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Abstract 
This thesis investigates and numerically solves the Wohlfart-Arloch equations describing the 
electrical activity in the atrial part of the heart. This is done through operator splitting that is 
allowing the diffusion of ionic currents, and the local voltage-driven reactions in each cell to 
be de-coupled. The local reactions can be solved in closed form, and the diffusion part is 
solved with a spectral method by interpolating using eigenmodes. The problem of initiating 
the system is solved by introducing time-dependent boundary conditions and solving these 
parts as a series. Systematic investigations are carried out both concerning the numerical 
errors and also the wave speed, multiple pulse shape, and other characteristics relevant to 
ascertaining the validity of the numerical method used.   
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Abbreviations  
1D: One-dimensional 
2D: Two-dimensional 
EKG: Electrocardiography  
ODE: Ordinary differential equation 
ODE45: A standard algorithm for solving ordinary differential equations in Matlab using a 
fourth and fifth order Runge-Kutta method. 
PDE: Partial differential equation 
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1 Introduction 
The human heart is one of the most incredible machines that ever existed. It pumps without 
replacements or rest through the entire life of each human. Given that a car or computer 
without serious problems for 80 years is unheard of, it is hard not to stand in awe before it.  
However, those of a more curious nature move to the next step and ask: How? How does the 
heart work, what enables the function, and when it ceases to work properly, what is the cause? 
As the average lifespan of humans increases, we enter terra incognita, humans when they first 
appeared on earth never lived this long, and hence we can no longer rely on nature and simply 
hope the heart will keep working. The increasing number of patients with cardiac arrhythmias 
is a testament to that.  
One such effort in better understanding the heart is by building a mathematical model of the 
heart. Such models must have rather modest objectives to be successfully, or risk getting 
swallowed by complexity. In this thesis we will look at one such model, the Wohlfart-Arloch 
model, that attempts to model the electrical conduction in the atrium. The ultimate goal of the 
model is to describe a phenomenon like arrhythmias and atrial fibrillation.  
Previous research has focused heavily on these phenomena, but as we shall see when delving 
into the world of partial differential equations needed for making computation, to a high 
degree completely disregarded the most subtle points of the numerical analysis and its 
interpretations. Our objective is, therefore, to remedy this by building a framework 
concerning the numerical analysis for this particular equation. In the thesis, we will try to 
outline the reasoning behind the choice of methods. While there are places at which one can 
make constructive-deductive arguments for methodological choices, there are also times at 
which the argument simply rests upon all other alternatives being worse, and this is an 
important part of understanding the core of the thesis (as well for anyone trying to replicate 
the results).  
Hence, the goal of this thesis will be to work out a more sound theoretical foundation for the 
discussion of the model, and try to show how such knowledge also can help us understanding 
the physics of the model better. 
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2 Derivation of the model 
The following chapter will outline the model used. While the model itself is well known and 
used in multiple works, there is no systematic derivation from first principles, so we seek to 
provide such for future reference to place the model on a solid foundation.  
2.1 Introduction: Zooming in on the cell 
The overall purpose of the heart is to make sure that oxygen is transported from the lungs to 
the rest of the cells in the body. This operation is done in two circulations: First blood is 
pumped to the lungs for oxygenation and then returned to the heart. Secondly, the oxygen-rich 
blood is pumped out to the cells of the body and finally returns to the heart. For this cycle to 
be carried out without mixing oxygen-rich and deoxygenated blood, the heart must be divided 
into a left and right section. Furthermore, to be able to perform the dual task of both collecting 
blood and pumping it out again, both sides must be sub-divided into a pumping section. The 
main one is called the ventricular, and the temporary assembly area for the returning blood is 
called the atria. The result is the well-known four-chamber heart seen in figure 1 [1].  

 
Figure 1: Overview of the human heart 

From the above description, the task of the atria (that will be the focus of this work) is rather 
straightforward, to periodically contract so that the blood collected can be drained into the 
ventricular. Such process is facilitated by a muscular layer in the heart wall, the myocardium, 
sandwiched between the epicardium and endocardium membrane that provide lubrication to 
avoid friction from the contractive motion. The myocardium consists of bundles of cardiac 
muscle fibers, held in place by a fibrous skeleton of collagen and elastin. Each fiber, in turn, 
consists of cardiac muscle cells, which are rich in sarcomeres that allow for the contraction. 
This motion happens when the calcium ion concentration inside the cell rises since the ions 
binds to troponin on the muscle cell filaments that enable them so slide past each other 
resulting in contraction. The ions needed can either flow into the cell from the surroundings or 
be released the sarcoplasmic reticulum, which stores calcium ions. Electric fields will activate 
the later one, so the electric properties of the inside of the cell become the decisive factor in 
determining if contraction will take place or not [1]. 
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The above description shows that for the purpose of understanding the motion of the atrium, 
the cardiac cell is the smallest unit, serving as the “atom” of the cardiac tissue. Any attempt at 
mathematical modeling must start from fundamental relations for each cell, which is then 
connected to form a model of the myocardium. This motivates the study of an isolated cardiac 
cell, in the same way, that solid state physics start from the properties of isolated atoms and 
combine them to study materials.  
2.2 Modeling philosophy 
The task of modeling the atrial cells is not a new one, and the area has been a very active field 
since the end of the 90’s, spawning a wide collection of different models. Among these, one 
of the most extensive is the Nygren-Fiset-Firek-Clark-Lindblad-Clark-Giles model [2]. This 
explicitly models both the sarcoplasmic reticulum, the cleft space that handles the activation 
of calcium release and the surroundings. With 26 system variables, it is an impressive 
construction based on many years of both experimental and theoretical work. With such 
advanced model, it is even possible to make the explicit predictions behavior of the atria that 
can be investigated experimentally.  
 Such complex model is however not without problems. To model all the different effects, as 
many as 47 different parameters are needed. While the authors have tried to make admirable 
attempts at separately determining as many of parameter values as possible through many 
different experiments, this does not change the fundamental problem that with large sets of 
parameters, basically any behavior can be accommodated by the model. The modeling 
process is also complicated by the fact that atrial cells, even within the same heart, often vary 
rather drastically in properties, so a realistic model should use parameter fields instead of 
scalar values. As the complexity is increased, the transparency of the model is decreased, 
making it harder to identify what effect is doing what, or what factors are truly casually 
responsible for certain behaviors. Nor can such problem be solved by independently varying a 
single factor and keeping the rest constant, since there will be complicated interaction effects 
(e.g., if the parameters were varied in certain simultaneous combinations, the result could be 
virtually unchanged). This issue is known as the problem of identifiability that according to 
[3] serve as a major limitation of these large models.  
Another risk in building such elaborate model is not to make it complex enough. This might 
sound contradictory, but if accuracy to a certain level aspires, neglecting any factor of that 
magnitude will ruin such attempts, and make it completely unnecessary to include finer 
effects. At the level of such large models, these sources of “missed biology” can come from 
virtually any direction. Since the space of functions is infinite dimensional, the experimental 
procedure alone can never fully provide a proper model. Instead, some theoretical 
assumptions must always be introduced to interpolate and extrapolate the obtained results. At 
such high demands for accuracy, such process soon becomes incredibly complex and 
increases the risk of underfitting by not having sampled enough of the experimental 
conditions.  
The objections raised in previous paragraphs are, of course, not new, and there is an 
alternative direction of modeling that focuses on very structurally simplified models, so-called 
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toy theories [4]. Since models with a single bounded variable can only describe convergence 
toward a steady state, at least, two variables must be used. A prime example is the FitzHugh-
Nagumo model [4]. The physiological focus is solely on the voltage of the cell, and the 
second so-called “recovery variable” is a phenomenological construction that does not 
directly correspond to some physical entity in the cell. Even so, solutions of the equations 
share some qualitative properties with experimentally observed behaviors. The simplicity of 
the equations has made it very popular with the modeling community, and it is widely used to 
get qualitative understanding and test methods before they are applied to more complicated 
models.  
While the neatness of the FitzHugh-Nagumo model is admirable, such construction comes at 
the price of obscuring the underlying biology. Especially the recovery variable has a very 
unclear ontological status since it is formally derived by clustering a lot of different effects 
together (a method known as asymptotic reduction), assuming their timescales to be equal. 
Such construction complicates communication outside of the modeling community since it 
makes it significantly harder to explain the inner workings of the model for domain experts 
such as biologists whose base of knowledge is firmly grounded in the local processes of each 
cell. Furthermore, it makes it harder to assess which behaviors are physiologically reasonable 
if a system variable cannot be interpreted regarding actual system dynamics.  
The natural question if, therefore, if one can achieve a balance between the two extremes 
presented above. The idea would be to construct a model that is structurally simple and with 
enough transparency for relating cause and effect, but still accurate enough for the results to 
be physiologically interpreted.  There are two routes for constructing such model, either 
starting from the basic biology and physiology and build upwards, the so-called bottom-up 
modeling (the Nygren-Fiset-Firek-Clark-Lindblad-Clark-Giles model is example of such), or 
instead start from what behaviours that are expected and try to construct reasonable relations 
that reconstruct the observations, the so-called top-down modeling (the FitzHugh-Nagumo 
model). The traditional way to go about building toy theories is the latter approach since it 
allow for constraining the output, and the first route is in a way much riskier since it is easy to 
include too many effects, and hence lose the simplicity. On the other hand, following the 
bottom-up approach opens up the possibility of using first-order principles for constraining 
the form of the model, and allow us to ask what biological constituents that are needed for 
replicating observed behaviors.  
One candidate for achieving this modeling middle position is the Wohlfart-Arlock model. It 
was proposed in 1992 by the eponyms to simulate EKG by studying voltage difference 
between different myocardial cells [5], an application of lesser interest if the goal as in our 
case is the dynamics of the atria, but the heart of the model is a simplified, yet physiologically 
interesting description, of the single cell that will be used in this study. The model has been 
used in several previous works on atrial simulation [6], [7], [8], [9], [10] and a variation of the 
model also allows for the description of the sino-atrial node that controls the rhythm of the 
heart [10]. A derivation of the model can be found in [11], but the model used in that study is 
slightly different on several accounts from the original Wohlfart-Arlock model, and the work 
does not provide a fair discussion on several key issues that are essential to the structure of the 
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model. This motivates the need for providing a review of the derivation of this work as 
outlined below. 
2.3 The cardiac cell 
Given that it is electrical effects that put the contraction of the cell in motion, the problem will 
be treated as an electrical problem. Furthermore, the feedback from the contractive motion 
(such as stretch-activated ion channels) will be neglected to simplify the description since this 
effects have the nature of corrections (and are not even included in most advanced models 
[4]). The key quantity in any electrical system is the net charge, and the lack of free electrons 
(due to their high reactivity with other molecules as free radicals) means that the ions fulfill 
the role of charge carried.  
The cell contains excess charge; such will quickly migrate to the cell membrane due to the 
high conductivity of the intracellular fluid similar to how free charge end up on the surface of 
metal. The electric field that is formed by these ions will, in turn, attract oppositely charged 
ions from the extracellular fluid. Because the cell membrane is not permeable to charged 
particles due to its non-polar insides, the two sets of charges cannot neutralize directly. While 
the field either inside or outside the membrane will be canceled, the field in the membrane 
itself will not due to the charges on either side, meaning that the proteins, that contain charged 
amino acids, inside the membrane will be affected by the electric field. This could for 
example cause them to change configuration by moving the charged part, and the electrical 
potential difference ܸ between the inner and outer part of the cell is therefore an appropriate 
variable to use. The voltage formed must be a function of the charge ܳ on each surface. If the 
charges themselves do not alter the shape and behaviour of the membrane (hence the elasticity 
of the membrane is neglected for simplicity, even though a small such effect exists [11]), the 
voltage must by superposition be proportional to the charge, ܸ =  is the ܥ where ,ܳܥ
membrane capacitance, since the membrane essentially act as a capacitor with the cell 
membrane as dielectric. Hence this can be measured experimentally for cardiac cells.  
For the cell to exhibit a dynamical behavior, the excess charge on the inside must vary with 
time, but still slowly enough for the remaining charge to have time to redistribute and give 
rise to a uniform electric field.  The main source of such currents is the ion channels. These 
are pores in the membrane consisting of proteins, with the twist that they are highly selective 
and only let through a particular ion [4]. Therefore, only the specific ions that can flow in and 
out in greater amounts needs to be considered. This shortens the list to Naା, Caଶା, Kା, with  
Clି as the runner-up, but neglected due to it considerably weaker influence than the three 
preceding ones [12]. As will be seen below, this is the minimum ions that must be included to 
be able to replicate acceptable behaviors of the cell. 
If such channel is opened in the membrane, charged ions will flow though due to the electric 
field through the membrane, so the current will be a function of the voltage difference, ݅(ܸ). 
However even in the absence of electric field there can be a flow due the fact that the 
concentration of the ions might be different on the inside and outside of the cell and ions 
therefore will move in though diffusion. At some voltage these to effects must cancel, and the 
net flow though the channel is zero even though the channel is open. This can be analyzed 



12  

using thermodynamic equilibrium, since the two states, inside and outside, that for a specific 
ion have different probabilities to occur (proportional to the concentrations inside ܿ௜௡௧ and 
outside ܿ௘௫௧) must have different energy, hence a voltage difference, since they follow a 
Boltzmann distribution. This voltage is known as the Nernst voltage ܧ and given by: 

ܧ = ݇஻ܶ
݁ݖ ln ൤ܿ௘௫௧

ܿ௜௡௧
൨ (1) 

 
Here ݇஻ is the Boltzmann constant, ܶ is the absolute temperature, ݁ is the fundamental charge 
and ݖ the valence number of the ion. A problem with ܧ is that as charge is transported, the 
concentrations will change, and so will therefore ܧ. However a key difference is that the 
transport moves excess charge while the concentration includes all charged ions of that type, 
which is a massive difference. For both sodium and potassium, the effect of charge transport 
on ܧ is very minute [4]. For calcium the matter is rather different since the concentration 
inside the cell initially is very low, so the argument that the influx is too small to change the 
concentration is not applicable. However, as pointed out by Wohlfart and Arloch [5], in the 
cell membrane there is also a sodium-calcium pump that by consuming energy eject calcium 
at a rather high rate, so the approximation of keeping the concentrations constants is not as 
poor as one might first be lead to assume. Furthermore, if one actually wishes to incorporate 
this effect into the model, such model must also include the dynamics of the pump which is 
highly non-linear in the voltage. For reasons to be discussed below, such term would 
significantly complicate the model. This means that the voltage ܸ is the central variable in the 
problem, that summaries the electrical state of the cell.  
The next step is to compute ݅(ܸ). To do so, both the diffusion and drift from the electric field 
must be accounted for, and furthermore the electric potential inside the channel, which depend 
both on the concentration of charged ion, and also on the charged amino acids inside the 
channel wall, meaning that both the concentration and electric potential must be solved 
simultaneously to compute the flux.  The resulting equation is known as the Planck-Nernst-
Poisson equation, and solution to this model under varying conditions and geometries is a 
very active research problem [4]. Since only a simplified model is sought, an asymptotic 
solution for the channel can be derived under fairly realistic conditions, discussed in depth in 
[4], resulting in a linear relationship, ݅(ܸ) = ܸ)ߪ −  is the conductance of the ߪ were ,(ܧ
channels of that type. This is the most common form for the voltage dependence in the 
literature. However it is often motivated as either a Taylor approximation or with the analogy 
to a resistor, neither which are correct as the range of validity of the relation is too large to 
argue  based on linearization and the argument by analogy really does not provide any 
physical basis [4]. The solution to the Planck-Nernst-Poisson equation however show that the 
ansatz is ground in a, while simplified, still reasonable theory, and also provide some 
motivation to the striking success of the linear model when compared with experimental data. 
If all the channels were open, the equation for the voltage is simply obtained by 
differentiating the voltage/charge relationship (since ሶܳ  is the total charge), ܥ ௗ௏

ௗ௧ =
− ∑ ܸ)୧୭୬ߪ − ୧୭୬)୧୭୬ܧ , were summation are carried out over all the channels and the minus 



13  

sign appears due to the definition of positive current as going out from the cell. It is clear that 
if the size of the cell membrane doubled, both the capacitance and the conductance would also 
double (the first from the increase in area that can store charge, the second from the doubled 
number of channels). This means that the equation can only depend on the ratio ݃୧୭୬ =
୧୭୬ߪ ⁄ܥ  , called the ionic rates (as they describe at what rate a certain ion will move through 
the channel) . Such linear equation is simply going to converge to an equilibrium value, and 
hence cannot exhibit any interesting dynamics, which is expected.  
To obtain a realistic behavior of the cell, it must be possible for the channels to open and 
close, which is achieved by a change in the structure of the channel proteins. There exists 
rather a broad consensus that the channel proteins have a finite number of discrete 
configurations that they reside in most of the time. Furthermore, there exists rather strong 
experimental evidence for that too excellent approximation the protein lack memory of past 
configurations and move between these in a stochastic manner (even though the existence of 
hysteresis effects is an active debate from a fundamental standpoint, it has been shown that 
memoryless models reproduce experimental data very well, hence the point is mute from our 
simplistic model build perspective). The lack of memory means that the probability 
distribution over the states of the protein can be modeled as a continuous Markov chain. 
Careful measurement of the ion channels also shows that they are in a state that either conduct 
or not, there is nothing in-between, meaning that the current can be obtained by multiplying 
the ߪ୧୭୬(ܸ −  .୧୭୬)  term with the probability that the channel is conductingܧ
The goal of the analysis is, therefore, to first elucidate what states the channel can be in, and 
secondly find the topology of the Markov chain by finding what states can transition into 
which. This is a formidable task, and there exists a very broad literature proposing different 
structures with as many as 30 different states [14] for each channel. In line with the 
conservative attempt to model the dynamics, the absolute minimum number of states to 
replicate realistic behavior will be used, since anymore will cause an explosion in number of 
parameters as will be seen further below, for a ݊  state chain there are (݊ − 1)ଶ parameters 
that must be prescribed from the dynamical behavior, which soon gets unmanageable. One 
way to reduce the number of parameters is the so-called Huxley-Hodgin ansatz, where the 
protein is studied as separate parts with separate Markov chains and lessen the number of 
parameters (even though such process, strictly speaking, is an approximation, as long as the 
protein sections are rather separated, it is often a surprisingly good one).  
Following this recipe to its extreme, each protein section can be given the minimal number of 
two states, describing an open state that allows ions to pass through, and a closed state that 
blocks the path. Given the independence assumption between the different parts of the 
channel, the opening probability is simply the product of the opening probabilities of all 
subparts. The two-state approximation has the advantage that each Markov chain will contain 
a single time scale that therefore can be interested as the time until thermal equilibrium settle 
for that process, giving the parameter a clear physical significance (in contrast to the much 
more muddy affair for a larger number of states). This facilitates communication with domain 
experts, as biologists and chemists often have a rather good understanding of the relevant time 
scales involved in the change of the proteins from experiments while overall transition rates 
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between all states are much harder to estimate without careful experimentation. From a 
computational perspective, we will also see below that including more states in each chain 
makes computations considerably slower, more complicated and less transparent. Another 
advantage is that only the opening probabilities need to be considered as dynamical variables 
since they determine the closing probabilities from the fact that the probabilities must sum to 
1.  
A natural question is if the probabilistic nature of the channels must be considered, or if there 
are enough channels to apply the law of great numbers and simply work with the mean value 
of the number of open channels (hence neglecting stochastic fluctuations). A conservative 
estimate is that there is at least 10ହ channels of each type, and using the central limit theorem 
for the summation of the channel current then shows that the stochastic fluctuations are less 
than 1 % of the mean value, which mean that given the approximation already swallowed by 
the model, there is no need to include stochastic effects.  
 For both the sodium and calcium channel, there exist two such protein sections. The first 
regulate the shape of the total protein and is governed by two positively charged rods. 
Normally these are attracted toward the inside of the membrane, but if the potential difference 
is reduced, they can instead move toward the outer side of the membrane, and thereby 
opening the channel by their outgoing motion (with probability ݌ே௔ and ݌஼௔). The second 
protein has the form of a ball that is attached by a thin chain of amino acids in the lower end 
of the channel. Normally the charged ball is repelled from the end of the channel (with 
probability ݍே௔ and ݍ஼௔), but if the voltage differences change, it can come closer and 
effectively block the opening, closing the channel for further ion transport, known as an 
inactivation of the channel. These conformational changes are rather fast (less than 0.1 ms) to 
the time scale of the dynamics, and the Markov approximation can therefore be used. It is also 
clear that both processes have a clear biological origin (and not fictitious processes introduced 
to better fit experimental data) and it can also be argued that they are the minimal number of 
processes, as there must be some way for the channel to be activated, but also some way for it 
to deactivate and close, even without the voltage lowering (otherwise the channels would 
remain open and keep the voltage off the equilibrium level).  
The potassium channel is slightly more complicated as some of the gates are open all the time, 
so-called leakage channels, which primary function is to maintain the equilibrium voltage. 
Some of these channels can only transmit current in one direction (they are said to be 
inwardly rectifying). If a voltage difference in the opposite direction is applied, an attached 
magnesium ion is getting sucked into the channel and block it, so there is only a probability 
 ௄ that such channel remain open. There is also the opposite case, with channels that areݍ
opened with a probability ݌௄, following the same mechanism as the sodium and calcium 
channels. Finally there is the combined kind, that has both an opening probability, and inward 
rectification, so its probability of being open is ݌௄ݍ௄.  
If all these results are collected, this gives the complete voltage equation: 
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ܸ݀
ݐ݀ = ݃୒ୟ݌୒ୟݍ୒ୟ(ܧே௔ − ܸ) + ݃େୟ݌େୟݍେୟ(ܧ஼௔ − ܸ)

+ ൫݃୏,୐ + ݃୏,୧ݍ୏ + ݃୏,ୟ݌୏ + ݃୏,ୟ୧݌୏ݍ୏൯(ܧ௄ − ܸ) 
(2) 

 One way to interpret this equation is as including all channels containing up to two different 
sub-processes. A truncation beyond that is motivated by simplicity since such terms will tend 
to be small far more often since they will only contribute if all probabilities are fairly close to 
1, and such possibility is reduced the longer the product of factors becomes. Furthermore, for 
each combination, only a single term is included. Investigation of the cardiac cell has shown 
different types of sodium-, calcium- and potassium gates, but these are also neglected for 
simplicity. Fundamentally, all dynamically interestingly parts have at least some 
representation of the equation, although in simplified form.  
The next step in the derivation process is to write down equations for each of the probabilities 
using the two-state Markov chains. As an example, study the opening probability for sodium 
channel, ݌ே௔. If the probability to transition from open to closed per unit time is ߙே௔, and 
similar the probability per unit time to go from closed to open is ߚே௔, then the corresponding 
equation for the Markov chain can be written: 

ே௔݌݀
ݐ݀ = ே௔݌ே௔ߙ− + ே௔(1ߚ −  ே௔) (3)݌

 
The equation can be rewritten by observing that as ݐ → ∞ and the system attain 
thermodynamic equilibrium, ݌ሶே௔ → 0, so solving the resulting equation gives the equilibrium 
probability ݌෤ே௔ = ఉಿೌ

ఈಿೌାఉಿೌ, which offer easier interpretability than the rather abstract 
transition probabilities: 

ே௔݌݀
ݐ݀ = ݇௣ಿೌ(݌෤ே௔ −  ே௔) (4)݌

 Here ݇௣ಿೌ = ே௔ߙ +  ෤ே௔݌ ே௔ is the rate at which the thermal equilibrium is obtained. Bothߚ
and ݇௣ಿೌ are functions of the voltage (since this change the likelihood of transition). 
Therefore it is natural to study the system in thermal equilibrium, since statistical mechanics 
than can be applied on the two-level system consisting of the open and closed state to 
compute ݌෤ே௔. According to the Boltzmann distribution, the probabilities only depend on the 
difference in energy ∆ܧ. Since different gates and sub-process are assumed independent, the 
energy difference can only depend on the voltage, and can hence be written as the series: 

ܧ∆ = ଴ܧ∆ + ଵܸߛ + ଶܸଶߛ + ⋯ (5) 
Here ∆ܧ଴ signify the difference in energy between the states in the absence of electrical field, 
and further terms are Taylor expanded around this point (with coefficients ߛ௡ for the n:th 
order term). It make sense to expand around ܸ = 0, as this signify  were there are no 
electrical effects, and the larger the potential difference becomes, the more important 
electrical effects will be.  
The linear term can be interpreted as the work done by the charges of the protein when 
moving between the two configurations, and will be the dominant contribution to low field 
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strength. The linearity means that the charges are not interacting, so higher order terms can be 
described as a change in the electrical potential caused by the change of other charges. The 
quadratic term, for example, describes the polarization of the membrane resulting from the 
charges. For the potential differences appearing in the cell, estimates of these effects show 
that they can be neglected [15], leading to the so-called low field limit where the energy 
difference is a linear relationship of the voltage. Inserted into the Boltzmann distribution for a 
two-state system, this gives: 

(ܸ)෤ே௔݌ = 1
1 + exp ൤ ௣ܸಿೌ − ܸ

ேܸ௔ ൨
 (6) 

The constant ௣ܸಿೌ is the voltage at which there is equal probability to be in either 
configuration. If ܸ ≪ ௣ܸಿೌ it is very unlikely that the protein is in the open state, and for 

௣ܸಿೌ ≪ ܸ, it is most likely open. The width of the transition region is characterized by the 
parameter ேܸ௔, the change from 27 % to 73 % take place within ± ேܸ௔. From the Boltzmann 
distribution follows that ேܸ௔ ∝ ܶ , showing that the origin of ேܸ௔ is essential thermal, even 
though the potential difference ௣ܸಿೌ is required to change the configuration, the deficit can be 
provided by the surroundings. Reversely, the surroundings can absorb enough energy to 
preserve the system even though it should change.  Hence the sigmoid curve ݌෤ே௔(ܸ)  for the 
probability can be motivated from first principles. For the inactivation process, the 
corresponding probability can be written: 

(ܸ)෤ே௔ݍ = 1
1 + exp ൤ܸ − ௤ܸಿೌ

ேܸ௔ ൨
 (7) 

This sign in the exponential argument has been chosen in reverse since the inactivation should 
come into play as the voltage increase, and the ball can be attracted. From physical reasons, it 
is expected that ௤ܸಿೌ < ௣ܸಿೌ. This follows from the fact that a very slow increase in the 
voltage (so that the probabilities can be assumed to obtain their equilibrium values at all 
times) should not result in any excitation. Therefore, for such perturbation, well before the 
channel start opening, it should be inactivated to prevent any conduction. Another way to 
express this is that ݌෤ே௔ ≪ 1 −  ෤ே௔ should take place well before theݍ ෤ே௔ since the change inݍ
change in ݌෤ே௔. This property also serves as a motivation for why the voltage width ேܸ௔ 
should be chosen as equal in both cases (in addition to reducing the number of parameters), 
since if this was not the case, the inequality could not be satisfied.  
Another way to interpret the Boltzmann distribution is that it constrain the ratio ߚே௔ ⁄ே௔ߙ . 
This is however not enough to compute the transition rates independently, as some physical 
description of the actual time scale the transition takes place over must be introduced. A 
simple such model that is commonly used in the literature is to assume that there exists an 
energy barrier between the two states, and use transition state theory, which gives ߙே௔ =
݇଴ exp ቂ−ߴ ௏ି௏೜ಿೌ

௏ಿೌ ቃ, ߚே௔ = ݇଴ exp ቂ(1 − (ߴ ௏ି௏೜ಿೌ
௏ಿೌ ቃ, which is known as the Kramer ansatz 

(with ݇଴ being the rate when both processes are equally likely, and ߴ that describe how 
quickly the different rates change with respect to each other, ߴ = 0 corresponds to ߙே௔ being 
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constant, while ߴ = 1 models ߚே௔ constant). This correctly model that if ܸ is far from the 
value ௤ܸಿೌ, one of the processes will exponentially disappear since it basically never process 
the barrier, which is physically very reasonable.  The flaw with this approach however is that 
for 0 < ߴ < 1, both rates become unbounded in either of the limits ܸ → ±∞, which means 
that the transition happens instantly, which is very unphysical and does not correspond to 
biological data. 
A more realistic model for ߚே௔ should go to 0 as ܸ → −∞ since this transition becomes 
unlikely, and go to some maximal value as ܸ → ∞ and vice versa for ߙே௔ . If one wants to 
preserve the exponential tail, but bounded the opposite side, the exponential function could be 
replaced by a sigmoidal one. The constraint on the ration means that the parameters for the 
sigmodials cannot be chosen independently, instead if they are added together ݇௣ಿೌ must then 
take the form: 

݇௣ಿೌ ∝ 1
Γ + exp ൤ ௣ܸಿೌ − ܸ

ேܸ௔ ൨ Γൗ
+ 1

1 Γ⁄ + Γ exp ൤ܸ − ௣ܸಿೌ
ேܸ௔ ൨

 

 
(8) 

Here Γ is a parameter that describes if the total rate toward equilibrium tends to increase or 
decrease as the voltage is increased. For Γ < 1  ݇௣ಿೌ is an increasing function and for Γ > 1  
݇௣ಿೌ is an decreasing function. For simplicity the case Γ = 1  will be chosen, since the total 
rate then becomes constant. As will be seen further down, this speeds up the computation 
significantly and reduce the complexity of the model, so such approximation is worthwhile 
given the gains and the already simplified structure of the equations. 
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3 Single cell equation 
In this chapter, we solve the single cell equations, an original contribution not reported by 
earlier works. In doing so, the concept of operator splitting emerges, and we apply the theory 
of numerical analysis to investigate the simulation error.  
3.1 Studying the single cell equations  
Collecting all results, the Wohlfart-Arlock equation for an atrial cell becomes (see appendix 
for parameter values): 

ەۖ
ۖۖ
ۖۖ

۔ۖ
ۖۖ
ۖۖ
ۖۖ
ܸ݀ۓ

ݐ݀ = ݃୒ୟ݌୒ୟݍ୒ୟ(ܧே௔ − ܸ) + ݃େୟ݌େୟݍେୟ(ܧ஼௔ − ܸ) +
൫݃୏,୐ + ݃୏,୧ݍ୏ + ݃୏,ୟ݌୏ + ݃୏,ୟ୧݌୏ݍ୏൯(ܧ௄ − ܸ)

ே௔݌݀
ݐ݀ = ݇௣ಿೌ(݌෤ே௔ − (ே௔݌

ே௔ݍ݀
ݐ݀ = ݇௤ಿೌ(ݍ෤ே௔ − (ே௔ݍ

஼௔݌݀
ݐ݀ = ݇௣಴ೌ(݌෤஼௔ − (஼௔݌

஼௔ݍ݀
ݐ݀ = ݇௤಴ೌ(ݍ෤஼௔ − (஼௔ݍ
௄݌݀
ݐ݀ = ݇௣಼(݌෤௄ − (௄݌

௄ݍ݀
ݐ݀ = ݇௤಼(ݍ෤௄ − (௄ݍ

  (9) 

 
The addition of the so-called gating probabilities ݌୒ୟ, ,୒ୟݍ … have made the voltage equation 
non-linear, which is necessary if it is to be a realistic model of excitable cell since a linear 
model either must be unbounded (which is physically unreasonable) or asymptotically stable 
(meaning that no excitation can take place) 
Before the equations can be solved to extract information about the system dynamics, it is 
necessary to know that such solution exists. As pointed out by [17], the argument that the 
model comes from a real system with a guaranteed solution is insufficient due to the 
approximations introduced in the modeling process. For the model to be sensible, the solution 
must also be unique, in other cases not enough information have been included from the 
underlying system. In fact, uniqueness is insufficient. If the solution changes drastically under 
an infinitesimal variation in the initial conditions, there is no hope of ever using the model to 
describe a real system that always lack that sort of extreme mathematical precision. These 
three conditions (existence, uniqueness, and continuity under initial conditions) have been 
proposed by Hadamard [16] for a set of equations to be well-posed. Therefore, they must be 
checked for the Wohlfart-Arlock model for a single cell.  
While proving such property might seem non-trivial, in the case of initial value problems for 
ODE:s there is a very powerful tool: Picard-Lidelöfs theorem [16], which state that it is 
sufficient for all partial derivatives with respect to the system variables to be bounded for 
there to be a unique solution continuous in the initial condition, to exists at all times. Since all 
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system variables can be bounded (the voltage between the minimal and maximal Nernst 
voltage and the probabilities between 0 and 1), straightforward calculations show that so must 
also be the case for the derivatives. However, the theorem provides practically no information 
about what such solution might look like.  
The first attack on the problem would be to try to write down a closed form solution. Using 
Duhamel's principle [16] a scalar nonlinear integrodifferential equation can be constructed 
from the equations, but the nonlinearity prevents the use of basically the entire toolbox for 
this type of equations. Hence to the author’s knowledge, in general, such method provides no 
result of interest. To be able to solve the system one must either restrict the class of solution to 
a subset for which one can simplify the equations or instead look for approximate solutions 
using numerical methods.  
3.2 Equilibrium and perturbations around it  
Following the first route, the simplest form of the solution is the equilibrium state of the cell 
since this corresponds to removing all time derivatives and solving a purely algebraic 
problem. From physical consideration, the myocardial cell must have such state, and it must 
be unique since it is known from an experimental investigation that the cell relaxes back to 
the original configuration after a heartbeat. Since the ion gates must be in thermodynamics 
equilibrium, they are given by ݌෤௜௢௡(ܸ) and ݍ෤௜௢௡(ܸ) (V).  Therefore only the equation for the 
voltage remains. Setting ௗ௏

ௗ௧ = 0 in the Wohlfart-Arloch equation (9) yields: 
݃୒ୟ݌෤୒ୟݍ෤୒ୟ(ܧே௔ − ܸ) + ݃େୟ݌෤େୟݍ෤େୟ(ܧ஼௔ − ܸ)

+ ൫݃୏,୐ + ݃୏,୧ݍ෤୏ + ݃୏,ୟ݌෤୏ + ݃୏,ୟ୧݌෤୏ݍ෤୏൯(ܧ௄ − ܸ) = 0 
 

(10) 
This can be interpreted as a balance between the current influxes created by the three gates. 
Hence, the equilibrium voltage must be placed in-between the lowest Nernst potential, 
௄ܧ = −90 mV, and the highest , ܧ஼௔ = 80 mV. From physiological knowledge, we know that 
the equilibrium should be rather close to the −90 mV bound, since the entire purpose of the 
potassium gate is to create a resting state when the other gates are almost closed. Rewriting 
the equation to better reflect this fact, we get: 

ܸ = ݃୒ୟ݌෤୒ୟݍ෤୒ୟܧே௔ + ݃େୟ݌෤େୟݍ෤େୟܧ஼௔ + ൫݃୏,୐ + ݃୏,୧ݍ෤୏ + ݃୏,ୟ݌෤୏ + ݃୏,ୟ୧݌෤୏ݍ෤୏൯ܧ௄
݃୒ୟ݌෤୒ୟݍ෤୒ୟ + ݃େୟ݌෤େୟݍ෤େୟ + ൫݃୏,୐ + ݃୏,୧ݍ෤୏ + ݃୏,ୟ݌෤୏ + ݃୏,ୟ୧݌෤୏ݍ෤୏൯  

 
(11) 

From here we see that ܸ is a weighted combination of ܧே௔, ஼௔ܧ ,  ௄, with weights beingܧ
determined by how open the gates are. Though we seemingly have solved the equation, the 
gating probabilities themselves depend on voltage. Since the equation is transcendental, it 
cannot be solved and hence cannot be solved exactly, but the second best is to recursively 
hover in on the answer. This can be done starting with =  ௄ , calculating the right-hand sideܧ
in equation (11), and the repeating the process. The process rapidly converge to the 
equilibrium voltage ෨ܸ = −88.7 mV.  
Having computed the equilibrium, the next question is what happens if we slightly deviate 
from it. The stumbling block for the attempt at solving the equations directly before was the 
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non-linearity. If the solution is restricted to a small neighborhood around the equilibrium, the 
non-linear terms are going to have no importance. The resulting linear system can be 
represented regarding a constant matrix whose eigenvalues is going to describe the asymptotic 
behavior of the system (decay to equilibrium if all eigenvalues have a negative real part, 
otherwise a rapid departure from the equilibrium). The Hartman-Grobmans theorem [18] 
guarantee that unless the real part of some eigenvalue is zero (which isn’t the case), all 
conclusions about asymptotic behavior hold true even if the non-linear terms were included. 
 If the model is to be applicable at all, the equilibrium must be stable. Hence, all eigenvalues 
must have negative real part (called negative definite). To see this, one first note that the lack 
of interaction between the channels means that the matrix must contain only a diagonal (with 
all elements negative due to the convergence toward equilibrium) a first row and a first 
column, and the mirror pair of elements can therefore always be changed arbitrarily as long as 
the product is conserved by rescaling the variables. Secondly, the sum of a negative definite 
matrix and its transposed is still negative definite. If the mirror elements had different sign, 
this means that we could first rescale them to the same magnitude and then cancel them out by 
adding the transpose. This decouples that part of the matrix, and the eigenvalue is then found 
on the diagonal, with a negative value.  
On the remaining block, one applies an extra negative sign in front and shows that the 
remaining matrix is positive definite. To do this, one applies Routh-Hurwitz criteria that 
require all sub-determinants to be positive. If one calculates these backward, saving the 
voltage for last, the computation is trivial since they are simple diagonal matrices. The only 
complicated one is the entire determinant. If one compute the Laplace expansion for the 
matrix with elements ݏ௜௝ this gives: 

൭ෑ ௜௜ݏ
ே

௜ୀଵ
൱ ൭1 − ෍ ௜ଵݏଵ௜ݏ

ଵଵݏ௜௜ݏ

ே

௜ୀଵ
൱ (12) 

This means that the question of the positive definiteness can be reduced to the condition: 

෍ ௜ଵݏଵ௜ݏ
௜௜ݏ

ே

௜ୀଵ
<  ଵଵݏ

 
(13) 

This criterion can easily be checked by explicit computation of the ratios ௦భ೔௦೔భ
௦೔೔  directly from 

the system matrix, and shows that all eigenvalues are indeed negative.  
Notice that the proof of convergence of the equilibrium applies only to infinitesimal 
perturbations from the equilibrium. If the result were truly independent of the size of the 
perturbations, the cell could not be excited. Within the medical literature, the concept of a 
threshold voltage is well-known, a critical voltage beyond which the cell get excited. Strictly 
speaking, Picard-Lidelöfs theorem forbids such behavior due to continuity in initial 
conditions, but there can be a rapid, yet continuous, transition between the two behaviors. In 
other words, the maximal size of disturbance created by the perturbation will increase very 
rapidly as we move away from the equilibrium.  
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The eigenvalues themselves not only provide a guarantee of stability for the equilibrium but 
also contain information about the relaxation of the system. The smallest of the negative 
eigenvalues can be used to estimate the typical time for the system to relax, with our choice of 
parameters 1 ୫୧୬ߣ ≈⁄ 225 ms, showing the relaxation is indeed very slow, as anticipated. The 
eigenvector provides us with information about which variables it is that is responsible for the 
slow converge. Normalizing the eigenvector so the voltage component is 1, we get: 

Variable Eigenvector component 
ܸ 1 

 ே௔ 0.0018݌
 ே௔ -1.7450ݍ
 ஼௔ 0.0005݌
 ஼௔ -0.1283ݍ
 ௄ 31.9836݌
 ௄ 0.0023ݍ

We notice that among the gating variables, the largest one is ݌௄, which corresponds to it 
having the largest difference from the equilibrium in the slowest eigenmode to die out, hence 
it can be seen as the cause of the slow relaxation. This is reasonable and corresponds to what 
is known physiologically, being that the potassium gate is the slowest, and therefore take the 
longest time to return to equilibrium.  
3.3 Numerical algorithm 
With no exact solution available to the system of differential equations, we must turn to 
numerical analysis for solving the single cell equations. There are multiple general purpose 
methods for solving such systems of ordinary differential equations, such as the Runge-Kutta 
methods. However, before using such generic tool, it might be worth first to study if the 
equations have some special structure that can be taken advantage of in the construction of the 
numerical method.  
If we study the equations, we notice three fascinating features. The first one is that even 
though each equation is non-linear, if all other variables are kept constant, each equation 
would instead be linear. The second realization is the while all the equations are coupled, the 
coupling is rather limited since each of the gating variables only depend on the voltage, but 
not on each other (since all the gates are independent of each others). The third observation is 
that each variable has negative feedback to itself, meaning that if all other variables are 
constant, it will converge to a fix-point. This is a consequence of the thermodynamic 
foundation the derivation of the equations rests upon. 
This means that if the coupling was ignored, the fact that each equation then would be a linear 
differential equation means that they all would have closed form solutions. Furthermore, each 
of these sub-solutions would be unconditionally stable. Ignoring the coupling between the 
variables will, of course, generate an error, but for a short step in time ∆ݐ, the approximation 
will be acceptable. The entire process can then be repeated for the next step in time and so on. 
The method outlined here is known as operator splitting [19], and is a common technique for 
solving differential equations where each of the subparts is simpler to solve alone.  
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As pointed out above, the reason for the error is that when the voltage equation is solved, 
constant values are used for each of the gating variables, and vice versa. If the two processes 
was simply alternating, first solving the voltage equation a step ∆ݐ, then solving the gating 
equations a step ∆ݐ and then back to the voltage equation, the constant values used in the 
equation would always be either drawn from the beginning or the end of the time step, which 
is not very representative. As a result, such splitting procedure, known as Lie Splitting, will 
have a first order error in time [19].  
A better solution would be to have the constant value drawn from the middle of the time step. 
This can be achieved by first taking a step ∆ݐ 2⁄  with the voltage equation, and using the 
resulting value to solve the gating equations for a full step ∆ݐ. Finally, the new values for the 
gating variables are used to solve the voltage equation for a step ∆ݐ 2⁄ . In this way, the gating 
variables are solved using an approximation for the voltage at the middle of the time step, and 
the voltage is solved half of the time with the initial value and half of the time with the final 
values for the gating variables. The resulting scheme, known as Strang splitting, can be shown 
to have an error that is second order in time [19]. 
The next natural question is if an extended amount of trickery with the order the two sets of 
equations are solved can buy us even higher orders. If one always wants to take steps forward 
in time, the answer is, however, a resounding no, as has been proven multiple times in the 
literature [20]. If one accepts steps backward in time, the order can be increased indefinitely, 
but that means sacrificing the guarantee for unconditional stability. Another option is to take 
complex steps in time, but this has the disadvantage of slowing done the computation as 
complex numbers must now be used throughout the calculations that require twice the number 
of calculations and also makes the method very hard to interpret [21]. Hence, if we restrict 
ourselves to real steps forward in time, the second order barrier cannot be overcome directly.  
At this point, it is natural to stop and reflect on what has been discussed. The proposed idea 
has been to turn down the generic ordinary differential equation solvers that exist and instead 
try to tailor a particular method using the unique features of the equation. This has the 
disadvantage that all the work that has gone into building algorithms like ODE45 in Matlab 
cannot be used. In fact, so advanced is such algorithm, that even with all the special features 
we have drawn upon, it will not be enough to outperform ODE45. Hence, if this thesis were 
solely about solving the single cell equation, we would have reached the end of the road. 
However, there are two reasons while it is worthwhile to follow the path we have outlined. 
First, the method chosen allow us to understand better the processes involved in solving each 
of them separately, gaining value understanding of the system behavior. Secondly, 
foreshadowing the coming chapter, the single cell problem is of very limited value for 
understanding heart tissue. In such model, we must deal with a continuum of cells, and the 
equations become non-linear partial differential equations instead. It is in this setting that the 
actual strength of operator splitting will be revealed, so the single cell case instead serves as a 
toy problem for which the procedure can be introduced.  
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3.4 Detailed derivation 
Having finished with the overview of the method, the next step in using Strang splitting is to 
work out each operator. As we noted above, the two different processes are the conduction 
and the gating, and we can solve both of these exactly, as outlined below.  
3.4.1 Conduction 
The first sub-problem that will be dealt with is that of the voltage, which changes through 
channel conduction. The equation is derived by considering all gating variables set to constant 
values. By regrouping the terms in the Wohlfart-Arlock equation, the ODE for the voltage can 
be written: 

ሶܸ = ܧ)݇ − ܸ)  (14) 
Where ݇ and ܧ are constants. To provide a physiological interpretation for these constants, 
the exact expressions derived from the equation can be studied. In the case of ݇ it is given by: 

݇ = ݇ே௔ + ݇஼௔ + ݇௄ = ே௔ߪ
ܥ ே௔ݍே௔݌ + ஼௔ߪ

ܥ ஼௔ݍ஼௔݌ + (1 − (௄ݍ0.75 ቀߪ௄
ܥ ௄݌ + ௄௕ߪ

ܥ ቁ 
 (15) 
Hence, the rate with which the voltage changes is the sum of all the single channels rates that 
drive the cell to equilibrium. The relation means that the more ways the charge imbalance can 
be transported, the quicker the system will reach equilibrium. The expression for ܧ is: 

ܧ = ݇ே௔ܧே௔ + ݇஼௔ܧ஼௔ + ݇௄ܧ௄
݇ே௔ + ݇஼௔ + ݇௄

 
 

(16) 
The equilibrium voltage is a weighted mean of all the Nernst voltages and is known as the 
Donnan potential [22]. If the rate of transport through the membrane for each ion would 
remain fixed, this is the voltage the system would settle in. A way to understand the weighted 
mean property is to study the case where the membrane is only permeable to a single type of 
ion. By definition, the system would then settle in that ion’s Nernst voltage. With multiple 
types of ion, a compromise must, therefore, be met. Hence, the Donnan potential provides a 
very concise way of discussing the reasons for the change in the voltage. For example, the 
initial spike of the action potential can be explained by a shift in the Donnan potential due to 
the increased permeability of sodium ions through the membrane. 
The solution of this well-known first-order equation when starting from ݐ = 0 with a known  
ܸ(0) is: 

(ݐ∆)ܸ = ݁ି௞∆௧ ∙ ܸ(0) + (1 − ݁ି௞∆௧) ∙  (17)  ܧ
Since the factors in front of ܸ(0) and ܧ sum to 1, ܸ(∆ݐ) can be seen as an interpolation 
between the initial state and the Donnan state, with the weighting dependent on the length of 
time step.  
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3.4.2 Gating 
The second sub-problem is that of the gating variables. As a proof of concept, the solution 
procedure for the sodium channel opening probability ݌ே௔ is demonstrated. The 
corresponding equation is ݌ሶே௔ = ݇௣ಿೌ(݌෤ே௔(ܸ) −  ே௔). By the Duhamel’s principle the݌
general solution a step ∆ݐ 2⁄  forward in time is: 

(ݐ)ே௔݌ = ே௔(0)݁ି௞೛ಿೌ∆௧݌ ଶ⁄ + න ෤ே௔݌ ቀܸ(ݐ′)ቁ ݇௣ಿೌ݁ି௞೛ಿೌ(∆௧ ଶ⁄ ି௧)݀ݐ′∆௧ ଶ⁄
଴

 
 

(18) 
The interpretation of this expression is very similar to that of the conduction equation, but the 
single equilibrium level is replaced by an exponential moving average of equilibriums 
ݐ∆)ܸ is assumed to be frozen at the value (ݐ)ܸ ൯. Since(ݐ)෤ே௔൫ܸ݌ 2⁄ ), the integral can be 
computed yielding the result: 

(ݐ)ே௔݌ = ே௔(0)݁ି௞೛ಿೌ∆௧݌ ଶ⁄ + ݐ∆)෤ே௔൫ܸ݌ 2⁄ )൯൫1 − ݁ି௞∆௧ ଶ⁄ ൯ 
 (19) 
As in the conducting case, the result is an interpolation between the initial gating value 
ݐ∆)෤ே௔൫ܸ݌ ே௔(0) and the equilibrium value݌ 2⁄ )൯. ).  

3.4 Simulation of single cell 
The described algorithm was coded in Matlab and consisted of a precomputation of all the 
interpolation coefficients, and a for loop that for each step computed the change in voltage 
and gating probabilities.  
3.4.1 Initial simulation 
Hence, with all the theoretical groundwork laid, it is finally time to study actual simulations of 
the single cell. To stimulate the cell, current must be injected. One could envision using 
different kinds of time-dependent current pulses ݅(ݐ) to achieve this, but experimentation 
showed that the essentially only important property of the pulse was if it was fast enough to 
trigger the opening of the sodium gate before the closing of the gate was activated. Once the 
sodium gate was active, the large flux of current made any further contribution from the pulse 
 almost neglectable, which also makes sense physiologically, the reason the electrical (ݐ)݅
single is sustained is not that ions are transported between the cells, but rather that in each 
new cell getting activated there is a large in-rush of new ions. Therefore the simplest choice of 
current pulse is ݅(ݐ) = ൫ ଴ܸ − ෨ܸ൯(ݐ)ߜ, having the consequence of simply increasing the initial 
voltage from ෨ܸ  to ଴ܸ. With ଴ܸ = −60 mV: 
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Figure 2: Simulation of single cell dynamics with initial voltage = -60 mV 

The curve seen in figure 2 is the characteristic voltage curve seen by all previous work [5], 
[6], [7], [8], [9] on the Wohlfart-Arlock model for a single cell. It qualitatively corresponds 
well with what is physiologic known about cardiac cells. Figure 2 starts with a sharp increase 
in voltage caused by the influx of sodium ions. As the sodium gates starts closing up, the 
increase stops. Instead, potassium ions are flowing out of the cell, moving the voltage back to 
the resting value. This process is slowed down by the calcium ions flowing into the cell, 
creating the middle area where the voltage is rather high, but the downward slope is rather 
small. We can also see that the order of magnitude estimate for the relaxation of the cell from 
the eigenvalues of the linearized problem of 250 ms fits rather well. To verify this we can also 
study the gating probabilities as a function of time: 

 
Figure 3: Simulation of single cell gating probabilities 
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 As stated above, the red curve in figure 3 corresponding to the probability of the sodium gate 
to not be closed almost immediately drops, taking that gate out of the equation. The yellow 
curve shows how the calcium gate opens up, and the dropping of the purple curve shows it the 
closing of, and the product of the two being the probability to find the gate open. This shows 
that there is a rather precise time a short duration after the simulation that the calcium is 
playing a role in the problem. The potassium gate is the slowest to open, and once it has 
pushed the voltage down again, starts to close back. Even after 300 ms, it clearly has not 
reached its equilibrium, being the slowest process in the problem.  
3.4.2 Comparing the qualitative properties – threshold voltage 
In the derivation of the model, we mentioned that the cardiac cell has two important 
qualitative properties. The first one is that a certain threshold voltage must be exceeded for 
the cell to activate. To investigate if the Wohlfart-Arlock model exhibits such features ଴ܸ was 
varied as can be seen in figure 4,5,6,7 below.  
 

 
As can be seen in the figures 4,5,6,7, although there is no discontinuous threshold, the 
transition from a minuscule voltage pulse to a full excitation is very tiny.  As the voltage 
increase, even more, the height of the pulse rises slightly, evening out at 60 mV, the Nernest 
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voltage of sodium. With a sodium channel, a cell can never raise higher than this, and the 
calcium channel is too slow to have any reasonable kind of chance to bring the voltage higher.  
3.4.3 Comparing the qualitative properties – refractory time 
The second property the cardiac cells are known to have is a refractory time. This means that 
if the current is injected a second time with a delay, a second voltage pulse will only be 
created if a certain time has passed. To investigate this, we use two delta pulse of height 40 
mV with a variable delay ݐௗ as can be seen in figure 8,9,10,11 below.  

 

 
As we can see in figure 8,9,10,11, the refractory time is in the order of 110 ms. If we compare 
with the gating variables, we see that this is roughly the time for the sodium gate to open up 
again, which makes sense since this is the critical channel needed to start the process. 
3.4.4 Analysis of numerical method 
Having investigated the qualitative properties of the solution, we would like to verify that our 
numerical scheme performs adequately. It is worth noting that there is a glaring lack of such 
measures among earlier works, with consequences, we will further explore in later sections. 
As we can only obtain an approximation to the solution of the problem by using a numerical 
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method, it is critical to know how close the approximation is to the actual solution. From the 
theoretical analysis above we expect the error to scale as ܱ((∆ݐ)ଶ). Before we make use of 
this to estimate the error, it is inded important to actually verify that this assumtion is correct.  
From solving the problem with step size ∆ݐ we obtain a solution ଵܸ = ܸ +  ଶ, were ܸ is(ݐ∆)߳
the theoretical solution to the exact equations, an entity that is completely theoretical since we 
have no way of obtantaning it, and an error ߳(∆ݐ)ଶ. Next step is to solve the problem again, 
but cutting each step up in two. This modified solution ଶܸ should then have an error four 
times as small, so ଶܸ = ܸ + ଵ

ସ  ଶ. Note that there are two unknown in the problem, ܸ and(ݐ∆)߳
߳. This means that with only ଵܸ and ଶܸ we can only calculate the error ߳(∆ݐ)ଶ, but cannot 
gurantee the scaling since we have two equations and two unknowns. To do this we need a 
third solution, created by cutting each step in four parts, yielding a solution  ସܸ = ܸ +
ଵ

ଵ଺  ଶ. To check the scaling, the standard method, as described by [23] is to compute(ݐ∆)߳
X = ௏మି௏భ

௏రି௏మ . From the knowledge of the error scaling we obtain ܺ = 4, so by comparing the 
computed values of X (as shown in figure 12) we see if the error scales as predicted.  

 
Indeed, as seen in figure 12, the computed values stay very close to 4. To explain the 
deviations, one must keep in mind that apart for the quadratic error term, there are higher 
order terms that being left of the analysis, based on the argument that ∆ݐ is so small that no 
other terms are needed. It is clear that this assumption becomes less valid when the problem 
goes though very rapid phenomena, which actually require better resolution. This also means 
that any kind of improvement of the convergence by assuming the error scale as the largest 
term (such as Richard extrapolation) become more doubtful if we doesn’t also reduce the step 
size.  
  

Figure 12: Computation of X from simulation Figure 13: Estimation of numerical errors 
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4 Derivation of Wohlfart-Arlock equation for tissue 
In this chapter, we derive the Wohlfart-Arlock for a section of cardiac tissue. While the 
equations themselves are well known from the previous works, all past derivation hinges on 
the fact that the cells are placed in a rectangular lattice, an assumption we show to be 
superfluous. Hence, the derivation is an original contribution of this work.   
4.1 Internal equation 
Having demonstrated that the Wohlfart-Arlock model for the single cardiac cell gives 
reasonable results, the next step is to study the interaction between the cells.  As the gating 
variables refer to local attributes of each cell, they cannot affect each other. Instead, the only 
interaction between the cells is the exchange of ions. The electrical connections between the 
cells are known as gap junctions, and the ions go through a so-called connexin protein that 
forms a tunnel through which all ions can pass without selectivity. Since the concentrations 
inside the cells are approximated to be constant, only the excess charge particles will move, 
meaning that charge will distribute itself more equally among the cells. To a first 
approximation, these channels lack gating ability, so they remain open all the time. 
Furthermore utilizing the simplified linear model for the flux, the contribution to the time 
derivative of the voltage of cell ݅ from cell ݆ can be written ݃௜௝൫ ௝ܸ − ௜ܸ൯, with ݃௜௝ describing 
the rate at which the voltage equalize, hence the strength of the coupling between the cells.  
Hence at the outset, the generalization from one cell to several might seem very simple, write 
up the equations for all cells and then add the correct coupling terms. This program suffers 
from three fatal problems. First and foremost must the distribution of couplings ݃௜௝ be 
modeled. This is a formidable task since the atrial cells are not simply arranged in any regular 
lattice, experiments have shown that each cell has an average of 12 neighbors, primarily 
concentrated to the front and back of the cell, and therefore it is very complicated to write 
down an explicit representation of the lattice. From a modeling purpose we, are uninterested 
about what is going on at this lattice scale ܽ since it is the motion of the electrical waves that 
interest us.  The second problem is of somewhat the opposite nature, over rather large length 
scales, the properties of the atrial tissue are not homogenous. Instead it has a fibrous nature 
were the direction of the fibers vary with position. Furthermore there a special high 
conductive pathway known as the Bachmann bundle that runs from the sinoatrial node to the 
left atrium and modeling these would require special measures which complicate the simple 
structure of the equations. To avoid these issues, one could restrict the modeling to a small 
section of the atrium were the fibers can be assumed to be oriented in the same direction, does 
allowing on to assume homogeneity, which greatly simply the resulting equations. The third 
problem is the sheer number of cells involved in the heart. Even if the area of interest is 
reduced, the number of cells will still be will be at least in the order 10଻, which is 
computationally very demanding, in fact, no simulation have yet been performed at this scale.  
However, it has been said that a problem is just a misunderstood opportunity. Continuum 
modeling tells us that as long as the numbers of cells are large, the microscopic details will 
smooth out and not be crucial for understanding the macroscopic behavior. Hence, the voltage 
and gating variables of each cell can be replaced by a voltage field and gating fields with a 
value at every point. This can be seen as the limit of the equations when ܽ → 0. The key 
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question is then how to derive the corresponding field equations that describe the evolution of 
the fields. This is trivial for the gating variables since they are local, so one simply replaces 
each variable with the corresponding field. In the discrete case, the voltage equations was 
changed by adding the terms ݃௜௝൫ ௝ܸ − ௜ܸ൯. In the present case the cell instead interacts with a 
continuous surrounding, so there must be a corresponding term expressed in differential 
operators. 
Focusing on ݅ = 0 without loss of generality (due to the homogeneity assumption), the total 
interaction term can be written ∑ ݃଴௝൫ ௝ܸ − ଴ܸ൯௝ . Apart from homogeneity, we also assume the 
tissue has parity symmetry, meaning that (ݔ, (ݕ → ,ݔ)−  leaves the tissue unchanged, which (ݕ
is experimentally supported [24]. This can be understood as staying on the fiber, but moving 
in the opposite direction. The symmetry means that the differential operator cannot contain 
any odd derivatives. This means that the existence of a cell in the forward direction is 
followed by a cell in the backward direction, so that the interaction can be written 
∑ ݃଴௝൫ ௝ܸ − 2 ଴ܸ + ௝ܸ൯௝வ଴ . This can be expressed in the voltage field by Taylor approximation, 
and since the distance between the cells are proportional to ܽ, the dimensionless factor can be 
absorbed into the coefficients ܿ௡. If the direction vector describing the direction of gap 
junction is ݁̂௝, this means that the differention operator along that direction is ൫݁̂௝ ∙ ∇൯ so the 
series becomes: 

቎ܿଶܽଶ ෍൫݁̂௝ ∙ ∇൯ଶ
௝

+ ܿସܽସ ෍൫݁̂௝ ∙ ∇൯ସ
௝

+ ⋯ ቏ ܸ 
 

(20) 

Therefore, as ܽ → 0, the lowest order differential term that will describe the interaction is 
∑ ൫݁̂௝ ∙ ∇൯ଶ

௝ , and therefore all higher order terms are neglected. If the coordinates of the 
vectors are ݁̂௝௫ and ݁̂௝௬, the operator can be explicitly written as 
ቂ∑ ൫݁̂௝௫൯ଶ

௝ ቃ ߲௫௫ + 2ൣ∑ ݁̂௝௫݁̂௝௬௝ ൧߲௫௬ + ቂ∑ ൫݁̂௝௫൯ଶ
௝ ቃ ߲௬௬. By the spectral theorem, there exists a 

coordinate transformation which removes the cross term. Physically this corresponds to 
rotating the coordinates so that the faster fiber direction is taken as ݔ-coordinate and the 
slower orthogonal path is taken as the ݕ coordinate.  Furthermore, by scaling each of the other 
coordinates independently, the coefficients can be set to unity, so that the interaction term is 
߲௫௫ + ߲௬௬ = ∇ଶ. The scaling means that if a square block of tissue is simulated, this actually 
corresponds to a rectangular one. This transformation means that although the operator ∇ଶ is 
rotationally symmetric, this does not apply for the underlying tissue, so care must be taken 
when studying solutions with motion in both ݔ and ݕ. Setting the coefficients equal to 1 
means that distance is measured in units of time. Although this might seem strange, this 
means that computed speeds of waves will be dimensionless. These can then be compared 
with experimentally measured speeds to determine the proper transformation back to normal 
units.  
The result is a very simple interaction term. In some sense, this couples the cell to the 
continuum in the simplest way possible, as any lower order differential operators cannot be 
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used due to the asymmetry they induce. This is as far as one can come with a homogenous 
model; a more exact interaction must account for the variation in structure. However, the fact 
that experimentally speeds can be used to scale the results guarantees that the term gets 
approximately the right size. If only the interaction contribution is studied, the equation 
becomes ߲௧ܸ = ∇ଶܸ. This is the well-known diffusion equation, which describes that the 
voltage spread out and equalize over the cells. 
4.2 Boundary conditions 
The Wohlfart-Arlock model for cardiac tissue is a partial differential equation. Hence, both 
initial and boundary conditions are needed for the problem to have a unique solution. While 
the initial conditions are simply the initial voltage distribution, the boundary conditions are 
much more unspecified. On an infinite domain, there are no boundaries, so for simplicity, we 
can use the same conditions in x as in y. Focusing on x,  the natural choice is that 
lim௫→±∞ ,ݔ)ܸ (ݐ = 0, since the cells far ahead have not yet been excited, and those far behind 
have all but return to equilibrium. However, infinite domains make very limited sense in the 
numerical world. Instead, ݔ must be limited to a finite interval ሾ0,  ሿ. The goal of theܮ
boundary conditions is to try to mimic an infinite domain.  
These boundary conditions must be homogenous as nothing is going on in the outskirts. Since 
the equation is second order in space, such conditions can be written as a linear combination 
of ܸ(0, ,(ݐ ߲௫ܸ(0, ,(ݐ ,ܮ)ܸ ,(ݐ ߲௫ܸ(ܮ,  For a second order equation, two boundary . (ݐ
conditions are needed. Therefore both boundaries must be involved, as the only homogenous 
condition with only one boundary is ܸ(0, (ݐ = 0, ߲௫ܸ(0, (ݐ = 0 that yields no excitation.  
To resolve these problems, there is a need for local boundary conditions, the first being a 
function of only ܸ(0, ,and ߲௫ܸ(0 (ݐ ,ܮ)ܸ and the second of only ,(ݐ ,ܮ)and ߲௫ܸ (ݐ  The first .(ݐ
option is the Dirichlet boundary condition ܸ(0, (ݐ = ,ܮ)ܸ (ݐ = 0, making the boundary an 
endless current sink. This will be very unphysical, especially when the cells close to the 
boundary reach their peak of excitation, since there will then be a massive current gradient 
though the boundary. Rather than mimicking an infinite area, such choice of conditions 
reinforces an artificial boundary.  
A second alternative is the so-called Robin boundary condition defined by ߲௫ܸ(0, (ݐ =
,0)ܸߛ  From the equilibrium analysis of the traveling wave ansatz we know that such .(ݐ
relation is satisfied for both boundaries asymptotically with different values of ߛ for the left 
and right boundary. There are however a number of problems with such choice of boundary 
condition. Since the condition is only valid asymptotically, it means that it will not be valid 
when the wave is close to either end, which is exactly when the boundary conditions actually 
does play a role in determining the shape of the wave. Furthermore the fact that ߛ must be 
select differently means that the isotropic properties of the medium will be violated. Finally, it 
is very unclear how to properly extend such idea to a 2D setting.  
This leaves only the Neumann boundary condition, ߲௫ܸ(0, (ݐ = ߲௫ܸ(ܮ, (ݐ = 0. Such 
condition corresponds to an insulated boundary, no current can flow in or out of it, meaning 
that as the excitation wave come close to the boundary, the current that would have flown 
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though the boundary must instead flow back. While this sounds highly artificial, it is 
important to keep in mind that the current that flows between the cells serves the purpose of 
an igniting the excitation, but is relatively small compared to the inflow of currents from the 
ion gates. Another way of understanding this is by noting that Neumann boundary condition 
are sometimes called “reflective boundary conditions” in that a wave sent against such 
boundary will be reflect. For the cardiac cells however,, the reflected wave will not be able to 
propagate, as the cells have already been excited and is recovering, meaning that the wave 
will disappear over the boundary, like it would have done had the boundary not existed, 
exactly the behaviour we have been searching for all along. Finally, these boundary 
conditions are very pleasant to work with in a 2D setting, as a plane waves traveling parallel 
to the x-axis satisfy ߲௬ܸ(ݔ, ,ݕ (ݐ = 0, since there is no dependence on y. If we apply the same 
conditions in both x and y, we hence gain ߲௫ܸ(0, ,ݕ (ݐ = ߲௫ܸ(ܮ, ,ݕ (ݐ = 0 and ߲௬ܸ(ݔ, 0, (ݐ =
߲௬ܸ(ݔ, ,ܮ (ݐ = 0, which was exactly what we wanted.  
4.3 Collecting results 
Summarizing all the results, the single cell equation and the Laplacian term from the charge 
diffusion can be added together to yield the non-linear partial differential equation that is 
known as the Wohlfart-Arlock model for cardiac tissue: 
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ܸ߲ۓ
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5 Solution of the Wohlfart-Arlock equation for tissue 
In this chapter, the partial differential equation derived in the last section (equation 21) for the 
Wohlfart-Arlock model in tissue is solved. While previous works have done this, the novelty 
lies in the numerical method developed specifically to solve this problem, as all previous 
works have utilized the Euler-method.   
5.1 Introduction 
The last section extended the single cell equation to a partial differential equation (PDE) for 
the entire tissue. Precisely as in the case of the single cell equation, it is necessary to 
guarantee that the problem is well-posed before any attempt at finding a solution can be made. 
The Picard-Lindelöf’s theorem can be generalized [19], as long as the solution a priori was 
known to be bounded, which (as discussed above) is the case. Therefore, a unique solution 
continuous in the initial conditions can be guaranteed to exist at any point time.  
5.2 Ideas behind the numerical method 
From previous work such as [8], we know that the standard “beating” solution of the equation 
is a traveling front in an isotropic space, so we can without a loss of generality make the 
front’s propagation direction parallel with the x-axis. Hence, the voltage will only depend on 
 and we only have a 1D PDE to solve. It is important to notice that the ,ݕ and not on ݔ
motivation for searching for such theory is to account for fronts, there is no intrinsic reason 
for studying 1D cardiac tissue, since unlike nerve signals, the cardiac tissue always have the 
local form of a sheet.  
As noted in the single cell case, no closed form solution exist that is of practical use, so we 
must turn to numerical analysis. Previous works on the Wohlfart-Arlock model have heavily 
utilized the Method Of Lines, an idea based on first discretizing the space into a lattice of ܰଶ 
square pieces of side length ܽ (the choice of squares is motivated by the symmetry of the 
Laplace operator induced by the scaling in the previous section). By replacing the Laplace 
operator by central finite differences, a system of 7ܰଶ non-linear coupled ODE’s is 
constructed. This operation allows for the application of the ODE theory discussed in the 
previous section. The standard approach used to solve these equations has been using the 
explicit Euler method, where the right hand side in all equations have been approximated to a 
constant value for each time step, and then trivially integrated to yield the new values. 
This deceptively simple scheme suffers from the problem that while a PDE formally appears 
to be very similar to an ODE, it is actually of a very different nature. More precisely, there is 
a very intimate relation between of lattice spacing ܽ and the length of the time-step ∆ݐ. For 
the non-linear equation such a relationship is rather complicated to work out, but studying 
only the diffusion part of the equation, the bound ∆ݐ < ܽଶ 2⁄  can be derived for the method to 
be stable. Keeping in mind that after the rescaling of space is preformed in the derivation, it is 
expected that in terms of the actual dynamics ∆ݐ~ܽ so the use of the Euler scheme forces 
unphysical short steps in time. Any explicit method that computes future values from the 
current ones is going to suffer from similar problems [25]. 
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An alternative would be to switch to an implicit method (such as implicit Euler or Crank-
Nicolson). There is a large variety of such schemes which are unconditionally stable, hence 
from the point of stability (but, of course, not regarding accuracy) there are no restrictions on 
 in relation to ܽ. Alas there is no free lunch, since in such a scheme, one is faced with the ݐ∆
problem of solving at least ܰଶ nonlinear equations in each timestep (the equations for the 
gating variables can be represented in terms of the voltage, leaving only one equation per 
lattice point), a computationally rather complicated problem. As if this result was not 
depressing enough, it can be shown that if solutions obtained by these finite difference 
methods (explicit or implicit) should contain no unphysical “undershoots” it can be of most 
second order, and for all methods beyond first order ∆ݐ ∝ ܽଶ apply (so while stability can be 
guaranteed in the implicit case, the physicality of the solution cannot).  
The root of all these problems comes from introducing the effect of charge diffusion into the 
equations. In contrast, to the very local single cell effects (that only act on the same grid 
point) diffusion very rapidly spreads out among different grid points. It would, therefore, be 
very advantageous to use different methods to attack each of these terms since they stem from 
very different physics. This is exactly the kind of problems the method of operator splitting 
was built to handle. To include this third process, two things are needed. First, a solver for the 
diffusion equation is needed, and secondly, the new process must be included together with 
voltage conduction and gating so that the second order accuracy is preserved. 
5.2.1 Diffusion 
We begin with the first task, that of solving ߲௧ܸ = ∂௫௫ܸ. Together with the boundary 
conditions, solving this problem is a classical exercise in partial differential equations. Using 
separation of variables, the eigenfunctions of the operator ∂௫௫ will be cos(݊ݔߨ⁄ ) with 
eigenvalues −(݊ߨ ⁄ܮ )ଶ, hence the solution can be written as an infinite series of the form: 

,ݔ)ܸ (ݐ = ෍ ܿ௡exp ቆ− ݊ଶߨଶݐ
ଶܮ ቇ

∞

௡ୀ଴
cos(݊ݔߨ ⁄ܮ ) 

 
(22) 

Here ܿ௡ are coefficients that describe how much of the initial state is in each of the 
eigenmodes. These can be determined by setting ݐ = 0, which gives the equation: 

,ݔ)ܸ 0) = ෍ ܿ௡
∞

௡ୀ଴
cos(݊ݔߨ ⁄ܮ ) 

 
(23) 

If the left-hand side is a known function that satisfies the boundary conditions (and also has 
the regularity necessary actually to be a solution to the Wohlfart-Arlock equations), then we 
know that the function can be expanded in a cosine series, and hence all the coefficients can 
be determined. However, as there is an infinite number of modes, so must we also know the 
initial state is an infinite number of points on the interval. In the numerical world, there is no 
such thing. Instead, we only know the voltage on ܰ lattice points ݔ௜ on the interval. This 
means that we have an underdetermined set of equations: 
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,௜ݔ)ܸ 0) = ෍ ܿ௡
∞

௡ୀ଴
cos(݊ݔߨ௜ ⁄ܮ ) 

 
(24) 

If we interpret this problem in matrix form, with ܰ known values of ܸ, it can be treated as a 
ܰ × 1 vector, and ܿ as a ∞ × 1 vector. Any kind of selection relation can then in general 
written ܿ = ሚܸܵ for some matrix ሚܵ of size ∞ × ܰ that determines how to transform voltage 
data into coefficients. In similar fashion, a diagonal matrix (ݐ∆)ܦ can be introduced with 
exp ቀ− ௡మగమ௧

௅మ ቁ on the diagonal and finally a matrix ܵ of size ܰ × ∞ with matrix elements 
௜ܵ௡ = cos(݊ݔߨ௜ ⁄ܮ ), so that the new voltage can be expressed in terms of the old as 

(ݐ∆)ܦܵ ሚܸܵ. To determine ሚܵ, some kind of further criteria is required. 
For the purpose of operator splitting, we want to minimize the amount of error of each part of 
the solution. For the ODE part, we could solve the problem exactly, which expressed in 
another way means that if only that solution had been used, taking two steps in time of half 
the size should produce the same result as a single step. Such a condition is known as the flow 
condition. Applying this to the diffusion solution, means that  

ܦܵ ൬∆ݐ
2 ൰ ሚܵܵܦ ൬∆ݐ

2 ൰ ሚܵ = (ݐ∆)ܦܵ ሚܵ 
 

(25) 
Since (ݐ∆)ܦ is a diagonal matrix, ܦ ቀ∆௧

ଶ ቁ ܦ ቀ∆௧
ଶ ቁ =  Hence at first sight, we would like .(ݐ∆)ܦ

ሚܵܵ = so that ሚܵ ,ܫ = ܵିଵ, but that is not possible since ܵ is not invertible (being a non square 
matrix). However, if  ሚܵ was the inverse to the first ܰ × ܰ block in ܵ, and zero for all other 
elements, the relation would be true, since ሚܵܵ = ܰ would be valid for the ܫ × ܰ block, and for 
all else the relation would be 0 on both sides since we premultiply with ሚܵ.  
Hence, what we have shown is that if we assume ܿ௡ = 0 for ݊ ≥ ܰ, that is cutting of all 
higher modes, we can satisfy the requirement of independence of the step size.  The reason for 
picking the ܰ first modes and no else is twofold: Lower modes decay slower, so will stay 
important longer, and higher modes will in general carry information about details of the 
function while the lower modes describe the essential shape. This idea of using the first 
eigenmodes of the system is known as a spectral method [19]. Hence in the end the problem 
simplifies into the square system of equations: 

,௜ݔ)ܸ 0) = ෍ ܿ௡
ேିଵ

௡ୀ଴
cos(݊ݔߨ௜ ⁄ܮ ) 

 
(26) 

The next question is how to select ݔ௜. While we have assumed ܿ௡ = 0 for ݊ ≥ ܰ to be able to 
perform calculations, this will not be true in practice. Hence the most significant error is most 
likely coming from the ܿே term. If ݔ௜ is chosen so that cos(ܰݔߨ௜ ⁄ܮ ) = 0, at least that mode 
will not interfere. Solving the equation gives  ݔ௜ = ௜ିଵ ଶ⁄

ே for 1 ܮ ≤ ݅ ≤ ܰ, so the lattice points 
should be chosen equidistantly. Notice that ܰ must be selected at the beginning of the 
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computation, meaning that we no longer have the freedom to vary the step size as in the case 
of the single cell equation. 
 This might seem like an obvious result, and the reasoning unnecessarily complicated, but it 
will become essential in further on when we move onto higher different geometries were 
other eigenfunctions apply.  
If we restrict all matrices to their ܰ × ܰ block, the new voltage can then be written 
 ଵܸ. An extra nice property is that the columns in ܵ is orthogonal, so if the columnsିܵ(ݐ∆)ܦܵ
are also normalized, the matrix becomes an ortonormal matrix ܵିଵ = ்ܵ. The transformation 
ܵିଵ and ܵ are in the literature known as the discrete cosine transform and the inverse discrete 
cosine transform. These can be found as standard routines in Matlab. Since all matrices are all 
independent of time as long as  ∆ݐ remains fixed, they can all be precomputed into the matrix 
(ݐ∆)ܭ =  ଵ, called the propagator, so that the entire diffusion part of the problem isିܵ(ݐ∆)ܦܵ
reduced to multiplying with a matrix. Since these matrices must be quite large for reasonable 
accuracy, this will be the most computer intensive step of the calculation, but the good news 
is that matrix multiplication is precisely the task that Matlab was built to perform best. 
Although we have eliminated errors related to the step in time by making the result 
independent of the steps were taken in time, errors will occur since not all modes were 
included. Therefore, the size of the sum ∑ ܿ௡∞௡ୀே cos(݊ߨ ௜ ⁄ܮ ) of excluded modes must be 
estimated. Using the triangle inequality, these can be bounded by ∑ |ܿ௡|∞௡ୀே  . To determine 
how fast the coefficients decay, we need some knowledge of the regularity of the function. 
From the general theory of the equation we can assume the function to be at least analytical, 
meaning that the coefficients will be bounded geometrically |ܿ௡| ≤  and ܥ ௡ for someߩܥ
0 < ߩ < 1 [26]. Inserting the bound gives: 

෍ |ܿ௡|
∞

௡ୀே
≤ ܥ ෍ ௡ߩ

∞

௡ୀே
= ܥ

1 − ߩ  ேߩ
 

(27) 

Since the distance between the lattice points are ܽ = ଵ
ே௅, the error is asymptotically on the 

form ܱ ቀߩ భ
ೌಽቁ , hence going to 0 faster than any power of ܽ, the trademark of spectral 

methods. This means that as ܽ and ∆ݐ shrinks down together; the error from the splitting will 
dominate the spectral error. Note also that the proposed method is unconditionally stable, 
there are no longer any bounds on ∆ݐ and ܽ. This opens up the possibility to construct a 
second order method, without the constraint ∆ݐ ∝ ܽଶ.  
5.2.2 Reconciliation 
With the diffusion subproblem solved, this process should be incorporated into the splitting 
procedure already including the voltage conduction and gating variables. The first option 
would be to mix the order in which all the three processes take part, but there is an interesting 
shortcut that saves us from such increase in complexity. It stems from that the diffusion 
equation part, ߲௧ܸ = ∇ଶܸ, has no coupling with the gating variables, so these two can be 
solved together. The gating variables however does depend on the voltage, meaning that that 
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part of the solution must be modified. Returning back to the basics, the formal gating solution 
is given by: 

(ݐ)ே௔݌ = ே௔(0)݁ି௞೛ಿೌ∆௧݌ + න ෤ே௔݌ ቀܸ(ݐ′)ቁ ݇௣ಿೌ݁ି௞೛ಿೌ(∆௧ି௧)݀ݐ∆௧
଴

 
 

(28) 
This time ܸ(ݐ′) is no longer a constant, but will be the change in voltage due to diffusion. The 
problem is we only know ܸ(0), before the application of the diffusion, and ܸ(∆ݐ), after the 
diffusion. However since the splitting error is of second order, ݌ே௔(ݐ) does not have to be 
solved exactly, but only to second order accuracy, there is simply no need to strain out a gnat 
if a camel has already been swallowed. This approximation can be achieved by linearly 
interpolating ݌෤ே௔൫ܸ(ݏ)൯ between the values ݌෤ே௔൫ܸ(0)൯ and ݌෤ே௔൫ܸ(∆ݐ)൯ with the ansatz 
൯(ݐ)෤ே௔൫ܸ݌ = ቀ1 − ௧

∆௧ቁ ∙ ෤ே௔൫ܸ(0)൯݌ + ௧
∆௧ ∙  ൯, and by inserting this function into the(ݐ∆)෤ே௔൫ܸ݌

integral, the gating variable at ݐ can be computed as: 

(ݐ)ே௔݌ = ݁ି௞೛ಿೌ∆௧݌ே௔(0) + ቈ1 − ൫1 + ݇௣ಿೌ∆ݐ൯݁ି௞೛ಿೌ∆௧
݇௣ಿೌ∆ݐ ቉ ෤ே௔൫ܸ(0)൯݌

+ ቈ1 − 1 − ݁ି௞೛ಿೌ∆௧
݇௣ಿೌ∆ݐ ቉  ൯(ݐ∆)෤ே௔൫ܸ݌

 

(29) 

As in the previous case, the result is an interpolation between the initial gating value ݌ே௔(0) 
and the equilibrium, but this time there are two equilibrium levels, the initial equilibrium 
 is constant, the interpolation ݐ∆൯. Since ݇௣ಿೌ(ݐ)෤ே௔൫ܸ݌ ෤ே௔൫ܸ(0)൯ and the final equilibrium݌
coefficients are the same everywhere on the lattice and can be pre-computed before the 
calculations to save time. Furthermore, if ݌ே௔ is represented as a matrix, Matlab allows the 
computation to be performed in a vectorized way without the need for any loops, resulting in 
both clarity and speed. 
5.3 Computing the traveling wave solution 
With all the theory and numerical analysis on our side, there is only one problem, how to 
select initial conditions? One might think that this is a very delicate process of finding a 
proper starting state. However, it turns out to be very simple. Experimentation showed that 
more or less any pulse-shaped form with sufficient amplitude and width will work; in the 
example below in figure 14 we used a Gaussian pulse, placing the maximum at ݔ = 0. The 
maximum is ܸ = 60 mV (sodium channel equilibrium voltage) and the width is 10 ms (length 
is measured is time as mentioned earlier).  
As soon as the first simulation is done, the problem of initial conditions becomes rather mute, 
since we now have access to the traveling wave profile directly as can be seen in figure 15. By 
saving the data from the previous simulation and importing it into a new one, we can start the 
system directly in the right conditions. 
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Looking at the final state of the travelling wave in figure 15 we see a shape very similar to the 
action potential of the single cell, which is a clear indication that the internal dynamics cause 
the majority of the cells behaviour (open of the gates est.) and diffusive flow of ions between 
the cells primarily serve just to trigger the cells. The reason the action potential is mirrored is 
because moving backward in distance means moving forward in time since a particular cell 
was triggered. 
Previous works such as [8] have assumed the wave speed ܿ to be constant. To verify this, we 
initiated the system with a traveling wave solution and measured the position of the maximum 
as a function of time as shown below in figure 16. The agreement with a straight line was so 
good that the limiting factor was the resolution of the position of the peak since it can only 
take discrete values. A more sophisticated version introduced to solve this was to find the 
maximum and use the two adjacent lattice points to fit a parabola, but the difference was 
barely noticeable.  

 

 

spe
ed 
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ave

Figure 14: Initial conditions for simulation Figure 15: Final state of simulation 

Figure 16: Position of pulse maximum vs time Figure 17: Speed of computed wave vs grid size 
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A much more interesting question is how the computed speed depend on the step sizes ∆ݐ and 
 Since we model an object moving with constant velocity, it is reasonable to couple these .ݔ∆
steps by ∆ݔ =  but the results we ,(using the ܿ from the highest resolution computation) ݐ∆ܿ
get was also checked with other constants of proportionality between the two step sizes. From 
the relationship between step size and wave speed seen in figure 17 above we see that 
ݔ∆ ≲ 0.1 ms to yield correct results. This is a rather restrictive criterion, but not very 
surprising given that almost the entire dynamic is described by the sodium gate, a very fleeing 
event that must be captured accurately.  The guideline concerning step-length is especially 
important considering that there exists no prior analysis of this in the previous works. Just 
because the solution is stable, doesn’t need to mean that it corresponds to the solution of the 
differential equation contrary to the conclusion of [10]. If one use step size ∆ݔ = 1,  one will 
still obtain a rather reasonable action potential that will both look and feel right, but careful 
analysis shows that it will be moving with the wrong speed, and there is no guarantee it will 
behave correctly. This cast a very problematic shadow over several of the past results such [8] 
and [10], we will return to some of these when studying multi excitation states. 
As discussed in the case of the single cell equation, a proper way to perform error analysis is 
to vary ∆ݐ by cutting up steps and checking that the ratio off ଵܸ, ଶܸ, ସܸ is 4. This can be seen to 
be true in figure 18 below, and allow us to estimate the error of the simulation as ସ

ଷ ( ଶܸ − ଵܸ) 
as plotted in figure 19. We see that the error is extremely small except for the activation and 
sodium gate opening. 

 
A natural question is if one could somehow adjust the step sizes to obtain better resolution of 
this critical area. While such idea might seem very tempting, there are indeed multiple 
problems with it. First and foremost, in such idea a lot of the symmetries and pre-computation 
properties must be dropped since the grid itself must be moving and changing. Secondly, 
while it is possible to imagine how to perform this in 1D with a single wave, if we like to 
study some arbitrary voltage configuration this soon becomes very complicated. Attempts 
have been made in the literature to account for this [27], but they have been rather 
unsuccessful for more general waveforms.  

Figure 18: Computation of X from simulation Figure 19: Estimation of simulation error 
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5.4 Gibbs phenomena and different interpolation schemes 
One of the central ideas in the numerical method was to use cosine to interpolate the voltage 
when computing the diffusion. This choice was only which satisfied the flow condition that 
made the solution operator into a semigroup, but it is not without problems. The opening of 
the sodium channels gives a very sharp gradient, and it is well known that such is rather hard 
to treat using spectral methods. One artificial phenomenon appearing is the so-called Gibbs 
phenomena were the interpolating function is oscillating in an unphysical way after a sharp 
gradient. To study this phenomenon, we used ∆ݔ = 0.1 and then made an interpolation using 
only every third value. This allow us to plot the “actual” solution vs. the interpolated one 
shown in figure 20. While they agree rather well for the most part, just before the gradient 
front, we get this behaviour: 

 
 
To investigate better options, we also tried linear and spline interpolation. As we can see from 
figure 21, these clear outperforms the cosine interpolation far away from the step gradient. 
However, we know that at these areas the calculations are already really precise. At the most 
critical region, that of the sharp gradient, the cosine method is slightly better. Also, notice that 
the large errors are not as bad in practice, the interpolations functions are only used for 
computing the diffusion current, and the current total contribution from oscillations are 
minuscule.  

 
  

Figure 20: Difference between exact and 
interpolated solutions 

Figure 21: Interpolation errors from different schemes 
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6 Modeling the influx of currents 
In this section, we demonstrate how the novel solution procedure from the last chapter can be 
used to solve the so-called “influx problem” that has not received any satisfactory treatment in 
the previous literature.  
6.1 Numerical method 
As seen in earlier chapters, any excitation wave that resembles the traveling wave solution 
will quickly converge toward the later. Hence, in practice, it is very easy to obtain this 
solution. There are however other solutions that we would also like to generate. Previous 
works [7] have tried to simulate an excitation quickly followed by a second one as a method 
of studying the properties of the equations. While we do not know the final state, the question 
is how to generate a sufficiently close approximation to it. The method previously used has 
been to inject voltage directly into one of the lattice points, with a time delay between the 
injections. Direct reference to the grid itself makes the scheme very dependent on the grid 
spacing, a very undesirable feature. The procedure is also very artificial since the two pulses 
would not be created this way.  
If we imagine the scenario of an extra pulse being sent out after the first one, we would expect 
the two pulses to have traveled for quite a while until reaching the right part of the atria that 
we are studying. Hence, we would like the pulse to “enter” the area from the left of the 
interval. The way a pulse is transported is through the current transport between the cells that 
opens the ion channels. Hence, if a current influx similar though that of the traveling way 
could be simulated, it would be possible to inject a pulse in such a way that it would already 
be in a converged state. If two such current pulses were injected with a time delay, it would 
hopefully bring us close to the two wave state. 
The current ݅ is given by −߲௫ܸ in the non-dimensionalized units. Hence the current of the 
excitation front can be estimated by a finite difference. If the current is measured between the 
two grid points ݊ and ݊ + 1, ߲௫ܸ = ௏೙ି௏೙శభ

௔ + ܱ(ܽଶ). Since ܽ ∝  the estimate is still ,ݐ∆
second order accurate. A higher order stencil could be used, but the next two grid points 
would be at ± ଷ

ଶ ܽ, and given how the front has a very  steep slope (which is the region 
primarily contributing to the current), the lower order scheme was preferred.  This way, the 
current function ݅(ݐ) can be computed. 
The next step is to inject the current. The left boundary condition is given by ߲௫ܸ(0, (ݐ = 0, 
but with current injection, it instead becomes ߲௫ܸ(0, (ݐ =  Instead of changing the entire .(ݐ)݅
solution of the diffusion problem, we can use the linearity of the diffusion equation to solve 
the part with the inhomogeneous boundary condition separately. Hence we have the partial 
differential equation problem: 

൞
߲௧ܸ = ߲௫௫ܸ

߲௫ܸ(0, (ݐ = (ݐ)݅
߲௫ܸ(ܮ, (ݐ = 0
,ݔ)ܸ 0) = 0

  (30) 
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We seek to compute ܸ(ݔ,  Since the system is linear, it must by Schwartz Kernel theorem .(ݐ∆
be possible to write the answer in the form ܸ(ݔ, (ݐ∆ = ׬ ℎ(ݔ, ݐ∆ − ௧∆ݐ݀(ݐ)݅(ݐ

଴  with the kernel 
function ℎ(ݔ,  a time ݔ This function describes how much excess voltage exists at position .(ݐ
 after a pulse of current, hence it describes the response to an influx of current. Inserting this ݐ
ansatz into the problem and then Laplace transforming the equation, collecting all terms and 
finally applying the inverse transform using calculus of residues then yields: 

ℎ(ݔ, (ݐ = 1
ܮ ൥1 + 1

2 ෍ exp ቆ− ݊ଶߨଶݐ
ଶܮ ቇ cos ቀ݊ݔߨ

ܮ ቁ
∞

௡ୀଵ
൩ 

 
(31) 

To preserve the flow condition, the sum must be truncated at ݊ = ܰ − 1. If ݅(ݐ) was known 
for all times, the integral could have been computed, but only one current value per time step 
is known, so we only know the current at ݅(0) and ݅(∆ݐ). Using the recipe from before, and 
linearly interpolating ݅(ݐ) between the two end values, gives us: 

,ݔ)ܸ (ݐ∆ = ଵ݅(0)ߙ +  (32)  (ݐ∆)ଶ݅ߙ
  

ەۖ
۔ۖ
ۖۖ
ଵߙۓ = ଷܮ

ݐ∆ସߨ2 ෍ 1 − ൬1 + ݊ଶߨଶ∆ܮݐଶ ൰ exp ൬− ݊ଶߨଶ∆ܮݐଶ ൰
݊ସ cos ቀ݊ݔߨ

ܮ ቁ
ேିଵ

௡ୀଵ

ଶߙ = ଷܮ
ݐ∆ସߨ2 ෍ exp ൬− ݊ଶߨଶ∆ܮݐଶ ൰ − 1 + ݊ଶߨଶ∆ܮݐଶ

݊ସ cos ቀ݊ݔߨ
ܮ ቁ

ேିଵ

௡ୀଵ

  (33) 

 
While the coefficients in front of the current values are rather cumbersome, they can be 
computed once and for all, and the extra voltage contribution is then simply added to the ܸܭ 
term during the diffusion step.  
6.2 Estimating the current 
The first step of the program is to estimate the current ݅ from a travelling action potential 
using the grid size ∆ݔ = 0.1 (according with the recommendation from the last section). The 
result can be seen in figure 22. The sharp peak corresponds to the sodium influx, and the 
undershoot at ݐ = 170 ms corresponds the outflow of potassium ions brining the voltage 
back. The small current in-between the peak and the undershoot comes from the balance 
between the calcium and potassium currents. Hence, a correct current profile clearly requires 
all three currents to be reproduced.  
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In figure 23, we see the result of the injected current by comparing the calculated waveform 
with the one from the 1D simulation. The agreement is excellent, as expected from the errors 
in both simulations are of the same magnitude.  
6.3 Two pulse state 
Having built a tool for injecting action potentials, the next question is where to apply it. As 
already hinted in the introduction to this section, the main use is multiple excitation states, in 
which the cells are excited again soon for the first time. We did a similar thing for the single 
cell, revealing that there is a refractory period, as expected. By doing the same kind of 
investigation here as seen in figure 24,25,26,27, we could change the time between two 
current pulses to see if the injected state converges to a stable state or not.  

 
  

Figure 22: Estimated current from voltage pulse Figure 23: Injected voltage pulse compared with original  

Figure  24 a) Figure  24 b) 

 Figure 24 d) Figure  24 c) 
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From the different attempts in figure 24 a) – d), outlined as examples above, we see that as the 
pulses get closer, the second one contracts slightly and becomes slightly lower. The lowering 
comes from the sodium gate being partially closed combined with an increase in potassium 
influx, and the narrowing comes from the calcium gate no longer being able to provide 
sufficient outflux of calcium ions to slow down the decay of the voltage. All of these effects 
become stronger the closer the two pulses are. For times differences shorter than 123 ms, it 
was not possible to initiate the system. The natural question is if this sharp transition 
contradicts the statement that all transition must be continuous. To answer this we must 
realize that in the ODE case we could tune the time difference directly, but in the PDE case, 
we must instead create an approximate starting state by injecting currents. The fact that the 
current function is not identical to the true current is enough to break the continuity.  
Another interesting use of the method is to compare with previous works on the equation. It is 
worth noting that while the amplitude of the second pulse is lower, this is a very slight 
decrease. In [7] we instead see a rather significant drop. The most likely reason is the 
combined use of an unphysical way to initiate the pulses and the low order low-resolution 
Euler method used. This provides further incentive to scrutinize earlier results and try to 
replicate them using the new numerical method.   
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7 Outlook 
By this point, it is natural to ask the academic question, what have we learned? A reader who 
expected an in-depth analysis of the arrhythmic patterns and spirals of the equation, or a fair 
treatment of chaotic behavior or similar, might by this point be rather disappointed. Does this 
mean that the thesis has missed the target, and failed to accomplish the given task? To answer 
this, we should rather focus on the current state of the field of research surrounding the 
Wohlfart-Arloch equations. Several of the previous works has focused much attention to 
arrhythmias, given that describing these was one of the primary goals of the model. The main 
outcome from these collective works is to demonstrate the wide spectrum of behaviors 
exhibited.  
However, all of them suffer from a chronic lack of systematic numerical analysis. Even in the 
case when the authors have considered things like step size and accuracy, the methods and 
standards of evaluation has been questionable at best. The numerical analysis has in almost all 
cases started and ended with the Euler method, which as we have discussed rather at depth, is 
not particularly suitable for this kind of problem. The partial blame falls on the continuity 
effect; newer works simply follow in the footstep of older ones, using the same methods and 
ideas. This highlights the critical need to break this chain of poor numerical analysis and 
outline a plausible alternative. 
With this in mind, we now start to approach the red thread in this thesis, to provide an 
algorithm for solving the equations. We argue throughout the thesis for the use of operator 
splitting methods. These have the advantages of unlocking a lot of the theory for the diffusion 
equation by decoupling it from the non-linear, but local, terms. The fact that many different 
kinds of scenarios have closed form solutions for the diffusion equation unlocks a whole new 
world of possibilities for creating realistic, accurate and simple solutions.  
Another natural question at this point is if the entire business of finding numerical methods 
and solving the equations is relevant from the physics point of view. Should we not simply 
treat numerics as a black box, and simply worry about performance? For many different kinds 
of equations this is the case, but as argued and showed multiple times, by interpreting the 
numerical method in terms of the physics, we receive a better understanding of the underlying 
physics. The concept of Donner level, for example, arise very naturally though the splitting, 
and so does the injection current diffusion and propagators. These concepts are hard to 
impossible to distinguish in the Euler scheme, but using operator splitting they appear as 
natural parts of the analysis.  
Hence, we arrive back to the starting question, in what way does this work serve the field of 
research? The goal has been to form a stepping stone, a springboard for future work within 
this area to build upon. Any future researchers seeking to contribute could then hopefully save 
the time and effort to go beyond the Euler scheme, and directly be introduced to the next level 
of tools. Hopefully, this could both potentially refine the algorithm further, and perform new 
investigations. At the end of the day, what we have achieved is open up a little window from 
which the world of arrhythmias can be seen and marveled upon. 
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Appendix: Parameter values 
The model parameters, with values from [8]: 

  Parameter Value Description 
௣ܸಿೌ -40 mV Voltage when ݌ே௔ = 1 2⁄  
௤ܸಿೌ -75 mV Voltage when ݍே௔ = 1 2⁄  
ேܸ௔ 10 mV Thermal voltage for sodium gate 

 ே௔ 60 mV Nernst potential for sodiumܧ
݃ே௔ 8 ms-1 Sodium ionic rate 
݇௣ಿೌ 1 ms Time constant for ݌ே௔ 
݇௤ಿೌ 0.27 ms Time constant for ݍே௔ 

௣ܸ಴ೌ -30 mV Voltage when ݌஼௔ = 1 2⁄  
௤ܸ಴ೌ -60 mV Voltage when ݍ஼௔ = 1 2⁄  
஼ܸ௔ 10 mV Thermal voltage for calcium gate 

 ஼௔ 80 mV Nernst potential for calciumܧ
݃஼௔ 0.04 ms-1 Calcium ionic rate 
݇௣಴ೌ 0.1 ms Time constant for ݌஼௔ 
݇௤ಿೌ 0.02 ms Time constant for ݍ஼௔ 

௣಼ܸ -20 mV Voltage when ݌௄ = 1 2⁄  
௤಼ܸ -20 mV Voltage when ݍ௄ = 1 2⁄  
௄ܸ 12.5 mV Thermal voltage for potassium gate 

 ௄ -90 mV Nernst potential potassiumܧ
݃୏,୐ 0.05 ms-1 Constant  potassium ionic rate 
݃୏,୧ 0.038 ms-1 Potassium ionic rate for inactivation 
݃୏,ୟ 0.02 ms-1 Potassium ionic rate for activation 
݃୏,ୟ୧ 0.015 ms-1 Potassium ionic rate for activation/inactivation interaction 
݇௣಼ 0.01 ms Time constant for ݌௄ 
݇௤಼ 0.5 ms Time constant for ݍ௄ 
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Appendix A: Solving the equations in two dimensions 
A.1 Numerical analysis 
So far all the domains the equations have been solved in have in one way or another been one-
dimensional. While the cardiac tissue always truly has been two- dimensional, and there being 
no reason to consider otherwise, we have been able to cut down on the dimension by 
considering some simplification of the full 2D motion. The normal 1D corresponded to a 
plane wave along the x-axis. The radial case corresponded to a wave that was created by 
radial symmetry. Finally, it is time to break these restrictions and consider full 2D dynamics. 
There are two primary differences between 1D and 2D. The first is that the different state 
variables are no longer vectors but must instead be stored in matrices. For the gating and 
conduction part of the problem, the only difference is that when we update, we instead add 
matrices. In Matlab, which treat vectors as matrices, there isn´t even any difference in the 
code. The second difference is that the Laplacian     change into     +    . Just as we 
could derive a propagator that relates the voltage at    with the voltage at    a time ∆  later 
in the 1D case, the same could be done in 2D, relating the coordinate (  ,   ) with 
(  ,   ). However, if we like to keep the spacing from the 1D case, with   points over the 
length  , there are  2pairs that can be related. Meaning that the transition matrix would have 
 4 entries, all too many to be effectively stored (in fact anything beyond  2  is non-trivial 
with our grid size).  
Faced with this problem, we can yet again result in operator splitting, splitting the Laplacian 
into     and    . If the problem is solved on a rectangular grid,     and     is 
commuting. This means that operator splitting is exact, so one doesn´t even need to use the 
Strang splitting, but can simply use sequential splitting, first updating with respect to x and 
thereafter with respect to y. Going one step further, on a square grid, the 1D propagator matrix 
  becomes identical for both x and y since   is a symmetric matrix, so instead of computing 
diffusion though    as in 1D, we instead use     in 2D, resulting in minimal change 
between the 1D and 2D case.  
It is worth noting however that although the similarity, the time consumption rises from  2 
for matrix – vector multiplication to  3 for matrix – matrix multiplication. In general, none of 
the matrices doesn’t really have some kind of further structure that allows us to cut time,   
for example might be relatively spare, but still uses roughly 200 elements of the 1000 per row.  
A.2 Simulating the 2D system 
With the numeric’s set up, we can finally solve the system in two dimensions. The first step is 
to use the 1D solution and verify that behaves correctly also in 2D. Such a simulation can be 
seen below. Notice the plane front and the sharp borders due to the boundary conditions. 
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Next step is to replicate the spiral solutions seen in previous works [7], [9]. A good way of 
creating a spiral is to reset the upper half plane on the plane way. Simulations of these were 
run for several hours without any sign that the spirals were not stable. As can be seen in the 
series of images below, the resulting dynamics will create a spiral solution. 

 

Figure A1: Initial traveling front 

Figure A2: Resetting the upper half-plane Figure A3: Creation of spiral, step 1 
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A double type of spiral can be constructed by cutting off both ends of the plane wavefront 
since the resulting solution then will exhibit reflection symmetry over the axis parallel to the 
front’s propagation direction. The result is shown in the pictures below: 

 

Figure A4: Creation of spiral, step 2 Figure A5: Creation of spiral, step 3 

Figure A6: Resetting the upper and lower regions Figure A7: Formation of double spiral, step 1 
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It is clear that the 2D dynamics of the system is incredibly more rich then the 1D dynamics. 
The reason is simple: Two fronts will always annihilate when colliding in the 1D case, 
meaning that the two fronts must always travel in the same direction. In a plane, the two 
fronts can avoid each other (as the spiral motion shows) hence give rise to persistent spirals. 

 
  

Figure A8: Formation of double spiral, step 2 Figure A9 Formation of double spiral, step 3 
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