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Abstract 

Technology contributes to the modern economic development directly and indirectly, 

and it changes the operating system and working method during the economic 

transformation. Along with institutional reform and modern economic structural 

transformation of China, agriculture still plays an ineradicable role in the development 

of Chinese economy, and it is the cornerstone for countries with large population.  

 

In this paper, the main purpose is to study how technology spillover effects work on 

agricultural productivity. In order to solve this question, I focus on two aspects, the 

one is from R&D perspective， and the other is the improvement of actual agricultural 

production techniques. This paper investigates the question by empirical analysis, and 

I collect panel data from three statistical yearbooks of China. The datasets consist of 

annul data from 1992 to 2013 and cross-sectional data of 30 regions of China, the 

statistical package Eviews will be employed to generate empirical results. 

 

There are four models in my paper, the first three models are set to study the puzzle 

directly based on the hypotheses, and the last one is a modified model after some 

necessary tests. The results show that technology has different spillover effects on 

agricultural productivity in different aspects, even though some variables are 

insignificant in explaining the model. 
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1. Introduction 

1.1 Research Background 

The institutional reforming of Chinese economy experienced two turning points. 

Before the Chinese economic reform, China went through a long period of 

imbalanced economic development and the whole country struggled with poverty and 

starvation. The first turning point is in 1978, Deng Xiaoping advocated the reform and 

opening-up policy, which increased the total factor productivity, and in turn 

accelerated the growth of the Chinese economy. In 1992, Deng Xiaoping’s southern 

tour became the second turning point that re-emphasized the reform section of the 

economic development, and clarified the relationship between socialism and a market 

economy. As a result for agricultural industry, the compound annual growth rate of 

gross product of agriculture from 1951 to 1977 is approximately 4.1%, whereas the 

annual growth rate from 1978 to 1991 is around 14.54%1. 

 

The 1978 economic reform began with releasing the constraint of agricultural growth 

by giving rural household the right to use land, which motivated more and more 

farmers to devote more time and energy to the agricultural industry and improved the 

production of agriculture, and this policy named as “the household contract 

responsibility system”. This policy in turn increased the scarcity of land, but the gross 

product of agriculture keeps increasing, and I thus suspect that the technology might 

generate spillover effects on agriculture that increase agricultural productivity.  

 

Technological development brought a bunch of effects to wide fields of industries, 

and the agricultural industry is not an exception. For developing countries, the 

                                                        
1 From China Statistical Year Book, the gross product of agriculture for year 1952, 1977, 

1978, 1991 are 46.1, 125.3, 139.7 and 815.7 billion Yuan respectively. And the compound 

annual growth rate (CAGR) can be calculated as: 𝐶𝐴𝐺𝑅(𝑡𝑜, 𝑡𝑛) = (
𝑉(𝑡𝑛)

𝑉(𝑡0)
)

1

𝑡𝑛−𝑡0 − 1, where 

𝑉(𝑡𝑛) is the end value and 𝑉(𝑡0) is the start value, and 𝑡𝑛 − 𝑡0 expresses the number of 

years.  
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adoption of new technology is one of the major sources to improve productivity and a 

main factor in determining capital investment prospects in agriculture (Johnson and 

Evenson 2000). Thus, the impacts generated by technology on agriculture are worth 

investigating, and the pathway how it works is valuable to explore.  

 

The production of agriculture has been increased for decades, whilst the acreage of 

cultivated land was decreasing and keeping the redline policy of 18 million acres 

arable land2, and the proportion of the rural population to the whole population is also 

declining year after year. With the development of China’s agriculture, one of the 

biggest countries in the world can support the most population in the world (Naughton 

2007).  

 

It brings out an interesting question that how the largest population country in the 

world feed its people with limited cultivated land and insufficient farmers? What 

drives China’s agriculture transfer from a low-productivity and traditional one to a 

high-productivity and modern one? What contribute to improve China’s agricultural 

productivity? Under these circumstances, I have reason to put technology into account 

and study the relationship between agricultural growth and technological development, 

then find out whether technology generate positive effects on agricultural growth and 

how it works through these years.  

 

1.2 Research Question 

The research question of this paper is: How technology spillover effects functioning on 

agricultural productivity? 

 

Through over 30 years reform in China, agriculture has been benefit from technology 

development in all aspects, which can be seen as technology spillover effects on 

                                                        
2 In 2006，the Sate Council of China regulated the 18 million acres arable land in the National 

Land Use Planning Outline (2006-2020).  
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agricultural productivity. Because of agricultural firms rarely have R&D activities on 

their own, agricultural sector usually plays the role of spill-ins, which means taken 

R&D spillovers from other sectors, such as public sector and industrial sector 

(Johnson and Evenson 1999). Based on this characteristic, agriculture always affects 

by other industries on technology issue. The research question mainly focus on 

whether technology has spillover effects on agricultural productivity, and to what 

extent technology spillover effect work on agricultural productivity.  

 

1.3 Methodology 

Quantitative research method will be used in this thesis to get empirical results from 

data collection and analysis. According to current studies of spillover effects on 

agriculture, in order to study the technology transfer, R&D, and productivity, I assume 

to use a production function that similar with the value-added Cobb-Douglas 

production function 𝑌𝑖𝑡 = 𝐴𝑖𝑡𝐶𝑖𝑡
𝛼𝐿𝑖𝑡

𝛽
, where 𝛼 and 𝛽  are the output elasticity of 

capital and labour, and A is the total factor productivity parameter, which is driven by 

R&D, technology transfer, and industry and ownership characteristics (Hu et al. 2005). 

Hence, the original model used in my thesis is a multiplicative equation, in which 

technological factors are the independent variables and the total value of agricultural 

productivity is the dependent variable. 

 

The data are chosen from China Statistical Yearbook, Rural Statistical Yearbook of 

China and China Statistical Yearbook on Science and Technology. In order to explore 

how technology spillover effects on the agricultural productivity, on the one hand, the 

data should represent agricultural productivity, technological factors invested into 

agriculture and techniques relevant to agricultural production. On the other hand, time 

series need to be taken into consideration to guarantee the process of transformation of 

technologies functioning on agricultural productivity. So, I prefer to choose the data 

from the point when China began to undertake economic reforms to the year of latest 
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updates data offered by National Bureau of Statistics of China.  

 

However, because of immature of data collection measures and lagged economic 

development in rural area, to some extent, it exists unreliability of data in Chinese 

statistical yearbook. Moreover, some data are not contained in the yearbook in the early 

years. The reasons for this might be in the beginning of economic reforms, the 

statistical bureau explored the right way to do the statistical work and made statistical 

services more accurate. After all, even though there might have some unreliability of 

the data from the yearbook, the statistical yearbooks are still the most authoritative 

statistic data resources in China, and it covers most integrated data across the whole 

country.  

 

1.4 Limitations 

In this paper, the limitations are mainly located in the data collection part which just 

as mentioned in the previous section. Even though I collect data from the three 

statistical yearbooks, it is still exist deficiency of data. On the one hand, the 

technology spillover effects relate to a wide range of elements, such as patents, higher 

education institutions, the number of adoption of advanced techniques and so on. And 

the data of some factors are incomplete, and it is difficult to get the missing data from 

other channels. On the other hand, the data trustworthy problem is also need to be 

taken seriously, the three yearbooks I employed might exist problems of inappropriate 

ways of collecting data initially, so some data might end up with partial inaccuracy. 

Another limitation should be noticed is that technology spillover effects may contain 

various factors, which means that it is difficult to test all the possible variables, so that 

the analysis cannot be totally comprehensive to some extent.  
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1.5 Thesis Outline 

This thesis includes five sections, besides the first introduction section, the following 

chapter introduces research background and theoretical framework, which contains 

background, theoretical foundation, previous studies about the theory, and the 

hypotheses of this research. The next two chapters are the most import part in the 

thesis. Chapter three explains the empirical studies, and the main task of this chapter 

is to set up empirical models, and the corresponding dataset and variables. Chapter 

four is the analyses and results of empirical studies, which gives detailed illustrations 

of model estimation results. The final part of the thesis presents the discussion and 

conclusion, and it sums up the pivotal findings of the empirical research; meanwhile, 

it proposes potential improvements to the future researches that related to the area of 

technology spillover effects on agricultural. 
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2. Research Background and Theoretical Framework 

2.1 Background of Agriculture in China 

Since 1978, agriculture in China has experienced a series of radical changes, and 

successfully transferred to modern agriculture by building comprehensive agricultural 

market, adopting advanced technology in agricultural productive process and 

introducing informative agricultural management system. The gradual reforms across 

the whole country started with agricultural household system reform, which totally 

changed the land system and brought a bunch of institutional changes in agriculture.  

 

Institution and Policies Change 

Without doubt, institution change was the foundation of the overall reform and 

stimulated the subsequent reforms. Introduction of household responsibility system is 

the first step of reforms, of which aim is to change the property rights of land in rural 

China. Before reforms, agricultural collectives were the dominant rural institution 

with the main characteristics that farmers all worked commonly and the land was 

pooled, and the basic accounting unit was collective and households gained their 

payments according to points (credits) from the collectives (Naughton 2007: 234-236). 

The collectives resulted in consequence that farmers in the collectives were lacking of 

incentives to work hard and the yields of agriculture were dissatisfactory, which 

totally violated the original intention of this institution—“Grain First”.  

 

Individual household responsibility system began from Anhui province and 

explosively spread to the whole country in a short term and finally established as a 

national institution in the agricultural sector. Contracts signed by households 

enhanced the rights of land and motivated tenants to optimize the level of investment 

to the land (Brandt et al. 2002). Until 1985, the transformation of household 

responsibility system had almost finished, and the full implementation of the rural 

household contract responsibility system went across the whole country. There were 
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569 production teams and 18387.9 households completed this household contract 

responsibility system reform, which account for 100 percent to the whole production 

teams and 97.9 percent to the whole households in rural area respectively. This 

property right shift affected the way that cultivated land used and grain productivity 

through securing the use right of land for farmers and reallocating the resources. The 

institution switches from the production team system to household responsibility 

system optimized the marginal return of efforts and increased the ratio of supply to 

response of each worker; moreover, it generated positive effect on agricultural 

production (Lin 1988). 

 

One of the most significant impacts brought by household responsibility reform was 

emancipation of agricultural labor that bounded to land for a long period. Even though 

the existence of hukou registration system (household registration system) hampered 

labor freely mobile from rural area to urban area, the litu bu lixiang strategy made 

farmers depart from the farmland to devote to non-agricultural activities in rural area 

(Kwan 2009). The free labor expansion was a notable reaction of property rights 

change, and an unexpected and incredible reason contributed to China’s miracle. After 

1978, the gross domestic products of primary industry was increasing from 1027.5 

(100 million yuan) in 1978 to 56957 (100 million yuan) in 2013, and the gross 

domestic products was also rising through these years in a even larger extent, from 

3645.2 (100 million yuan) in 1978 to 568845.2 (100 million yuan) in 2013, just as 

Figure 2.1 shows. However, the ratio of gross domestic products of primary industry 

to gross domestic products was dropping progressively. Even though at the beginning 

of the economic reform, the ratio was increased a little bit from 28.2 percent in 1978 

to 33.4 percent in 1982, then fell down continuously in next decades and reached 10 

percent in 2013. 
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Figure 2.1 GDP and Primary Industry GDP 

 
Data Source: China Statistical Yearbook 2014. 

 

Besides to gross domestic products changes, another important influence brought by 

household responsibility system was mobility of rural labor. Rural labor can be 

divided as agricultural labor that people who invest in agricultural activities, and 

non-agricultural labor that people who live in rural area but work for non-agricultural 

industry. And rural labor and agricultural labor were changed correspondingly, and the 

ratio of agricultural labor to rural labor was reducing since 1978, from 92 percent to 

62 percent in 2013. This 30-percent drop of agricultural labor to rural labor proves 

that there is a decreasing tendency of agricultural labor, which means there is less 

rural labor invested in agricultural activities. In the following figure, there are four 

main elements show agricultural conditions since 1978. Besides rural labor and 

agricultural labor, the gross output value of agriculture, forestry, animal husbandry 

and fishery has been climbing since 1978, from 1397 (100 million yuan) to 96995.3 

(100 million yuan), whilst, the cultivated land has stayed in a relatively stable 

condition and keeps 12.8 percentage to total area after 2008. With less cultivated land 

and agricultural labor investment, the gross output of the whole agricultural industry 

still grow fast with large total amount, it reflects that the improvement of efficiency of 

agricultural productivity. It drives an interesting question, what makes this efficiency 
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increase? The gross product of agriculture cannot keep a constant growth rate without 

the development of advanced technology; in contrast, technology is the primary 

productive force and pushes agricultural industry development in the reform times in 

China. 

 

Figure 2.2 Main Features of Agriculture in China since 1978 

 

Data Source: China Statistical Yearbook 2014, Rural Statistical Yearbook of China 2014. 

 

Technological Development 

Agricultural scientific services contain various of kinds, such as agricultural scientific 

research and innovation on cultivation of improved varieties, research on new 
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To support the agricultural productivity, a comprehensive network of agricultural 
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increasing for decades, from 22560.79 (1000 yuan) to 11347350 (1000 yuan), peaked 

at 12466630 (1000 yuan) in 2008. This tendency shows that R&D institutions paid 

much more attention on agricultural research and development, as Figure 2.3 shows. 

 

Figure 2.3 Intramural Expenditure on R&D of R&D institutions by Farming, Forestry, 

Animal Husbandry and Fishery 

 

Data Source: China Statistical Yearbook on Science and Technology 1993 to 2013. 
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science and technology, I can illustrate that there were 6541 applications and 2807 

granted of new variety rights of agriculture plants from 1999 to 2009, and this number 
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number of granted of new variety rights of agriculture plants were 666, 244, 163, and 

138. This phenomenon shows that development of agricultural high technology and 

innovation stepped into a new period, and more novel inventions were brought to 

agricultural production to improve productive efficiency and expand variety of 

agricultural products. 

 

2.2 Spillover Theory 

Spillover theory is widely used in all fields, and there are different types of spillover 

effects in each scientific domain. There are a variety of different couples of spillovers 

in different fields, such as external and internal spillovers, shock and policy induced 

spillovers, direct and indirect spillovers, positive and negative spillovers (Weyerstrass 

et al. 2006). Specifically, in economics, there are three major kinds of spillovers 

always named as knowledge spillovers, market spillovers and network spillovers 

(Jaffe 1996). Spillover effect has already become one of the most significant factors in 

economic development and cannot be neglected in the process of production. Three 

main types of R&D spillovers to agriculture are direct and indirect spillovers, spatial 

or locational spillovers and sectorial or industrial spillovers (Johnson and Evenson 

1999). The spillover effects (sometimes called externalities) are impacts of economic 

activities on economic actors (society, businesses, and government) who are not 

directly undertaking the activities. In general, technology spillover effects can be 

classified into two categories: one is adoption of new technological knowledge to 

produce more advanced goods by improving labour productivity; the other is to create 

new ideas and apply new inventions in research and development (R&D). In the case 

of innovation and the development of technology, spillovers occur when actors who 

are not directly involved in the activities are affected by the activities, and the effects 

reflected in their behaviour and economic actions (knowledge spillovers) (Medhurst et 

al. 2014). Due to spillover effects can be classified as different types in different 

circumstances, spillover effects in this paper is the one mainly applied in economic 
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field and the spillover effect theory is also put more focuses on technology spillover 

effects to agriculture, then drive two hypotheses which point out two different but 

equally important aspects of technology spillover effects on agriculture.  

 

Technology Spillover Effects to Agriculture 

Facing the crucial fact that population doubled from three billion to six billion since 

1960, how to accelerate production and improve the efficiency of productivity is a 

heated issue during a couple of decades. From 1960s, scholars began to study on 

factors relevant to agricultural productivity, and the main elements they considered 

were public investments like infrastructure, input qualities, educational investment on 

agricultural workforce, and technology contributions on agricultural R&D (Alston 

2002). The study of technology generated spillover effects on agriculture had a long 

history that can be tracked back to mid-twenty century, when T. W. Schultz (1954) 

calculated total factor productivity growth as an index for American agriculture, and 

estimated the technological change saved resources and compared it to the total public 

investments in agricultural research, finally found it was a good investment (Griliches 

1991). In order to convert poverty in the rural area, China seeks for efficient ways to 

improve agricultural productivity and increase households’ income. Since entered the 

21st century, an increasing number of farmers as adopters began to adopt more 

techniques to improve productivity, such as upland rice technologies that raise the 

productivity from 38% to 53% during 2002 to 2004, whilst, non-adopters did not 

benefit from the advanced technologies, had smaller production and lower share of 

land of those adopters. Furthermore, the gross income of non-adopters was much 

lower than the adopters, which means whether adoption of technology during the 

process of production is one reason contribute to poverty, and to some extent, 

technology generated effects on agricultural productivity (Wu 2010). From an 

empirical case in China, a SHASEA (Sustainable Highland Agriculture in S.E. Asia) 

project hold by EU (European Union) conducted in Yunnan Province, included a 

range of technologies such as polythene mulching, straw mulching, irrigation, contour 

cultivation, inter-cropping, use of grass strips, and tree planting techniques, for all of 
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them functioned differently and really brought comprehensive effects to improve 

agricultural productivity, and after the project, there are markedly achievements like 

improvement of environment in experimental village, meanwhile, increase crop 

production with reducing soil erosion (Subedi et al. 2009).  

 

Another facet of technology that cannot be totally ignored is knowledge spillovers. 

Technology developed with knowledge booming, and technological harvest based on 

a wide application of knowledge in all fields around the world. The knowledge 

spillovers play a significant role in supplying the sources of innovation and 

connecting universities with agricultural firms by offering new knowledge and skills 

(Laborda et al. 2011). In knowledge-economy times, economic growth is not only 

about increasing amount of goods production and services, but also improving the 

efficiency of producing a booming range of goods and services. Promoting 

productivity by capital and labor accumulation with an adoption of new and better 

technologies is an attractive and functional way to develop the agricultural economy. 

Knowledge stimulation function to economic growth is not fresh anymore, whilst 

knowledge combined with information technology, which known as ICT (Information 

and communication technology), is a new element push economic development 

(Dahlman 2002). Knowledge is an abstract object that hardly can be detected in 

empirical studies so that scholars tried to find some available standard or variables to 

discover spillover effects generated by knowledge in economic growth process. The 

patent, a testable variable represents knowledge development degree to large extent, 

has been used as the equivalent statistic measure to study R&D input and output. 

Taking patents’ specialization and variation into account, domestic patent applications, 

patent grants and external patent applications are considered as part of R&D 

expenditure (Nadiri 1993). 

 

The R&D spillovers on productivity in agriculture, especially effects brought by the 

technologies of the rice production, was an engine of agricultural growth. For instance, 

the hybrid rice adoption rise yields of rice across China, even after this technology 
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become commercial and poured into market, the degree of adoption this technique 

varied from different regions, which lead to different level of productivity of rice, and 

this strongly proved that technology spillovers can result in improvement of 

agricultural productivity (Huang and Rozelle 1996). Generally speaking, R&D 

spillovers are a main source of endogenous growth and also treated as externalities 

before, while in some fresh research, conscious economic investment bring 

technological change that lead to social returns (Griliches 1991).  Besides China, 

technology spillover effects also influenced other developing area, like Africa, where 

lagged behind the rest of the world, has benefited from the technology and enjoyed 

the fruitful outcomes brought by technology. Even though Africa still has a large gap 

with other developing countries, not to mention developed countries, it absorbs 

foreign technology spillovers during the process of development with mainly 

embodied in patent adoption and R&D investment (Johnson and Evenson 2000). Thus, 

technology spillover effects on agriculture and productivity can be observed in a 

variety of aspects, which illustrate that technology spillovers do make great function 

on agricultural productivity throughout decades of years. 

 

2.3 Hypotheses 

Apparently, the technology spillover effects are the main source to push productivity 

growth in the long-run term. And R&D is an important indicator to explain 

productivity through public R&D and private R&D investment in the process of 

production (Guellec et al. 2004). In one aspect, knowledge is one of output of R&D, 

and this output of R&D activity is uncertain because of its non-excludability and 

non-competitiveness, so government use patents to regulate and protect R&D output 

to stimulate the private R&D investment (Miles and Scott 2005). Thus, patents can be 

treated as an indicator of R&D activity. Public R&D funding has positive effects on 

patent outcome, and R&D is the prerequisite of technological progress (Czarnitzki 

and Hussinger 2004). R&D expenditure has positively direct and indirect effects on 
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patents according to different regions based on their innovation activities (Moussa and 

Laurent 2015). R&D effects on some region depend on the active degree of regional 

innovation activities. Thus R&D spillovers need some medium to function on industry 

and firm. The R&D, as a component of total factor productivity (TFP), can be used as 

spillovers from domestic and foreign, public and private in agricultural sector, and the 

stock of knowledge rather than the R&D expenditures provides spillover measures of 

agricultural productivity, and the exact way to calculate the stocks is consisting of 

stocks of knowledge retrospect to 5 or more years before current time, with different 

ratios of each lag weights (Johnson and Evenson 1999). The R&D performance is a 

significant factor from technological progress in determining productivity. 

Hypothesis 1: R&D (research and development) has positive spillovers on 

agricultural productivity.  

 

The common measures to study agricultural productivity are land (hectares), labor 

(employed persons), machinery and chemical fertilizer, which are treated as the major 

input of agricultural productivity (Kalirajan et al. 1996). Agricultural technologies 

contributed to agricultural output in all kinds of improved techniques, including 

chemical fertilizer, high-yielding varieties, weedicides and pesticides, and utility of 

machinery, and etc. (Jain et al. 2009). For example, the model of spillover effects 

within industry can be expressed as 𝑌𝑖 = 𝐵𝑋𝑖
1−𝛾

𝐾𝑖
𝛾

𝐾𝑎
𝜇

, in which 𝑌𝑖 represents the ith 

firm and 𝑋𝑖, 𝐾𝑖, 𝐾𝑎 stand for the level of conventional inputs, specific knowledge 

capital and aggregate knowledge in the industry (Griliches 1991). China’s agricultural 

techniques are invented by research system and then adopted by farmers to invest in 

agricultural production and improved the yields of agricultural grains through decades 

of years. The total factor productivity (TFP) is an important index showing main 

agricultural grains in China across regions and years, and its change including 

transformation in technology, institutions, infrastructure and improvements to human 

capital (Jin et al. 2002). The increasing input on agricultural infrastructure, such as 

irrigation system, water-saving technology and climate condition test system, 
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contributed to agricultural productivity, and more effective agricultural technology 

extension and transformation through construction of farming practices (Shen et al. 

2013). Thus, improvement of agricultural techniques needs to be considered as one of 

the technology spillovers on agricultural productivity. 

Hypothesis 2: Improvement of techniques has positive spillover effects on agricultural 

productivity.  
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3. Empirical Studies 

3.1 Data  

3.1.1 Dataset  

The dataset of dependent variable is gross output value of agriculture, forestry, animal 

husbandry and fishery (100 million yuan) from 1992 to 2013 and covers 30 provinces, 

municipalities and autonomous regions 3 , which chosen from Rural Statistical 

Yearbook of China.  

 

The data about R&D effects are chosen from China Statistical Yearbook on Science 

and Technology and China Statistical Yearbook. For the sake of studying technology 

spillovers on agriculture, I choose to use panel data to solve the puzzle, and the data 

are chosen from 1992 to 2013, mainly concern about R&D expenditure (1000 yuan) 

and personnel (person), and patents granted (piece) in 30 provinces of mainland China. 

The year 1992 is a turning point of China economic reform, and Deng Xiaoping had 

southern tour, which pushed China’s economic reform to a new phase, a period with 

much deeper and far-reaching reform and establishment of socialist market economy 

institution. After year 1992, China stepped into a more open and profound and lasting 

economic development phase, with faster development of agriculture and technology. 

Hence, I choose the year 1992 as the start of collecting data.  

 

Another aspect of my research question is the improvement effects on agricultural 

productive technique, and the data of this factor are chosen from Rural Statistical 

Yearbook of China, which introduces agricultural development conditions in detail. 

The data apply to explain agricultural productive conditions are chosen from 1992 to 

2013 and also cover 30 provinces, municipalities and autonomous regions in mainland 

of China. The first data is total power of agricultural machinery (GW), the second one 

                                                        
3 The motivation of selecting 30 provinces, municipalities and autonomous regions is 

introduced in the section 3.1.2 Limitations of Dataset.  
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is rural electricity consumption (million kilowatt hours), and the last one is 

consumption of chemical fertilizer (calculated by pure quantity) (10 kilo-tons). 

 

3.1.2 Limitations of Dataset 

The critical purpose of the study is to explore how technology effects on agricultural 

productivity, so from these statistical yearbooks, the chosen data have to reflect the 

condition of relevant variables, furthermore, to accept or reject the hypotheses 

mentioned before. These three statistical yearbooks all have deficiencies that hamper 

the data collecting process.  

 

On the one hand, China has kept a significant developing speed since 1978, the 

economic reform; and statistical yearbooks also experienced continuous modifying 

accompanied with the whole society transitions. Some data were accumulated at the 

beginning of economic reform, but disappear from the statistical yearbooks when 

entered the 21st century.  

 

On the other hand, Chongqing, the municipality directly under the Central 

Government, was established on 18th, June of 1997, so all the data of Chongqing are 

started from 1997. The missing data before 1997 of Chongqing led the data become 

unbalanced panel data, and this breach of data might result in unreasonable outcomes 

of regression analysis, and the data only start from 1997, even until 2013, there are 

just 16 years of it, and we cannot get the balanced dataset to solve the problem in the 

models. So, for the more logic and reasonable regression analysis, I finally put 

Chongqing into Sichuan province by adding all data of Chongqing to Sichuan 

province, and narrow 31 provinces of mainland of China to 30 provinces, since 

Chongqing was a part of Sichuan Province. The reason why Hong Kong, Macao, and 

Taiwan are not included in the data set is that these three regions implement different 

economic institutional systems, which are quite different with the mainland of China. 
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And they have different system to manage agricultural and technological section 

during the development process, the data of them are no comparable to other 

provinces in mainland of China. So the data of Hong Kong, Macao and Taiwan are 

not considered in my dataset. In this circumstance, all data from different provinces 

are stay at the same level and can be analysed together to explain research question.  

 

3.2 Model Establishment 

The spillover effects of technology on agricultural productivity can be very broadly, 

and in order to generate a more parsimonious and compact study, I choose to 

investigate the impact from two perspectives, which corresponding to two hypotheses 

of this paper, the R&D investment and the improvement of techniques in agricultural 

production process. Hence, there are two effects in my research, the R&D effects and 

the improvement effects. 

  

As mentioned in previous section, my empirical model mimics the Cobb-Douglas 

production function, and the transformed model can be expressed as           

𝑌𝑖𝑡 = 𝐴𝑖𝑡𝑋1𝑖𝑡
𝛽1𝑋2𝑖𝑡

𝛽2𝑋3𝑖𝑡
𝛽3𝑋4𝑖𝑡

𝛽4𝑋5𝑖𝑡
𝛽5𝑋6𝑖𝑡

𝛽6 , where three variables ( 𝑋1, 𝑋2, 𝑋3 ) are 

selected from the view of the R&D effects, and three variables (𝑋4, 𝑋5, 𝑋6) are 

selected to represent the improvement effects. By splitting up the model into two parts, 

it is possible to test and analyse the two hypotheses or effects separately.  

 

In order to make the variables meaningful, I decide to apply the database 

normalization method to get the real property of the data without losing much 

information. The transformed model with normalized factors thus becomes                           

𝑌𝑖𝑡

𝐿𝑖𝑡
= 𝐴𝑖𝑡(

𝑋1𝑖𝑡
𝛽1

𝐺𝑅𝑃𝑖𝑡
)(

𝑋2𝑖𝑡
𝛽2

𝑃𝑖𝑡
)(

𝑋3𝑖𝑡
𝛽3

𝑃𝑖𝑡
)(

𝑋4𝑖𝑡
𝛽4

𝐿𝑖𝑡
)(

𝑋5
𝑖𝑡
𝛽5

𝑅𝑃𝑖𝑡
)(

𝑋6𝑖𝑡
𝛽6

𝐿𝑖𝑡
), where all the denominators stand for 

the normalized factors4. And by taking the logarithm of the equation, I can transfer the 

                                                        
4 All the variables (dependent and independent) and normalized factors will be introduced in 

the section 3.2 Variables. 
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multiplicative model into additive model, and I can generate a more intuitive 

explanation with logarithm5.  

 

The empirical method can be decomposed into three models. For instance, the model 

with both R&D effects and the improvement effects (Model 1), and its two 

sub-models are R&D effects model (Model 2), and the improvement effects model 

(Model 3). Hence, the R&D effects and the improvement effects model in this 

empirical study can be expressed as: 

Model 1: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝛽3𝑥3𝑖𝑡 + 𝛽4𝑥4𝑖𝑡+𝛽5𝑥5𝑖𝑡 + 𝛽6𝑥6𝑖𝑡 + 𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡 

 

And the two corresponding effects models are shown as followings: 

Model 2: 𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝛽3𝑥3𝑖𝑡 + 𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡              

Model 3: 𝑦𝑖𝑡 = 𝛽0 + 𝛽4𝑥4𝑖𝑡+𝛽5𝑥5𝑖𝑡 + 𝛽6𝑥6𝑖𝑡 + 𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡               

 

I employ lowercase letters to denote the log-normalized values, e.g. 𝑦 ≡ ln (
𝑌

𝐿
) and 

𝑦𝑖𝑡 ≡ ln (
𝑌𝑖𝑡

𝐿𝑖𝑡
). The subscript "𝑡" indicates the time period for the models, where T=22 

(t=1992…2013) for all three models; the index "𝑖" expresses the 30 regions that 

consist of provinces，municipalities and autonomous regions6. It is worth to notice that 

the three models also include fixed effects indicators "λt" and"𝜇𝑖", where "𝜇𝑖" is the 

cross-section effect factor that captures the value of the dummy variables for each 

region, and "λt" explains the period effect for different years.  

 

                                                        
5 We can interpret the coefficients of the log-linear equations as elasticity. 
6 For simplicity, I will use “30 regions” as a conclusive term to express 30 provinces，
municipalities and autonomous regions in the following text. 
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3.3 Variables 

3.3.1 Dependent Variable 

Y: The Actual Agricultural Products (Agricultural Products): The key point in this 

study is to figure out how technology spillover effects influence on the agricultural 

productivity. The Gross Output Value of Agriculture, Forestry, Animal Husbandry and 

Fishery is employed to reflect the agricultural productivity, which calculates exact 

agricultural products in major elements and was widely used to measure the output of 

agricultural products (Chen et al. 2008). In order to make this dependent variable 

more logically and reasonably, I take area of cultivated land into consideration, since 

the cultivated land area is an important investment factor in agricultural production. 

Along with the change of cultivated land area, the gross output of agriculture will be 

changed simultaneously. Hence, the gross output value of agriculture, forestry, animal 

husbandry and fishery (100 million yuan) will be normalized by total cultivated land 

area (hectare) in my empirical studies, and this is the normalized dependent variable. 

By taking the normalization, we can intuitively know the agricultural productivity, 

and it can be expressed as the gross output value of agricultural production per hectare. 

The data of cultivated land area are obtained from the Rural Statistic Yearbook of 

China from 1992 to 2013 of all regions in mainland of China.  

 

3.3.2 Independent Variables 

According to two hypotheses, independent variables should represent two aspects, one 

is the R&D effects, and the other is the actual improvement of productive technique in 

agricultural production process. 

 

X1: Intramural Expenditure for Research and Development (R&D Expenditure): This 

independent variable stands for R&D intramural expenditure, which indicates actual 

expenditure of R&D activities, including service charge, research service fee, 
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scientific management fee, non-infrastructure investment of fixed assets, research 

infrastructure projects fee and other expenditure of R&D activities of research 

institutions, firms, universities and colleges and other organizations. However, this 

expenditure does not contain expenditure of productive activities, returns of loans and 

other expenditures transferred to other institutions. In short, this expenditure is the 

actual usage of R&D investment. The R&D expenditure could divided as direct and 

indirect R&D expenditure, the former one is conducted by industry to increase its own 

productivity, and the latter one is performed by other industries and affect the 

productivity of the industry (Meijl 1997). The reason to choose this variable is to 

consider the effects from capital of research and development, and to test whether 

practical fee of R&D activities has impact on agricultural productivity. The R&D 

intensity is the ratio of R&D expenditure to the GDP, is a main indicator to test the 

degree of investment in generating new knowledge (OECD 2011). Therefore, in my 

empirical studies, the ratio (or percentage) of R&D expenditure to the gross regional 

product of each province will be employed. After taking the normalization, we can get 

the percentage of R&D expenditure rather than the actual number of the expenditure, 

and measure the first normalized independent variable by the percentage of R&D 

expenditure to total output for each region. After all, it is not that meaningful to treat 

the actual amount of R&D expenditure of different regions on the same level of scale. 

The data of gross regional product are obtained from the China Statistical Yearbook 

from 1992 to 2013 of all regions in mainland of China.  

 

X2: Research and Development Personnel (R&D Personnel): This variable depicts the 

labour investment to R&D activities, and usually used as a principle measurement of 

R&D spillover estimation (Lee 2005). The number of persons who devoted to R&D 

activities represents people directly engaged in R&D activities, and people who work 

for management of R&D activities and offering services to that, which embodies the 

power of human capital investment of research and development. The model 1 and 

model 2 are using this variable to test whether R&D personnel has effects on 

agricultural productivity and to what extent it has. Compared with the first 
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independent variable, this variable focus on human capital, and it is one of the 

components of the investment in research and development. Because the number of 

R&D personnel will largely depend on the total number of population, I decide to use 

the total population of each region to normalize R&D personnel. By generating this 

ratio, we can obtain the percentage of R&D personnel to the total population of each 

region. Same as the variable of R&D expenditure, it is more useful to apply the 

normalized variables. The data of the total population of each region are obtained 

from the China Statistical Yearbook on Science and Technology from 1992 to 2013 of 

all regions in mainland of China.  

 

X3: The Number of Domestic Patents Granted (Patents Granted): The reason why I 

choose the number of domestic patents granted is that patents granted by authorities 

are scientific achievements and can be transferred to practical productivity quickly. 

The granted patents imply that the inventions are meaningful and worthy in practical 

productions, and can be applied into factual productive process and making wealth. 

Patents are a return of R&D investment, and private activities are measured by patent 

and represent technology transfer (Schimmelpfennig and Thirtle 1999). Similar with 

the R&D personnel, the increasing number of patents will also be affected by the 

number of population of each region; for example, a province with large population 

might have more patents granted. Therefore, the number of population in each region 

will use to normalize the number of domestic patents granted.  

 

X4: Total Power of Agricultural Machinery (Agricultural Machinery): This variable 

explains the total power of major agricultural machinery including large and 

medium-size tractors, small tractors and diesel engines from 30 regions. And the use 

of power machinery and operating machinery for non-agricultural production such as 

rural, town, village, group, industrial, basic construction, non-agricultural 

transportation, scientific experiment and teaching are not included. The change of this 

variable can reflect the utility of advanced machinery that related to technological 

development and application in agricultural productive process, and it commonly used 
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to measure the performance of agricultural technical change and agricultural 

productivity (Jin et al. 2010). The total power of agricultural machinery can be 

normalized by cultivated land area, e.g. it is more straightforward to interpret the 

meaning of the increased kilowatt per hectare rather than the increased kilowatt, if we 

don’t clarify the change of area of cultivated land. 

 

X5: Rural Electricity Consumption (Electricity Consumption)：The consumption of 

electricity in rural area not only concentrates on electricity usage of agricultural 

production, but also includes rural residents’ usage of electricity. Even though living 

usage of electricity is not that relevant to agricultural production, the electricity 

consumption in rural area can reflect utility of modern electrical equipment, which 

can show the level of development of whole rural area, and that can be an indirect 

effect on agricultural production. The electricity consumption can be used as an 

indicator to study the total factor productivity (Gutzler et al. 2015). However, we 

should notice that the rural electricity consumption highly depends on the population 

of rural area. I thus use the rural population of each region as the normalized factor 

for rural electricity consumption. The data of the number of rural population of each 

region are obtained from the Rural Statistic Yearbook of China from 1992 to 2013 of 

all regions in mainland of China.  

 

X6: Consumption of Chemical Fertilizer (Chemical Fertilizer): This variable refers to 

the amount of chemical fertilizers used in agricultural production, including the use of 

nitrogen, phosphorus, potassium and compound fertilizer. It is a variable based on the 

technological development, and along with chemical technology development, the 

chemical fertilizer would increase the productivity of agriculture, and this variable is 

usually used as a measurement to study the agricultural technological improvement 

and to stimulate total factor productivity of agriculture (Jin et al. 2002). Meanwhile, 

the amounts of usage of chemical fertilizer should be measured with the one unit of 

land, which is the hectare. In other word, the cultivated land area will be used as the 
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normalized factor here to normalize the original factor. And this variable can be 

treated as one of the representatives of technology spillover effects. 

 

There are one explained variable and six independent variables in my model. The 

descriptive stats of all variables are shown as table 3.1 below. The total observations 

are 660, and the mean, standard deviation, minimum and maximum values are also 

calculated. 

 

Table 3.1 Descriptive Statistics of Variables 

Variable Obs. Mean Std. Dev. Min Max 

Original Variables      

Agricultural Products/Cultivated Land Area 660 40937.92 36168.70 3202.84 246193.08 

R&D Expenditure/Gross Regional Products 660 0.02 0.017 0.001 0.12 

R&D Personnel/ Population 660 0.003 0.004 0.0002 0.02 

Patents Granted/ Population 660 0.0002030 0.0004439 0.0000004 0.0036804 

Agricultural Machinery/Cultivated Land Area 660 5816.12 3620.90 1132.66 17738.35 

Electricity Consumption/Rural Population 660 746.21 
 

2475.178 7.78 34836.65 

Chemical Fertilizer/Cultivated Land Area 660 0.41 0.21 0.07 0.99 

Log Variables      

Agricultural Products/Cultivated Land Area 660 10.26 0.88 8.07 12.41 

R&D Expenditure/Gross Regional Products 660 -4.30 0.70 -7.20 -2.09 

R&D Personnel/ Population 660 -6.16 0.79 -8.39 -3.73 

Patents Granted/ Population 660 -9.61 1.40 -14.64 -5.60 

Agricultural Machinery/Cultivated Land Area 660 8.48 0.62 7.03 9.78 

Electricity Consumption/Rural Population 660 5.58 1.28 2.05 10.46 

Chemical Fertilizer/Cultivated Land Area 660 -1.06 0.60 -2.70 -0.01 

Note: This table depicts the statistical properties of normalized dependent and independent variable. 
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4. Empirical Analysis and Results 

4.1 Concepts and Terms 

Goodness-of-fit (R2): This statistical measure is used as ratio of explained variation to 

total variation, and its purpose is to test how close the data to the fitted regression line. 

The value of R2 between 0 to 1, and the higher R2 means greater overall fit of the 

estimated regression equation to the sample data. However, in general, there is no 

simple method to determine how high the R2 should be in actual research. 

 

The Adjusted R2 (�̅�2): �̅�2 is a measure that taken degree of freedom into account in 

determining whether adding a variable will impact the equation estimation. This 

measure is more commonly used because its unique characteristic that compares the 

fits of equations with the same explained variable and different number of explanatory 

variables. 

 

F-Test: The null hypothesis in this test is that all the slope coefficients in the equation 

equal zero simultaneously. This test measures the overall fit of the estimated equation, 

and if it is significant, the null hypothesis has to be rejected. The p-value of F-Test is 

an alternative approach associated with F-Test in determining the overall fit of the 

estimated equation. 

 

Omitted Variable: The definition of omitted variable is that a significant independent 

variable that has been left out of the regression equation. The omitted variable bias 

(specification bias) is known as leaving a variable out of the estimation equation. If 

the left out variable is very important in explaining the equation, the estimation results 

of the equation will not be unbiased and minimum variance any longer. 

 

Akaike’s Information Criterion (AIC) and Schwarz Criterion (SC): These two 

methods are used to compare alternative specifications whether adding a variable is 
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good for decreased degrees of freedom and increased complexity caused by the 

addition. In general, the lower AIC or SC means better specification.  

 

Multicollinearity: The core characteristic of multicollinearity is two or more 

independent variables are highly correlated, and it is hard to estimate the coefficients 

of the equation accurately. The main consequences caused by multicollinearity are: a 

combination of insignificant individual regression coefficients with a high�̅�2, which 

means the overall fit of the equation and the coefficients of non-multicollinearity 

variables have little effects; addition or deletion of an independent variable will lead 

to large change of the estimation coefficients; the standard error and variances of the 

estimation will increase. High sample correlation coefficients and high variance 

inflation factors can be used to detect the multicollinearity. Increase the sample size or 

drop redundant variables would be useful to remedy multicollinearity. 

 

Fixed Effects Model: This model is using to estimate panel data model that allowing 

each cross-sectional unit to have a different intercept. The critical advantage of fixed 

effects model is that it can prevent biased from omitted variables that do not change 

over time. 

 

4.2 Model Estimation 

The estimation and testing procedure of the models are implemented by the statistical 

package Eviews. There are basically three cases when I am dealing with panel data, 

namely pooled regression model, fixed effect model and random effect model. By 

using the redundant fixed effect tests I reject the pooled regression model, and then 

Hausman tests are employed to detect whether random effects exist. The results of 

these two tests and model estimations are shown from Table 4.2.1 to Table 4.4.3 in 

Appendix. I can illustrate from redundant fixed effects tests that p-value for both 

cross-section and period tests are statistically significant at the 5% significance level, 
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and I can reject the null hypothesis and eliminate the possibility of pooled regression. 

Meanwhile, I reject the null hypothesis of random effects of Hausman test at the 5% 

significance level. In light of the above two tests, I can estimate all three models by 

fixed effect estimators.  

 

4.3 Empirical Results 

Model 1 

The estimation of model 1 is shown in Table 4.2.3 LS regression results of model 1. 

The LS regression results clearly exhibiting the influences generated from 

independent variables to dependent variables, and showing the explanatory power of 

each independent variable.  

 

For model 1, from the estimation result (under 5% significance level), we can tell that 

except for variables 𝑥1 (ln(X1/GRP): R&D Expenditure/Gross Regional Products), 

𝑥3  (ln(X3/P): Patents Granted/Population) and 𝑥5 (ln(X5/RP): Electricity 

Consumption/Rural Population), the three other variables in this model are 

statistically significant at the 5% significance level (the p-value of 𝑥1, 𝑥3 and 𝑥5 

are 0.6214, 0.0868 and 0.596 respectively), which indicates independent variables that 

present improvement effects show significant impacts on explaining the agricultural 

productivity. The adjusted R-square is around 0.9822, which means this model 

captures approximately 98% of the variation of dependent variable around its mean, 

and this percentage is adjusted for degrees of freedom. In other word, the estimation 

regression of model 1 has strong goodness-of-fit. Meanwhile, we can see that the 

p-value of F-statistic is statistically significant at the 5% significant level. Overall, the 

joint explanatory power of all variables is significant.  

 

From the second variable, research and development personnel, has significant effect 

on dependent variable (the p-value is 0.0396), and the coefficient is -0.04983, which 
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means when 1% increases of research and development personnel, the gross output 

value of agriculture, forestry, animal husbandry and fishery will change negative 

approximately 0.05%. The estimation results of the second variable shows significant 

negative effect on agricultural productivity, and combined with 𝑥1 and 𝑥3, we might 

suspect the first hypothesis of positive spillover effects. And the above results also 

motivate me to divide model 1 into two sub-models, namely model 2 and model 3, 

and it is thus possible to test two hypotheses independently.  

 

The rest variables of this model present the improvement of technology in agricultural 

production process. The fourth independent variable is the total power of agricultural 

machinery, and it is significant to explain the agricultural productivity, the p-value is 

extremely significant at the 5% significance level. The coefficient is 0.1312 that 

means 1% increase in total power of agricultural will lead to 0.13% increase in 

agricultural productivity.  

 

The last independent variable is the consumption of chemical fertilizer, which has 

great significance on explaining dependent variable, and has relatively higher positive 

impact on dependent variable than other independent variables, the coefficient of this 

variable is around 0.5345, which illustrates that 1% increase of the consumption of 

chemical fertilizer brings 0.53% increase of gross output value of agriculture, forestry, 

animal husbandry and fishery. 

 

Model 2  

As mentioned above, since the estimation results of model 1 are not coinciding with 

the first hypothesis, it is necessary to test the two hypotheses independently. The 

model 2 is established to test the R&D effects (the first hypothesis). According to the 

estimation results on Table 4.3.3, I can tell that this model is also has strong 

goodness-of-fit because of high value of adjusted R-square equals 0.9713. And the 

p-value of F-statistic is also significance at the 5% significance level. 
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Two of three independent variables in this model are statistically insignificant, e.g. the 

p-value of 𝑥1 (ln(X1/GRP): R&D Expenditure/Gross Regional Products), and 𝑥2 

(ln(X2/P): R&D Personnel/Population) are 0.0658 and 0.6890. The last variable 𝑥3 

(ln(X3/P): Patents Granted/Population) is significant under 5% significance level, 

whereas this variable generates a negative effect on the agricultural productivity, for 

example, 1% increase of domestic patents granted leads to 0.08% decrease on the 

gross output value of agriculture, forestry, animal husbandry and fishery.  

 

Model 3 

The model 3 is illustrated on Table 4.4.3, and it demonstrates the improvement effects 

that is the second hypothesis. The goodness-of-fit of this model is also strong because 

of high value of adjusted R-square equals 0.9818. When it comes to specific variables 

in the model, there is also one independent variable 𝑥5(ln(X5/RP): Electricity 

Consumption/Rural Population) is insignificant (with p-value=0.608) under the 5% 

significance level, which means it has insignificant explanatory power of the model.  

 

The rest two variables are significant and have different effect level to dependent 

variable. For example, the p-value of both 𝑥4  (ln(X4/L): Agricultural 

Machinery/Cultivated Land Area) and 𝑥6 (ln(X6/L): Chemical Fertilizer/Cultivated 

Land Area) are extremely significance at the 5% significance level. The estimated 

coefficient for 𝑥4  (ln(X4/L): Agricultural Machinery/Cultivated Land Area) is 

0.1192, which indicates 0.12 increase of gross output value of agriculture, forestry, 

animal husbandry and fishery is caused by 1% increase of total power of agricultural 

machinery. The estimated coefficient of the consumption of chemical fertilizer in 

agricultural production process is 0.5529, which means 1% increase of consumption 

of chemical fertilizer will generate 0.55% increase of gross output value of agriculture, 

forestry, animal husbandry and fishery, and the impact is positive and relatively large.  

 

By comparing the SC (Schwarz criterion) value, we can see the model 3 generates the 

smallest SC value; meanwhile, model 3 has the highest value of F-statistic. So far, the 
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model 3 is considered as the most preferred model among all models. I might not 

reject the second hypothesis of improvement of techniques has positive spillover 

effects on agricultural productivity. However, the model 3 is not strong enough to 

make the second hypothesis hold unless I test the model specification. 

 

Model 4 

To deal with high level of insignificant in model 3, it is common to suspect the 

potential possibilities of existence of the multicollinearity. Firstly, I apply the very 

common method, namely the variance inflation factors (VIF). Based on common rule 

of thumb, when VIF is larger than 5, we consider the multicollinearity is serve. The 

basic of this indicator is higher VIF implies higher variance of the estimated 

coefficient, which equivalent to smaller t-statistic and higher p-value. In one word, 

higher VIF indicates higher severity of multicollinearity. From Table 4.5.1, the VIFs 

for model 3 are all much higher than 5, which indicate the sever multicollinearity. 

Meanwhile, the 𝑥5  (ln(X5/RP): Electricity Consumption/Rural Population) has 

insignificant positive impacts on the productivity of agriculture, I thus suspect the 𝑥5 

is the redundant variable and take the redundant variable test. The results of redundant 

variable test can be shown in Table 4.5.2, and the p-value of the test is statistically 

insignificant, I can then drop the redundant variable 𝑥5.  

 

In light of my second hypothesis, the rural electricity consumption is one of the 

components of the improvement of the techniques has positive spillover effects on 

agricultural productivity. In order to test this hypothesis completely, I modify the 

model 3 (without 𝑥5) by adding the quadratic term of 𝑥5 and to test whether this 

non-linear model performs better. I thus employ the omitted variables test, and the 

testing result is exhibited in Table 4.5.3. From the results we can see the p-value is a 

0.0165, which is significant at the 5% significance level, and I can conclude that the 

quadratic term of 𝑥5 should be included in model 3 (without 𝑥5). 

  

We can eventually derive a non-linear model from the model 3, and I denote this 
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non-linear the improvement effects model as model 4, and it can be expressed as   

Model 4: 𝑦𝑖𝑡 = 𝛽0 + 𝛽2𝑥4𝑖𝑡 + 𝛽4𝑥6𝑖𝑡+𝛽3𝑥5𝑖𝑡
2 + 𝜆𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡     

 

Similar with the previous three models, the model 4 should be estimated by fixed 

effect model. The redundant fixed effects tests and Hausman tests are applied, and 

from the testing results in Table 4.6.1 and Table 4.6.2. I can conclude that fixed effect 

model is selected at the 5% significance level just as previous cases.  

 

The model 4 is improved from the basic model 3, and it is aimed to remedy for the 

model misspecification. Based on the estimation results in Table 4.6.3, we can see that 

the non-linear improvement effect model still captures the variations in a higher level, 

e.g. the non-linear model yield similar level of goodness-of-fit. More specifically, all 

the variables are statistically significant at the 5% significance level; the 𝑥6 

(ln(X6/L): Chemical Fertilizer/Cultivated Land Area) generates the highest 

coefficients, which shows the consumption of chemical fertilizer effects the 

agricultural productivity more than another two variables. The impact of 𝑥4 

(ln(X4/L): Agricultural Machinery/Cultivated Land Area) to agricultural productivity 

increased slightly compared with model 3. It is worth to mention that the quadratic 

term of 𝑥5 (ln(X5/RP): Electricity Consumption/Rural Population), 𝑥52 has some 

small impacts on the agricultural productivity, for instance, 1% increase in the 

quadratic term of rural electricity consumption will lead to 0.0024% increase of 

agricultural productivity. 

 

Additionally, model 4 also generates the highest F-value that indicates highest level of 

overall performance of the model. Meanwhile, the Schwarz Criterion (SC) or Akaike 

information criterion (AIC) is smaller than other three models7, which indicates the 

nonlinear improvement effect model is the optimal model among all models. And we 

                                                        
7 In my empirical studies, the Schwarz Criterion (SC) is more preferable than the Akaike 

information criterion (AIC). Since we have relatively large sample, and SC gives more 

punishment for large sample. 
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cannot reject the second hypothesis of improvement of techniques has positive 

spillover effects on agricultural productivity. The estimation results of four models are 

shown as following table. It is worth to notice that Table 4.7 to Table 4.10 are the 

fixed effects matrices for model 1 to model 4, which consist of both cross-sectional 

effects and period (annual data) effects. From Table 4.7 to Table 4.10, I can tell that 

the effects to a specific region and a specific year, e.g. the fixed effect for Beijing in 

year 1992 from model 1 (Table 4.7) are -0.188.  

 

Table 4.1 Regression Models of Technology Spillover Effects on Agricultural 

Productivity 

Independent Variables Model 1 Model 2 Model 3 Model 4 

Intercept 8.94*** 9.19*** 9.79*** 9.64*** 

(0.34) (0.18) (0.26) (0.26) 

Log (R&D Expenditure/Gross Regional 

Products) 

-0.01 -0.04*   

(0.02) (0.02)   

Log (R&D Personnel/Population) -0.05** -0.01   

(0.02) (0.03)   

Log (Patents Granted/Population) -0.03* -0.08***   

(0.02) (0.02)   

Log (Agricultural Machinery/Cultivated Land 

Area) 

0.13***  0.12*** 0.13*** 

(0.03)  (0.03) (0.03) 

Log (Electricity Consumption/Rural Population) 0.03*  0.01  

(0.02)  (0.02)  

Log (Chemical Fertilizer/Cultivated Land Area) 0.53***  0.55*** 0.56*** 

(0.03)  (0.03) (0.03) 

Quadratic of Log (Electricity 

Consumption/Rural Population) 

   0.002** 

   (0.001) 

Fixed Effects 

(cross-sectional & period effect) 

Table 4.7 Table 4.8 Table 4.9 Table 4.10 

R2 0.98 0.97 0.98 0.98 

R̅2 0.98 0.97 0.98 0.98 

AIC -1.37 -0.89 -1.35 -1.36 

SC -0.98 -0.53 -0.98 -0.99 

F 650.18 421.89 672.31 678.53 

p-value 0 0 0 0 

NOTE: Coefficients of beta are in the first row, standard errors are in parenthesis. Asterisks *, **, and 

*** represent the 10%, 5% and 1% significant level respectively. Table 4.7, Table 4.8, Table 4.9, and 

Table 4.10 are showing in the Appendix. 
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5. Conclusion and Discussion 

5.1 Conclusion 

From the empirical studies above, I find that R&D has insignificant negative 

relationship with agricultural productivity, so I have to reject the first hypothesis. 

While, the improvement of techniques has significant positive spillover effects on 

agricultural productivity, so the second hypothesis is accepted. The analysis of the 

first hypothesis illustrates that only R&D personnel has significant effect on 

agricultural productivity but a negative one, and the other two variables: R&D 

intramural expenditure and number of granted patents, have little significance power 

even negative with agricultural productivity in model 1, and the first two variables 

have insignificant negative effects on the dependent variable and the left one variable 

has significant negative effects on the dependent variable in model 2. The second 

hypothesis is supported by the results of empirical analysis, with two variables 

significant and one insignificant in model 3 and three significant variables (including 

a quadratic term of 𝑥5) in model 4, and all variables have positive coefficients. All 

three elements: agricultural machinery, rural electricity consumption and use of 

chemical fertilizer, are positive with agricultural productivity, which means that 

improvement of techniques, such as machinery, electricity equipment and chemical 

fertilizer have positive effects on agricultural productivity, especially the first and the 

last factors, who have relatively high significant positive spillovers on agricultural 

productivity.  

 

Because of the difficulty on getting access to exact classification of R&D intramural 

expenditure and clarifying the details of R&D intramural expenditure, I hardly can 

draw a clear picture of how R&D intramural expenditure use and how much of it 

spend on agricultural industry. So the R&D intramural expenditure and personnel 

used in this paper are the general ones contain all industries. Moreover, the number of 

patents is a variable related to R&D and also cannot separate patents on agriculture 
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from other industries. Thus, from the empirical results, I can conclude that R&D has 

little and negative spillovers on agricultural productivity. The reasons might draw on 

public R&D spending is mainly concern about industry sector and business sector, 

and financed R&D is used to affect the behavior of firms (Czarnitzki and Hussinger 

2004). In this circumstance, R&D contribution to the growth of China’s agriculture 

sector is small, but technological contribution to agricultural productivity can be 

coordinated with labor, capital and energy by changing the agricultural development 

model (Lin and Fei 2015). The R&D spillover effects on agricultural productivity 

could be an indirect one because the outcomes of R&D need to be transferred to real 

productivity, and it takes a long period and complicated procedure. And the negative 

and insignificant effects from R&D to agricultural productivity also shows that R&D 

is not the most effective way to increase agricultural productivity, so investment of 

R&D might not result in great improvement of agricultural productivity.  

 

Compared with R&D, improvement of techniques does have significant positive 

spillovers on agricultural productivity, from where I can conclude that spillover 

effects from the direct techniques improvements on agricultural productivity are 

significant and positive. The improvements of productive techniques directly affect 

agricultural productivity through productive process and can be lead to straight 

increase of agricultural productivity, e.g. the improvement of agricultural machinery 

and widely use of agricultural machines can increase the output of agriculture and 

improve agricultural productivity. Thus, focusing on improving advanced techniques 

of agricultural production is better than putting much on R&D in stimulating 

agricultural productivity.  

 

5.2 Discussion 

The previous research paid more attention on technology spillovers in firm-level 

(Eden et al. 1997, Skully and Rakotoarisoa 2013, etc.) and from FDI (Cheung and Lin 
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2003, Fan 2002, etc.), and most technology spillover effects are studies within 

industry sector (Xia and Liu 2011, Hu et al. 2005, etc.), there are few research is 

totally focusing on technology spillover effects on agricultural productivity. In 

addition, technology spillover effects to agriculture are mainly about technology 

(knowledge) transformation (Laborda et al. 2011, Nadiri 1993, Huang and Rozelle 

1996, etc.) and agricultural R&D investment (Alston 2002, Griliches 1991, Wu 2010, 

etc.), few studies are exploring the R&D spillovers and improvement of techniques 

spillovers. So, this paper supplement a scope of technology spillover effects by 

studying R&D effects and improvement techniques effects on agricultural 

productivity in China. And the empirical findings give an interesting and fresh result 

that R&D has insignificant negative effects on agricultural productivity. 

 

Based on empirical results, the implications for policy are that government could put 

more investment on agricultural productive techniques rather than R&D, since the 

former one is more efficient and can generate much more positive spillover effects on 

agricultural productivity to promote agricultural growth. And in China, both central 

government and local government are intend to strengthen agriculture as foundation 

of all industries and guarantee its sustainable growth. Technology is an irreplaceable 

factor in promoting agriculture sustainable development and keep it growing in an 

effective way. R&D investment is a pathway to encourage the second industry than 

the primary industry, and there are not enough R&D achievements transferred into 

real productivity in agricultural sector. Contrarily, if more advanced techniques invest 

in agricultural productive process, it would be easier to improve agricultural 

productivity and ensure agricultural continuous growth. Thus, it might be better to put 

more investment in improving productive techniques than enhancing R&D to promote 

agriculture productivity. 
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7. Appendix 

Table 4.2.1 Redundant Fixed Effects Tests of Model 1 

Effects Test Statistic   d.f.  Prob.  

Cross-section F 145.3513 -29,603 0.0000 

Cross-section Chi-square 1371.636 29 0.0000 

Period F  55.29563 -21,603 0.0000 

Period Chi-square 708.5365 21 0.0000 

Cross-Section/Period F 116.4974 -50,603 0.0000 

Cross-Section/Period Chi-square 1561.877 50 0.0000 

 

 

Table 4.2.2 Correlated Random Effects - Hausman Test of Model 1 

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.  

Cross-section random 36.68443 6 0.0000 

Period random 308.0919 6 0.0000 

 

 

Table 4.2.3 LS Regression Results of Model 1 

Dependent Variable: LNY 

Method: Panel Least Squares 

Sample: 1992 2013 

Periods included: 22 

Cross-sections included: 30 

Total panel (balanced) observations: 660 

Variable Coefficient Std. Error t-Statistic Prob. 

C 8.943805 0.337152 26.52748 0.0000 

LNX1 -0.00919 0.018588 -0.49419 0.6214 

LNX2 -0.04983 0.024165 -2.0621 0.0396 

LNX3 -0.02631 0.015338 -1.7154 0.0868 

LNX4 0.131206 0.026834 4.889581 0.0000 

LNX5 0.030569 0.016195 1.887553 0.0596 

LNX6 0.534477 0.034721 15.39363 0.0000 

Effects Specification 

Cross-section fixed (dummy variables) 

Period fixed (dummy variables) 

R-squared 0.983709     Mean dependent var 10.25845 

Adjusted R-squared 0.982196     S.D. dependent var 0.879003 

S.E. of regression 0.117288     Akaike info criterion -1.365958 

Sum squared resid 8.2952     Schwarz criterion -0.977992 

Log likelihood 507.7663     Hannan-Quinn criter. -1.215581 

F-statistic 650.182     Durbin-Watson stat 0.513253 

Prob(F-statistic) 0.0000  
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Table 4.3.1 Redundant Fixed Effects Tests of Model 2 

Effects Test Statistic   d.f.  Prob.  

Cross-section F 260.0623 -29,606 0.0000 

Cross-section Chi-square 1715.092 29 0.0000 

Period F 123.2187 -21,606 0.0000 

Period Chi-square 1096.934 21 0.0000 

Cross-Section/Period F 182.574 -50,606 0.0000 

Cross-Section/Period Chi-square 1832.538 50 0.0000 

 

 

Table 4.3.2 Correlated Random Effects - Hausman Test of Model 2 

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.  

Cross-section random 49.51709 3 0.0000 

Period random 206.8563 3 0.0000 

 

 

Table 4.3.3 LS Regression Results of Model 2 

Dependent Variable: LNY 

Method: Panel Least Squares 

Sample: 1992 2013 

Periods included: 22 

Cross-sections included: 30 

Total panel (balanced) observations: 660 

Variable Coefficient Std. Error t-Statistic Prob.   

C 9.189951 0.177291 51.83539 0.0000 

LNX1 -0.04323 0.023459 -1.84289 0.0658 

LNX2 -0.012 0.029954 -0.40043 0.6890 

LNX3 -0.0842 0.018836 -4.47035 0.0000 

Effects Specification 

Cross-section fixed (dummy variables) 

Period fixed (dummy variables) 

R-squared 0.973613     Mean dependent var 10.25845 

Adjusted R-squared 0.971306     S.D. dependent var 0.879003 

S.E. of regression 0.148898     Akaike info criterion -0.89283 

Sum squared resid 13.43543     Schwarz criterion -0.52528 

Log likelihood 348.6343     Hannan-Quinn criter. -0.75037 

F-statistic 421.8886     Durbin-Watson stat 0.431533 

Prob(F-statistic) 0.0000  
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Table 4.4.1 Redundant Fixed Effects Tests of Model 3 

Effects Test Statistic   d.f.  Prob.  

Cross-section F 170.0188 -29,606 0.0000 

Cross-section Chi-square 1460.082 29 0.0000 

Period F 65.51505 -21,606 0.0000 

Period Chi-square 782.0267 21 0.0000 

Cross-Section/Period F 177.7558 -50,606 0.0000 

Cross-Section/Period Chi-square 1815.999 50 0.0000 

 

 

Table 4.4.2 Correlated Random Effects - Hausman Test of Model 3 

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.  

Cross-section random 11.74609 3 0.0083 

Period random 326.1795 3 0.0000 

 

 

Table 4.4.3 LS Regression Results of Model 3 

Dependent Variable: LNY 

Method: Panel Least Squares 

Sample: 1992 2013 

Periods included: 22 

Cross-sections included: 30 

Total panel (balanced) observations: 660 

Variable Coefficient Std. Error t-Statistic Prob.   

C 9.790489 0.263242 37.19193 0.0000 

LNX4 0.119231 0.026936 4.426414 0.0000 

LNX5 0.007861 0.015317 0.513221 0.6080 

LNX6 0.552897 0.03434 16.10069 0.0000 

Effects Specification 

Cross-section fixed (dummy variables) 

Period fixed (dummy variables) 

R-squared 0.983277     Mean dependent var 10.25845 

Adjusted R-squared 0.981815     S.D. dependent var 0.879003 

S.E. of regression 0.118535     Akaike info criterion -1.34894 

Sum squared resid 8.514668     Schwarz criterion -0.98139 

Log likelihood 499.1489     Hannan-Quinn criter. -1.20647 

F-statistic 672.3126     Durbin-Watson stat 0.498009 

Prob(F-statistic) 0.0000  
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Table 4.5.1 VIF Testing for Multicollinearity of Model 3 

Variable Coefficient Variance VIF 

LNX4 0.000726 13.01829 

LNX5 0.000235 18.0138 

LNX6 0.001179 20.14586 

 

 

Table 4.5.2 Redundant Variables Test of Model 3 

Specification: LNY C LNX4 LNX6 LNX5 

Redundant Variables: LNX5 

 Value df Probability 

t-statistic 0.513221 606 0.608 

F-statistic 0.263395 (1, 606) 0.608 

Likelihood ratio 0.286804 1 0.5923 

 

 

Table 4.5.3 Omitted Variables Test of Model 3 

Specification: LNY C LNX4 LNX6 

Omitted Variables: (LNX5)^2 

 Value df Probability 

t-statistic 2.403762 606 0.0165 

F-statistic 5.77807 (1, 606) 0.0165 

Likelihood ratio 6.263136 1 0.0123 
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Table 4.6.1 Redundant Fixed Effects Tests of Model 4 

Effects Test Statistic   d.f.  Prob.  

Cross-section F 163.7667 -29,606 0.0000 

Cross-section Chi-square 1438.107 29 0.0000 

Period F 70.19587 -21,606 0.0000 

Period Chi-square 813.9765 21 0.0000 

Cross-Section/Period F 169.4337 -50,606 0.0000 

Cross-Section/Period Chi-square 1786.418 50 0.0000 

 

 

Table 4.6.2 Correlated Random Effects - Hausman Test of Model 4 

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.  

Cross-section random 10.056 3 0.0181 

Period random 257.6797 3 0.0000 

 

 

Table 4.6.3 LS Regression Results of Model 4 

Dependent Variable: LNY 

Method: Panel Least Squares 

Sample: 1992 2013 

Periods included: 22 

Cross-sections included: 30 

Total panel (balanced) observations: 660 

Variable Coefficient Std. Error t-Statistic Prob.   

C 9.638378 0.256757 37.53896  0.0000 

LNX4 0.134358 0.027547 4.877459  0.0000 

  (LNX5)^2 0.002443 0.001017 2.403762 0.0165 

LNX6 0.564498 0.033812 16.69529 0.0000 

Effects Specification 

Cross-section fixed (dummy variables) 

Period fixed (dummy variables) 

R-squared 0.983428     Mean dependent var 10.25845 

Adjusted R-squared 0.981979     S.D. dependent var 0.879003 

S.E. of regression 0.118     Akaike info criterion -1.35799 

Sum squared resid 8.437915     Schwarz criterion -0.99044 

Log likelihood 502.1371     Hannan-Quinn criter. -1.21553 

F-statistic 678.5321     Durbin-Watson stat 0.511087 

Prob(F-statistic) 0.0000  
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Table 4.7 Fixed Effects of Model 1 

 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Beijing -0.188 -0.023 0.279 0.477 0.553 0.575 0.559 0.452 0.482 0.508 0.546 0.624 0.753 0.815 0.860 0.997 1.148 1.152 1.279 1.425 1.511 1.589 

Tianjin -0.669 -0.505 -0.202 -0.004 0.072 0.094 0.078 -0.029 0.001 0.027 0.064 0.143 0.271 0.334 0.379 0.515 0.667 0.670 0.798 0.944 1.030 1.108 

Hebei -1.132 -0.968 -0.665 -0.468 -0.392 -0.370 -0.386 -0.493 -0.463 -0.437 -0.399 -0.321 -0.192 -0.130 -0.084 0.052 0.203 0.207 0.334 0.480 0.566 0.645 

Shanxi -1.665 -1.501 -1.198 -1.001 -0.925 -0.903 -0.919 -1.026 -0.996 -0.969 -0.932 -0.854 -0.725 -0.663 -0.617 -0.481 -0.329 -0.326 -0.199 -0.053 0.033 0.112 

Inner Mongolia -1.327 -1.163 -0.860 -0.663 -0.587 -0.565 -0.581 -0.688 -0.658 -0.632 -0.594 -0.516 -0.387 -0.325 -0.279 -0.143 0.008 0.012 0.139 0.285 0.371 0.450 

Liaoning -0.607 -0.443 -0.140 0.058 0.133 0.155 0.139 0.032 0.062 0.089 0.126 0.204 0.333 0.395 0.441 0.577 0.729 0.732 0.859 1.005 1.092 1.170 

Jilin -1.176 -1.012 -0.709 -0.512 -0.436 -0.414 -0.430 -0.537 -0.507 -0.480 -0.443 -0.365 -0.236 -0.174 -0.128 0.008 0.160 0.163 0.290 0.436 0.523 0.601 

Heilongjiang -1.313 -1.149 -0.846 -0.648 -0.572 -0.550 -0.566 -0.673 -0.643 -0.617 -0.580 -0.501 -0.373 -0.311 -0.265 -0.129 0.023 0.026 0.154 0.299 0.386 0.464 

Shanghai -0.134 0.031 0.333 0.531 0.607 0.629 0.613 0.506 0.536 0.562 0.600 0.678 0.807 0.869 0.914 1.051 1.202 1.206 1.333 1.479 1.565 1.643 

Jiangsu -0.767 -0.603 -0.300 -0.103 -0.027 -0.005 -0.021 -0.128 -0.098 -0.071 -0.034 0.044 0.173 0.235 0.281 0.417 0.569 0.572 0.699 0.845 0.931 1.010 

Zhejiang -0.371 -0.207 0.096 0.294 0.370 0.392 0.376 0.269 0.299 0.325 0.362 0.440 0.569 0.631 0.677 0.813 0.965 0.968 1.095 1.241 1.328 1.406 

Anhui -1.182 -1.018 -0.715 -0.518 -0.442 -0.420 -0.436 -0.543 -0.513 -0.487 -0.449 -0.371 -0.242 -0.180 -0.134 0.002 0.153 0.157 0.284 0.430 0.516 0.595 

Fujian -0.326 -0.161 0.141 0.339 0.415 0.437 0.421 0.314 0.344 0.370 0.408 0.486 0.615 0.677 0.722 0.859 1.010 1.013 1.141 1.287 1.373 1.451 

Jiangxi -0.857 -0.693 -0.390 -0.193 -0.117 -0.095 -0.111 -0.218 -0.188 -0.161 -0.124 -0.046 0.083 0.145 0.191 0.327 0.479 0.482 0.609 0.755 0.841 0.920 

Shandong -0.898 -0.734 -0.431 -0.234 -0.158 -0.136 -0.152 -0.259 -0.229 -0.203 -0.165 -0.087 0.042 0.104 0.150 0.286 0.437 0.441 0.568 0.714 0.800 0.879 

Henan -1.188 -1.024 -0.721 -0.524 -0.448 -0.426 -0.442 -0.549 -0.519 -0.493 -0.455 -0.377 -0.248 -0.186 -0.141 -0.004 0.147 0.151 0.278 0.424 0.510 0.588 

Hubei -0.960 -0.796 -0.493 -0.295 -0.219 -0.197 -0.213 -0.320 -0.290 -0.264 -0.227 -0.148 -0.020 0.042 0.088 0.224 0.376 0.379 0.507 0.652 0.739 0.817 

Hunan -0.717 -0.553 -0.250 -0.052 0.024 0.046 0.030 -0.077 -0.047 -0.021 0.016 0.095 0.223 0.285 0.331 0.467 0.619 0.622 0.750 0.895 0.982 1.060 

Guangdong -0.385 -0.221 0.082 0.279 0.355 0.377 0.361 0.254 0.284 0.311 0.348 0.426 0.555 0.617 0.663 0.799 0.951 0.954 1.081 1.227 1.313 1.392 

Guangxi -0.967 -0.803 -0.500 -0.302 -0.226 -0.204 -0.221 -0.327 -0.297 -0.271 -0.234 -0.156 -0.027 0.035 0.081 0.217 0.369 0.372 0.499 0.645 0.732 0.810 

Hainan -0.353 -0.189 0.114 0.312 0.387 0.409 0.393 0.286 0.316 0.343 0.380 0.458 0.587 0.649 0.695 0.831 0.983 0.986 1.113 1.259 1.346 1.424 

Sichuan -0.768 -0.604 -0.301 -0.104 -0.028 -0.006 -0.022 -0.129 -0.099 -0.072 -0.035 0.043 0.172 0.234 0.280 0.416 0.568 0.571 0.698 0.844 0.930 1.009 

Guizhou -1.224 -1.060 -0.757 -0.559 -0.483 -0.461 -0.477 -0.584 -0.554 -0.528 -0.491 -0.413 -0.284 -0.222 -0.176 -0.040 0.112 0.115 0.243 0.388 0.475 0.553 
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Yunnan -1.206 -1.042 -0.739 -0.542 -0.466 -0.444 -0.460 -0.567 -0.537 -0.510 -0.473 -0.395 -0.266 -0.204 -0.158 -0.022 0.130 0.133 0.260 0.406 0.493 0.571 

Tibet -0.809 -0.644 -0.342 -0.144 -0.068 -0.046 -0.062 -0.169 -0.139 -0.113 -0.075 0.003 0.131 0.194 0.239 0.376 0.527 0.530 0.658 0.804 0.890 0.968 

Shaanxi -1.383 -1.219 -0.916 -0.718 -0.642 -0.620 -0.636 -0.743 -0.713 -0.687 -0.650 -0.571 -0.443 -0.380 -0.335 -0.199 -0.047 -0.044 0.084 0.230 0.316 0.394 

Gansu -1.440 -1.276 -0.973 -0.775 -0.700 -0.677 -0.694 -0.801 -0.771 -0.744 -0.707 -0.629 -0.500 -0.438 -0.392 -0.256 -0.104 -0.101 0.026 0.172 0.259 0.337 

Qinghai -1.049 -0.885 -0.582 -0.385 -0.309 -0.287 -0.303 -0.410 -0.380 -0.353 -0.316 -0.238 -0.109 -0.047 -0.001 0.135 0.287 0.290 0.417 0.563 0.649 0.728 

Ningxia -1.699 -1.535 -1.232 -1.035 -0.959 -0.937 -0.953 -1.060 -1.030 -1.003 -0.966 -0.888 -0.759 -0.697 -0.651 -0.515 -0.363 -0.360 -0.233 -0.087 -0.001 0.078 

Xinjiang -1.191 -1.027 -0.724 -0.526 -0.450 -0.428 -0.445 -0.551 -0.521 -0.495 -0.458 -0.380 -0.251 -0.189 -0.143 -0.007 0.145 0.148 0.275 0.421 0.508 0.586 
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Table 4.8 Fixed Effects of Model 2 

 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Beijing -0.019 0.222 0.540 0.795 0.916 0.969 1.003 0.717 0.762 0.810 0.863 0.976 1.150 1.241 1.336 1.572 1.754 1.805 1.966 2.140 2.259 2.360 

Tianjin -0.649 -0.408 -0.090 0.165 0.286 0.339 0.373 0.087 0.132 0.180 0.233 0.346 0.520 0.611 0.706 0.942 1.124 1.175 1.337 1.510 1.629 1.730 

Hebei -1.198 -0.957 -0.639 -0.384 -0.262 -0.209 -0.176 -0.462 -0.417 -0.369 -0.315 -0.203 -0.029 0.062 0.157 0.393 0.575 0.627 0.788 0.961 1.080 1.182 

Shanxi -2.207 -1.966 -1.648 -1.393 -1.272 -1.219 -1.185 -1.471 -1.426 -1.378 -1.325 -1.212 -1.038 -0.947 -0.852 -0.616 -0.434 -0.383 -0.221 -0.048 0.071 0.172 

Inner Mongolia -2.238 -1.998 -1.680 -1.425 -1.303 -1.250 -1.217 -1.503 -1.458 -1.410 -1.356 -1.244 -1.069 -0.979 -0.883 -0.648 -0.466 -0.414 -0.253 -0.080 0.039 0.141 

Liaoning -0.917 -0.676 -0.359 -0.103 0.018 0.071 0.104 -0.182 -0.137 -0.089 -0.035 0.078 0.252 0.343 0.438 0.674 0.856 0.907 1.068 1.242 1.361 1.462 

Jilin -1.695 -1.454 -1.136 -0.881 -0.760 -0.707 -0.673 -0.959 -0.914 -0.866 -0.813 -0.700 -0.526 -0.435 -0.340 -0.104 0.078 0.129 0.291 0.464 0.583 0.684 

Heilongjiang -2.226 -1.986 -1.668 -1.413 -1.291 -1.238 -1.205 -1.491 -1.446 -1.398 -1.344 -1.232 -1.057 -0.967 -0.871 -0.636 -0.454 -0.402 -0.241 -0.068 0.051 0.153 

Shanghai -0.013 0.228 0.546 0.801 0.922 0.975 1.009 0.723 0.768 0.816 0.869 0.982 1.156 1.247 1.342 1.578 1.760 1.811 1.972 2.146 2.265 2.366 

Jiangsu -0.558 -0.318 0.000 0.255 0.377 0.430 0.463 0.177 0.222 0.270 0.324 0.436 0.611 0.701 0.797 1.032 1.214 1.266 1.427 1.600 1.719 1.821 

Zhejiang -0.237 0.004 0.322 0.577 0.698 0.751 0.785 0.499 0.544 0.591 0.645 0.758 0.932 1.023 1.118 1.354 1.536 1.587 1.748 1.922 2.041 2.142 

Anhui -1.270 -1.029 -0.711 -0.456 -0.335 -0.282 -0.248 -0.534 -0.489 -0.442 -0.388 -0.275 -0.101 -0.010 0.085 0.321 0.503 0.554 0.715 0.889 1.008 1.109 

Fujian -0.014 0.226 0.544 0.799 0.921 0.974 1.007 0.721 0.766 0.814 0.868 0.981 1.155 1.246 1.341 1.577 1.758 1.810 1.971 2.144 2.264 2.365 

Jiangxi -1.043 -0.802 -0.484 -0.229 -0.107 -0.054 -0.021 -0.307 -0.262 -0.214 -0.161 -0.048 0.126 0.217 0.312 0.548 0.730 0.782 0.943 1.116 1.235 1.337 

Shandong -0.762 -0.522 -0.204 0.051 0.173 0.226 0.259 -0.027 0.018 0.066 0.120 0.232 0.407 0.497 0.593 0.828 1.010 1.062 1.223 1.396 1.515 1.617 

Henan -1.133 -0.892 -0.574 -0.319 -0.198 -0.145 -0.111 -0.397 -0.352 -0.304 -0.251 -0.138 0.036 0.127 0.222 0.458 0.640 0.691 0.853 1.026 1.145 1.246 

Hubei -0.937 -0.696 -0.379 -0.123 -0.002 0.051 0.085 -0.202 -0.157 -0.109 -0.055 0.058 0.232 0.323 0.418 0.654 0.836 0.887 1.048 1.222 1.341 1.442 

Hunan -0.725 -0.484 -0.166 0.089 0.210 0.263 0.297 0.011 0.056 0.103 0.157 0.270 0.444 0.535 0.630 0.866 1.048 1.099 1.260 1.434 1.553 1.654 

Guangdong -0.118 0.123 0.441 0.696 0.818 0.871 0.904 0.618 0.663 0.711 0.764 0.877 1.051 1.142 1.237 1.473 1.655 1.706 1.868 2.041 2.160 2.262 

Guangxi -1.147 -0.907 -0.589 -0.334 -0.212 -0.159 -0.126 -0.412 -0.367 -0.319 -0.265 -0.153 0.022 0.112 0.208 0.443 0.625 0.677 0.838 1.011 1.130 1.232 

Hainan -0.569 -0.328 -0.011 0.245 0.366 0.419 0.452 0.166 0.211 0.259 0.313 0.426 0.600 0.691 0.786 1.022 1.204 1.255 1.416 1.590 1.709 1.810 

Sichuan -1.061 -0.820 -0.503 -0.247 -0.126 -0.073 -0.039 -0.326 -0.281 -0.233 -0.179 -0.066 0.108 0.199 0.294 0.530 0.712 0.763 0.924 1.098 1.217 1.318 

Guizhou -1.954 -1.713 -1.396 -1.141 -1.019 -0.966 -0.933 -1.219 -1.174 -1.126 -1.072 -0.959 -0.785 -0.694 -0.599 -0.363 -0.182 -0.130 0.031 0.204 0.324 0.425 
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Yunnan -1.746 -1.506 -1.188 -0.933 -0.811 -0.758 -0.725 -1.011 -0.966 -0.918 -0.864 -0.752 -0.577 -0.486 -0.391 -0.156 0.026 0.078 0.239 0.412 0.531 0.633 

Tibet -1.896 -1.655 -1.338 -1.082 -0.961 -0.908 -0.875 -1.161 -1.116 -1.068 -1.014 -0.901 -0.727 -0.636 -0.541 -0.305 -0.123 -0.072 0.089 0.262 0.382 0.483 

Shaanxi -1.715 -1.474 -1.157 -0.901 -0.780 -0.727 -0.694 -0.980 -0.935 -0.887 -0.833 -0.720 -0.546 -0.455 -0.360 -0.124 0.058 0.109 0.270 0.444 0.563 0.664 

Gansu -2.273 -2.032 -1.715 -1.459 -1.338 -1.285 -1.252 -1.538 -1.493 -1.445 -1.391 -1.278 -1.104 -1.013 -0.918 -0.682 -0.500 -0.449 -0.288 -0.114 0.005 0.106 

Qinghai -1.992 -1.751 -1.434 -1.178 -1.057 -1.004 -0.970 -1.257 -1.212 -1.164 -1.110 -0.997 -0.823 -0.732 -0.637 -0.401 -0.219 -0.168 -0.007 0.167 0.286 0.387 

Ningxia -2.198 -1.957 -1.640 -1.384 -1.263 -1.210 -1.176 -1.463 -1.418 -1.370 -1.316 -1.203 -1.029 -0.938 -0.843 -0.607 -0.425 -0.374 -0.213 -0.039 0.080 0.181 

Xinjiang -1.696 -1.455 -1.137 -0.882 -0.760 -0.707 -0.674 -0.960 -0.915 -0.867 -0.813 -0.701 -0.527 -0.436 -0.341 -0.105 0.077 0.129 0.290 0.463 0.582 0.684 
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Table 4.9 Fixed Effects of Model 3 

 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Beijing -0.311 -0.165 0.149 0.349 0.432 0.452 0.430 0.317 0.329 0.359 0.397 0.471 0.601 0.657 0.699 0.828 0.975 1.004 1.119 1.258 1.335 1.407 

Tianjin -0.708 -0.562 -0.248 -0.047 0.035 0.055 0.034 -0.079 -0.068 -0.038 0.000 0.074 0.204 0.260 0.302 0.431 0.578 0.607 0.722 0.861 0.938 1.010 

Hebei -1.057 -0.911 -0.597 -0.397 -0.314 -0.294 -0.316 -0.429 -0.417 -0.387 -0.349 -0.275 -0.145 -0.089 -0.047 0.082 0.229 0.258 0.373 0.511 0.589 0.661 

Shanxi -1.618 -1.471 -1.158 -0.957 -0.875 -0.854 -0.876 -0.989 -0.978 -0.948 -0.909 -0.836 -0.706 -0.650 -0.607 -0.478 -0.332 -0.303 -0.188 -0.049 0.029 0.101 

Inner Mongolia -1.258 -1.112 -0.799 -0.598 -0.516 -0.495 -0.517 -0.630 -0.619 -0.589 -0.550 -0.477 -0.346 -0.290 -0.248 -0.119 0.027 0.056 0.171 0.310 0.388 0.460 

Liaoning -0.607 -0.461 -0.148 0.053 0.136 0.156 0.134 0.021 0.032 0.062 0.101 0.174 0.305 0.361 0.403 0.532 0.678 0.707 0.822 0.961 1.039 1.111 

Jilin -1.172 -1.025 -0.712 -0.511 -0.429 -0.408 -0.430 -0.543 -0.532 -0.502 -0.463 -0.390 -0.260 -0.204 -0.161 -0.032 0.114 0.143 0.258 0.397 0.475 0.547 

Heilongjiang -1.297 -1.150 -0.837 -0.636 -0.554 -0.533 -0.555 -0.668 -0.657 -0.627 -0.588 -0.515 -0.385 -0.329 -0.286 -0.157 -0.011 0.018 0.133 0.272 0.350 0.422 

Shanghai -0.197 -0.050 0.263 0.464 0.546 0.567 0.545 0.432 0.443 0.473 0.512 0.585 0.715 0.771 0.814 0.943 1.089 1.118 1.233 1.372 1.450 1.522 

Jiangsu -0.778 -0.632 -0.318 -0.118 -0.035 -0.015 -0.037 -0.150 -0.138 -0.108 -0.070 0.004 0.134 0.190 0.232 0.361 0.508 0.537 0.652 0.790 0.868 0.940 

Zhejiang -0.366 -0.220 0.094 0.294 0.377 0.397 0.375 0.262 0.274 0.304 0.342 0.416 0.546 0.602 0.644 0.773 0.919 0.949 1.063 1.202 1.280 1.352 

Anhui -1.142 -0.996 -0.682 -0.481 -0.399 -0.379 -0.401 -0.513 -0.502 -0.472 -0.434 -0.360 -0.230 -0.174 -0.132 -0.003 0.144 0.173 0.288 0.427 0.504 0.576 

Fujian -0.303 -0.157 0.157 0.358 0.440 0.461 0.439 0.326 0.337 0.367 0.406 0.479 0.609 0.665 0.708 0.836 0.983 1.012 1.127 1.266 1.344 1.415 

Jiangxi -0.805 -0.658 -0.345 -0.144 -0.062 -0.041 -0.063 -0.176 -0.165 -0.135 -0.096 -0.023 0.107 0.163 0.206 0.335 0.481 0.510 0.625 0.764 0.842 0.914 

Shandong -0.886 -0.740 -0.426 -0.226 -0.143 -0.123 -0.145 -0.258 -0.246 -0.216 -0.178 -0.104 0.026 0.082 0.124 0.253 0.400 0.429 0.544 0.682 0.760 0.832 

Henan -1.138 -0.992 -0.678 -0.478 -0.395 -0.375 -0.397 -0.510 -0.498 -0.468 -0.430 -0.356 -0.226 -0.170 -0.128 0.001 0.148 0.177 0.292 0.431 0.508 0.580 

Hubei -0.960 -0.814 -0.500 -0.299 -0.217 -0.196 -0.218 -0.331 -0.320 -0.290 -0.251 -0.178 -0.048 0.008 0.051 0.179 0.326 0.355 0.470 0.609 0.687 0.758 

Hunan -0.689 -0.542 -0.229 -0.028 0.054 0.075 0.053 -0.060 -0.049 -0.019 0.020 0.093 0.223 0.279 0.322 0.451 0.597 0.626 0.741 0.880 0.958 1.030 

Guangdong -0.389 -0.243 0.071 0.272 0.354 0.375 0.353 0.240 0.251 0.281 0.320 0.393 0.523 0.579 0.622 0.751 0.897 0.926 1.041 1.180 1.258 1.330 

Guangxi -0.908 -0.761 -0.448 -0.247 -0.165 -0.144 -0.166 -0.279 -0.268 -0.238 -0.199 -0.126 0.005 0.061 0.103 0.232 0.378 0.407 0.522 0.661 0.739 0.811 

Hainan -0.289 -0.143 0.171 0.372 0.454 0.475 0.453 0.340 0.351 0.381 0.420 0.493 0.623 0.679 0.722 0.850 0.997 1.026 1.141 1.280 1.357 1.429 

Sichuan -0.761 -0.615 -0.301 -0.101 -0.018 0.002 -0.020 -0.133 -0.121 -0.091 -0.053 0.021 0.151 0.207 0.249 0.378 0.525 0.554 0.669 0.808 0.885 0.957 

Guizhou -1.156 -1.009 -0.696 -0.495 -0.413 -0.392 -0.414 -0.527 -0.516 -0.486 -0.447 -0.374 -0.244 -0.188 -0.145 -0.016 0.130 0.159 0.274 0.413 0.491 0.563 
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Yunnan -1.139 -0.992 -0.679 -0.478 -0.396 -0.375 -0.397 -0.510 -0.499 -0.469 -0.430 -0.357 -0.226 -0.171 -0.128 0.001 0.147 0.176 0.291 0.430 0.508 0.580 

Tibet -0.686 -0.540 -0.226 -0.026 0.057 0.077 0.055 -0.058 -0.046 -0.016 0.022 0.096 0.226 0.282 0.324 0.453 0.599 0.628 0.743 0.882 0.960 1.032 

Shaanxi -1.397 -1.251 -0.937 -0.736 -0.654 -0.634 -0.656 -0.768 -0.757 -0.727 -0.689 -0.615 -0.485 -0.429 -0.387 -0.258 -0.111 -0.082 0.033 0.172 0.249 0.321 

Gansu -1.390 -1.244 -0.930 -0.730 -0.647 -0.627 -0.649 -0.762 -0.750 -0.720 -0.682 -0.608 -0.478 -0.422 -0.380 -0.251 -0.105 -0.076 0.039 0.178 0.256 0.328 

Qinghai -0.999 -0.852 -0.539 -0.338 -0.256 -0.235 -0.257 -0.370 -0.359 -0.329 -0.290 -0.217 -0.087 -0.031 0.012 0.141 0.287 0.316 0.431 0.570 0.648 0.720 

Ningxia -1.657 -1.510 -1.197 -0.996 -0.914 -0.893 -0.915 -1.028 -1.017 -0.987 -0.948 -0.875 -0.745 -0.689 -0.646 -0.517 -0.371 -0.342 -0.227 -0.088 -0.010 0.062 

Xinjiang -1.125 -0.979 -0.665 -0.465 -0.382 -0.362 -0.384 -0.497 -0.485 -0.455 -0.417 -0.343 -0.213 -0.157 -0.115 0.014 0.160 0.189 0.304 0.443 0.521 0.593 
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Table 4.10 Fixed Effects of Model 4 

 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Beijing -0.327 -0.184 0.127 0.323 0.402 0.421 0.397 0.291 0.300 0.328 0.364 0.435 0.562 0.615 0.648 0.771 0.915 0.937 1.053 1.189 1.262 1.331 

Tianjin -0.729 -0.585 -0.275 -0.079 0.000 0.019 -0.005 -0.111 -0.102 -0.074 -0.037 0.034 0.160 0.213 0.247 0.370 0.514 0.535 0.652 0.787 0.860 0.930 

Hebei -1.056 -0.912 -0.602 -0.406 -0.327 -0.308 -0.332 -0.438 -0.429 -0.401 -0.364 -0.293 -0.167 -0.114 -0.080 0.043 0.187 0.208 0.325 0.460 0.533 0.602 

Shanxi -1.584 -1.440 -1.130 -0.934 -0.855 -0.836 -0.860 -0.966 -0.956 -0.928 -0.892 -0.821 -0.695 -0.642 -0.608 -0.485 -0.341 -0.320 -0.203 -0.068 0.005 0.075 

Inner Mongolia -1.203 -1.059 -0.749 -0.553 -0.474 -0.455 -0.478 -0.585 -0.575 -0.547 -0.511 -0.440 -0.314 -0.261 -0.227 -0.104 0.040 0.061 0.178 0.313 0.386 0.456 

Liaoning -0.597 -0.453 -0.143 0.053 0.132 0.151 0.127 0.021 0.031 0.059 0.095 0.166 0.292 0.345 0.379 0.502 0.646 0.667 0.784 0.919 0.992 1.062 

Jilin -1.123 -0.979 -0.669 -0.473 -0.394 -0.375 -0.399 -0.505 -0.495 -0.468 -0.431 -0.360 -0.234 -0.181 -0.147 -0.024 0.120 0.141 0.258 0.393 0.466 0.536 

Heilongjiang -1.235 -1.092 -0.781 -0.586 -0.506 -0.487 -0.511 -0.617 -0.608 -0.580 -0.544 -0.473 -0.347 -0.293 -0.260 -0.137 0.007 0.029 0.145 0.281 0.354 0.423 

Shanghai -0.240 -0.097 0.213 0.409 0.489 0.508 0.484 0.378 0.387 0.415 0.451 0.522 0.648 0.701 0.735 0.858 1.002 1.023 1.140 1.276 1.348 1.418 

Jiangsu -0.797 -0.654 -0.344 -0.148 -0.068 -0.049 -0.073 -0.179 -0.170 -0.142 -0.106 -0.035 0.091 0.144 0.178 0.301 0.445 0.466 0.583 0.719 0.792 0.861 

Zhejiang -0.388 -0.245 0.066 0.261 0.341 0.360 0.336 0.230 0.239 0.267 0.303 0.374 0.501 0.554 0.587 0.710 0.854 0.876 0.992 1.128 1.201 1.270 

Anhui -1.108 -0.965 -0.655 -0.459 -0.380 -0.360 -0.384 -0.490 -0.481 -0.453 -0.417 -0.346 -0.220 -0.167 -0.133 -0.010 0.134 0.155 0.272 0.407 0.480 0.550 

Fujian -0.303 -0.160 0.151 0.346 0.426 0.445 0.421 0.315 0.324 0.352 0.388 0.459 0.586 0.639 0.672 0.795 0.939 0.961 1.077 1.213 1.286 1.355 

Jiangxi -0.769 -0.625 -0.315 -0.119 -0.040 -0.021 -0.045 -0.151 -0.141 -0.113 -0.077 -0.006 0.120 0.173 0.207 0.330 0.474 0.495 0.612 0.747 0.820 0.890 

Shandong -0.882 -0.739 -0.429 -0.233 -0.154 -0.134 -0.158 -0.264 -0.255 -0.227 -0.191 -0.120 0.006 0.059 0.093 0.216 0.360 0.381 0.498 0.633 0.706 0.776 

Henan -1.119 -0.975 -0.665 -0.469 -0.390 -0.371 -0.395 -0.501 -0.491 -0.463 -0.427 -0.356 -0.230 -0.177 -0.143 -0.020 0.124 0.145 0.262 0.397 0.470 0.540 

Hubei -0.936 -0.792 -0.482 -0.286 -0.207 -0.188 -0.212 -0.318 -0.308 -0.281 -0.244 -0.173 -0.047 0.006 0.040 0.163 0.307 0.328 0.445 0.580 0.653 0.723 

Hunan -0.661 -0.517 -0.207 -0.011 0.068 0.087 0.064 -0.042 -0.033 -0.005 0.031 0.102 0.228 0.281 0.315 0.438 0.582 0.603 0.720 0.855 0.928 0.998 

Guangdong -0.404 -0.260 0.050 0.246 0.325 0.344 0.320 0.214 0.223 0.251 0.288 0.359 0.485 0.538 0.572 0.695 0.839 0.860 0.977 1.112 1.185 1.254 

Guangxi -0.863 -0.720 -0.410 -0.214 -0.135 -0.115 -0.139 -0.245 -0.236 -0.208 -0.172 -0.101 0.025 0.078 0.112 0.235 0.379 0.400 0.517 0.652 0.725 0.795 

Hainan -0.237 -0.094 0.217 0.413 0.492 0.511 0.487 0.381 0.390 0.418 0.455 0.525 0.652 0.705 0.738 0.861 1.005 1.027 1.143 1.279 1.352 1.421 

Sichuan -0.717 -0.574 -0.263 -0.068 0.012 0.031 0.007 -0.099 -0.090 -0.062 -0.026 0.045 0.172 0.225 0.258 0.381 0.525 0.547 0.663 0.799 0.872 0.941 

Guizhou -1.087 -0.944 -0.634 -0.438 -0.358 -0.339 -0.363 -0.469 -0.460 -0.432 -0.396 -0.325 -0.199 -0.146 -0.112 0.011 0.155 0.176 0.293 0.429 0.502 0.571 
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Yunnan -1.084 -0.940 -0.630 -0.434 -0.355 -0.336 -0.360 -0.466 -0.457 -0.429 -0.392 -0.321 -0.195 -0.142 -0.108 0.015 0.159 0.180 0.297 0.432 0.505 0.574 

Tibet -0.611 -0.467 -0.157 0.039 0.118 0.137 0.114 0.007 0.017 0.045 0.081 0.152 0.278 0.331 0.365 0.488 0.632 0.653 0.770 0.905 0.978 1.048 

Shaanxi -1.361 -1.217 -0.907 -0.711 -0.632 -0.613 -0.637 -0.743 -0.734 -0.706 -0.669 -0.598 -0.472 -0.419 -0.385 -0.262 -0.118 -0.097 0.020 0.155 0.228 0.297 

Gansu -1.334 -1.191 -0.881 -0.685 -0.606 -0.586 -0.610 -0.716 -0.707 -0.679 -0.643 -0.572 -0.446 -0.393 -0.359 -0.236 -0.092 -0.071 0.046 0.181 0.254 0.324 

Qinghai -0.936 -0.793 -0.482 -0.287 -0.207 -0.188 -0.212 -0.318 -0.309 -0.281 -0.245 -0.174 -0.048 0.006 0.039 0.162 0.306 0.327 0.444 0.580 0.653 0.722 

Ningxia -1.618 -1.474 -1.164 -0.968 -0.889 -0.870 -0.894 -1.000 -0.991 -0.963 -0.926 -0.855 -0.729 -0.676 -0.642 -0.519 -0.375 -0.354 -0.237 -0.102 -0.029 0.040 

Xinjiang -1.087 -0.943 -0.633 -0.437 -0.358 -0.339 -0.363 -0.469 -0.460 -0.432 -0.395 -0.324 -0.198 -0.145 -0.111 0.012 0.156 0.177 0.294 0.429 0.502 0.571 

 


