
IMPLEMENTATION OF SINGLY

DIAGONALLY IMPLICIT

RUNGE–KUTTA METHODS

WITH CONSTANT STEP SIZES

JOSEFINE STÅL

Bachelor’s thesis
2015:K12

Faculty of Science
Centre for Mathematical Sciences
Numerical Analysis

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289938621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Runge–Kutta methods can be used for solving ordinary differential equa-
tions of the form y′ = f(t, y) with initial condition y(t0) = y0 and where
f : R × Rm → Rm. The idea is to find a method that is efficient to imple-
ment. But it is also important for the method to be of high order and be
stable. Diagonally Implicit RK-methods reduces an sm × sm matrix to s
systems of m×m linear equations. Singly Diagonally Implicit RK-methods
have only a single eigenvalue, which results in a reduction to only one LU-
decomposition per time step. Combining the two methods, we get Singly
Diagonally Implicit RK-methods.

Keywords: Implicit Runge–Kutta methods, SDIRK, Implementation

1

Acknowledgement

I am incredibly thankful for all the help and incouragement I have recieved
from my supervisor Claus Führer at the University of Lund. I would also like
to express my sincere gratitude to Gustaf Söderlind, who shared his expertise
when I needed it and inspires me to continue working hard.

2

Table of Contents

1 Introduction - Runge Kutta Methods 4
1.1 Properties . 5

2 Efficiency Problems 9
2.1 Diagonally Implicit Runge–Kutta Methods 11
2.2 Singly Implicit Runge–Kutta Methods 12
2.3 Singly Diagonally Implicit Runge–Kutta Methods 12

3 Implementation 14

4 Testing 23
4.1 Scalar Differential Equation 23
4.2 System of Differential Equations 25

4.2.1 Autonomous System 25
4.2.2 Nonautonomous ODE 27
4.2.3 Nonlinear Differential Equation 27
4.2.4 Multibody System - 2D Truck 30

5 Recomendation for Future Work 32

References 33

3

Chapter 1

Introduction - Runge Kutta
Methods

The first-order ordinary differential equation(ODE) with a given initial value,
of the form

dy

dt
= f(t, y), y(t0) = y0, f : R× Rm → Rm (1.1)

can be solved with a one-step method. An ODE of this form is also called
an initial value problem(IVP). The general form of a one-step method is

un+1 = un + hφ(f, h, tn, un, un+1) (1.2)

where h is the stepsize. If the function φ(f, h, tn, un) does not depend on the
variable un+1 the method is explicit, and otherwise implicit.

Higher order differential equations can, by introducing extra variables,
be written as a system of first-order ODEs. Without loss of generality we
therefore only consider first-order ODEs.

Runge–Kutta methods are one-step methods, and have the form

yn+1 = yn + h
s∑
i=1

biYi

Yi = yn + h

s∑
j=1

aijY
′
j

Y ′i = f(tn + cih, Yi)

(1.3)

4

where Yi are the stage values, Y ′i the stage derivatives and s the number of
stages. The method and its coefficents are chosen to satisfy the conditions
that guarantee a certain order of accuracy. Furthermore the method sought
to be stable and time efficient. The Butcher Tableau, which contains the
coefficients bi, ci, aij, changes depending on the conditions. If A is strictly
lower triangular, i.e. if aij = 0 for i <= j, then the method is explicit and
implicit otherwise.

c A

bT
=

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

cs as1 as2 . . . ass

b1 b2 . . . bs

Table 1.1: Butcher Tableau

1.1 Properties
When solving an ordinary differential equation, and chosing an appropriate
method for the problem, it is neccessary to consider a couple of properties.
In applied mathematics, for instance for numerical methods, the notion of a
well-posed problem is desired [1, p.9].

Definition 1.1.1 A problem is well-posed if there exists a unique solution
and if it depends continously on the parameters and the initial conditions.

For the problem to depend continously on the parameters and the initial
conditions, we assure that the approximated solution does not produce large
errors if small changes are made in the initial conditions. This also means
that local truncation errors at each time step do not affect the final solution
too much.

5

Consider the one-step method (1.2). Let u(t) denote the exact solution
at time t = nh and un the approximated solution at that time. Then the
global truncation error at step n is defined as

ε(t) = u(t)− un
If we consider the last approximated solution to be the exact one, then the
difference to the approximated solution at time t is the local truncation error.
Furthermore, the method is said to be consistent if

lim
h→0

ε(t)

h
= 0

and the order of the method is p if

ε(t) = O(hp+1) as h→ 0

When working with Runge–Kutta methods the consistency condition is definied
as follows

Definition 1.1.2 Let the vector b be the weights of the Butcher Tableau,
and s the number of stages. Then the consistency condition for Runge–Kutta
methods is defined as

s∑
j=1

bj = 1

To make sure there exists a unique solution, we need to know about the
Lipschitz condition. The defintion and theorem are found in [2, p. 22-23].

Definition 1.1.3 A function f : R×Rm → Rm is said to satisfy a Lipschitz
condition, with respect to the second argument, if there exists a number L,
known as the Lipschitz constant, s.t. ∀u, v ∈ R

||f(t, u)− f(t, v)|| ≤ L||u− v||

Theorem 1 If f : R × Rm → Rm satisfies the Lipschitz condition, with
respect to the second argument. Then there exists a unique solution to the
initial value problem (1.1) which depends continuously on the initial value.

Definition 1.1.4 Let t = nh. The solution converges if lim
h→0

yn = y(t) where
yn is the approximated solution at t and y(t) the exact one.

6

Given that the IVP (1.1) is consistent and the solution is unique and con-
vergent (i.e. well-posed), we consider a real homogeneous linear system of
differential equations with constant coefficients.

y′ = Ay, A ∈ Rn×n (1.4)

Assume A is diagonalizable. Then there exists a similarity transformation

TAT−1 = diag(λ1, λ2, · · · , λn) = Λ,

where the columns of T are linearly independent eigenvectors of A, with
corresponding eigenvalues λi ∈ C, i = 1, . . . , n. After a change of variables
z(t) = T−1y(t), the system (1.4) can be written as

z′ = Λz =



z′1 = λ1z

z′2 = λ2z
...

z′n = λnz

Consider one of these components, the so called linear test equation

z′(t) = λz(t), z(0) = 1, λ ∈ C (1.5)

to check stability of the solution. Let z(t) and ẑ(t) be two solutions to the
linear test equation (1.5). If z(t) corresponds to the solution with the correct
initial data, and ẑ(t) has a small error in the initial condition. Then the
stability can be studied by the behavior of the difference of both.

|z(t)− ẑ(t)| = |(z(0)− ẑ(0))eλt| = |z(0)− ẑ(0)|eRe(λ)t

Thus, the solution z(t) = eλt, for t ≥ 0, is said to be stable if Re(λ) ≤ 0,
asymptotically stable if Re(λ) < 0 and unstable if Re(λ) > 0 [1, p. 23-28].
The stability conditions for Runge–Kutta methods can be obtained by first
considering the stability function

Definition 1.1.5 The RK-method (1.3) applied to the linear test equation
(1.5) yields yn+1 = R(z)yn, where

R(z) = 1 + zbT(I− zA)−11 (1.6)

is called the stability function, z = hλ, 1 = (1, 1, ..., 1) ∈ Rs and I the identity
matrix.

7

The stability function of implicit Runge–Kutta methods is a rational function

R(z) =
P (z)

Q(z)

with degree less or equal to s. If the stability function (1.6) is applied to
an explicit Runge-Kutta method we see that R(z) is a polynomial of degree
s, with R(z) → ∞ as z → ∞. Hence, the explicit RK-methods cannot be
A-stable(see definition below).

Definition 1.1.6 The stability region is defined as S = {z ∈ R : |R(z)| ≤ 1}

Definition 1.1.7 A Runge–Kutta method is said to be A-stable if its stability
region contains C− = {z ∈ R : Re(z) ≤ 0}, i.e. the left half-plane.

Applying the maximum principle on C− [3, p.43], we get that a Runge–Kutta
method is A-stable iff

|R(iy)| ≤ 1, y ∈ R (1.7a)
R(z) is analytic for Re(z) < 0 (1.7b)

If the solution of a stable ODE (1.1) is A-stable, then the solution remains
bounded. L-stability on the other hand is more strict and the solution must
also be damped at infinity.

Definition 1.1.8 A Runge–Kutta method is L-stable if the method satisfies
the following conditions:

|R(z)| ≤ 1, ∀z ∈ C− (i.e. A-stable)

lim
|z|→∞

|R(z)| = 0

where R(z) is the stability function.

There are always errors when solving a system of differential equations with
a numerical method. The question is how to balance the error and the
execution time. If the error is proportional to hn, where h is the stepsize,
then we say the solution of the numerical method is n-th order accurate. This
is a meassure of the rate of convergence to the exact solution. It expresses
how fast the solution approaches its limit. This means that the higher order
method, the larger stepsize can be used to reach a given tolerance.

8

Chapter 2

Efficiency Problems

Consider a general Runge Kutta method (1.3). To implement the method,
Newton’s method is used to solve the system of algebraic equations. Newton’s
method solves the equation G(x) = 0 by iterating over

xn+1 = xn − (G′(xn))−1G(xn)⇔ G′(xn)(xn+1 − xn) = −G(xn) (2.1)

The solution is found when the difference xn+1 − xn is less than a given
tolerance. If the Jacobian matrix G′(xn) is calculated at each time step, the
convergence of the method is quadratic.

Consider the formula for stage values in the Runge–Kutta method (1.3).

Yi = yn + h
s∑
j=1

aijf(tn + cih, Yi)

The equation solved with Newton’s method is

G(Yi) = Yi − yn − h
s∑
j=1

aijf(tn + cih, Yi) = 0 (2.2a)

G′(Yi) = I− h
s∑
j=1

aijf
′(tn + cih, Yi) (2.2b)

Thus the system to solve in the n:th Newton iteration, for Runge–Kutta
methods, takes the following form

9


I − ha11J1 −ha12J2 . . . −ha1sJs
−ha21J1 I − ha22J2 . . . −ha2sJs

...
...

−has1J1 −has2J2 . . . I − hassJs




d1

d2
...

ds

 = −


F1

F2

...

Fs

 (2.3)

where di = Y n+1
i − Y n

i , Fi = Y n
i − yn−1 − h

∑s
j=1 aijf(tn + cih, Y

n
j) and the

Jacobian matrix Ji = ∂
∂y
f(Y n

i) for i = 1, . . . , s. Note that each Jacobian is
an m×m matrix, in a system of s differential equations. Hence in each time
step an sm× sm system of equations has to be solved. With this known, it
is important to see what options there are to make the implementation less
expensive to execute.

By choosing when to recalculate the Jacobian, it is possible to reduce the
amount of work needed in each time step. The ideal situation would be to
use a single Jacobian for the entire problem. But that would probably result
in slow convergence, or in worst case divergence, depending on the problem.
As long as the speed of convergence is relatively high, to a given factor, we
can use the same Jacobian.

A common method to use is the simplified Newton’s method. Let the
Jacobian be the same for each time step, i.e. J = J1 = J2 = · · · = Js. Now
only one LU decomposition per time step is needed. But as a result of that
we need to compensate with the speed of convergence, which now is linear
and not quadratic. The system (2.3) can now be written with the Kronecker
product

(I − hA⊗ J)d = −F (2.4)

Definition 2.0.9 The Kronecker product, or the direct product, of two ma-
trices A and B is given by

A⊗B =


a11B a12B . . . a1sB

a21B a22B . . . a2sB
...

...

as1B as2B . . . assB



10

Even though the amount of work per time step is reduced, we still need
to solve an sm × sm system, that means s2m2 operations per time step.
To reduce the work even further, we consider the matrix A in the choosen
Butcher Tableau. If the matrix A is full, or has few zeros, then the system
to solve requires more work than if A has more zeros.

For instance there are the Radau methods which are all A-stable meth-
ods, with order 2s − 1, but they have a coeffient matrix A with no zeros.
This implies that the Radau methods need alot of work per time step, even
though there are certain ways to reduce the execution time for these meth-
ods. Finding a method with similar qualities of stability and order, but with
less work per time step would be desired. The order of the methods depend
on the chosen Butcher Tableau and the stability on an ODE (1.1).

The convergence is influenced by the step size as well. By reducing the
step size, the local truncation error gets smaller. But by reducing the step
size, we get more time steps and hence more systems to solve. Therefore
we want to minimize the work needed per time step before the step size is
reduced.

2.1 Diagonally Implicit Runge–Kutta Methods
Consider the Diagonally Implicit Runge–Kutta (DIRK) methods, where aij =
0 for i < j and at least one aii 6= 0 for i = 0, 1, . . . , s. By combining the
simplified Newton with DIRK methods we get the following system, with d,
F and J defined as in (2.3)

I − ha11J 0 . . . 0

−ha21J I − ha22J . . . 0
...

...

−has1J −has2J . . . I − hassJ




d1

d2
...

ds

 = −


F1

F2

...

Fs

 (2.5)

For each Newton step, let us first consider the m×m system

(I − ha11J)d1 = −F1

After solving this, we substitute the solution d1 into the next m×m system

I − ha22Jd2 = −F2 + ha21Jd1

11

This forward substitution continues in the same manner at step n

I − hannJdn = −Fn + hJ

n−1∑
j=1

anjdj

to construct the solution in each Newton step. This implies that we solve
s systems of m ×m linear equations instead of an sm × sm system at each
time step. The number of operations is then reduced to sm2 from s2m2 in
the general implicit RK-methods. The amount of work that is needed for
each time step is therefore less than RK-methods with a coefficient matrix
with more elements.

2.2 Singly Implicit Runge–Kutta Methods
In the Singly Implicit Runge-Kutta methods (SIRK), the coefficient matrix
A, only has a single s-fold eigenvalue.

To solve a system (2.2) with Newton’s method, the coefficent matrix A
must be LU-decomposed. To reduce the amount of work, we can consider
matrices that can be transformed by a similarity transformation T such that

T−1AT = S

where S has the same structure as the DIRK methods. If A only has a
distinct eigenvalue, all diagonal elements of S are equal. Thus, only one
LU-decomposition of an m×m system is needed in each time step.

The order and the stability depends on the Butcher Tableau and the
ODE.

2.3 Singly Diagonally Implicit Runge–Kutta Meth-
ods

Taking advantage of the efficiency from DIRK methods, by reducing the
sm× sm system to s systems of size m×m each, and combining the method
with a SIRK method we get the Singly Diagonally Implicit Runge–Kutta
method (SDIRK).

12

Consider again the stage values in (1.3)

Yi = yn + h

s∑
j=1

aijf(tn + cjh, Yj)

with the single-fold eigenvalue of the system aii = α, for all i = 0, 1, · · · , s.
After rewriting with the accurate coefficient matrix A, the stage values are
now defined as

Yi − hαf(tn + cih, Yi) = yn + h
i−1∑
j=1

aijY
′
j

Then we have G(Yi) = Yi−hαf(tn+cih, Yi)−yn−h
∑i−1

j=1 aijY
′
j and G′(Yi) =

I− hαf ′(tn + cih, Yi). Thus, the Newton method can now be written as

(I − hαJ)d = yn + h
i−1∑
j=1

aijY
′
j (2.6)

For each time step one still solves s systems of size m × m each, but
with the same matrix I − hαJ . That means that only one evaluation of the
Jacobian and one LU decomposition is needed for each time step.

Regardless of the efficency of implementation, stability and order must
be considered for a specific method.

13

Chapter 3

Implementation

As a part of the working progress of this Bachelor’s thesis, the Runge–Kutta
methods was implemented in Python. After the previous chapters with the
presentation of Runge–Kutta methods, we can now see the problems and
benefits when implementing the different methods.

To start with, the class Onestepmethod() was implemented [4]. Given the
function f and y0 from the IVP (1.1), with the interval [t0, te], the number
of internal points N and a given tolerance, this code segment solves the IVP
with a generell one–step method (1.2).

class Onestepmethod (object):
def __init__(self,f,y0,t0,te,N, tol):

self.f = f
self.y0 = y0.astype(float)
self.t0 = t0
self.interval = [t0 , te]
self.grid = linspace(t0,te,N+2) # N interior points
self.h = (te-t0)/(N+1)
self.N = N
self.tol = tol
self.m = len(y0)
self.s = len(self.b)

def step(self):
ti , yi = self.grid[0], self.y0 # initial condition
tim1 = ti
yield ti , yi

14

for ti in self.grid[1:]:
yi = yi + self.h*self.phi(tim1, yi)
tim1 = ti
yield ti , yi

def solve(self):
self.solution = list(self.step())

The class consists of two functions step() and solve(). solve() calles
the function step() that yields the solution y for all timesteps in the given
interval.

When working with Runge–Kutta methods, the function phi() evaluates
the sum of bjYj in each time step of a Runge–Kutta method (1.3) for j =
0, 1, . . . , s, s the number of stages and Yj the stage values.

Each time phi() is called, a Jacobian matrix J = df
dy

(yi) is evaluated.
With this Jacobian, the function phi_solve() is called to return the stage
derivative Y ′i . Then the sum can easily be computed.

class RungeKutta_implicit(Onestepmethod):
def phi(self, t0, y0):

"""
Calculates the summation of b_j*Y_j in one step of the

RungeKutta
method with

y_{n+1} = y_{n} + h*sum_{j=1}^{s} b_{j}*Y

where j=1,2,...,s, and s is the number of stages, b the
nodes, and Y the

stage values of the method.

Parameters:

t0 = float, current timestep
y0 = 1 x m vector, the last solution y_n. Where m is the

length
of the initial condition y_0 of the IVP.
"""
M = 10 # max number of newton iterations
stageDer = array(self.s*[self.f(t0,y0)]) # initial value:

Y’_0

15

J = jacobian(self.f, t0, y0)
stageVal = self.phi_solve(t0, y0, stageDer, J, M)
return array([dot(self.b, stageVal.reshape(self.s,self.m)[:,

j]) for j in range(self.m)])

The function phi_solve() is a method of the class RungeKutta_implicit.
Here starts the Newton iteration, with maximum number of iterations M .
If Newton’s method does not converge within M iterations, a ValueError
is raised. The error can be fixed by recalculate the Jacobian, increase the
number of Newton iterations or as a final adjustment, decrease the stepsize
h. In this implementation a constant stepsize h = te−t0

N+1
is used, which means

that the first adjustment should be recalculating the Jacobian or increase the
number of iterations.

def phi_solve(self, t0, y0, initVal, J, M):
"""
This function solves the sm x sm system
F(Y_i)=0
by Newton’s method with an initial guess initVal.

Parameters:

t0 = float, current timestep
y0 = 1 x m vector, the last solution y_n. Where m is the

length
of the initial condition y_0 of the IVP.
initVal = initial guess for the Newton iteration
J = m x m matrix, the Jacobian matrix of f() evaluated in y_i
M = maximal number of Newton iterations

Returns:

The stage derivative Y’_i
"""
JJ = eye(self.s*self.m)-self.h*np.kron(self.A, J)
luFactor = linalg.lu_factor(JJ)
for i in range(M):

initVal, norm_d = self.phi_newtonstep(t0, y0, initVal,
luFactor)

if norm_d < self.tol:

16

print ’Newton converged in {} steps’.format(i)
break

elif i == M-1:
raise ValueError(’The Newton iteration did not

converge.’)
return initVal

For each Newton step, phi_newtonstep() is called. The function is a
method of the class RungeKutta_Implicit and solves the algebraic system
(2.4), namely

(I − hA⊗ J)d = −F

where di = Y
(n+1)
i − Y (n)

i , Fi = Y
(n)
i − yn−1 − h

∑s
j=1 aijf(Y

(n)
j). The matrix

(I − hA ⊗ J) is evaluated in phi_solve() and its LU-factorization is then
used as an input parameter for phi_newtonstep(). The matrix A is an s× s
matrix, and the Jacobian an m×m matrix. Thus the system that is solved
has the shape sm× sm.

def phi_newtonstep(self, t0, y0, initVal, luFactor):
"""
Takes one Newton step by solvning

G’(Y_i)(Y^(n+1)_i-Y^(n)_i)=-G(Y_i)
where
G(Y_i) = Y_i - y_n - h*sum(a_{ij}*Y’_j) for j=1,...,s

Parameters:

t0 = float, current timestep
y0 = 1 x m vector, the last solution y_n. Where m is the

length
of the initial condition y_0 of the IVP.
initVal = initial guess for the Newton iteration
luFactor = (lu, piv) see documentation for linalg.lu_factor

Returns:
The difference Y^(n+1)_i-Y^(n)_i
"""
d = linalg.lu_solve(luFactor, - self.F(initVal.flatten(),

t0, y0))

17

return initVal.flatten() + d, norm(d)

The right-hand-side F of the algebraic system above, is calculated by the
function F() in a for-loop.

def F(self, stageDer, t0, y0):
"""
Returns the subtraction Y’_{i}-f(t_{n}+c_{i}*h, Y_{i}),

where Y are
the stage values, Y’ the stage derivatives and f the

function of
the IVP y’=f(t,y) that should be solved by the RK-method.

Parameters:

stageDer = initial guess of the stage derivatives Y’
t0 = float, current timestep
y0 = 1 x m vector, the last solution y_n. Where m is the

length
of the initial condition y_0 of the IVP.
"""
stageDer_new = empty((self.s,self.m)) # the i:th stageDer is

on the i:th row
for i in range(self.s): #iterate over all stageDer

stageVal = y0 + array([self.h*dot(self.A[i,:],
stageDer.reshape(self.s,self.m)[:, j]) for j in
range(self.m)])

stageDer_new[i, :] = self.f(t0 + self.c[i] * self.h,
stageVal) #the ith stageDer is set on the ith row

return stageDer - stageDer_new.reshape(-1)

When implementing the SDIRK method the functions phi_solve() and
phi_newtonstep() differs from the general implicit Runge–Kutta methods.

The difference when working with SDIRK methods is the algebraic system
to solve. We do no longer work with one sm×sm system, we solve s systems
of size m×m instead. Consider the system (2.6). The matrix in each newton
step is the same, JJ = (I−hαJ), and is calculated once in phi_solve() before
the Newton iterations.

18

class SDIRK(RungeKutta_implicit):
def phi_solve(self, t0, y0, initVal, J, M):

"""
This function solves F(Y_i)=0 by solving s systems of size m

x m each.

Newton’s method is used with an initial guess initVal.

Parameters:

t0 = float, current timestep
y0 = 1 x m vector, the last solution y_n. Where m is the

length
of the initial condition y_0 of the IVP.
initVal = initial guess for the Newton iteration
J = m x m matrix, the Jacobian matrix of f() evaluated in y_i
M = maximal number of Newton iterations

Returns:

The stage derivative Y’_i
"""
JJ = np.eye(self.m) - self.h*self.A[0,0]*J
luFactor = linalg.lu_factor(JJ)
for i in range(M):

initVal, norm_d = self.phi_newtonstep(t0, y0, initVal, J,
luFactor)

if norm_d < self.tol:
print ’Newton converged in {} steps’.format(i)

break
elif i == M-1:

raise ValueError(’The Newton iteration did not
converge.’)

return initVal

19

phi_newtonstep() for SDIRK methods is constructed with a for-loop that
solves anm×m system in each iteration. This time only one LU-factorisation
is needed each time step, which makes the implementation less time consum-
ing.

def phi_newtonstep(self, t0, y0, initVal, J, luFactor):
"""
Takes one Newton step by solvning

G’(Y_i)(Y^(n+1)_i-Y^(n)_i)=-G(Y_i)
where
G(Y_i) = Y_i - haY’_i - y_n - h*sum(a_{ij}*Y’_j) for

j=1,...,i-1

Parameters:

t0 = float, current timestep
y0 = 1 x m vector, the last solution y_n. Where m is the

length
of the initial condition y_0 of the IVP.
initVal = initial guess for the Newton iteration
luFactor = (lu, piv) see documentation for linalg.lu_factor

Returns:
The difference Y^(n+1)_i-Y^(n)_i
"""
x = []
for i in range(self.s): # solving the s mxm systems

rhs = - self.F(initVal.flatten(), t0,
y0)[i*self.m:(i+1)*self.m] +
sum([self.h*self.A[i,j]*dot(J,x[j]) for j in
range(i)], axis = 0)

d = linalg.lu_solve(luFactor, rhs)
x.append(d)

return initVal + x, norm(x)

The specific Runge–Kutta methods that are used for testing, are created
as classes that inherits from the class RungeKutta_implicit, either directly or
through the class SDIRK. There are three different methods that are tested.
The first one is a 3-stage Gauss Implicit Runge–Kutta method of order 6[3,
p.76].

20

c A

bT
=

1
2
−
√
15
10

5
36

2
9
−
√
15
15

5
36
−
√
15
30

1
2

5
36

+
√
15
24

2
9

5
36
−
√
15
24

1
2

+
√
15
10

5
36

+
√
15
30

2
9

+
√
15
15

5
36

5
18

4
9

5
18

Table 3.1: Gauss implicit RK-method, s = 3

class Gauss(RungeKutta_implicit): #order 6
A=array([[5/36, 2/9 - sqrt(15)/15, 5/36 - sqrt(15)/30],[5/36 +

sqrt(15)/24, 2/9, 5/36 - sqrt(15)/24],[5/36 + sqrt(15)/30,
2/9 + sqrt(15)/15, 5/36]])

b=[5/18,4/9,5/18]
c=[1/2-sqrt(15)/10,1/2,1/2+sqrt(15)/10]

The second RK-method is a 2-stage SDIRK method of order 3, with
p = 3−

√
3

6
[1, p.106].

c A

bT
=

p p 0

1− p 1− 2p p

1
2

1
2

Table 3.2: SDIRK method, s = 2

class SDIRK_tableau2s(SDIRK): # order 3
p = (3 - sqrt(3))/6
A = array([[p, 0], [1 - 2*p, p]])
b = array([1/2, 1/2])
c = array([p, 1 - p])

21

Finally, the last method is a 5-stage SDIRK method of order 4 [3, p.107].

c A

bT
=

1
4

1
4

0 0 0 0

3
4

1
2

4
4

0 0 0

11
20

17
50

− 1
25

1
4

0 0

1
2

371
1630

− 137
2720

15
544

1
4

0

1 25
24

−49
48

125
16
−85

12
1
4

25
24

−49
48

125
16
−85

12
1
4

Table 3.3: SDIRK method, s = 5

class SDIRK_tableau5s(SDIRK): #order 4
A = array([[1/4, 0, 0, 0, 0], [1/2, 1/4, 0, 0, 0], [17/50,

-1/25, 1/4, 0, 0],[371/1360, -137/2720, 15/544, 1/4,
0],[25/24, -49/48, 125/16, -85/12, 1/4]])

b = array([25/24, -49/48, 125/16, -85/12, 1/4])
c = array([1/4, 3/4, 11/20, 1/2, 1])

22

Chapter 4

Testing

Both scalar IVPs and systems of differential equations was tested and each
problem is described further in separate subsections. The order of the three
methods, described in the previous chapter, was observed by a loglog-plot of
the error and the step size in two of the tests. Also the execution time was
observed.

4.1 Scalar Differential Equation
The scalar differential equation that was solved is

dy

dt
= −5y, t ∈ [0, 1] y(0) = 1

with the exact solution y(t) = e−5t. This problem was solved with Gauss
implicit Runge–Kutta method and a loglog plot of the mean error vs the
stepsize was constructed. The plot shows the slope for each method and
all slopes are correct compared to the order of each method. 100 different
step sizes was used for the plot and the execution time was 19.98 seconds.
For each time step the number of iterations for which Newton converged in
was printed. As expected when solving a scalar differential equation, Newton
converged in a single iteration. This implies that the code solves the problem
as expected.

23

Figure 4.1: Loglog-plot of the mean error vs the step size for 100 distinct
step sizes.

As can be seen in the plot there are some irregularities in the error for
Gauss method. When the error is that small, around 10−15, it is normal for
it to fluctuate when the step size decreases further. The code script can be
seen below.

def test_scalar():
t0, te = 0,0.1
tol_newton = 1e-9
tol_sol = 1e-5
N = [2*n for n in range(100)]
for method in [(Gauss, 6), (SDIRK_tableau2s, 3),

(SDIRK_tableau5s, 4)]:
stepsize = []
mean_error = []
for n in N:

stepsize.append((te-t0)/(n+1))
timeGrid = linspace(t0,te,n+2) #N interior points
expected = [(t,exp(-5*t)) for t in timeGrid]
scalar = method[0](lambda t,y: -5*y,

array([1]),t0,te,n, tol_newton)
scalar.solve()
result = scalar.solution
error = [abs(expected[i][1] - result[i][1]) for i in

range(len(timeGrid))]
mean = np.mean(error)

24

mean_error.append(mean)
loglog(stepsize, mean_error, label = ’{}, order

{}’.format(method[0].__name__, method[1]))
mp.slope_marker((stepsize[8], mean_error[8]),

(method[1],1))
suptitle(’Scalar Equation - Errorplot’)
xlabel(’log(step size)’)
ylabel(’log(error)’)
legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

grid()
assert allclose(result, expected, atol = tol_sol)

4.2 System of Differential Equations

4.2.1 Autonomous System

Autonomous systems of differential equations have the form

dy

dt
= f(y(t)), y(y0) = t0, f : R× Rm → Rm

where f(y(t)) does not depend directly on the independent variable t.
The problem that is tested from this group of systems is the following

y′′ + y′ = 0, y(0) = 2, y′(0) = 3, t ∈ [0, 1]

By introducing extra variables y = [y1, y2] we can construct a first-order ODE y′1 = y2 y1(0) = 2

y′2 = −y1 y2(0) = 3

⇔ y′ =

 0 1

−1 0

 y1

y2


First, Gauss Implicit RK-method was used to solve the problem. The mean
of the global error was printed as output. The execution time was 0.049
seconds.

25

The mean error: 1.23551613301e-15

When using the two stage SDIRK method, the execution time was 0.053
seconds. The output was

The mean error: 1.12786251576e-08

Finally the 5-stage SDIRK method was used. The problem was solved in
0.164 seconds and the mean error was

The mean error: 1.46622048612e-11

Usually SDIRK methods are executed faster than Gauss methods, due to
less operations. But these tests showed the opposite. The problem that
was solved was only a two dimensional differential equation. Therefore the
LU-factorization followed by solving a system of equation(where the solve
method is written in C) is faster than the backward substitution written in
Python. The difference in time efficency is more clear when working with
differential equations with higher dimension. The code script can be seen
below.

def test_autonomous():
N = 100
t0, te = 0, 1
tol_newton = 1e-9
tol_sol = 1e-5
timeGrid = linspace(t0,te,N+2) #N interior points
system = SDIRK_tableau5s(lambda t,y:

dot(array([[0,1],[-1,0]]),y),array([2.,3]),t0,te, N,
tol_newton)

system.solve()
result = system.solution
y1 = np.array([2*cos(t)+3*sin(t) for t in timeGrid])
y2 = np.array([-2*sin(t) + 3*cos(t) for t in timeGrid])
expected = [np.array(i) for i in zip(y1, y2)]
error = [norm(expected[i] - result[i][1]) for i in

range(len(timeGrid))]
print ’The mean error: ’, np.mean(error)
assert allclose(zip(*result)[1], expected, atol = tol_sol)

26

4.2.2 Nonautonomous ODE

The nonautonomous ordinary differential equation

y′′ = (1− 2t)y, y(0) = 1, t ∈ [0, 2]

has the solution y(t) = et−t
2 . This problem was solved with N = 50 internal

points and the Gauss method. The execution time was 0.081 seconds and
the output was the mean error

The mean error: 1.14141602153e-12

See the code below.

def test_nonAutonomous():
N = 50
t0, te = 0, 2
tol_newton = 1e-9
tol_sol = 1e-4
timeGrid = linspace(0,2,N+2)
nonautonomous = Gauss(lambda t,y: y*(1-2*t), array([1.]), t0,

te, N, tol_newton)
nonautonomous.solve()
result = nonautonomous.solution
expected = [(t,exp(t-t**2)) for t in timeGrid]
error = [abs(expected[i][1] - result[i][1]) for i in

range(len(timeGrid))]
print ’The mean error: ’, np.mean(error)
assert allclose(result, expected, atol=tol_sol)

4.2.3 Nonlinear Differential Equation

A differential equation representing the motion of a single pendulum is de-
fined as

θ′′ = − g
L

sin(θ), θ(t0) = θ0, t ∈ [t0, te] (4.1)

The acceleration constant was chosen to be g = 13.7503671636040745, the
length L = 1 and the interval [t0, te] = [0, 2]. The exact solution was calcu-
lated by Gauss method and a higher accuracy with N = 10000.

27

Figure 4.2: Simple pendulum, where θ is the angle, L the length of the
pendulum, m the mass and g the acceleration due to gravity.

The pendulum equation (4.1) we want to solve can be written as a system
of two first-order differential equations. θ′p = θv θp(0) = π

2

θ′v = − g
L

sin(θp) θv(0) = 0

The function plots a loglog error plot to show the order of the different
methods. As expected we have the slopes 6, 3 and 4 for Gauss, 2- and 5-
stage SDIRK methods respectively. The errorplot that was recieved was the
following

Figure 4.3: Loglog plot of step size vs error for the simple pendulum equation
with 20 different step sizes.

28

The execution time was 61.276 seconds. The script for this test is inserted
below.

def test_nonlinear():
g = 13.7503671636040745
l = 1
N = [100+20*n for n in range(20)]
t0, te = 0, 2.
tol_newton = 1e-9
tol_sol = 1e-4

M = 10000 # Number of internal points for exact solution
nonlinear = Gauss(lambda t,y: array([y[1], -g/l*sin(y[0])]),

array([pi/2, 0]), t0, te, M, tol_newton)
nonlinear.solve()
exact = nonlinear.solution
pickle.dump(exact, open(’Exact_10000’, ’wb’))

for method in [(Gauss, 6), (SDIRK_tableau2s, 3),
(SDIRK_tableau5s, 4)]:
error = []
stepsize = []
expected = exact[-1][1] # do not want to include the

time, therefore the [1]
for n in N:

nonlinear = method[0](lambda t,y: array([y[1],
-g/l*sin(y[0])]), array([pi/2, 0]), t0, te, n,
tol_newton)

nonlinear.solve()
result = nonlinear.solution
stepsize.append((te-t0)/(n+1))
error.append(norm(expected - result[-1][1]))

loglog(stepsize, error, label = ’{}, order
{}’.format(method[0].__name__, method[1]))

mp.slope_marker((stepsize[8], error[8]), (method[1],1))
suptitle(’Nonlinear Equation - Errorplot’)
xlabel(’log(stepsize)’)
ylabel(’log(error)’)
legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

grid()

29

assert allclose(result[-1][1], expected, atol=tol_sol)

4.2.4 Multibody System - 2D Truck

Consider a two dimensional multibody system of a truck where the road,
with eventual irregularities, is pulled under the truck [5, p.12-15]. Let

Mp′′ = fa(t, p, p
′)

where M is the mass matrix and pi for i = 1, . . . , 9 are the position co-
ordinates of the individual bodies of the truck. p′ is the velocity, p′′ the
acceleration and fa(t, p, p′) the applied force.

The second-order differential equation can be written as a system of two
first-order differential equations. With a change of variables x1 = p′, we have x′1 = p′

x′2 = M−1fa(x, t)

Consider the problem at the initial state, when the truck is standing still
and the road has not begun to move. Then the velocity of the truck should
be zero. For simplicity, consider a single body part of the truck, for instance
the motion of the front wheel p4.

p8

p7

p
9

p
5

loading area (body 5)

inertial frame (body 0)

rear wheel (body 1)

front wheel (body 3)

chassis (body 2)

cabin (body 4)

p
1

p
4

p
3

p
2

p
6

CM4
CM5

CM2

CM1 CM3

Figure 4.4: Two dimensional multibody system of a truck.

30

The "x"s in 4.2.4 denotes the center of mass for each individual bodies of
the truck.

When testing this problem, there were som stability problems both with
and without irregularities on the road. Therefore the road without any rough-
ness was considered, until a solution is found.

Both of the SDIRK methods were tested and it was approximately the
same results for both of them. The problem might lie in the convergence
of Newton’s method. It seems that the initial value for each time step gets
worse. Thus, more and more iterations are needed to met the given tolerance.
With an increased number of maximum iterationsM = 50, Newton’s method
only converges until approximately t = 0.5 for N = 700, 7000 and 100000
internal point. The endpoint of the interval is te = 2 and the method was the
5-stage SDIRK method. For the other 2-stage SDIRK method the results
differed more when increasing the number of internal points N . When using
N = 700, Newton’s method converges until t = 0.8. But when we increase N
to N = 500000, we get worse results. At the time t = 0.56 Newton’s method
stopped to converge.

One possible reason to this problem is the stability of the function, that
the coefficients of the implementation is not set correctly.

31

Chapter 5

Recomendation for Future Work

The implementation of the implicit Runge–Kutta methods seems to work
fine with the correct order of each method. And the fact that Gauss was
executed faster than the SDIRK methods were expected due to the small
dimension of the problems and how the methods were implemented. It would
be interesting to test a larger problem to see the time efficiency benefits with
SDIRK methods.

The last test-equation regarding the truck had some stability problems
that need to be fixed. For instance it is a good idea to check that the function
defining the truck problem is correctly written.

The code can be improved even further by for instance introducing step
sizes depending on the speed of convergence in each time step. Before the step
sizes are changed we can try to calculate a new Jacobian for the particular
Newton iterate. To reduce the amount of work for each time step we can also
save the Jacobian for several time steps as long as the speed of convergence
is high enough.

32

References

[1] Uri M. Ascher and Linda R. Petzold. Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Society for Industrial
and Applied Mathematics in Philadelphia, 1998.

[2] John C. Butcher. The Numerical Analysis of Ordinary Differential Equa-
tions: Runge-Kutta and General Linear Methods. John Wiley & Sons
Ltd, 1987.

[3] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equa-
tions II. Stiff and Differential-Algebraic Problems. Springer-Verlag Berlin
Heidelberg, 1991.

[4] Claus Führer. Computional mathematics with python
- unit 7: Object oriented programming with classes.
http://www.maths.lth.se/na/courses/NUMA22/media/material/unit07.pdf,
2015. Latest used on the 29th June 2015.

[5] Claus Führer and Edda E. Soellner. Numerical Methods in Multibody
Dynamics. Teubner Stuttgart 1998, 2008.

33

Bachelor’s Theses in Mathematical Sciences 2015:K12

ISSN 1654-6229

LUNFNA-4006-2015

Numerical Analysis

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

