obvious flaw of the complete network is its learning instability. After

approximately 100 trials, the error of the shoulder joint started to grow (see Fig.
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6.2 Future work

5.14 on page 42). The growing error is caused by a drift of the mean activity of the

opposite microzones controlling the torque joint. In one of the microzones, the mean

intensity of its Purkinje cells will grow larger than the intensity of the Purkinje cells

from the opposite zone. As the learning rule compensates for static errors through the

θM sliding threshold, it will not reduce the error, but it is free to grow indefinitely.

This is a inherent flaw in the learning rule, which needs to be compensated somehow

in order to build a stable working adaptive model of the cerebellum.

Even though the used plasticity model has flaws leading to instability, the Purkinje

cell activity in Figs. 5.15-5.16 on page 43 show clear signs of adaptation towards the

ideal torque. Since the regular feed forward controller does not handle the cross-

joint terms of the inverse dynamics, those should be visible in the cerebellar control

signal. It means that the shoulder torque should be highly correlated with the elbow

acceleration and vice versa. That effect is also clearly visible in the two figures.

The found granule basis functions would also allow the signals to approximate

the non-linear relations of the inverse dynamics. As those effects are small in com-

parison with the acceleration correlations, and would also need motions where the

non-linearities matter, they could not be expected to be distinguishable in the cere-

bellar control signal without using motions that purposely emphasize the nonlinear

arm dynamics. Even so, there is some evidence of such a behaviour among the PC

regulating the shoulder torque 5.15. During the second motion, between T2 and T5,

the signals seems to correlate with the ideal torque rather than the elbow acceleration.

6.2 Future work

Experimental setup
Even though the arm model used here was quite naive compared with the arm and

muscle model in [Schweighofer et al., 1998, I], it contained both nonlinearities and

cross dependencies between the two degrees of freedom. While this allowed for the

interesting results in Figs. 5.15-5.16, it has fundamental limitations which leaves

some features of the cerebellum without explanation. Using the current setup, there

is for example no need for sensory feedback into the cerebellum, since it would con-

tain exactly the same information which is also part of the reference signals. The

cerebellum do however receive an abundance of afferent tactile and proprioceptive

information that seems to be actively involved in motion control (see the synaptic

weight distribution in Fig. 3.3 on page 19). To investigate what role such information

play, the current setup would have to be expanded with a better bio-physical model

of the muscle system, including models of the proprioceptive and tactile feedback.

Some further investigation might on the other hand benefit from a simplification

of the current setup. To evaluate the influence of different parts and patterns of the

cerebellar microcircuitry, a simple performance metric should be designed. Instead of

using a complete and detailed arm model, the inverse dynamics that the cerebellum

should learn to mimic could be broken down into smaller components. This would

make it much simpler to evaluate how well the trained inverse model actually approx-

imates the non linear terms of interesting equations one at a time. The same approach

could be used to investigate if and how the network deals with derivative and inte-

grating action. The influence of different connection patterns and neurons, such as

the tested interneuron patterns or the Golgi cell dynamics, could then perhaps be at-

tributed to how well the cerebellum can approximate different types of functions and

operators. Such an approach would hopefully also help to explain the content of the
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CF signals, which still remain enigmatic.

Plasticity model
The currently used plasticity model is flawed in more than one way. The first flaw is

the drift off that occurs due to the θM threshold, but the main problem is the lack of

bio-physical corroboration with the eligibility window of the current setup. While it

can be used to counter the delays in the feedback or error signal, it fails to explain

the the bidirectional timing found in experiments. The current setup will only react if

the PF is activated previous to the CF activation, while the real system exhibit both

types of plasticity timing properties. Furthermore, the model does not explain how

the timing or time constants of the eligibility windows come to be synchronized with

the error signals in the first place. A complete model of the PC plasticity should take

that into consideration.

The drift off due to the flawed BCM model used does also illustrate how the

stability of the system is fragile in many ways that are not obvious at first glance.

The cerebellum and the motor control system of the body do however seem to be

very stable and robust, which is a feature that needs to be explicitly explained by the

constructed models and cannot be assumed to be there.

The current model does also use the same plasticity model for both the interneu-

ron and PC synapses. While this is a good thing if the interneurons are assumed to

be simple sign changers, it is not bio-physically plausible. Having different plastic-

ity rules might furthermore lead to other stability issues between PC inputs from

interneurons and PFs that need to be considered by the constructed model.

6.3 Conclusion

In conclusion, the thesis left many unanswered question, and no single obvious path

forward. The constructed simulation toolbox do however open up a possibility to

further investigate the outlined smorgasbord of interesting topics within the cerebellar

microcicuitry.
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