
MAIA: Instinkters roll vid blomplockning
i Minecraft med Q-inlärning

MAIA: The role of innate behaviors when
picking flowers in Minecraft with Q-

learning

Henrik Siljebråt

handledare / supervisor

Christian Balkenius

KOGM20

2015-09-15

Masteruppsats i kognitionsvetenskap
Avdelningen för kognitionsvetenskap
Filosofiska institutionen
Lunds Universitet

Master’s thesis (2 years) in Cognitive Science
Lund University Cognitive Science

Department of Philosophy
Lund University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289938308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MAIA: The role of innate behaviors when picking flowers in
Minecraft with Q-learning

Henrik Siljebråt
henrik@siljebrat.se

Recent advances in reinforcement learning research has
achieved human level performance in playing video games
(Mnih et al., 2015). This inspired me to understand the
methods of reinforcement learning (RL) and investigate
whether there is any basis for those methods in neurobiology
and animal learning theories. The current study shows how
RL is based on theories of animal conditioning and that there
is solid evidence for neurobiological correlates with RL
algorithms, primarily in the basal ganglia complex. This
motivated a simple perceptron-based model of the basal
ganglia called Q-tron, which utilizes the Q-learning
algorithm. Additionally, I wanted to explore the hypothesis
that adding an innate behavior to a Q-learning agent would
increase performance. Thus four different agents were tasked
with picking red flowers in the video game Minecraft where
performance was measured as quantity of actions needed to
pick a flower. A “pure” Q-learner called PQ used only the Q-
tron model. MAIA (Minecraft Artificial Intelligence Agent)
used the Q-tron model together with an innate behavior
causing it to try picking when it saw red. Two mechanisms of
the innate behavior were tested, creating MAIA1 and MAIA2,
respectively. The fourth agent called random walker (RW)
chose actions at random and acted as a baseline performance
measure. We show that both MAIA versions have better
performance than PQ, and MAIA1 has performance
comparable to RW. Additionally, we show a difference in
performance between MAIA1 and MAIA2 and argue that this
shows the importance of investigations into the precise
mechanisms underlying innate behaviors in animals in order
to understand learning in general.

1 Introduction
How would you teach a dog to play fetch? All dogs are not the
same, but you might start with handing the dog its favorite toy
and then take it back in exchange for a treat. Repeat this a few
times and you can throw the toy on the ground and when the
dog picks it up and hands it to you, it gets a treat again. You
can then throw the toy farther away and step by step the dog
will learn to play fetch.

In computational modelling terms, this problem is
commonly called reinforcement learning. As a cognitive
scientist interested in artificial creatures and robots, the
primary aim with the current study was to understand the
fundamentals of reinforcement learning by simulating a robot
that learns to pick flowers in a video game. The secondary aim
was to investigate the animal learning basis of reinforcement
learning and potential neurobiological evidence for the
algorithms. The problem will thus be framed as one of an
animal foraging for food. But when building a robot model we
need to consider not only the learning mechanism but also
how it will see and act.

Recent advances in the use of neural networks for
reinforcement learning has been shown to achieve human
level performance in game playing (Mnih et al., 2013; 2015).
The authors trained a “Deep Q-network” (DQN) to play 49

two dimensional video games as well as, or better, than an
expert human player. This was accomplished with only pixel
values and game score as input. The method was based on the
Q-learning algorithm (Watkins, 1989; Watkins & Dayan,
1992) combined with deep learning (Bengio, 2009). This type
of reinforcement learning resembles the operant conditioning
used for teaching animals like our dog; for every action there
is reward or punishment (Staddon & Niv, 2008).

While the work of Mnih et al. (2015) is impressive,
especially the ability of the agent to learn many different types
of games with the same parameter settings, there are some
issues. First, they state that the performance of their model is
highly dependent on experience replay, a memory of previous
experiences from which random samples are made to update
the behavior of the agent between training episodes. They
compare this behavior to the function of sleep and
consolidation of memory in the hippocampus and state
proudly how their work utilizes “biologically inspired
mechanisms” (Mnih et al., 2015, p.532). However, experience
replay as a method has existed for more than twenty years (Lin
1991; 1992), so this exemplifies how machine learning
research often uses neuroscientific findings as an afterthought
more than a goal. Second, Schmidhuber (2015) explains,
somewhat bitterly, how their claim of having done something
truly new is debatable as something very similar was done by
Koutník et al. (2013). Though to be fair, Mnih et al. did present
preliminary results in their 2013 article. And third, while the
performance of the Atari playing agent may be comparable to
a human, the learning rate is surely not. The DQN required 38
days (912 hours; Mnih et al., 2015, supplementary methods)
to learn one game, while the professional human games testers
used as controls had two hours of practice. Even though being
a professional games tester grants a significant amount of
experience that is difficult to account for in a direct
comparison of learning rate, I am humbly willing to bet that a
human ten-year-old with no experience with video games
would match the performance of the DQN agent in shorter
time than 38 days. It would be an interesting study to test
children at different ages on how fast they can learn to play at
“expert level” for these games, as we would then have a
reference for the cognitive level of an AI agent.

This difference in learning rate can be partly explained by
the approach, which utilizes vast amounts of training data to
learn the patterns of previous experience (called model-free
learning, which will be further discussed below). When the
DQN agent fails, it does so because it has not previously
experienced that particular game state and the algorithm has
not accurately generalized the past experiences into useful
information. Humans can learn much quicker because we are
able to generate predictions - have hypotheses - about the
future based on prior knowledge, grounded in a view of the
brain as a pattern predictor where top down connections try to
predict the incoming sensory input and learning utilizes the
errors in these predictions (Clark, 2013; Friston 2010). The
common framework to explain such predictions is Bayesian
statistics and is used for example in systems for self driving

!
2

cars (Petrovskaya & Thrun, 2009) and models of motor
control (Wolpert & Ghahramani, 2000). The important
difference between the Bayesian predictions and the ones
made by the DQN agent is that the Bayesian approach also
takes the uncertainty of reward into account (O’Doherty,
2012).

However, the complexity of the calculations in Bayesian
network models have been shown to be NP-hard, meaning that
it is simple to confirm if the correct solution has been reached
but the time to get there is non-deterministic (Gershman et al.,
2015). Computational models therefore need to exploit the
structure of the agent’s environment in order to solve the two
main issues that face these agents; action specification -
identify the most useful set of actions - and action selection -
find a policy indicating what action to take (Whiteson et al.,
2007). These two processes, action specification and action
selection, occurs concurrently and dynamically with
environmental interaction and has given rise to what is called
embodied cognition (Clark, 2013; Wilson, 2002).

Despite the above criticism of the work by Mnih and
colleagues, they provided the seed that inspired me to
understand the principles of their methods by attempting a
similar but simplified Q-learning algorithm. Can this approach
be useful to robots seen as embodied creatures in a three
dimensional environment?

1.1 Scope and Hypotheses

We will start off with some basic theory of animal learning,
then explain reinforcement learning followed by its
neurobiological basis. This will show evidence of correlates
for reinforcement learning algorithms, primarily in dopamine
response of the basal ganglia system. We use these correlates
as motivation for a model that combines Q-learning with the
perceptron, creating what we call Q-trons. Each Q-tron
represents an action and together, a collection of Q-trons thus
form a very simple model of the basal ganglia, used as the
brain in our agents. Functionality of the Q-tron model was
pilot tested in a simple scenario with an agent finding its way
through a house to a goal room in as few steps as possible.

While Mnih et al. (2013; 2015) models an agent that plays
video games, we instead adapted their approach to model
agents as creatures that forage for food. In order to simulate
an environment more similar to the one a robot or animal
would navigate, the three dimensional video game Minecraft
was chosen. Its game world consists of cubes that are
combined to create fields, forests, hills, plants and animals
similar to how Lego works. The player sees this world in a
first person view and move around by using the mouse and
keyboard. Interaction mainly consists of “chopping” (hitting)
blocks to collect materials which allows for placing these
blocks to build structures.

The Minecraft agents were placed in an enclosed pasture
filled with red flowers and their goal was to learn how to find
and pick as many red flowers as possible, using only game
screen pixels as input and picked flowers as the reward signal.

Four agents were set loose in the pasture; the first was a
“pure” Q-learner (model PQ), equipped with Q-trons. The
second, a random walker (model RW) that chose actions
completely randomly and was used as a baseline performance
measure. The third and fourth models also used Q-trons but
were additionally equipped with innate behaviors, causing
them to “chop” if they saw red in the center of the screen. The
difference between them were the details of the innate
mechanism, and we call these models MAIA1 and MAIA2,

where MAIA is the acronym for Minecraft Artificial
Intelligence Agent. The addition of innate behavior is a way
of exploiting knowledge of the environment similar to how
animals evolve such behaviors (see below).

The main hypothesis then, is that the MAIA agents will
perform better than the PQ agent. The reasoning behind this is
that MAIA only has to learn how to reach the “innate behavior
trigger” (seeing red) while the PQ agent also needs to learn
how to identify a flower and connect that object with the
“chopping” action.

2 Background
“We have a brain for one reason and one reason only, and
that’s to produce adaptable and complex movements.”
(Wolpert, 2011)

As an example of this “reason for brains”, Wolpert (2011)
uses the sea squirt, which in its larval stage has a primitive
brain and eyes, swims around and then as it reaches adulthood,
plants itself on a rock and consumes its brain. In other words,
it is very similar to the more well known couch potato. Now,
one may have objections to Wolpert’s assumption, but it is a
useful starting point to understand learning as a basic process
allowing the creature to adapt to its environment.

Learning has been shown in very simple animals like fruit
flies, nematodes (Shettleworth, 2013) and even single-cell
organisms (Armus & Montgomery, 2010). This is nice, as it
gives us a valid reason for using learning as a basic behavior
in our artificial agent. But if learning exists at such a basic
level, one may ask what role innate behaviors - behaviors that
do not require learning - play in producing movements? It
boils down to the age old question of genes versus
environment, or as Shettleworth (2013) expresses it
“attempting to classify behavior as learned as opposed to
innate is meaningless” (p.13-14). She uses as example a study
of New Caledonian crows, investigating if their use of tools to
“fish” for food is something learned or innate. Interestingly,
young crows not allowed to see any form of tool use still
picked up sticks and poked them into holes around the same
age as crows allowed to see tool use, indicating some form of
built in tendency to poke with sticks. But learning by way of
trial and error still needed to occur for all of the crows to
become successful in obtaining food. For this reason, the
“innate” behaviors of our MAIA agents - the specifics of
which will be described in the methods section - work in a
similar fashion; the agent is predisposed to “chop” when it
sees red but learning is still required to become efficient in
finding and picking flowers. This behavior is further
motivated by insects that forage flowers. For example, it has
been shown that bumblebees not only use color and scent, but
also exploit electric fields around flowers to decide which
ones to visit (Clarke et al., 2013).

Adaptable behavior can be framed as the problem of
optimal decision making. We want to maximize reward while
minimizing punishment, often also referred to as the principle
of maximum expected utility (MEU; Von Neumann &
Morgenstern, 1947). This principle is behind what Gershman
et al. (2015) call “computational rationality”, where they see
MEU as the goal of perception and action under uncertainty.
What this means is that in chess for example, every possible
move is evaluated according to its expected utility and you
choose the move with the highest value. However, this is what
computers do, not humans. Because our brains have limited
resources, we approximate the MEU, but this approximation

!
3

is in turn bounded by the same limited resources and so is
thought to be why humans sometimes make decisions that
cannot fully be explained by rational rules (Gershman et al.,
2015).

2.1 Training animals with conditioning

As the utility of behavior is closely connected to the question
of choice or decision making - how, then, do we make optimal
choices to maximize rewards and minimize punishments? The
well established theory of conditioning provides some
answers. But we should first define reward (also called
reinforcer) as an object or event that “elicits approach and is
worked for” (Wise, 2004). The value of these reward objects
or events are given through either an innate mechanism like
food and sex (also called primary rewards) or through learning
(Schultz, 2006).

There are two main forms of conditioning; classical (or
Pavlovian) and instrumental (or operant) (Cerruti & Staddon,
2003). In classical conditioning, the animal learns to associate
a neutral stimulus with an upcoming reward. To use Pavlov’s
(1927) classic experiment as an example, hungry dogs were
given food (unconditioned stimulus, US) following a tone
(conditioned stimulus, CS). At first, the food caused salivation
(unconditioned response, UR), but after a number of trials the
dogs began to salivate when they heard the tone. At this point,
the salivation response is called conditioned response (CR). In
operant conditioning, the animal is required to perform a
wanted behavior in order to receive the reward which is not
the case in classical conditioning. In other words, rewards
cause changes in observable behavior in both cases of
conditioning but in classical conditioning the behavioral
reaction does not affect outcome while instrumental
conditioning requires a behavioral response for reward to
occur. We can now see that our introductory question of
teaching a dog to play fetch is a form of operant conditioning.

In both forms of conditioning, the common factor is that
the animal learns to predict outcomes. The dogs in Pavlov’s
experiments learned that the tone predicted the upcoming food
reward and our fetch playing dog learns to predict that by
performing a behavior sequence, it will receive a reward.
Learning is mediated through the errors of these predictions
and it follows then that as prediction error decreases, so does
learning (for that specific case). This has been formalized in
the Rescorla-Wagner learning rule (Rescorla & Wagner,
1972; here adapted from Schultz, 2006):

∆" = $%(" − () (1)

where ΔV is the change in associative strength (i.e. learning)
between the CS and reward and is proportional to the
prediction error (" − (); V is the actual value and λ is the
predicted value. α and β are parameters that depend on aspects
of the stimuli and modifies the learning rate. So what this
means is that a reward that is fully predicted does not
contribute to learning. It is also important to add that this
learning rule works both ways; associative strength can also
decrease if reward is withheld. This way of removing an
association is called extinction.

What is needed for a reward to become a goal? Balleine &
Dickinson (1994; 1998) believes that the goal should be
mentally represented in the animal when the behavior is being
prepared and executed. This representation should contain a
prediction of future reward and the associative strength
connecting behavioral action to reward. The animal should
also have an established internal representation of reward that

Figure 1. A standard reinforcement model set in our pasture. See
text for explanation. The player’s face has been covered to avoid

privacy concerns.

updates when the reward changes value. The importance of
these principles will be shown further below as we describe
the neurobiology of reinforcement learning and prediction
error.

So, in goal-directed behavior we need to make choices.
Since these choices cannot be observed directly and internal
states have historically been seen as irrelevant in operant
conditioning experiments, choice has been measured
indirectly with response strength of the animal and the value
of choice alternatives (Cerruti & Staddon, 2003). But we are
interested in modelling the internal states and so need to look
to reinforcement learning for answers.

2.2 Training machines with reinforcement learning

Reinforcement learning (RL) is a form of unsupervised
learning, meaning that the agent explores the environment and
the evaluation of outcomes are made concurrently with
learning. This can be contrasted with supervised learning,
where the system’s outcomes are compared to known
examples of correct input and output and the system
parameters are modified according to any discrepancies
found. When RL agents explore their environment, they
transition from one state to another by taking actions and is
rewarded or punished after each action taken or at some point
in the future. This allows for learning to occur without
specifying exact behavior patterns and the use of rewards
makes it possible to model both forms of conditioning
(Kaelbling et al., 1996).

There are two main ways of solving RL problems
(Kaelbling et al., 1996). One is to search the behavior space
for an optimal behavior, commonly applied with genetic
algorithms. In broad terms, genetic algorithms spawn an initial
generation of randomized behaviors and the most successful
ones are combined (the official academic term for “have sex”)
to spawn new generations and so on. Another way to solve the
problem is to estimate the utility of taking actions in states of
the world (the MEU mentioned above), which is the approach
we shall focus on presently. It is worth mentioning here that
many successful attempts have been made to combine the two
approaches (e.g. Whiteson et al., 2007).

The standard reinforcement model can be seen in Figure 1.
It assumes a stationary environment - it does not change over
time. Neither does the probability of receiving a reward r (also
called reinforcement signal). Both of these assumptions are
broken in our case, since flowers disappear when picked
causing the environment to change and therefore also changes
the probability of reward. The innate behavior and exploration

!
4

strategy (explained below) can compensate for this. Referring
back to Figure 1 again, the behavior B should choose actions
according to a policy π that maximizes the sum of r over the
total run time of the simulation. T is the state transition
function, defining how the agent’s action a transitions the
world from one state s to the next. Because the agent does not
necessarily know what causes r and may not be able to observe
the entire world state, I and R refer to the “true” functions of
input and reward, where i is the observed input.

RL algorithms now face three main challenges when trying
to find the optimal behavior policy π* (Kaelbling et al., 1996).
The first is the exploration/exploitation problem. How should
we balance exploration of the environment with exploiting the
knowledge already gathered? Most techniques progressively
decrease the exploration towards zero as time increases, but if
the environment is dynamic some exploration must always
occur. The exploration/exploitation strategy is usually
denoted ε, and a common strategy for dynamic environments
is ε-greedy. It chooses random actions (exploration) with a
probability p, which can be adjusted during the agent’s
training. When exploiting its knowledge, it always chooses the
action with the highest value, hence the name greedy. In more
dynamic environments, it may be that several actions have
values that are very close which the ε-greedy policy does not
consider. So a more refined version would be the Boltzmann
distribution for exploration as demonstrated by Mnih et al.
(2015).

The second problem is how the algorithm should take the
future into account, since the agent has no way of knowing
how many steps there will be until reward is received.
Building upon the above mentioned MEU, a basic and
common optimality model is the infinite-horizon discounted
model (Barto, 2007; Kaelbling et al., 1996). The expected
utility is the sum of all future rewards geometrically
discounted with the parameter - (0 ⩽ - < 1). So for each state
we have a value, V(s), like so:

" . = /(-010
2
034) (2)

The E is for expected value, so this means that with gamma
close to 1, future rewards will be more important than
immediate rewards and vice versa, so that we can adjust the
importance of those future rewards for the the expected utility.
Equation (2) forms the basic reasoning behind the more
complex algorithms we will soon discuss. Interesting to note
here is that regardless of the value of gamma, early rewards
will be worth more than later ones, which is precisely how I
like my marshmallows.

The third problem is the question of convergence and
performance. Some algorithms can be proved mathematically
to converge to the optimal policy π*, but for more complex
environments and agent behaviors this is not always possible.
In those cases, the performance of the chosen optimality
model can instead be measured by the speed with which it
converges to optimality or near-optimality and we can also
measure the level of performance after a given time (Kaelbling
et al., 1996). The assumption of (2) is also that there are
regularities between the state signals (i in Figure 1) and reward
values, if there are no such regularities the predictions become
random guessing (Barto, 2007). We can model these possible
regularities using Markov chains, a method that calculates
future probabilities based on the current state without relying
on previous ones (Sutton & Barto, 1998).

A common family of methods building on Markov chains
is temporal difference (TD) learning (Sutton & Barto, 1998)
upon which many different variants have been developed. By

utilizing a specialized form of Markov chain called Markov
Decision Process (MDP), they can be described as extending
the Rescorla-Wagner rule (Niv, 2009). We shall not explain
Markov chains or MDP’s in detail, but very briefly, and as
mentioned above, Markov chains and MDP’s allow us to
model the probabilities of the state transition function and the
probability of reward for a state (as seen in Figure 1). The
important take-away here is that these methods assume having
a model of the world, but model-free (see below) versions
exist that build on the ability of the agent to explore and take
samples of the environment (i and r in Figure 1). With
increasing amounts of samples, the agent can approximate the
true functions I, R and T (Figure 1). TD learning managed to
explain something that the Rescorla-Wagner rule could not;
second order conditioning, where a learned association like
tone-food could be built upon to create for example light
signal-food by coupling the light signal to the tone (Niv,
2009).

Now, to further complicate the matter, these methods also
rely on the assumption that state transition probabilities are
fixed. This means that they describe Pavlovian conditioning
and not instrumental conditioning, which is what we are
interested in for our agent. As Niv (2009, p.8) puts it: “Since
the environment rewards us for our actions, not our
predictions (be they correct as they may), one might argue that
the ultimate goal of prediction learning is to aid in action
selection.” Indeed, this leads us to the “temporal credit
assignment” problem (Sutton & Barto, 1998) - how do we
figure out what actions led to reward?

2.2.1 Finding the optimal policy

If we have a model of the environment we can find the optimal
policy in two ways; value iteration or policy iteration (Sutton
& Barto, 1998). Each state has a value V(s) and the optimal
value for a state, V*(s), is the expected infinite discounted
reward (equation (2)) that will be gained in that state given a
policy π. The optimal policy π*(s) is the optimal way of
choosing actions given values V. By iterating over values and
using mathematical relations between V* and π* we can find
one given the other. So by iterating over values, we find the
policy by successive approximations of V*. In policy iteration,
given an initial action, all V are calculated for each state. Then
the initial action is changed to see if the total V is better and if
so the policy is updated to choose that initial action instead
and progressively π* is approximated.

When we do not have a model of the environment, which
is the case for our flower picker MAIA, there is still hope.
Either we learn the behavior B (Figure 1) without a model
(model-free methods) or learn an approximation of the model
and use that to choose the behavior (model-based methods).
These model-based methods should not be confused with the
previously described case where we actually have a model of
the environment. Model-free methods have the disadvantage
of using gathered data extremely inefficiently and so need lots
of experience to achieve good performance, while model-
based methods are faster in learning time but instead require
significantly more computational power (Kaelbling et al.,
1996). There are however ways of combining the two methods
for improved performance over using either one and also
indications that a similar combination exists in the brain
(Gershman et al., 2015; also see below section on biological
basis for reinforcement learning).

An interesting observation to make here is that the DQN
agent by Mnih et al (2015) uses a model free algorithm (Q-

!
5

learning; see below) which is part of the reason for why it
needs such a long training time as 38 days. But even then, their
use of computational power to do that training is massive.
They unfortunately do not mention how much power they
used, but it is a safe bet that they did their training on clusters
of graphic processing units (GPU). One such GPU uses
around 200 watts while the human brain uses around 20 watts
(Versace & Chandler, 2010). So if a model-free algorithm
requires at least ten times the power a brain does, a model-
based method would require - as just mentioned - significantly
more.

2.2.2 Q-learning

Q-learning (Watkins, 1989; Watkins & Dayan, 1992) is a
model-free method that builds on TD-learning. It combines
policy and value iteration by directly approximating the
optimal policy and looks like follows:

5 ., 7 = 5 ., 7 + $(1 + -97:;<5 .=, 7= − 5 ., 7) (3)

where s is the current state, a is the action chosen in that state,
s’ the new state after a is taken and a’ the predicted optimal
action in state s’. As in equation (1), r is the reward and γ the
discount parameter. The α refers to the learning rate, a
parameter used to adjust how much the Q-value can change
every update. It should also be noted that the reward value can
have positive and negative values, reflecting reward and
punishment, respectively. Adding negative values for actions
that do not lead to reward can be interpreted as adding cost for
actions.

So what happens here is that the agent is in a state s and
chooses an action a according to some strategy. That action is
performed and the agent observes the new state s’ and its
reward r. The trick lies in using the predicted optimal action
a’ for the state s’ (maxQ in (3)) to update the Q-value for the
state-action pair (s, a). In other words, the agent stores
estimations about the value of possible actions for each state
and as actions are taken, the actual received reward is
compared to the estimation. The difference is the prediction
error which is used to update the estimation function. Thusly,
the prediction error for Q-learning is:

>11?1 = $(1 + -97:;<5 .=, 7= − 5 ., 7) (4)

Progressively, as the prediction error approaches zero, the
estimation function in turn approaches the true values of
actions. To compare with the Rescorla-Wagner rule in
equation (1); r is the actual reward given and Q(s, a) is the
predicted value. The Q-learning algorithm has been proven to
converge with probability 1 as long as each action is executed
in each state an infinite number of times on an infinite run
(Sutton & Barto, 1998). In other words, convergence of the
algorithm is unaffected by the exploration strategy (ε, as
mentioned above).

However, the strategy of exploration/exploitation still
needs to be carefully chosen for learning rate to be as quick as
possible. Especially as there are very few cases where we can
realistically visit every state-action pair an infinite number of
times. The parameters are also important to choose wisely.
Bayer & Glimcher (2005) found in their study that an α of .7
concurred with their physiological recordings. In practice,
however, it is feasible to use a constant α of 0.1 (Sutton &
Barto, 1998). For γ, we want to choose a high value in our case
of picking flowers; since there may be many steps before a
reward is received, we need to take into account potential
actions and rewards far into the future.

2.2.3 Continuous states and partially observable
environments

So far, the methods discussed have assumed that we have
discrete states and actions, so that the predicted values can be
stored in lookup-tables. When we move to continuous or very
large spaces, like our agent MAIA walking around in the
flower filled pasture, we need to use some other representation
of mapping state-action pairs to values. This is called function
approximation for which there are many methods but we will
focus on the use of artificial neural networks (described in
more detail below). The side effect of using such a function
approximation is that convergence can no longer be
guaranteed (Kaelbling et al., 1996).

Another difficulty is when the agent cannot observe the
entire state of its environment, only parts of it (as described
with the relation between I and i in Figure 1). This is the case
for MAIA since it only observes what is in front of it. If you,
dear reader, would be out picking flowers in a pasture, you
would also observe only part of your environment. To fully
observe the environmental state, you would have to know
exactly where all flowers in the field are at all times, like
having a live satellite feed. In short, most real world problems
need to handle the case of partially observable environments
and these are commonly modelled by partially observable
Markov decision processes (POMDP), though it is also
possible to ignore the problem and rely on the randomness in
the exploration/exploitation implementation (Kaelbling et al.,
1996).

However, one can also utilize knowledge of the world and
implement predefined knowledge into the agent. A nice
example of this is Tesauro’s (1995) TD-gammon, a
backgammon playing agent. He had a basic version with
minimal prior knowledge and an improved version with
explicit knowledge of backgammon pre-programmed. The
basic version was not nearly as effective as the improved
version which achieved performance comparable to
backgammon masters. As previously mentioned, this is the
approach MAIA uses with its “innate” behavior.

2.2.4 Methods to improve performance and convergence

The DQN agent by Mnih et al. (2015) was highly dependent
on the method of experience replay. The DQN agent stores
every experience - a sequence of state-action-reward-state -
and during the regular update of the Q-value these experiences
are randomly sampled and used for smaller updates of the
same value. This is slightly different from Lin (1991; 1992)
who instead uses lessons - a collection of experiences from
starting state to end state - and at the end of one lesson, the
experiences are iterated over recursively to update the Q-
value. The experience replay method is itself based on a
similar mechanism used in Sutton’s (1990) Dyna architecture
called relaxation planning, where the model generated
hypothetical experiences to update the Q-function. Lin (1991)
states that experience replay is faster and does not require a
model to be learned (since Dyna is model-based).

Another method is the eligibility trace (Barto, 2007). Like
experience replay, it also saves state-action pairs and updates
them according to their eligibility trace parameter, which
decides how many steps back these updates should be made,
the size of the agent’s short term memory if you so will. More
recent state-action pairs have a larger impact than those farther
back in history. The eligibility trace also has the advantage of
being capable of on-line updates, without explicitly storing
previous states (Kaelbling et al., 1996).

!
6

Figure 2. It is very difficult to find a picture showing all areas we
mention, but this one shows the VTA and SN pathways; both of
which will be shown to be important in relation to reinforcement
learning algorithms. Adapted from Arias-Carrión et al. (2010).

2.3 Biological basis for reinforcement learning

As we have seen, reinforcement learning is a big and complex
set of tools and theories. But since we are interested in finding
something out about animals - and by extension, humans - is
there any relevance to reinforcement learning? What
biological connections are there, if any?

Whatever one’s opinion on behaviorism’s failure to
account for internal states, the approach has given us loads of
behavioral data on classical and instrumental conditioning that
we can use for neurobiological investigations of reward. We
will here briefly review findings on established and possible
connections for RL as a computational model of learning in
animals. But first, some general observations on reward and
dopamine.

Reward in neurobiological studies is often used as a
collective term for effects not only of reinforcement but also
motivational arousal, the latter meaning that an animal given
reward is “energized” before and during the next trial (Wise,
2004) or more formally; preparatory or approach behavior
toward reward (Schultz, 2006). It seems to only affect “extra”
arousal however, as dopamine blockage (usually done with
neuroleptic drugs) still allows normal responses for previously
rewarded stimuli (Wise, 2004). One should also keep in mind
that reward is not always easy to separate from attention in
these kinds of studies (Schultz, 2006; also discussed below).

Nevertheless, the neurotransmitter dopamine has been
identified with both motor and motivational functions (Wise,
2004), making it highly interesting in relation to our
previously mentioned RL algorithms that build on reward for
action selection. It is, however, difficult to clearly distinguish
between these roles in animal experiments. Since we cannot
speak to the animals, we cannot differentiate between “wants
to but cannot” and “can but does not want to” as Wise (2004)
puts it. This difficulty in boundary distinction is reflected in
the neuroanatomy as we shall see presently.

As seen in Figure 2, most dopamine cells develop in the
mesencephalic-diencephalic junction (VTA and SNc area)
and project to forebrain targets (Wise, 2004). Motor function
is mostly connected to the nigrostriatal system (substantia
nigra (SN) and striatum) and motivational function with the
ventral tegmental area (VTA). The VTA has two main

systems, the mesolimbic and mesocortical dopamine systems,
where the former mainly projects to nucleus accumbens and
olfactory tubercle and less so to the septum, amygdala and
hippocampus and the latter projects to prefrontal, cingulate
and perirhinal cortex (Wise, 2004). There is considerable
overlap between the mesolimbic and mesocortical systems
and they are therefore often referred to as the
mesocorticolimbic systems. To add to this complexity, there
is no clear boundary between the nigrostriatal system and
VTA which makes it, as mentioned previously, difficult to
distinguish between the motor and motivational dopamine
systems (Wise, 2004).

This complexity for dopamine’s role in goal-directed
behavior is summed up by Wise (2004, p.9): “a conservative
position would be that dopamine acts in nucleus accumbens,
dorsal striatum, amygdala, frontal cortex and perhaps other
sites to reward immediate behavior and to establish
conditioned motivational cues that will guide and motivate
future behavior.” Though details have been added since then
the larger picture of their integration into a general theory
largely remains unanswered (Schultz, 2015; Dayan &
Berridge, 2014; but see below on basal ganglia). We shall thus
not go much further into the rabbit hole of non-conservative
positions, but will add that Schultz (2006) reports that for
primary rewards, activations of most of these structures have
been shown to reflect the actual reward and not the sensational
experience itself (that is, the reward of food and not the taste
of it) and also that there are indications that different parts of
these structures may code for different dimensions of stimuli
(like vision, olfactory or spatial information, all of which can
be interpreted as the factors α and β in equation (1)).

When it comes to reinforcement, dopamine modulates
many aspects of conditioning and seems to be most crucial in
positive reinforcement (Wise, 2004; Schultz, 2006). When
blocking dopamine function, for example with neuroleptics,
both Pavlovian and instrumental conditioning is impaired in
different ways (Wise, 2004). But the role of dopamine is still
very unclear, as is evidenced by Wise (2004) who reports;
first, that dopamine blockage is functionally equivalent to
intermittent omission of reinforcement showing similar
progressive decline in responding to unrewarded trials; and
second, that dopamine blockage can have the opposite effect -
that animals are unable to learn that they are not given
rewards.

We thus have many conflicting findings regarding
dopamine’s role in reward and learning, and should keep in
mind that other neurotransmitters and brain areas also are
involved in learning. But the dopamine system is the most
studied in regards to reward, and it seems to have such an
important role for reinforcement learning that it leads Schultz
(2006) to formulate the following general rule:

@AB1>.C?D.> = 1>E71FB?GGH1>F − 1>E71FBC1>FIGJ>F (5)

Again, we have a rule that is similar to the Rescorla-Wagner
rule in equation (1) and also the one for Q-learning in equation
(4). Can this really be true? Let’s find out.

2.3.1 Reward prediction error hypothesis of dopamine

The first clear evidence of dopamine neuron activation
representing prediction error came in the early 90’s
(Montague et al., 1996). Schultz et al. (1997) added to this by
showing how previous studies on recordings from dopamine
neurons in monkeys during conditioning tasks showed a

!
7

striking similarity with the error functions described by TD-
methods (Figure 3).

Compare the results shown in Figure 3 to the story of
Pavlov’s dogs told above. If given food at a random time,
dopamine neurons in the midbrain will fire more rapidly to
reflect that something unexpected happened as in Figure 3 (a).
After being trained with receiving food at a set length of time
after a tone, the reward will no longer be unexpected but the
tone will still be unexpected, so the prediction error reaction
in the dopamine neuron now happens after the tone as in
Figure 3 (b). And even more intriguingly, in Figure 3 (c) we
can see that if the reward is withheld from the trained animal,
the neuron will decrease its firing rate at the precise time when
reward was predicted to occur, indicating that the neuron also
encodes the timing of reward. However, Bayer & Glimcher
(2005) found evidence of dopamine neurons encoding only
positive reward prediction errors, meaning the case in Figure
3 (c) might be encoded by different neurons and they suggest
serotonin as a possibility, since it has been implicated to have
a role in other aversive events. It could also be the case that
the divergent results can be explained by the different
recording sites used, as Bayer & Glimcher (2005) recorded
from the substantia nigra (SN, see Figure 2) area and Schultz
et al. (1997) from the ventral tegmental area (VTA; see Figure
2). It has later been suggested that the SN and VTA circuits
may be functioning in accordance with the actor/critic TD-
model, where the SN circuit works as the actor - learning the
action-selection policy - and the VTA circuit works as the
critic - learning predictions of the world, essentially the model
of the world (Niv, 2009).

What this means is that the previous hypothesis of
dopamine representing reward occurrence was not the whole
story, it seemed to instead (or rather also; see mention of
motivational arousal above and attention below) represent a
prediction error precisely in line with the logic behind the
learning rules we have discussed. This has become known as
the reward prediction error hypothesis of dopamine
(Montague et al., 1996), and many other aspects of TD models
have been shown to be reflected in dopamine neurons (Niv,
2009; Schultz, 2007; Schultz, 2006; Wise, 2004; Schultz,
2015), one of which is the previously mentioned second order
conditioning. If the monkey in Figure 3 (b) is trained with an
additional CS before the tone, the prediction error response
will move from the tone to that additional CS. Another
important example would be the dopamine response reflecting
that the most recent reward is more important for the error
function than rewards farther back in time (Bayer & Glimcher,
2005). This is similar to the function of eligibility traces and
Pan et al. (2005) show that they may indeed be essential to
dopamine error functioning.

Most of those results however were based on Pavlovian or
very basic instrumental conditioning tasks, so what of more
complicated cases of action selection, for example one where
all available actions lead to reward but of different magnitude?
Morris et al. (2006) conducted a study that elucidated in more
detail what kind of TD-related method could best explain the
dopamine neuron response in such a task. Monkeys saw four
kinds of stimuli presented to the left or right of a screen and
were trained to respond with a left or right movement of the
arm, corresponding to the placement of the stimuli. The four
stimuli were followed by reward with different probability
ranging from .25 to 1 in .25 steps. The results from SN neuron
recordings indicated that the dopamine prediction error
response reflected an action choice already made, instead of
reflecting the selection process itself. This detail is not in line

Figure 3. Each row of dotted line represents a single trial, where

each dot is the neuron firing. The bars on top of each graph
represents the average over those trials. The conditioned stimulus

CS was a tone and the reward R was fruit juice. In (a) the reward R
occurs without CS and the neuron increases activity to report that

something unpredicted happened. (b) shows how after training, the
prediction error response has moved to just after the CS and since

the reward R has been learned to be predicted, there is no change in
activity when it is given. And in (c) we can see how the neuron

activity is decreased when a trained animal expects a reward, but it
is not delivered. This last example shows how information about the
timing of reward delivery also seems to be encoded in the neuron’s

activity. Adapted from Schultz et al. (1997).

with the actor/critic model but is the difference between how
Q-learning and its related method SARSA works, the latter
being the one found in the monkeys (Morris et al., 2006). In
Q-learning, the prediction error is determined by the action
with the highest Q-value (maxQ in equation (3)) and not the
action that was actually chosen, while in SARSA the
prediction error is determined by the chosen action (Niv et al.,
2006). However, in a similar task but done with rats making
odor decisions and recordings made in VTA dopamine
neurons, Roesch et al. (2007) found their results to be more
similar to the Q-value representations in Q-learning than those
in SARSA (or other methods).

Additionally, some dopamine neurons in dorsolateral
prefrontal cortex seem to represent different behavioral
outcomes in that one neuron may activate for reward and
moving left, while another activates for the same reward but
for moving right to receive that reward (Schultz, 2006).
However, these activations may also be related to some form
of “excitement” or even attention as mentioned previously.

This may all seem very promising, but as with all
neuroscience research, the deeper you go the more complex a
picture arises. O’Doherty (2012) mentions how there seems to
be two different behavioral mechanisms underlying action
selection, in that one is is model-based and used for goal-
directed selection of actions based on their value (which is
based on later reward) and the other a model-free mechanism
for stimulus-response associations. We have previously

!
8

mentioned the actor/critic method and also how combinations
of model-free and model-based methods can perform better
than either alone (Gershman et al., 2015), but as we saw these
cannot explain all aspects of neurobiological findings.

There is furthermore the issue of finding evidence for RL
in humans, as we have until now mostly discussed animal
findings. We shall not go into much detail, as the model MAIA
uses is not complex enough to warrant any comparisons to
human functioning. Also, human behavior is often so different
between individuals that it is difficult to draw comparisons to
specific algorithms (Shteingart & Loewenstein, 2014). But it
is worth mentioning that there are indications of neural
correlates for the dopamine prediction error in humans (Niv,
2009).

2.3.2 The basal ganglia and action selection

Several brain areas have so far been mentioned, like the VTA
(ventral tegmental area) and SN (substantia nigra). We shall
now present these in their larger context - the basal ganglia.
Interestingly, the basal ganglia system seems to be very
similar across vertebrate species, suggesting that its role is
very old in evolutionary terms (Redgrave et al., 1999;
Redgrave, 2007). That role seems to be, as we have seen in
our previous discussion, related quite closely to learning and
action selection in a reinforcement learning framework.
Though we should mention that the basal ganglia system is
also involved in other functions like fatigue and apathy
(Chakravarthy et al., 2010).

Before we move on, we should mention here the role of
attention in action-selection and action specification.
Perceptual attention mediates both action-selection and action
specification, so there is a problem of knowing exactly what
is selected and where it happens (Prescott et al., 2007). Action
selection may be a global property of the brain and body in
their environment (as per embodied cognition mentioned in
the introduction). But if there in fact are specialized
components for this problem then we need to determine what
is required by them. Redgrave et al. (1999) does exactly this,
and they have four criteria for such a system. Its inputs should
provide information about relevant internal and external cues;
each available action should have an associated utility value
calculated by a mechanism internal to the system; conflicts
between available actions should be resolved based on those
values; and the system’s output should allow the winning
action to be performed. Luckily, the basal ganglia seem to
match these criteria (Redgrave et al., 1999; Redgrave, 2007;
Prescott et al., 2007; Chakravarthy et al., 2010), but as we’ve
seen in the discussion on dopamine error signals, the details
are unclear. Those details can be very important and as an
example of this, Prescott et al. (2007) describes a study with
computational modelling showing that the location of
synapses on input neurons to the basal ganglia have significant
effects on network function.

2.4 Synthesis

For the implementation of MAIA, we will not pay attention to
attentional processes. We will instead focus on action
selection within the reinforcement learning framework as
modelled by Q-learning. Perception is handled by taking
screenshots of the game screen, so what the agent will receive
as input is roughly similar to retinotopic maps found in
LGN/V1 of the visual processing stream (Wandell et al.,
2007). Motor output is also not handled in detail, our system
will select an action and that action is performed by sending

Figure 4. The perceptron. Inputs s1, s2 and b are first multiplied by
their respective weights w1, w2 and w3. They are then summed and

put through an activation function f, creating the output y.

the appropriate key or mouse click to the game. Since the basal
ganglia is likely to play an important role in action selection
and because of its old and stable evolutionary history, we
claim that our implementation is a highly simplified model of
the basal ganglia. Additionally, in order to keep the model
simple, only positive reinforcement will be used and there will
be no cost for taking actions. This has the added benefit of
fitting the neurobiological findings better, because the
dopamine error hypothesis mainly has been proven for
positive reinforcement. Moreover, the behavior meets the four
criteria of a specialized action selection function as defined by
Redgrave et al (1999). In this way, MAIA is able to capture
the essence of the “Wolpert premise” presented earlier - that
the reason for brains is to produce adaptable movements.

3 Methods
Earlier we mentioned that the MEU (maximum expected
utility) needs to be approximated. We do this with the Q-
learning algorithm, which in turn needs to be approximated
for use in continuous state spaces. There are many methods
for such function approximation, but we will do this with an
artificial neural network (ANN). One can question how
plausible ANN’s are as models of biological neuronal
networks, but that is a question outside the scope of this work.
Besides, as Balkenius (1995) argues; because we try to build
a model of a creature, ANN is the most reasonable method.

Briefly, an ANN is a simplified model of biological neural
circuits, implementing an algorithm similar to Hebbian
learning (Dayan & Abbott, 2001). A neuron is represented as
a node and synapses by connections between nodes. Each
connection has a “weight” (w) associated with it - usually a
real number - that represents synapse strength. Connection
inputs (s) to a node are multiplied by their respective weight
and put through an activation function f which creates that
node’s output as seen in Figure 4.

3.1 The perceptron

The simplest type of node to understand is the perceptron
(Rosenblatt, 1958). It works as just described and can
mathematically be described like so:

K = L EM.M + EN
O
M3P (6)

where y is the perceptron’s output and b is the bias input which
has its own weight. The bias can be understood spatially as
allowing the function to move away from origo, similar to b
in the simple linear equation:

K = 7: + N (7)

!
9

Due to its simplicity, the perceptron is limited to solving
linear discriminations. Meaning that, if we continue the
analogy with our linear equation (7), the perceptron can find a
line separating two types of data among a collection of data
points. So how do we teach the perceptron to do useful things?
We use supervised learning as an example and the following
step function (also seen in Figure 4) as the activation function:

K =
1BILBE. + N > 0

>T.>B0
 (8)

We can teach the system to perform AND and OR
operations by inputting examples and compare the
perceptron’s output with the known correct output. We then
use the error of the output to adjust the weights. In Table 1 you
can see training examples for the AND operation.

Table 1. The AND operation is true (represented by y as 1) if inputs
s1 and s2 are the same. If they are not the same, the AND operation

is false (represented by y as 0).

s1 s2 y
0 0 1
0 1 0
1 1 1
1 0 0

Usually, the weights are initialized randomly, so if we take
the example from the first row of Table 1 and have weights w1
as -0.5, w2 as 0.5, w3 as 0.2, with b as 1 and use equation (6)
we get:

K = L .P, .U = .PEP + .UEU + EVN = 0.2

Which will, according to (8) give 1 as output. Here we can see
the role of the bias. With the chosen activation function the
perceptron would not be able to solve the problem if not for
the bias, since regardless of the value of weights 1 and 2 the
function would always be 0 without the bias and so not be able
to output the correct 1 as we would like for an AND operation.

If we go to the second row of Table 1 we instead get:

K = L .P, .U = .PEP + .UEU + EVN = 0.7

This will give 1 as output according to (8), which is incorrect;
it should be 0. The weights will need to be updated in order
for the perceptron to output the correct value. How do we do
this then?

We use an error function that calculates an error value,
commonly called the delta rule. In its simplest form it is:

>11?1 = G?11>GJBZ7TH> − G7TGHT7J>FBZ7TH> (9)

If we call the calculated value a “prediction” we can see that
(9) is the same principle as the prediction errors we have
discussed above, like the Rescorla-Wagner rule in (1) and the
dopamine response in (5). So for our second example above it
becomes:

>11?1 = 0 − 1 = −1

In order to avoid large changes in weights (too large of a
change may “step over” the solution), we adjust the error with
a learning rate α. As mentioned in the Q-learning section
above, we can choose α as 0.1 and calculate the new weight
values:

EM = EM + $(−1 ∙ EM)

Meaning that every weight’s new value is its own value
multiplied by the error added to its old value. This goes on and

Figure 5. A collection of Q-trons, creating our simple basal ganglia
model. Every action is represented by a Q-tron (action1 and action2),
each with its own weights. The output value, Q1 and Q2, is stored by

the Q-tron, ready to be exploited.

on for the examples in Table 1 until we always receive correct
output (or as close to always as we can; to converge on the
correct solution). Important to note here is that since there may
be many possible values for w that will solve the problem, we
are not guaranteed to converge on the optimal configuration
of weight values. To summarize our example, we can now see
that the perceptron approximates the function in (8). The
“knowledge” of this approximation is stored in the weights,
similar to how the memory mechanism of long term
potentiation is represented by synapse strength (Kandel,
2001).

We should also note that since the perceptron is a linear
classifier, it can only learn to distinguish between two
categories of data if a line can be drawn between them. To
again take an example from logical operations, the perceptron
cannot learn the XOR (exclusive or) operation. A regular OR
operation would return y as 1 for rows two, three and four in
Table 1. XOR, however, is not true if both s1 and s2 are true.
This makes it impossible to draw a straight line between true
and false for XOR. This can, however, be solved by using
several “layers” of perceptrons. In that case, inputs are sent to
a layer of one or more perceptrons, all of which send their
outputs to one or several “hidden” layers and finally to the end
output.

Such a network of perceptrons is usually what is meant by
“artificial neural networks”. To again interpret this spatially,
additional layers of perceptrons can be seen as creating
additional lines so we can make a finer grained classification
between data points. Convolutional neural networks, as used
by the DQN agent, are in principle many such layers organized
in a hierarchical structure that progressively recognize
features of an input image in a similar fashion as the
hierarchical structure of the visual cortex.

3.2 The Q-tron

Now then! How can we use the perceptron to handle states and
actions with Q-learning? Why, with a Q-tron of course!

The Q-tron represents an action that the modelled agent
can perform, for example “take one step forward”. So the basic
assumption for the Q-tron is that the action space for the agent
is discrete, while the state space can be continuous. Referring
to Figure 5, the agent observes the world as an array of
arbitrary size, represented by the state s. The state does not
have to be an RGB (Red, Green, Blue) image, it can be any
numerical array. When a Q-tron is created, it sets its initial Q-
value to zero and initializes its weight array with random
values between -0.5 and 0.5. The Q-tron itself only handles
the storage and update of Q-values, meaning it handles
equation (3). Action selection (exploration/exploitation),

!
10

Figure 6. A circular house. The agent always starts in room 0, from
where it is possible to move “up” to room 1 or “down” to room 7.

The other rooms work the same, so the agent can always move one
room “up” or one room “down”. The goal is always room 5.

terminal state, etc. is done in the main program itself. This is
so that the network of Q-trons can more easily be extended
with hidden layers in the future. During a forward pass -
calculation of the Q value - the weights are multiplied by the
state as in (6) and put through a sigmoid activation function
(equation 10), which limits output between 0 and 1.

L =
1

1+>−:
 (10)

The Q-tron updates its weights with a method called back-
propagation (Rumelhart et al., 1988) which uses the delta rule
with gradient descent to approach the wanted value. This is
where we adapt the error for the Q-learning equation from (4)
to be used in the same approach as in (9).

Gradient descent uses the derivative of the output value,
which can be spatially interpreted as finding an optimal value
(minimum or maximum) by taking steps in the direction of the
slope of the function. The principle of this can be understood
by imagining a three dimensional landscape with valleys and
hills. So when an action has been taken, the error tells us if
that step took us towards the top of the hill that we want to
climb or not. With derivative of the sigmoid function being:

\]

\^
= .I_9?IF(:) ∙ (1 − .I_9?IF :) (11)

we get a gradient descent step where “error” is equation (4)
and looks like:

.J>C = >11?1 ∙ 5(., 7)(1 − 5(., 7)

and the weights are then updated with:

EM = EM + EM.J>C

From Figure 5 it may seem like the Q-trons are unaware of
each other, but even though only the Q-tron representing the
action performed is updated, it takes the other actions’ Q-
values into account through the maxQ function. Also, as
mentioned above on RL and Q-learning, we cannot be certain
of convergence for the Q-trons. Specifically, we have two
main problems here. The first is that gradient descent may find
a local optimal value, meaning we find a hill but not the tallest
hill in the world. There is also the possibility that we find the

Figure 7. General layout of the software used. The program itself

was written in Python, which communicated with MCPI to send and
receive information from the CanaryMod server. Python also
communicated with Windows to send keyboard and mouse

commands and receive information on where the Minecraft game
window was located and coordinates for screenshots. Minecraft

connected to the CanaryMod server, which ran the plugin
CanaryRaspberryJuice (not shown) allowing it to communicate with

MCPI. Technically - if you are so inclined - everything
communicated with the Windows operating system since all

software was run on the same machine.

tallest hill, but it takes significant amounts of time to get there.
This is where our innate behavior comes in; if we implement
it properly, it may allow for faster convergence up that hill.

3.3 Getting through the house

As we soon shall see, the simulations in Minecraft take many
hours to complete. So in order to confirm that the Q-trons
work as expected, a small pilot test was constructed. This test
of the Q-trons was made in an environment constructed as a
circular house, exemplified in Figure 6. The simulation used
40 rooms instead of the eight rooms in the figure, but the
principles are the same. The agent always started in room 0
with the goal of finding the shortest route to the goal; room 5.
The state s of the house was programmatically represented as
a one dimensional array where the agent was represented by
the value 10 and empty rooms by the value 0.1. So, in the case
seen in Figure 6, the shortest route to the goal is to go “down”
from 0 in three steps. In the simulation case, however, the
shortest route would be to go “up” in five steps.

As previously described, the agent has one Q-tron for each
possible action so in the house environment there are two Q-
trons; one for “up” and one for “down”. Training of the Q-
trons was done in the following fashion:

Algorithm 1.

Initialize Q-trons with value of zero and random weights
Repeat (for each episode):
 Observe starting state s
 Repeat (for each step of episode):
 With probability epsilon, select random action a,
 otherwise select optimal action as a
 Take action a, observe reward r and new state s’
 Update Q-tron representing a, using given r, s, s’
 Set s’ as s
 until s is goal state

3.4 Software

The main applications that were used and their relations can
be seen in Figure 7. The complete source code for MAIA with

!
11

Figure 8. The cross is the center of the viewport and the white
outline (exaggerated for clarity, in the game the outline is a thin
black line) is the “block” that is currently selected and will be

interacted with if a mouse button is pressed. As clearly seen, a very
slight change in perspective changes what block is selected.

installation instructions can be found on GitHub1. It also
contains the CanaryMod server (see below) used for the
project, since that server distribution is no longer maintained
so providing it allows for easier replication (and
improvement!) of the results. Initially an attempt was made to
create a cross platform implementation but due to
performance speed with screenshot capture and functionality
issues with keyboard and mouse input, the final
implementation is Windows only.

3.4.1 Minecraft

Minecraft2 is a 3D computer game created by Markus Persson
and released in 2011 by Mojang, later sold to Microsoft. The
game world is similar to our own, with hills, rivers, valleys,
fields, animals and plants. There are also portals to other
worlds and a wide variety of monsters, all of which may or
may not reflect reality. The game’s environments are made
from blocks, creating a distinguishable “blocky” look that
makes features fairly big and non-detailed. This makes the
game a good test environment for our intelligent agent.

The player sees the world in first person view and can
collect materials by “chopping” blocks (destroying them) and
combine those materials to craft items with which to build
structures. Movement is made with the keyboard and the
camera view is changed by moving the mouse around.
Interaction with the world works through clicking the mouse
buttons.

It is not without its problems, however, as can be seen in
Figure 8. To select a block for interaction, it needs to be
centered in the view. But smaller objects like flowers have
smaller “selection boxes” which means that a flower may be
centered in view but not selected. The opposite is also true; a
flower may be selected without being central in the view. This
of course complicates our task.

3.4.2 CanaryMod Server

The CanaryMod3 Server 1.2 (development of which
unfortunately seems to be discontinued as of summer 2015 but
can still be downloaded) is a custom version of the official
Minecraft server and allows the use of plugins. One such
plugin is CanaryRaspberryJuice4 and it opens a port allowing
the Python module MCPI to communicate with the
CanaryMod server. This way, we can manipulate the player
and the world blocks with Python code. Furthermore, the

!!
1 https://www.github.com/fohria/maia
2 http://www.minecraft.net, version 1.8 for the Windows operating system
3 https://github.com/CanaryModTeam/CanaryMod!

Figure 9. Starting with the 3D game world, the gamewindow

component observes the game state by taking a screenshot. This
percept is forwarded to the Behavior component, which

communicates with the Q-trons to decide on an action. The selected
action is sent to actionutils, which in turn calls on AID (Artificial

Interface Device) to send the action command to the game. In case
the chop action is selected, the chop module will check the selected

game block to see if it is a flower and if it is gone after the chop
action has been performed. The reward signal is then sent back to

the Q-trons for updating.

CanaryMod server allows many custom settings and the main
ones used for MAIA was turning off monsters, health and
hunger and set long lasting daytime so the input colors were
held at constant luminance.

3.4.3 Python and its many libraries

Python5 2.7 was used since the availability of libraries are still
better than the now seven years old Python 3. The previously
mentioned MCPI module allowed Python to communicate
with the CanaryMod server. The other main libraries used was
Numpy for mathematical operations, Pillow for taking
screenshots and PyWin32 to access the Windows operating
system in order to get coordinates for the Minecraft game
window and send keyboard and mouse input. A full list of
libraries used can be found on MAIA’s GitHub page.

3.5 MAIA - Minecraft Artificial Intelligence Agent

MAIA consists of three main components; eyes, brain and
motor control together with several subcomponents to allow
communication between the main components and provide the
possibility of saving data for analysis. An overview of the
main components can be seen in Figure 9 and will presently
be presented in more detail along with additional modules and
components. We should mention here that the other agents of
course use most of these modules as well.

3.5.1 gamewindow

These functions utilize the win32api to find the Minecraft
game window, focus it so action inputs are fed to Minecraft
and not some other active window and also returns the screen
coordinates for the center of the game window itself. These
coordinates are used by the previously mentioned Pillow
library to grab frames of a chosen size from the center of the
game screen. These frames are grabbed as RGB tuples,
converted to a 1D Numpy array and returned for use as state
input to the Q-trons. For example, a grabbed frame of size

4 https://github.com/martinohanlon/canaryraspberryjuice
5 http://www.python.org

!
12

50x50 pixels will be returned as a Numpy array of size
50x50x3.

3.5.2 Behavior

This algorithm is similar to the one presented for “getting
through the house” but with a few additions, mainly the innate
behavior to chop if seeing red. We classified something as red
in two ways; the first (MAIA1) counted how many pixels in a
captured frame matched exactly the RGB values of the four
light red pixels on the flower rings. If at least five such pixels
were found, the frame was classified as red. The second
approach (called MAIA2) looked at the average amount of red
in the observed state using the following formula:

`

4.a(bcd)
> 2 (12)

where R, G, B are the average values of those components in
the grabbed frame. For both versions, if a frame was classified
as red, there was a probability of 0.8 that the chop action
would be selected. With one flower chopped as the goal state
and exploration/exploitation strategy ε-greedy, the algorithm
is thus:

Algorithm 2.

Initialize Q-trons with value of zero and random weights
Repeat (for each episode):
 Observe starting state s
 Repeat (for each step of episode):

 If s is red, with p=0.8 select chop as action a,
 otherwise;

With probability epsilon, select random
action a,

 otherwise select optimal action as a
 Take action a, observe reward r and new state s’
 Update Q-tron representing a, using given r, s, s’
 Set s’ as s
 until s is goal state

3.5.3 Q-trons

The actions made available were step left, right, forward or
backward, look left or right and chop. This makes for seven
actions and thus seven Q-trons. Since we used RGB frames of
size 50x50, the total number of weights was 7501, where the
last one is for the bias.

3.5.4 actionutils

The take_action.py function receives the selected action and
calls on the AID module to perform the key press or mouse
click associated with that action. Most importantly,
get_block_position.py and chop.py work together to enable
counting of the amount of flowers that have been picked. They
use the MCPI event function pollBlockHits which listens to
right clicks made when the player has a sword equipped. Yes,
that is correct, this only works with a sword. Only peasants
pick flowers, real knights of the round table cut them with
sharp swords because that way the flower will last longer in
their loved ones’ vase. If a block is in range, the event function
returns the type of block clicked. This event listener required
many hours of careful testing in order to get working as
intended for the current implementation, since it needed to

!!
6 http://www.nodejs.org
7 http://morrisjs.github.io/morris.js

synchronize with in game animations and AID calls to actually
return something.

Every move action - step left, right, forward and backward
- was hard coded as sending the key press for 0.25 s. Looking
left or right was defined as moving the mouse cursor 150
pixels to the left or right, respectively.

3.5.5 AID

When humans interact with computers, input devices are
commonly called Human Interface Devices so here we use the
AID - Artificial Interface Device. In short, it uses win32api
calls with C structures to send key presses and mouse clicks
to Windows and in turn Minecraft, if that is the currently
focused window.

3.5.6 API

This is a small nodejs6 websocket server that listens to
incoming traffic on one port from the running Maia
application and redirects that information to another port that
the client connects to. The client is run in a browser and uses
morris.js7 to display graphs of the current Q-value for the
different actions. The API server was mainly used for
debugging purposes and turned off during the simulation runs.

3.5.7 counterupdaters.py

Contains functions to update performance measure counters
and save these to disk both during the simulation and when the
program exits.

3.5.8 prepareworld.py

This is run before every new round (see below for explanation
of rounds) and uses MCPI to create a pasture with flowers. It
finds the current position of the player, places a grass block
directly below the player and additional grass blocks in a
square with sides of 20 blocks around that grass block. On the
grass it then places red flower blocks and around the grass
blocks a dirt wall two blocks high so that the player cannot get
out of the pasture. It also places air blocks around and above
the player to avoid that any part of the pasture is in shadow
from the in game sun, as that would change the shadowed
flowers’ colors. This means that the agent always starts in the
center of the pasture every new round.

3.6 Hardware

Virtual machines could unfortunately not be used, as the
graphics capabilities were insufficient. Instead, the
simulations were run on three desktop computers, two of
which used Windows 7 and one used Windows 8.1.

3.7 Analytical tools

Analysis was made with the programming language R8.
Actions taken per episode were averaged over simulation runs
and plotted with the ggplot package, using the generalized
additive model (Hastie & Tibshirani, 1990) for house
simulations and local polynomial regression fitting (Cleveland
et al., 1992) for the Minecraft simulations.

8 https://www.r-project.org/

!
13

Figure 10. Average number of actions per episode for the house agent, aggregated over 50 simulation runs. The solid line represents the

mean and the shadow is the standard error. Vertical dotted lines indicate when learning rate α was decreased.

Figure 11. Average actions per episode for the two versions of MAIA that have different red check mechanisms. Unfortunately, no learning
seems to occur. The solid lines are the mean values and shadows represent standard error. Vertical dotted lines indicate when learning rate α

was decreased.

!
14

Figure 12. Average actions per episode for the random walker RW contrasted with the two versions of MAIA. MAIA1 is slightly better than

RW until after around 150 episodes. Solid lines are the mean values and shadows represent standard error.

Figure 13. Average actions per episode for the pure Q-learner PQ contrasted with the two versions of MAIA. We can clearly see that PQ

performance is worse. Solid lines are the mean values and shadows represent standard error.

!
15

4 Experiments and Results

For clarity, we will here first explain the experimental
procedures and then the results of the experimental
simulations.

4.1 Getting through the house

Training of the house agent (Algorithm 1) was performed with
1000 episodes for one simulation run. The parameters used for
the house agent were α=0.1 and γ=0.9. ε was set to an initial
0.5 and was progressively decreased in steps of 0.1 every 100
episodes and then kept at 0.1 for episodes 401-1000.

Figure 10 shows average number of actions taken each
episode for an aggregate of 50 simulation runs for the house
agent. As can be seen, performance increases (fewer actions
per episode) until around 400 episodes where performance
starts to decrease again (increasing actions per episode).
Kaelbling et al. (1996) mentions how such oscillatory
behavior can occur even in simple environments and Mnih et
al. (2013) uses experience replay to solve this issue. It may
also be an artefact of the low exploration rate (0.1) used after
400 episodes in combination with the randomness inherent in
the problem, causing the agent to alternate between choosing
up and down as the optimal route. In other words, only in some
of the runs will the agent learn to go up in five steps and in
some runs it will go down in 35 or more steps, explaining the
average being between 30 and 40 steps for episodes after the
400 mark.

Nevertheless, we can clearly see that performance in
general increases during the simulation run so it seems that
our Q-trons work. It is also worth mentioning that the
decreasing performance at the “tail” was mainly due to the
influence of one out of the fifty runs.

4.2 Minecraft simulations

As mentioned previously, one episode equaled one flower
picked. Each simulation run used 200 episodes and was also
divided into rounds of 20 flowers picked. When one round was
complete, a new pasture was created and ε was decreased by
0.1. ε was initially set to 0.6 for all q-learner versions and held
at 0.1 for episodes 101-200. γ was always 0.9 and α=0.1.
These parameters should ideally be tested with different
values for different simulation runs in order to find the best
combination. Unfortunately, time did not allow for this, so
even though these values are reasonable, they have been
chosen somewhat arbitrarily. Due to the same time
constraints, initial attempts with simulation runs of more than
200 episodes (and different round lengths) were abandoned.
The random walker RW used only random actions of the
seven available each step. The “pure” Q-learner PQ used
Algorithm 1 while MAIA1 and MAIA2 used Algorithm 2.
The difference between MAIA1 and MAIA2 was the
mechanism for seeing red, explained in section 3.5.2 above.

4.2.1 MAIA1 versus MAIA2

MAIA1 was successfully run 13 times, with a mean run time
of 0.84 h (SD=0.25). MAIA2 was successfully run 14 times,
with a mean run time of 1.95 h (SD=1.25). Like for the house
test, an aggregate over simulation runs was averaged for both
MAIA versions and are presented together in Figure 11. We
can see that MAIA2 seems to decrease in performance as the
chance for random actions, ε, decreases. MAIA1 on the other
hand does not decrease in performance until around 150

episodes, which is mainly caused by a few outliers.
Unfortunately, neither version shows any sign of learning, like
the house agent in Figure 10. This will be further discussed
below, but briefly, there are two main reasons for this
discrepancy. First, the house agent observes the entire world
state while MAIA only observes parts of it. Second, the house
state is reset each time the goal is reached, while in the MAIA
simulations the world is reset every twenty flowers. This
makes the rewards occur randomly, which can cause
performance issues as discussed in section 2.2.

As an interesting side note, version 1 was the only agent
(except for a random walker) that successfully completed runs
of 1000 episodes in less than 24h.

4.2.2 Random walker versus MAIA siblings

Ten random walker (RW) simulations were run with a mean
run time of 1.01h (SD=0.05h) and is presented together with
the MAIA siblings in Figure 12. We can see that the RW agent
has steady performance over all episodes as is to be expected.
Also, it may at first seem like a win for MAIA1, but most
likely, a random walker with a red check function would at
least match its performance, meaning that version 1 of MAIA
is at random levels of performance until around 150 episodes
when it gets worse.

4.2.3 PQ agent versus MAIA siblings

The “pure” Q-learner (PQ) successfully completed five runs
with a mean run time of 18.7h (SD=22, shortest run time was
4.9h and longest 57h). The average actions per episode over
these five runs are contrasted with the two MAIA versions in
Figure 13. The pure Q-learner is not performant compared to
both MAIA siblings, which is in line with expectations.

4.2.4 General observations

Animals should be observed in their natural environment and
since the two MAIA siblings have never known anything else
than the flowered pasture, it is as much their habitat as
anything else. It was not feasible to observe all simulations all
the time of course, but some observations worth mentioning
were made.

The most successful simulations had look left or look right
as the dominant behavior, causing the agent to chop innately,
turn, chop and so on. The downside of this strategy was that
the agent created a circle around it without flowers, but a few
successful exploration steps towards uncut areas allowed it to
begin circling again. For the same reason, sometimes this did
not work at all, because the few exploration actions taken
either made the agent for example go forward and then
backward again or it stepped towards areas already chopped.

Another common strategy, but less successful, was for one
of the step movements to become dominant. This works fine
early in a round, as it steps left for example, chops innately,
then steps left again and chops another flower. But soon it
steps left into a wall and the agent then in the best case started
sliding along the wall with repeated left movements and
chopped innately as it passed flowers near that wall. In the
worst cases though, the agent moved “straight” into the wall
and not sliding along it (or moved into a corner), so only the
specific action of look right or look left would save it.

Moreover, it was not uncommon for the innate behavior to
cause the action count to increase. Its function works nicely
when going from an empty space to where there are flowers,
but as seen in Figure 8, sometimes the innate behavior caused

!
16

the agent to continue chopping many times without reward
because the selection was a ground block instead of a flower.
In those cases, there is only a 20% chance it will go on to
explore/exploit actions.

5 Discussion
This project was born of a desire to understand the principles
of the DQN agent by Mnih et al. (2015) and learn the
fundamentals of programming an agent with reinforcement
learning. In that regard, I believe it was a success. The other
goal was to investigate the biological basis of reinforcement
learning and whether an innate behavior would improve the
performance of our agent. As seen in Figure 13, that is
certainly the case.

But what kind of animal is MAIA supposed to be?
Depending on what “level” of species we believe the model
corresponds to, the results would be impressive for a single
cell organism but abysmal for a dog. Both cases are
worthwhile though, since by studying common features of
neural biology – in this case the basal ganglia (which the
single cell organism lacks) – between species we can figure
out how other areas work, because evolution often builds on
previous structures. A possible objection to the approach taken
here is that the innate behavior is motivated by behavior in
both vertebrates such as dog and monkey as well as foraging
insects. I believe the reasoning is sound though, from the
perspective of a creature in a pasture of red flowers, however
small and contained that world may be.

More concerning is that the current results are not in
agreement with the role of the basal ganglia system as an
“action selector”, since the general impression from Figure 12
is that we might as well use a random walker. The pattern we
would have liked to see is the one from Figure 10, but both
versions of MAIA seem to decrease in performance as the
exploration rate goes down. In other words, the high degree of
randomness in early rounds “saves” the MAIA agents from
getting stuck. A silly interpretation would be that all previous
research is wrong and the basal ganglia has nothing to do with
reinforcement learning or action selection. A more reasonable
interpretation is that our model does not work as intended.
Why is this?

Most importantly, there is no cost for performing an
action. A real creature uses energy when it moves and thus
cannot walk perpetually into a wall without dying of thirst or
hunger. Cost could be implemented as a negative reward given
for those actions that do not lead to the goal state of a chopped
flower. That way, the “optimal” behavior of walking into a
wall or corner would more quickly result in that action’s Q-
value to decrease and so allow another action to become
optimal and chosen when the exploit chance is high. Also,
since there are four actions for taking steps and two for
looking around, there is a higher chance of a step action being
chosen initially, and if the new state causes an innate chop the
agent is likely to continue the step movement into a wall.

Furthermore, there is the simplicity of our model. We
mentioned how several layers of perceptrons allows the
network to solve more difficult problems. And as we can see
in Figure 8, there are tiny differences between having a flower
or the ground selected. The effect is that the input to the Q-
tron network is basically the same for both of those cases,
making the problem almost impossible to solve. Every added
layer in a neural network allows for finer features to be
detected, and since those selection lines in Figure 8 are so

small we would probably need a deep convolutional network
in order to detect them.

Additionally, the Q-tron implementation does not utilize
Markovian methods in any way. MAIA can only see one
screenshot at a time, making the task partially observable
because it is not possible to know the context from that single
screenshot. The DQN agent (Mnih et al., 2015), for example,
constructed MDP’s out of series of state-action-reward chains
and used those series as states in the Q-function. In that way,
it could avoid MAIA’s problem.

As mentioned, the innate behavior was meant to partly
remedy the implementational weaknesses of the Q-tron. But
there were cases where the innate behavior wrongly identified
flowers, because of the mentioned “selection problem”. There
are ways we could construct a better innate behavior, for
example; check every quadrant of the grabbed frame for equal
amounts of red which would allow the innate behavior to
trigger for centrally located flowers. We could also train a
neural network with a genetic algorithm, teaching it to identify
selected flowers. It would probably have to be quite large, but
that training could be done off-line and then put in as a module
in the program. This method would be the most reasonable for
an innate behavior, since natural creatures are likely to have
evolved their behaviors in a similar way.

The downside of using an innate behavior is that the
implementation becomes task specific. If we wanted MAIA to
pick yellow flowers, performance would fall to levels on par
with the pure Q-learner. The DQN agent, on the other hand, is
capable of learning to play many different games with the
same settings and parameters. However, it still needs to train
each game separately. There is no transfer of learning, i.e. by
training on one game it also becomes better at another.
Animals, and especially humans, do transfer some kind of
general knowledge from experience; if you have played many
video games you are likely to have a better initial performance
in a new game compared to a video game naïve human. We
can compare this line of thought with the example of New
Caledonian crows from the background section. They
apparently have some sort of innate ability to sample their
environment for state-action correlations and learning
mechanisms guide this behavior to successful
implementation. Humans have more generalized ways of
sampling both their environments and bodies, just look at
babies wildly flailing their limbs around. So innately
speaking, there seems to be a difference in degree of
generalization of innate behaviors between species,
underlying the sampling necessary to update the prior
distribution of Bayesian models (Wolpert & Ghahramani,
2000; Clark, 2013; Friston, 2010).

Which takes us to the questions of what an innate behavior
is and where does it come from? Is it a specialized function or
a general one? If specialized, does it work like showed here
with some manipulation or control of input that works in
coordination with action specification in the basal ganglia or
is it a separate process that bypasses regular action selection?
In the background section, we referred to Shettleworth’s
(2013) statement that differentiating innate and learned
behavior is “meaningless”, because they interact in ways that
make them very difficult to disentangle. But what the results
here show, especially those in Figure 11, is that the specifics
of the innate mechanism play a very important role for
behavior. It is therefore not beneficial to call the question of
innate versus learned behavior for a meaningless one. It is
rather a highly meaningful question to ask because we need to
find the answer in order to build proper models. For if we

!
17

cannot build such models it is doubtful we have truly
understood anything at all.

5.1 Future work

With the assumption that the action selection role of basal
ganglia is correct, how do we increase performance while
conforming to biological findings?

There are many possibilities for improving the Q-tron
model of the basal ganglia, with three main approaches. First;
to expand the perceptual input with preprocessing or an ANN
with more capacity similar to the discussion above on innate
mechanisms, i.e. a deep network with hierarchical layers
similar to visual cortex structure. Second; motor control would
ideally be expanded with motor signals instead of input to the
game, as it would allow for easier transfer of the model to a
physical robot. For a nice example of a combination of these
two “expansion slots”, see Levine et al. (2015). The third
option is to expand the complexity of the current model.

It would be simple to state that to improve our Q-tron
model, we would add deep convolutional networks with
experience replay, Markov methods and aversive reinforcers
or costs for performing actions. But as mentioned, it is not
self-evident where these methods fit into the neurobiological
picture. If an MDP series of state-action-reward sequences is
used as one state as in the DQN agent, would we still be
talking about the basal ganglia? Or is it rather something that
happens in conjunction with short and/or long-term memory
in frontal cortex and hippocampus? And since the biological
evidence mainly points to a role for basal ganglia components
in positive reinforcement, where does cost of performing
actions come from – as a specialized component in the
learning algorithm or a general property of the entire system
that is refilled with food and drink?

Similar questions can be asked for eligibility traces and
experience replay. It is likely that both are necessary, since
one is made on-line and explains some neurobiological
findings (eligibility trace; Pan et al., 2005) while the other
looks similar to memory consolidation during sleep
(experience replay; Mnih et al., 2015). But in the latter case,
if hippocampus is to be involved, we also need to consider the
spatial maps created there (Hafting et al., 2005).

So an interesting way of improving MAIA would be to add
a hippocampus module that dynamically creates a spatial map,
in which MDP series of state-action-reward sequences are
stored. If successful, this could generate predictions testable
in real creatures and physical robots. In the latter case, it would
be especially interesting to see if training can be done in
Minecraft and transferred to a physical robot. Another
interesting venue would be to combine the theory behind the
prediction errors shown throughout our previous sections with
the more general prediction error theory of Friston (2010) in
an effort to find common ground.

There is a long road ahead before we reach the point of
robot dogs that can play fetch. As we have shown, much of
today’s cutting edge research is based on algorithms many
decades old. But the union of machine learning and
neuroscience can help us find new answers to the questions
we have and the connections between algorithms and biology
for reinforcement learning show this particularly well. Is it not
exciting that correlates for learning algorithms are found in
dopamine neurons? I think so, and I intend to look deeper.

Acknowledgements

This work is dedicated to Sloke, the only dog that ever won
my hearth. May you and your family rest in peace. Many
thanks to my friends and family for discussions, coffee and
support. And last, but certainly not least, I want to thank my
supervisor Christian Balkenius for being generally awesome
and inspiring me with his enthusiasm and curiosity.

References
Armus, H.L., Montgomery, A.R., & Jellison, J.L. (2010).

Discrimination learning in paramecia (P. caudatum). The
Psychological Record, 56(4), 2.

Arias-Carrión, O., Stamelou, M., Murillo-Rodríguez, E.,
Menéndez-González, M., & Pöppel, E. (2010).
Dopaminergic reward system: a short integrative review.
International archives of medicine, 3(1), 24.

Balkenius, C. (1995). Natural intelligence in artificial
creatures (Vol. 37). Lund University.

Balleine, B.W., & Dickinson, A. (1998). Goal-directed
instrumental action: contingency and incentive learning
and their cortical substrates. Neuropharmacology, 37(4),
407-419.

Barto, A.G. (2007). Temporal difference learning.
Scholarpedia, 2(11), 1604.

Bayer, H.M., & Glimcher, P.W. (2005). Midbrain dopamine
neurons encode a quantitative reward prediction error
signal. Neuron, 47(1), 129-141.

Bengio, Y. (2009). Learning deep architectures for AI.
Foundations and trends® in Machine Learning, 2(1), 1-
127.

Cerruti, D.T., & Staddon, J.E.R. (2003). Operant
Conditioning. Annual Review of Psychology, 54, 115-144.

Chakravarthy, V.S., Joseph, D., & Bapi, R.S. (2010). What do
the basal ganglia do? A modeling perspective. Biological
cybernetics, 103(3), 237-253.

Clark, A. (2013). Whatever next? Predictive brains, situated
agents, and the future of cognitive science. Behavioral and
Brain Sciences, 36(03), 181-204.

Clarke, D., Whitney, H., Sutton, G., & Robert, D. (2013).
Detection and learning of floral electric fields by
bumblebees. Science, 340(6128), 66-69.

Cleveland, W.S., Grosse, E., & Shyu, W.M. (1992). Local
regression models. Statistical models in S, 309-376.

Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience
(Vol. 806). Cambridge, MA: MIT Press.

Dayan, P., & Berridge, K.C. (2014). Model-based and model-
free Pavlovian reward learning: revaluation, revision, and
revelation. Cognitive, Affective, & Behavioral
Neuroscience, 14(2), 473-492.

Dickinson, A., & Balleine, B. (1994). Motivational control of
goal-directed action. Animal Learning & Behavior, 22(1),
1-18.

Friston, K. (2010). The free-energy principle: a unified brain
theory?. Nature Reviews Neuroscience, 11(2), 127-138.

Gershman, S.J., Horvitz, E.J., & Tenenbaum, J.B. (2015).
Computational rationality: A converging paradigm for
intelligence in brains, minds, and machines. Science,
349(6245), 273-278.

Hafting, T., Fyhn, M., Molden, S., Moser, M.B., & Moser, E.I.
(2005). Microstructure of a spatial map in the entorhinal
cortex. Nature, 436(7052), 801-806.

Hastie, T.J., & Tibshirani, R.J. (1990). Generalized additive
models (Vol. 43). CRC Press.

!
18

Kaelbling, L.P., Littman, M.L., & Moore, A.W. (1996).
Reinforcement learning: A survey. Journal of artificial
intelligence research, 237-285.

Kandel, E.R. (2001). The molecular biology of memory
storage: a dialogue between genes and synapses. Science,
294(5544), 1030-1038.

Koutník, J., Cuccu, G., Schmidhuber, J., & Gomez, F. (2013,
July). Evolving large-scale neural networks for vision-
based reinforcement learning. In Proceedings of the 15th
annual conference on Genetic and evolutionary
computation (pp. 1061-1068). ACM.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2015). End-to-
End Training of Deep Visuomotor Policies. arXiv preprint
arXiv:1504.00702.

Lin, L.J. (1991, July). Programming Robots Using
Reinforcement Learning and Teaching. In AAAI (pp. 781-
786).

Lin, L.J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
learning, 8(3-4), 293-321.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing Atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., ... & Hassabis, D. (2015). Human-
level control through deep reinforcement learning. Nature,
518(7540), 529-533.

Montague, P.R., Dayan, P., & Sejnowski, T.J. (1996). A
framework for mesencephalic dopamine systems based on
predictive Hebbian learning. The Journal of neuroscience,
16(5), 1936-1947.

Morris, G., Nevet, A., Arkadir, D., Vaadia, E., & Bergman, H.
(2006). Midbrain dopamine neurons encode decisions for
future action. Nature neuroscience,9(8), 1057-1063.

Niv, Y., Daw, N.D., & Dayan, P. (2006). Choice values.
Nature neuroscience,9(8), 987-988.

Niv, Y. (2009). Reinforcement learning in the brain. Journal
of Mathematical Psychology, 53(3), 139-154.

O’Doherty, J.P. (2012). Beyond simple reinforcement
learning: the computational neurobiology of reward"
learning and valuation. European Journal of
Neuroscience, 35(7), 987-990.

Pan, W.X., Schmidt, R., Wickens, J.R., & Hyland, B.I. (2005).
Dopamine cells respond to predicted events during
classical conditioning: evidence for eligibility traces in the
reward-learning network. The Journal of
neuroscience, 25(26), 6235-6242.

Pavlov, I.P. (1927). Conditioned reflexes. An Investigation of
the physiological activity of the cerebral cortex.

Petrovskaya, A., & Thrun, S. (2009). Model based vehicle
detection and tracking for autonomous urban driving.
Autonomous Robots, 26(2-3), 123-139.

Prescott, T.J., Bryson, J.J., & Seth, A.K. (2007). Introduction.
Modelling natural action selection. Philosophical
Transactions of the Royal Society of London B: Biological
Sciences, 362(1485), 1521-1529.

Redgrave, P., Prescott, T.J., & Gurney, K. (1999). The basal
ganglia: a vertebrate solution to the selection problem?.
Neuroscience, 89(4), 1009-1023.

Redgrave, P. (2007). Basal ganglia. Scholarpedia, 2(6), 1825.
Rescorla, R.A., & Wagner, A.R. (1972). A theory of

Pavlovian conditioning: Variations in the effectiveness of
reinforcement and nonreinforcement. In Classical
conditioning: Current research and theory.

Roesch, M.R., Calu, D.J., & Schoenbaum, G. (2007).
Dopamine neurons encode the better option in rats
deciding between differently delayed or sized rewards.
Nature neuroscience, 10(12), 1615-1624.

Rosenblatt, F. (1958). The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychological review, 65(6), 386.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1988).
Learning representations by back-propagating errors.
Cognitive modeling, 5, 3.

Schmidhuber, J. (2015). Retrieved 2015-08-30 from:
http://people.idsia.ch/~juergen/naturedeepmind.html

Schultz, W., Dayan, P., & Montague, P.R. (1997). A neural
substrate of prediction and reward. Science, 275(5306),
1593-1599.

Schultz, W. (2006). Behavioral theories and the
neurophysiology of reward. Annu. Rev. Psychol., 57, 87-
115.

Schultz, W. (2007). Reward signals. Scholarpedia, 2(6), 2184.
Schultz, W. (2015). Neuronal Reward and Decision Signals:

From Theories to Data. Physiological reviews, 95(3), 853-
951.

Shettleworth, S.J. (2013). Fundamentals of comparative
cognition. Oxford University Press.

Shteingart, H., & Loewenstein, Y. (2014). Reinforcement
learning and human behavior. Current opinion in
neurobiology, 25, 93-98.

Staddon, J.E., & Niv, Y. (2008). Operant conditioning.
Scholarpedia, 3(9), 2318.

Sutton, R.S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Proceedings of the seventh international
conference on machine learning (pp. 216-224).

Sutton, R.S., & Barto, A.G. (1998). Reinforcement learning:
An introduction. Cambridge: MIT press.

Tesauro, G. (1995). Temporal difference learning and TD-
Gammon. Communications of the ACM, 38(3), 58-68.

Versace, M., & Chandler, B. (2010). The brain of a new
machine. IEEE spectrum, 47(12), 30-37.

Von Neumann, J. (1947). Morgenstern, 0. Theory of games
and economic behavior, 19-7.

Wandell, B.A., Dumoulin, S.O., & Brewer, A.A. (2007).
Visual field maps in human cortex. Neuron, 56(2), 366-
383.

Watkins, C.J. C.H. (1989). Learning from delayed rewards.
Doctoral Dissertation.

Watkins, C.J., & Dayan, P. (1992). Q-learning. Machine
learning, 8(3-4), 279-292.

Whiteson, S., Taylor, M.E., & Stone, P. (2007). Empirical
studies in action selection with reinforcement learning.
Adaptive Behavior, 15(1), 33-50.

Wilson, M. (2002). Six views of embodied cognition.
Psychonomic bulletin & review, 9(4), 625-636.

Wise, R.A. (2004). Dopamine, learning and motivation.
Nature reviews neuroscience, 5(6), 483-494.

Wolpert, D.M., & Ghahramani, Z. (2000). Computational
principles of movement neuroscience. nature
neuroscience, 3, 1212-1217.

Wolpert, D.M. (2011). Retrieved 2015-08-30 from:
http://www.ted.com/talks/daniel_wolpert_the_real_reaso
n_for_brains

!

