
Framework for Simulation of

Coupled Systems by Aggregation

Pukashawar Pannu

Master's thesis

2015:E49

Faculty of Engineering

Centre for Mathematical Sciences

Numerical Analysis

C
E
N
T
R
U
M
S
C
IE
N
T
IA
R
U
M
M
A
T
H
E
M
A
T
IC
A
R
U
M

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289938005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract

Complex systems can be described by coupling several standalone ODE prob-
lems that communicate with input and output signals. The need for simulating
such systems has increased in recent years. A major issue when simulating
coupled ODE systems has been to communicate coupling relations properly
throughout integration and how to handle discontinuities. In this paper a con-
cept that aggregates several ODEs into a single problem is presented. For each
right-hand-side function evaluation the aggregated problem communicates cou-
pling relations ensuring that all inputs and outputs in the system are uptodate.
Experiments are conducted on systems containing algebraic loops, discontinu-
ities and non-linear couplings; the results suggest potential for the concept.





Acknowledgements

I would like to extend my sincerest gratitude to my supervisors Christian An-
dersson and Johan Åkesson at Modelon AB and Prof. Claus Führer at LTH for
giving me this opportunity, believing in my success and their constant support
throughout the project. They have given many ideas on concept formulation,
implementation design and suitable experiments. Without you guys this thesis
would not be possible. I also want to thank my colleagues at Modelon AB for
creating a friendly atmosphere, helping me with technical issues and hosting
interesting discussions. Surprise appearances of cakes and sweets on Friday af-
ternoons have been especially appreciated. Finally, I want to thank my family
and friends for supporting me in this undertaking.





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Reading Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Aggregation Concept 3
2.1 Algebraic Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Coupled Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Implementation 7
3.1 Software Background . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Bouncing Ball as Assimulo Problem . . . . . . . . . . . . 9
3.1.2 Bouncing Ball with PyFMI . . . . . . . . . . . . . . . . . 11

3.2 Coupling Extension Interface for ODEs . . . . . . . . . . . . . . 13
3.3 Problem Classes for ODEs with Inputs and Outputs . . . . . . . 14

3.3.1 Assimulo ODE Problem with Coupling Extension . . . . . 14
3.3.2 PyFMI Problem with Coupling Extension . . . . . . . . . 19

3.4 Aggregated Problem Class . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Jacobian Computation . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Algebraic Loop Solver . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Event Detection and Handling . . . . . . . . . . . . . . . 24
3.4.5 Result Handling . . . . . . . . . . . . . . . . . . . . . . . 25

4 Simulation Examples and Experiments 26
4.1 Simple Coupled System . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Coupling Induced Algebraic Loop System . . . . . . . . . . . . . 28
4.3 Coupled Pendulums as FMUs . . . . . . . . . . . . . . . . . . . . 29
4.4 Coupled Pendulums with Mixed Models . . . . . . . . . . . . . . 32
4.5 Coupled Pendulums with Externally Added Events . . . . . . . . 35
4.6 Formula 1 Race Car . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions 38
5.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Appendix 41
6.1 Coupling Induced Algebraic Loops . . . . . . . . . . . . . . . . . 41

6.1.1 System A in Modelica . . . . . . . . . . . . . . . . . . . . 41
6.1.2 System B in Modelica . . . . . . . . . . . . . . . . . . . . 41
6.1.3 System A in Python as Assimulo Problem . . . . . . . . . 41
6.1.4 System B in Python as Assimulo Problem . . . . . . . . . 42

6.2 Coupled Pendulums as FMUs . . . . . . . . . . . . . . . . . . . . 42
6.2.1 Pendulum Model in Modelica in Cartesian Coordinates . 42
6.2.2 Monolithic Reference Model in Modelica . . . . . . . . . . 43

6.3 Coupled Pendulums with Mixed Models . . . . . . . . . . . . . . 44



6.3.1 Pendulum Model in Modelica in Polar Coordinates . . . . 44
6.3.2 Coupled Pendulum in Polar Coordiantes as Assimulo Prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.3 Monolithic Reference Model in Modelica . . . . . . . . . . 46

6.4 Bouncing Ball Demonstration . . . . . . . . . . . . . . . . . . . . 47
6.4.1 Bouncing Ball as Assimulo Problem . . . . . . . . . . . . 47
6.4.2 Bouncing Ball with PyFMI . . . . . . . . . . . . . . . . . 48



1 Introduction

A concept for solving coupled dynamical systems described as ordinary di�er-
ential equations is presented in this paper. The dynamical systems considered
can be described by,

˙̄x = f̄(x̄, ū) (1a)

ȳ = ḡ(x̄, ū) (1b)

where x̄ are states, ȳ outputs and ū inputs. By coupling several standalone sys-
tems like Eq (1) one can model large complex systems. Coupling also makes it
easier to swap speci�c components of a model. The major issues when it comes
to simulating coupled systems are to maintain coupling relations throughout
simulation and what to do about sub-system discontinuities. This paper pro-
poses a concept of aggregation where all coupled systems are aggregated into
one uni�ed problem that handles coupling communication and sub-system dis-
continuities. The concept is implemented in Python and tested on a range of
coupled systems.

Models used in experiments are either composed directly in Python or im-
ported as Functional Mock-up Units (FMUs) following the Functional Mock-up
Interface (FMI) [3]. FMI is an industrial standard for model exchange between
di�erent simulation tools. Usually a system is modelled in one tool that compiles
the model to an FMU that can then be imported to a second tool. With FMI
the same model can be tested in several di�erent simulation environments. FMI
supports two types of FMUs, Model Exchange (ME) and Co-Simulation (CS).
Both types contain a model description and system equations as binaries. The
di�erence is that in order to simulate an ME FMU the user is required to supply
a numeric solver whereas the CS FMU comes with a built-in solver. However,
in a CS FMU the user has no access to model equations and is forced to use
the built in solver while ME FMUs gives the user access to model equations. In
this paper only models compiled as ME 2.0 FMUs, 2.0 is an updated version of
the standard with additional features, or written directly in Python are consid-
ered. FMU models in the experiments are written in Modelica [9], a language
for modelling physical systems, and compiled with either JModelica.org [11] or
Dymola [4].

There are many industrial solvers for integrating systems of ordinary dif-
ferential equations. In this paper solvers available either in the open source
Python package Assimulo [2] or in Dymola are used. FMUs are loaded into
Python with PyFMI [10], an open source Python package for FMUs fully com-
pliant with FMI. The implemented software intends to solve coupled systems
containing coupling induced algebraic loops and sub-system events. Addition-
ally a feature for externally adding events to a coupled system has been added.

A conference article presenting the concept discussed in this paper has been
published in Proceedings of the 11th International Modelica Conference, Ver-

sailles, France, September 21-23, 2015 [7] with co-authors Christian Andersson,
Johan Åkesson and Claus Führer. The article has been attached at the end of
this document.

1



1.1 Background

Methods for integrating coupled systems modelled as ME FMUs today are quite
limited. One way is to rewrite the coupled system as a monolithic model and
integrate it using a standard solver. A monolithic system is when the entire
model is represented by a single unit. This requires access to model source code
which may be unavailable since the model dynamics are compiled to binaries
when exporting a model as an FMU. It also defeats the purpose of �rst cre-
ating sub-systems that are then coupled together to model a dynamic system.
Another way is to attach a solver to each ME sub-model and treat the entire
system as a system of coupled CS FMUs that is simulated by applying a master
algorithm [1]. Problems with this approach are to maintain proper coupling re-
lations throughout the simulation as well as detecting and handling sub-system
discontinuities.

As an alternative this paper presents a concept of aggregation that tries
to patch the current issues of simulating coupled ME systems . The concept
focuses on maintaining coupling relations at each right-hand-side function eval-
uation and tries to catch sub-system discontinuities. In essence, a monolithic
representation of the coupled system is created without access to source code.

1.2 Reading Guidance

The paper starts with a mathematical description of the aggregation concept,
followed by implementation of classes with function names written in bold and
class names in TypeWriter. Next is a chapter with experiments that test a
wide range of coupled systems. Source codes for all models except Formula 1
Race Car are available in the appendix. All variables mentioned in text are in
cursive.

2



2 Aggregation Concept

The idea is to take N coupled systems and aggregate all system states, inputs,
outputs and coupling relations to one aggregated system. The main goal of the
aggregated system is to maintain sub-system coupling relations at each function
evaluation. The �rst step is to aggregate all states, inputs and outputs of all
sub-models to aggregated states, inputs and outputs vectors. Sub-model inputs
are not limited to couplings, some sub-models may have external forces acting
on the sub-system. To accommodate for this and at the same time keep track
of which inputs are coupling related and which are time dependent external
excitations, the inputs have been separated into, u, coupling related and, w,
external excitations,

ū = [û, ŵ] (2)

The vectors are aggregated as,

x =


x̄

[1]
1
...

x̄
[N ]
p

 , y =


ȳ

[1]
1
...

ȳ
[N ]
p

 , u =


û

[1]
1
...

û
[N ]
p

 , w =


ŵ

[1]
1
...

ŵ
[N ]
p

 (3)

where the super-script denotes model number, sub-script represent variable in-
dex for that sub-model and p represents the �nal vector index of each sub-
system. The next step is to to aggregate the dynamics of the sub-systems, i.e.
the state and output functions together with coupling relations. Let us take a
look at a generic sub-system,

˙̄x[n] = f̄ [n](x̄[n], û[n], ŵ[n]) (4a)

ȳ[n] = ḡ[n](x̄[n], û[n], ŵ[n]) (4b)

where n ∈ [1, N ] of N coupled systems. The barred variables and functions
belong to sub-systems. Functions f and g hold the state and output dynamics.
Aggregating the sub-system functions and adding sub-model coupling relations
results in,

ẋ = f(x, u, w) =


f̄

[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1 )

...
f̄

[N ]
j (x̄

[N ]
j , û

[N ]
j , ŵ

[N ]
j )

 (5a)

y = g(x, u, w) =


ḡ

[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1 )

...
ḡ

[N ]
j (x̄

[N ]
j , û

[N ]
j , ŵ

[N ]
j )

 (5b)

u = c(y, w) =


c̄
[1]
1 (y, w)

...
c̄
[N ]
j (y, w)

 (5c)

3



A more compact form of the aggregated system is,

ẋ = f(x, u, w) (6a)

y = g(x, u, w) (6b)

u = c(y, w) (6c)

The aggregated system looks just like a sub-system with the addition of coupling
relations. Depending on sub-model couplings the problem of algebraic loops may
emerge that may in some cases be unsolvable, see Section 2.1. With aggregation
one must also consider how discontinuities of all sub-systems are handled. The
aggregation structure can be exploited to calculate a coupled Jacobian for use
with implicit solvers or other tools requiring the Jacobian.

When analysing conditions for algebraic loops and making Jacobian calcula-
tions a linearisation of the coupled system is considered. A state-space linearized
representation of Eq (6) is,

ẋ = Ax+Bu+ B̂w (7a)

y = Cx+Du+ D̂w (7b)

u = Ly + L̂w (7c)

where A, B, B̂, C, D and D̂ are matrices of the aggregated system that are block
diagonal, where each block corresponds to a matching sub-system matrix. The
two remaining matrices L and L̂ come from couplings and may have any form.
Issues regarding algebraic loops and Jacobian are discussed in the following
sections.

2.1 Algebraic Loops

Coupling systems can at times give additional mathematical and computational
problems. One problem is the introduction of algebraic loops. The loops come
from feed-through where the input of a system is fed directly to an output.
Coupling together systems with feed-through terms can eventually result in an
output of a model coming back as an input to itself. Figure 1 displays a coupled
system with a feedback loop where output y[A] circles back as an input to system
A. To properly solve such systems one must solve an algebraic loop problem for
each right-hand-side function evaluation.

Mathematically the algebraic loops are introduced in Eq (6c). To make this
more evident the inputs u are eliminated by inserting Eq (6c) into Eq (6b),

y = g(x, c(y, w), w) (8)

where the outputs y are present on both sides of the equation. To solve the
algebraic loop is to �nd values of y that satisfy Eq (8). This can be done by
rewriting Eq (8) to a root-�nding problem,

y − g(x, c(y, w), w) = 0 (9)

4



Figure 1: Coupling induced algebraic loops. Output from system A loops around
to itself. Variables y represent the outputs and u the inputs.

Eq (9) can be solved by applying a root-�nding scheme such as Newtons method
or Fixed-Point iteration. The method implemented in the software uses a vari-
ation of Newtons method, see Section 3.4.3.

All algebraic loops cannot be solved. To �nd a su�cient condition for solv-
ing coupling induced algebraic loops we look at a linearised coupled system,
represented in Eq (7). Inputs u are eliminated by inserting Eq (7c) into Eq (7b)
giving,

y = Cx+DLy +DL̂w + D̂w (10)

Solving for outputs y yields,

y = (I −DL)−1(Cx+DL̂w + D̂w) (11)

Solution to Eq (11) can only be found if (I −DL) is non-singular. This puts a
su�cient condition on coupled systems with feed-through terms. Systems that
do not satisfy the condition cannot be solved by aggregation. For such systems
a model redesign or a di�erent simulation approach should be considered.

2.2 Coupled Jacobian

To e�ciently integrate a system or to make use of an implicit ODE solver
the system Jacobian needs to be calculated. The Jacobian is a matrix of all
�rst-order derivatives of a system with respect to state variables, xi. For a sub-
system, all inputs u[n]

i , are seen as time dependent and the sub-system Jacobian
is given as, J [n] = ∂f̄

∂x , which in matrix form becomes, J [n] = A[n]. Looking at
the Jacobian of the full aggregated system, a naive approach would be to simply
aggregate all sub-system Jacobians. Let us investigate the aggregated Jacobian
by applying the ∂

∂x operator on Eq (6a)

J =
∂

∂x
f(x, u, w) =

∂f

∂x
+
∂f

∂u

∂u

∂x
+
∂f

∂w

∂w

∂x
(12)

5



In the sub-system case all inputs were seen as time dependent and were disre-
garded. For the aggregated system only w-terms are independent of states and
thus zero. The coupling equations impact the system dynamics, as evidenced by
the ∂f

∂u
∂u
∂x term in Eq (12). The coupled Jacobian cannot be constructed by sim-

ply aggregating sub-system Jacobian matrices diagonally. Further investigation
is required.

Starting from Eq (6) the w-terms are removed since they have no impact
on the Jacobian. Eliminating u by inserting Eq (6c) into Eq (6a) and Eq (6b)
simpli�es the system description,

ẋ = f(x, c(y)) (13a)

y = g(x, c(y)) (13b)

The Jacobian can be written,

J =
∂f

∂x
+
∂f

∂c

∂c

∂y

∂y

∂x
(14)

The ∂y
∂x contribution is found by di�erentiating the outputs Eq (13b) with re-

spect to x,
∂y

∂x
=
∂g

∂x
+
∂g

∂c

∂c

∂y

∂y

∂x
(15)

Solving for ∂y
∂x gives,

∂y

∂x
=

(
I − ∂g

∂c

∂c

∂y

)−1
∂g

∂x
(16)

Finally inserting into Eq (12) gives the Jacobian,

J =
∂f

∂x
+
∂f

∂c

∂c

∂y

(
I − ∂g

∂c

∂c

∂y

)−1
∂g

∂x
(17)

When computing the Jacobian the state space representation in Eq (7) is
used,

J = A+BL(I −DL)−1C (18)

where A, B, C and D are aggregated block diagonal matrices and L the coupling
matrix.

6



3 Implementation

Figure 2: Simulations �ow of FMU models loaded through PyFMI coupled with
Assimulo Problems in AggregatedProblem. The blue colour indicates nodes
that are added or modi�ed due to aggregation.

The aggregated problem is intended to be simulated using Assimulo solvers.
Assimulo is an open source Python package for solving ordinary di�erential
equations. One must consider what steps need to be modi�ed or added to the
Assimulos problem solving �ow to support aggregated systems. Figure 2 shows
the problem solving steps using an Assimulo solver with added modi�cations to
support aggregated systems. The boxes coloured in blue are steps speci�c for
an aggregated system.

First step is to aggregate systems modelled as either FMUs or directly in
Python as Assimulo problems. The two model types have their own struc-
ture and a di�erent set of functions. To simplify coupling communication
the two problem classes are extended with an interface that de�nes a com-
mon set of functions for couplings called CouplingExtensionInterface,
see Section 3.2. The two new classes, FMIODE2InputOutput for FMUs and
Explicit_Problem_Model for models written in Python can be coupled and

7



used with the class AggregatedProblem. The class hierarchy is shown in Fig-
ure 3. The dashed line from the interface to AggregatedProblem indicates
that the aggregated problem class operates on instances of classes inheriting the
interface.

Following the �owchart the next interesting point is the integrator step. The
purpose of this step is to evaluate the right-hand-side of an ODE and return the
results to the solver. For the aggregated system this means to evaluate the right-
hand-side of all sub-systems. Before this can be done the coupling relations must
be updated, see Section 3.4.1, which may include a step of solving an algebraic
loop problem, discussed in Section 3.4.3.

The �owchart then leads to events. AggregatedProblem must look at all
sub-systems, if an event has occurred it must be handled. Support for externally
adding time and state events to an aggregated problem has also been added,
see Section 3.4.4. Looking at the �owchart no more modi�cations are needed to
solve an aggregated problem with Assimulo, but to help solvers, the Jacobian
of the coupled system is computed by the problem class, see Section 3.4.2.

Figure 3: Class hierarchy where problem classes inherit from
Explicit_Problem. FMIODE2 takes an FMU and translates it into
an Assimulo problem through the PyFMI interface. Problem classes
with inputs and outputs also inherit from the coupling extension inter-
face. The dashed line indicates that AggregatedProblem operates on
CouplingExtensionInterface instances.

3.1 Software Background

Before making any implementations an example of how to solve an ODE sys-
tem with Assimulo is presented. For demonstration purposes the bouncing ball
system in the Assimulo documentation is used. The system is modelled both

8



as an Assimulo problem directly in Python and as an FMU using the Modelica
language.

A bouncing ball system can be described as,

ẋ1 = x2 (19a)

ẋ2 = −g (19b)

where x1 is the ball's height above ground in metres, x2 the ball's velocity
and g the gravitational acceleration. When the ball hits the ground a state
dependent discontinuity occurs. At this point the velocity variable changes
sign and the system loses energy if the impact is inelastic. The energy loss is
modelled with an elasticity constant that reduces the balls velocity. In Assimulo
solvers discontinuities can be handled as events [5]. Events dependent on state
variables are modelled as zero-crossings called event indicators. Each time the
event indicator changes sign the solver stops and calls a handle event method.
For this demonstration the event indicator can be modelled as,

event = x1 (20)

where each time the height variable changes sign it is seen as an impact on the
ground. The initial conditions are,

x1 = 1 (21a)

x2 = 0 (21b)

e = 0.8 (21c)

where e is the elasticity constant. For more information regarding events and
Assimulo consult the Assimulo documentation.

3.1.1 Bouncing Ball as Assimulo Problem

The bouncing ball system described in Eq (19) is here written as an Assimulo
problem. A problem class called Explicit_Problem in the Assimulo package
is suitable for modelling ODEs and is used as demonstration. The problem
class requires the user to de�ne a right-hand-side function of the problem, the
relations described in Eq (19), initial conditions and for this speci�c problem
event indicators for the impact to the ground and a handle event function. The
rhs is easily modelled using numpy, a class for numerical data types in Python,
as

def rhs(t, x, sw):
g = 9.82
return np.array([x[0], -g])

where np is used as an alias for the numpy class and x is a numpy array with the
�rst element representing height of the ball e.g. x1 and the second representing
the velocity, x2. An additional argument has been provided to the function

9



called sw, it stands for switches and should contain a list of boolean values that
can be used to activate and deactivate certain model behaviour. Switches will
be used with the event handling.

Initial conditions are provided as,

x0 = np.array([1.0, 0.0])
t0 = 0.0

where the �rst element of x0 corresponds to the height of the ball and the
second element the velocity.

Events can be modelled in di�erent ways, this demonstration makes use of
switches. The reason for using switches is to prevent what is knows as chattering.
In short, chattering occurs when an event is retriggered a second time shortly
after the �rst. The problem comes from how events are detected and the fact
that the system needs time to cope with model changes after event handling. For
more in-depth explanation consult the Assimulo documentation as chattering is
not within the scope of this paper. The event indicator function is written as,

def state_events(t, y, sw):
"""
State event function. Defines zero-crossings.
"""
event1 = y[0] if sw[0] else 5 # y[0] if ball is falling.
event2 = y[1] if sw[1] else 5 # y[1] if ball is going up.
return np.array([event1, event2])

where the �rst event, event1, monitors for when the ball impacts the ground
and the second event is used to turn switches when the ball reaches maximum
height. Switches prevent chattering since the event indicators are only active
when the corresponding switch is active. The switches are, sw[0] which is true
when the ball is falling down and false otherwise and sw[1], true if ball is moving
upwards and false otherwise.

After the event has been detected it has to be handled. This is done by
changing sign of the velocity, reducing energy with the elasticity constant and
�ipping switches,

def handle_event(solver, event_info):
"""
Event handling function. Changes switches and
velocity direction.
"""
ev_info = event_info[0] # Only looking at state events.
if ev_info[0] !=0:

# Ball bounces up.
solver.sw[0] = False
solver.sw[1] = True
solver.y[1] = -0.8*solver.y[1] # 0.8 elasticity

else:

10



# Ball is at top, starting to fall downwards.
solver.sw[0] = True
solver.sw[1] = False

With a complete system description an Assimulo problem can be created as,

model = Explicit_Problem(rhs, x0, t0)
model.state_events = state_events
model.handle_event = handle_event

where initial conditions and functions are the same as the above. The next step
is to attach a solver and simulate the problem. A solver in the Assimulo package
is CVode,

sim = CVode(model)

sim.simulate(tf)

where tf is the �nal time of the simulation. A full script of the demonstration
is available in the appendix, see Section 6.4.1.

3.1.2 Bouncing Ball with PyFMI

In this section the bouncing ball system described in Eq (19) is modelled in
Modelica and compiled to an FMU with JModelica.org. The system is then
loaded into Python with PyFMI and simulated using the FMU-Assimulo inter-
face, FMIODE2, and an Assimulo solver.

Modelica code for the bouncing ball system is,

model BouncingBall
Real h(start = 1.0);
Real v(start = 0.0);

constant Real g = 9.81;
equation

der(h) = v;
der(v) = -g;

when h < 0 then
reinit(v, -0.8*v);

end when;
end BouncingBall;

where the when statement acts as the event indicator and reinit as the event
handler. Variables h and v are used for the balls height and velocity. For more
in-depth explanation consult the Modelica language de�nition [9].

A compiled FMU is loaded into Python with PyFMI. This gives the user an
FMU instance with standard FMU functions. In order to simulate an FMU with
Assimulo an interface has to be used. For FMI 2.0 Model Exchange FMUs the

11



interface FMIODE2 in PyFMI is used. When simulating an FMU with Assimulo
a cutom result handler is commonly used. Compiling, loading and interfacing
the bouncing ball system together with a custom result handler is done as,

# Compile model
name = compile_fmu('BouncingBall', 'model.mo', target='me',

version='2.0')

# Load FMU
fmu = load_fmu(name)

# Result handler
opts = fmu.simulate_options()
res = ResultHandlerFile(fmu)
res.set_options(opts)

# Create Assimulo-FMU interface instance
mod = FMIODE2(fmu, result_handler=res)

where the result handler stores data in a �le. For compiler options see JModel-
ica.org documentation. Before an ME 2.0 FMU can be simulated it has to be
initialized,

# Initialize FMU
fmu.setup_experiment()
fmu.initialize()
fmu.event_update()
fmu.enter_continuous_time_mode()

where the �rst two lines are needed to initialize the system. The last two lines
are needed to setup event detection with FMU and Assimulo. Once the FMU
has been initialized the model can be simulated as a standard Assimulo problem,

# Star result handler
res.simulation_start()

# Solver instance
sim = CVode(mod)

# Simulation
sim.simulate(tf)

# Stop result handler
res.simulation_end()

where the result handler is started and stopped appropriately. A script demon-
strating the full process is available in the appendix, see Section 6.4.2.

12



3.2 Coupling Extension Interface for ODEs

Assimulo problems describing ODEs lack structure and functions for handling
inputs and outputs. For FMUs, the structure is present but when loaded in
Python with PyFMI's Assimulo interface, FMIODE2, the necessary functions
for setting inputs and getting outputs are concealed. The two problem classes
can be extended to include functions for handling inputs and outputs. For this
purpose CouplingExtensionInterface has been developed that de�nes
the set of functions given in Table 1.

Table 1: Functions de�ned by CouplingExtensionInterface. Arguments
for state space matrix functions are described in text.

Functions Description

get(var_list, t, x) Get inputs/outputs.

set(var_list, list_values) Set inputs.

get_state_list() Get a list of state variables.

get_input_list() Get a list of input variables.

get_output_list() Get a list of output variables.

get_state_space_matrix_A(. . . ) Get state space matrix A.

get_state_space_matrix_B(. . . ) Get state space matrix B.

get_state_space_matrix_C(. . . ) Get state space matrix C.

get_state_space_matrix_D(. . . ) Get state space matrix D.

get_output_dependencies() Get output dependency.

get_derivatives_dependencies() Get derivatives dependency.

Arguments for state space matrix functions are: t time, x states, sw switches,
var a list of variables; default value is None, h approximation step size; default
10−10 and limit_functions a list of function names; default []. The var ar-
gument determines which variables to perturb, with it one can choose which
variables should be part of the matrix. As an example consider matrix B in a
model with seven states and seven inputs. Each column in matrix B corresponds
to a speci�c input variable. If one is only interested in the B matrix for inputs
u1 and u4 this can be chosen with var,

model.get_state_space_matrix_B(t0, x0, var=['u1', 'u4'])

where t0 and x0 are initial conditions. The function call above returns a matrix
of size (7, 2) instead of a full (7,7) matrix. The limit_functions argument is
similar as it can be used to limit which functions are part of the matrix. Consider

13



now a model with seven states, inputs and outputs where one is interested in
the D matrix for outputs y1, y4 and inputs u1, u3, u6. Making the call,

model.get_state_space_matrix_C(t0, x0, var=['u1', 'u3', 'u6'],
limit_functions=['y1', 'y4'])

results in a (2, 3) matrix instead of (7, 7). The default values for var and
limit_functions are None and [] respectively. In those cases the full matrices
are returned.

The interface also de�nes a set of attributes expected in a problem with
inputs and outputs, shown in Table 2. Options de�ned by the interface are
given in Table 3.

Table 2: Shows attribute de�ned by CouplingExtensionInterface.

Attributes Description

_f_nbr Number of state functions.

_u_nbr Number of inputs.

_y_nbr Number of outputs.

Table 3: Options de�ned by CouplingExtensionInterface.

Option Description

has_outputs True if system has outputs.

use_custom_result_handler True if system uses custom result handler.

Note that the interface is intended as an extension to Assimulo like ODE
problems. It is not enough to describe problems such as Eq (1) on its own.

3.3 Problem Classes for ODEs with Inputs and Outputs

In this section problem classes for describing Eq (1) are implemented by ex-
tending base classes with the coupling extension interface, as shown in Figure 3.
Class Explicit_Problem_Model is for models written directly in Python,
discussed in Section 3.3.1. The class for FMUs is FMIODE2InputOutput,
discussed in Section 3.3.2.

3.3.1 Assimulo ODE Problem with Coupling Extension

The goal is to implement Explicit_Problem_Model, an Assimulo problem
class for modelling systems like Eq (1). As base Explicit_Problem is used,

14



a problem class for describing ODEs such as,

˙̄x = f̄(x̄) (22)

where the right-hand-side is a function of states. By extending the base with
the coupling extension interface, the desired problem class can be created.

As previously mentioned Assimulo problem classes lack structure for inputs
and outputs. Before making structural changes one must consider how and when
inputs and outputs are used. In Eq (1) inputs are used in the right-hand-side
function. Evidently the rhs in the class must be altered to support inputs. One
can additionally see that inputs are used in the outputs function. This means
that the inputs must be accessible by at least two functions. From this it was
decided to store inputs internally and represent them as a numpy array with
each element representing an input term. The rhs is a user provided function
and in order to support inputs the user is required to write it as,

def rhs(t, x, u=None, sw=None):
return x

where t is time, x states, u inputs and sw switches. Parameter u for inputs
must be present even if the system is without inputs. However, this solution
raises an issue of compatibility with Assimulo solvers. They expect rhs to be
a function of at most time, states and switches. Since the inputs are handled
internally a dummy rhs can be created that is a function of time and states
that updates inputs and then calls the user provided right-hand-side function.
This allows the problem class to support existing Assimulo solvers. An example
of creating an instance of Explicit_Problem_Model and making a call to
rhs is demonstrated below,

def rhs(t, x, u=None, sw=None):
return x

model = Explicit_Problem_Model(rhs, x0, t0)

model.rhs(t0, x0)

where t0 is initial time and x0 initial state. The example does not have any
inputs and the right-hand-side is evaluated at initial time and states.

Inputs can be either time dependent external excitations, w, or come from
coupling u. Since the time dependent function is known the two input types
can be distinguished. In PyFMI there is a class Trajectory for handling time
dependent inputs with FMUs. Trajectory is a class that interpolates values.
It has two components, an abscissa that de�nes a time grid and an ordinate
that is a data matrix where each column holds data for a speci�c input. A sine
function can be modelled with a trajectory object as,

abscissa = np.linspace(0, 10, 20)
ordinate = np.vstack(np.sin(abscissa))

15



traj = TrajectoryLinearInterpolation(abscissa, ordinate)

where np is an alias for the numpy package, abscissa is a time-vector from t0 = 0
to tf = 10 with 20 data points, ordinate is the sine function and the trajectory
has linear interpolation. The following demonstrates how to create a model with
three inputs, one coming from coupling and two external excitations, by using
the inputs argument,

# Right-Hand-Side function
def rhs(t, x, u, sw=None):

return x + u

# Time dependent external excitations
abscissa = np.linspace(0, 10, 20)
ordinate = np.array(np.sin(abscissa),

np.cos(abscissa)).transpose()

traj = TrajectoryLinearInterpolation(abscissa, ordinate)

# Initial Conditions
x0 = np.array([1., 2., 3.])
t0 = 0

# Model
model = Explicit_Problem_Model(rhs, x0, t0,
inputs=(3, [('u', 0), ('w1', 1), ('w2', 2)]),

(['w1', 'w2'], traj))

The inputs argument is a tuple with three components. First an integer in-
dicating number of inputs. The second is a list with tuples for naming input
variables. In the example, input at index 0 is named u and inputs at indexes 1
and 2 are named w1 and w2 respectively. If an empty list is sent in, variables
are named automatically starting from u0 and increasing the sub index. The
�nal entry is a tuple with the �rst component as a list of variable names that
are external excitations and the trajectory as the second.

Output function y is user provided and must be a function of time, states,
inputs and switches. It has the same structure as rhs and a model with outputs
is created as,

def y(t, x, u=None, sw=None):
return x

t0 = 0
x0 = np.array([1, 2])

model = Explicit_Problem_Model(rhs, x0, t0,
outputs=(y, [('y1', 0), ('y2', 1)]))

16



where the outputs argument is used, rhs is the same as in the previous exam-
ple. The outputs argument takes a tuple with the �rst part the actual output
function y and the second a list for naming variables the same way as for inputs.

Variable names are stored in OrderedDicts and are accessible with get-list
functions, one for each variable type,

model.get_states_list()
model.get_input_list()
model.get_output_list()

where model is the system in the example above. The dictionaries hold vari-
able names and indexes to their corresponding position in data arrays. With a
structure for inputs and a naming practice the two functions get and set can
be implemented. The �rst is used for acquiring current input or output value
by calling,

model.get(['u12'], t0, x0)

where u12 is the desired input. It takes either a single variable or a list of
variable names and returns the results. The set function has two parameters,
the �rst being a list of variable names and the second a list of corresponding
values. It can be used to update coupling related inputs,

model.set('u12', 42)

here input variable u12 is set to 42. Both functions search the dictionaries to
�nd indexes pointing them to the correct values in the data arrays.

Functions for getting state space matrices are implemented by approxima-
tion. The method used is forward di�erences that is generally stated as,

φ′(x) ≈ φ(x+ h)− φ(x)

h
(23)

for a small h. Matrix A in Eq (7) is computed by perturbing states and com-
puting Eq (23) where φ is replaced with the systems right-hand-side function.
Perturbation of one state yields a column in the matrix. Repeating for all states,
one at a time, all columns can be put together into a matrix. Matrix B is com-
puted the same way by replacing states with inputs. For matrices C and D rhs
is replaced with the output function y.

When constructing an instance of Explicit_Problem_Model dependency
information can be provided with the dependency_info argument. The argu-
ment takes a tuple with state dependencies and output dependencies. State and
output dependencies are split in two parts to distinguish dependencies on states
or inputs. In total the information is stored in four OrderedDicts. Creation
of a model with supplied derivatives and input dependencies is demonstrated,

# State dependencies on states
s_dep = OrderedDict()

17



s_dep['x'] = ['x']

# State dependencies on inputs
u_dep = OrderedDict()
u_dep['x'] = ['u']

# State dependencies
state_dep = (s_dep, u_dep)

# Output dependencies on states
s_dep = OrderedDict()
s_dep['y'] = []

# Output dependencies on inputs
u_dep = OrderedDict()
u_dep['y'] = ['u']

# Output dependencies
output_dep = (s_dep, u_dep)

# Model
model = Explicit_Problem_Model(rhs, x0, t0,

dependency_info=(state_dep, output_dep))

where t0 and x0 are initial conditions and rhs a right-hand-side function.
Functions for getting derivatives and output dependencies return tuples with
Dictionarys. In case no dependency information is provided the functions
return None.

A demonstration of creating a system with two states, two inputs, one as
external excitation w and the other as coupling term u and two outputs is shown
below,

def rhs(t, x, u, sw=None):
return -x + u

def y(t, x, u, sw=None):
return x

t0 = 0
x0 = np.array([9.0, 2.0]

abscissa = np.linspace(0, 10, 20)
ordinate = np.bstack(np.sin(abscissa))

traj = TrajectoryLinearInterpolation(abscissa, ordinate)

model = Explicit_Problem_Model(rhs, x0, t0,
inputs=(2, [('u', 0), ('w', 1)]), (['w'], traj)),
outputs=(y, [('y', 0)]))

18



model.rhs(t0, x0)

with the external excitation on w as a sine wave modelled with the Trajectory
class.

3.3.2 PyFMI Problem with Coupling Extension

FMUs loaded with PyFMIs FMIODE2 have a built in structure for inputs and
outputs, however, some important functions are hidden. The focus of the imple-
mentation is to make functions for accessing inputs and outputs visible. Using
FMIODE2 as base, FMIODE2InputOutput can be created by extending the
class with the coupling interface. As in the case of Explicit_Problem_Model
a dummy rhs has to be created in order to support inputs and be compatible
with Assimulo solvers. An instance of FMIODE2InputOutput is created as,

# Load FMU
fmu = load_fmu("Model.fmu")

# Setup and Initialize FMU
fmu.setup_experiment()
fmu.initialize()

# Setup result handler for FMU, in this case on file
res = ResultHandlerFile(fmu)
res.set_options(fmu.simulate_options())

# Create FMIODE2InputOutput Problem
mod = FMIODE2InputOutput(fmu, result_handler=res)

During initialization, FMIODE2InputOutput calls the base class initialization
function. This is done in order make use of all initialization features in the base
class. For a full list of constructor arguments consult the PyFMI documentation
for FMIODE2.

Variable names are stored in OrderedDicts and are accessed with get-
list functions that return entire dictionaries. Function for setting value is as
expected. It takes two arguments, the �rst a list of or a single variable name
and as the second argument a list or single value. A model's value can be
updated as,

mod.set('u8', 9)

where variable u8 is set to value 9.
Function for retrieving values follows the CouplingExtensionInterface

where the arguments are a list of variable names, time, states and switches. A
big di�erence with Assimulo problems and FMUs is that FMUs continuously
store state data whereas Assimulo problems do not. When simulating a pure

19



Assimulo problem all state data is stored in the solver, not the sub-model. This
is the reason for time and states being part of the get function in the coupling in-
terface. Each time the get function is called the FMU model states are updated
and the requested variables returned. This keeps the solver and the model on the
same level. The function call for getting inputs of an FMIODE2InputOutput
model becomes,

mod.get(['u1', 'u4', 'u9'], t0, x0)

where t0 and x0 are initial time and states. Inputs u1, u4 and u9 are returned
as a numpy array.

The state space matrix implementation tries to take advantage of FMI 2.0.
In the standard there is an option to compile FMUs with directional derivatives.
Using the option each column of a matrix can be computed with high precision.
The columns are then combined to form a state space matrix. FMUs that
are not compiled with directional derivatives approximate matrices the same
way as in Explicit_Problem_Model, with a forward di�erence step on each
variable.

Dependency information is read from the FMU. If it is unavailable depen-
dency information variables are stored as None.

3.4 Aggregated Problem Class

This is a problem class for coupled systems that are modelled with the in-
terface described in Section 3.2. The idea is to handle sub-model communi-
cation internally and integrate the problem class with Assimulo solvers like
any standard Assimulo problem class. AggregatedProblem inherits from
Explicit_Problem in Assimulo and extends the problem class for coupled
systems, giving it the needed structure for Assimulo problems.

As input when instantiating the problem the user provides a Dictionary
with user chosen keys and models that follow CouplingExtensionInterface
as values together with coupling relations. The couplings can be provided as a
list or a function, see Section 3.4.1. A coupled system can be formulated,

dic = OrderedDict()
dic['ModelA'] = modA
dic['ModelB'] = modB

couplings = [('ModelA', 'u1', 'ModelB', 'y2')]

agg_prob = AggregatedProblem(dic, couplings)

where ModelA and ModelB are string keys and modA, modB are sub-models
following CouplingExtensionInterface. The couplings say thatModelA's
input variable u1 gets its data from ModelB's output variable y2.

To correctly evaluate the right-hand-side of an aggregated problem the cou-
pling relations must be updated and the results from all evaluated sub-model

20



rhs-functions be aggregated. This has been done by creating an rhs that �rst
calls update_couplings and then evaluates and aggregates sub-model right-
hand-side results. The function update_couplings is responsible for maintain-
ing proper coupling relations. If algebraic loops are present update_couplings
makes a call to solve them, see Section 3.4.3. With a correctly evaluating rhs
it is enough for solvers like CVode to solve the coupled problem. CVode is an
implicit solver that uses the system Jacobian for integration. It has built in
functions for approximating the Jacobian but does allow users to supply a Ja-
cobian function. To make computations more e�cient a function that exploits
the aggregated structure in order to compute the coupled system Jacobian has
been implemented, see Section 3.4.2.

During initialization of an AggregatedProblem instance some data is col-
lected. Total number of inputs and outputs are saved and depending on cou-
pling type dictionaries containing data of coupling related inputs and outputs
are stored. If variables part of coupling cannot be determined, all inputs and
outputs are assumed to be part of coupling. These dictionaries are used when
approximating the coupled Jacobian matrix. Another important aspect is to
check couplings for dependency order and presence of algebraic loops. Depend-
ing on coupling type, discussed in Section 3.4.1, an attempt is made to �nd
coupling execution order. In systems containing feed-through, proper execution
order is vital. Consider the following example with models A, B, and C where
model B has direct feed-through,

## Outputs of models in system.
# A: y = x
# B: y = x + u
# C: y = -

couplings = [('C', 'u', 'B', 'y'),
('B', 'u', 'A', 'y')]

here model B gets its input from model A and model C from model B. Rewriting
the problem in mathematical terms yields,

uA = 0 (24a)

uB = yA (24b)

uC = yB = xB + uB = xB + yA (24c)

where ui are inputs and yj outputs. From Eq (24c) it becomes evident that the
input to model C is dependent on model A. To get proper coupling relations
the couplings must be executed,

A -> B
B -> C

This is determined by walking through couplings and using the models depen-
dency information to �nd a previous node in a coupling chain. For the example

21



above starting from coupling C -> B, dependency information on output y[B] in-
dicates that input u[B] should be set before using output y[B] on another model.
With this information a search is made to �nd a coupling that updates input
u[B]. If found the process is repeated by looking at the source models output
dependency to determine if another coupling should come before it. Eventually
a model is found that has no dependency on its output or the couplings have
looped back to themselves and an algebraic loop has been found. The latter
case is �agged so update_couplings can make the necessary calls to solve the
loop problem during coupling update by iterating all coupling relations. In case
the dependency information is unavailable the system is assumed to contain
algebraic loops by default.

3.4.1 Couplings

What di�ers the aggregated system from other systems is the presence of cou-
pling equations. Naturally this becomes the central part of the problem. The
couplings are user provided and must be user friendly, e�cient and give enough
freedom to the user to model reasonably advanced behaviour. To satisfy these
conditions the couplings were separated into two parts, one-to-one for simple
linear coupling and advanced for non-linear or specialized couplings. Coupled
systems relying on one-to-one couplings have a constant coupling matrix L.
This is exploited when computing the aggregated Jacobian matrix.

Couplings of type one-to-one let the user set outputs from one model as
inputs to another as a list of tuples. For example, u[A]

4 = y
[B]
7 , where input u4

of model A is set to output y7 of model B. In code it would look like,

couplings = [('A', 'u4', 'B', 'y7')]

#couplings = [('m_dst', 'var_dst', 'm_src', 'var_src')]

where the �rst term in the tuple is a keyword for a sub-model, provided by
the user at initialization, then comes the input variable name as it is in the
sub-model, a keyword for model with outputs and lastly variable name of the
output. Internally all inputs are set by looping through the coupling list. This
method allows for a user-friendly interface.

In some cases simple one-to-one coupling is not enough. To model non-
linear coupling behaviour an advanced coupling scheme has been developed.
It requires the user to provide the coupling function, c(y, w), as a function that
takes sub-model outputs and sub-model external excitation inputs as parameters
and returns a dictionary with sub-models as key and another dictionary as value.
The second dictionary should then hold variable name as key and variable value
as value. Coupling example with u

[A]
4 = y

[B]
7 would in the advanced method

look like,

def coupling(y, w):
u = {'A':{}}
u['A']['u4'] = y['B']['y7']

22



return u

This does allow for more advanced coupling behaviour but since all inputs are
gathered by a single call, coupling execution order cannot be implemented.
Neither can systems containing algebraic loops be detected. To solve this issue
all systems coupled with advanced type are assumed to contain algebraic loops.
Systems without dependency order can change "algebraic_loops" �ag in option
to False, otherwise the entire coupled system is assumed to be one large loop.

To distinguish between one-to-one and advanced coupling the user makes
the call,

agg_prob = AggregatedProblem(dic, couplings,
coupling_type='advanced')

where dic is a dictionary of models and couplings a function de�ned as above.
See Section 4.1 for a demonstration of the aggregation concept and Section 4.3
for use of advanced couplings.

3.4.2 Jacobian Computation

The Jacobian is computed with Eq (18). Matrices A, B, C and D are block
diagonal matrices where each block is a corresponding sub-model state space
matrix. The aggregated state space matrices are constructed by asking each
sub-system for its state space matrix and putting it into correct place. The
remaining matrix L must be approximated by AggregatedProblem. It is
done by perturbing outputs and making calls to c(y, w). Applying Eq (23) on
each variable yields a column in L that is used to build up the matrix. Once
all matrices have been found Eq (18) is solved as a linear system with a call to
Python's sparse.linalg.spsolve method. The Jacobian is then returned in sparse
format to the solver. All matrices are stored as sparse in AggregatedProblem.

Looking at Eq (18) and considering that the coupling matrix is only non-
zero for coupled terms one realises that only inputs and outputs part of coupling
have an e�ect on the Jacobian. With this in mind, matrix sizes can be limited
to reduce computations. Systems where the coupling matrix remains constant
can be �agged in options with approximate_coupling_matrix_continuously
set to False.

3.4.3 Algebraic Loop Solver

Aggregated systems containing algebraic loops must solve the algebraic loop
problem to maintain proper input-output values. This has to be done for each
function evaluation. To solve an algebraic loop problem is to solve Eq (9) which
is a root-�nding problem. One way of solving such problems is by using a
root-�nding solver. AggregatedProblem uses Kinsol [2] an advanced root-
�nding solver part of the Assimulo library. The solver �nds outputs, y, that
satisfy Eq (9) that are then used to calculate new inputs u. Step by step
instructions are presented below,

23



1. De�ne residual problem (Eq (9)).

2. Solve residual problem with Kinsol to get new outputs ynew.

3. Calculate new inputs by calling unew = c(ynew, w).

4. Update unew to all sub-models.

Step 1 is solved by de�ning a function that takes the outputs y as a numpy array
argument, updates inputs, calculates new outputs and returns y−yupdated, where
yupdated = g(x, u, w). In step 2 the solver iterates with a variation of a Newton
method [8] to �nd values of y that satisfy |y − yupdated| < tol where tol is a
predetermined tolerance. With outputs ynew, inputs unew are calculated in step
3. Finally the inputs are updated to models in step 4.

The loop problem must be solved for each right-hand-side function evaluation
making this an essential part of a coupled system. For a demonstration of a
coupled system with algebraic loops see Section 4.2.

3.4.4 Event Detection and Handling

Discontinuities can be handled as events and several solvers in Assimulo support
events [6]. Explicit_Problem_Model and FMIODE2InputOutput both
inherit from the Assimulo problem class Explicit_Problem giving them built
in event functionality. Events are designed to stop the integrator, force a call to
a handle event function in the model and then resume the integration. When
handling an event the model could change values of variables or even swap entire
equations when entering di�erent domains. There are three types of events to
consider,

� State events.

� Time events.

� Step events.

State events occur when there is a discontinuity dependent on the state vari-
ables in the right-hand-side function, f . For an example of how to simulate an
ODE system with discontinuities using events with Assimulo see Section 3.1.1.
As previously mentioned events are modelled as zero-crossings called event in-
dicators. AggregatedProblem aggregates all sub-model event indicators in a
state_events function that is monitored by Assimulo solvers.

Time events work di�erently. It is known when a time event occurs prior to
integration, instead of monitoring event indicators during integration, the time
of the closest event is used as a break point for the solver. The event handler
is then called and the solver resumes integration until �nal time is reached.
Assimulo problems handle time events with a time_event-function that re-
turns the time of the closest upcoming time event. In AggregatedProblem
it is enough to call all sub-system time_events to �nd and return the closest
event.

24



Step events are di�erent and do not a�ect model behaviour. They are used
to help the solver with numerical integration [1]. It could for example be to
change coordinate system internally if the current coordinates are no longer
feasible numerically. The aggregated problems' step event function calls all
sub-system step_events that both detect and handle an event if it occurs.

State and time events are monitored with event indicators or a shortest time
until next event. This structure allows for adding events to a problem externally.
The user can provide a function with event indicators to add additional state
events to the aggregated problem or a list with time events. By also adding
an external event handler one can de�ne special behaviour at these events. An
example of externally added state events is described in Section 4.5. To add
time events to a coupled system one would write,

agg.set_time_events([1.0, 5.0, 9.0])

where the argument is a list of time events and agg is an aggregated system.

3.4.5 Result Handling

When solving problems with Assimulo the results are normally stored in the
solver. Simulations of FMUs with Assimulo usually have a separate result han-
dler object for this. AggregatedProblem must support both systems when
saving results after each step. In the coupling extension interface there is a �ag
use_custom_result_handler that can be set to True/False. When True a
subset of the solver speci�c for the sub-model in question is sent to the models
result handler. Otherwise the results are stored in normal Assimulo fashion in
the solver. Using a �ag for each model allows results to be stored after model
preferences.

25



4 Simulation Examples and Experiments

In this section the described framework is demonstrated by showing simulations
of coupled systems modelled with FMUs and Assimulo problems. Aggregated
systems containing events, externally added events, and systems containing al-
gebraic loops are tested. The test systems are compared either to analytic
solutions or monolithic systems written in Modelica and compiled to FMUs in
Dymola or JModelica.org. By a monolithic system is meant that the entire
system is modelled in a single FMU. The simulations are made with Dassl in
Dymola or in Python with CVode, a numerical solver in Assimulo, that lets
the user de�ne atol for local absolute tolerance and rtol for local relative error
tolerance.

All model source codes except for the Formula 1 Race Car system are avail-
able in appendix.

4.1 Simple Coupled System

As a demonstration of the aggregation concept two models with only one state
variable each, are coupled and simulated. The two systems are called A and B
and are modelled as,

ẋ[A] = −x[A] (25a)

y[A] = x[A] (25b)

u[A] = 0 (25c)

ẋ[B] = u[B] (25d)

y[B] = 0 (25e)

u[B] = y[A] (25f)

where system A is independent of system B and is recognized as an exponentially
decreasing function. In contrast, system B is directly dependent on output signal
from system A, with the coupling relation u[B] = y[A]. System B contains no
output terms and the complete system is void of algebraic loops. The coupled
system can be solved analytically and with initial conditions x[A] = 9 and x[B] =
2, the solution is given as,

x[A](t) = 9e−t (26a)

x[B](t) = −9e−t + 11 (26b)

The coupled system was solved twice, with the two systems modelled in the
Modelica language and compiled to FMUs with the open source tool JMod-
elica.org and as Assimulo problems. Figures 4-5 show the error of simulat-
ing the coupled system with the CVode solver in Assimulo with tolerances
atol = rtol = 10−8. As reference the analytic solution was used.

26



0.0 0.5 1.0 1.5 2.0
Time (s)

10-10

10-9

10-8

10-7

10-6

E
rr

o
r

Error of Coupled System Model A

FMU x[A]

Assimulo x[A]

Figure 4: Error of aggregated system A described in Section 4.1 compared to
analytic solution. Simulated with CVode with tolerances atol = rtol = 10−8 for
two seconds.

0.0 0.5 1.0 1.5 2.0
Time (s)

10-10

10-9

10-8

10-7

10-6

E
rr

o
r

Error of Coupled System Model B

FMU x[B]

Assimulo x[B]

Figure 5: Error of aggregated system B described in Section 4.1 compared to
analytic solution. Simulated with CVode with tolerances atol = rtol = 10−8 for
two seconds.

27



4.2 Coupling Induced Algebraic Loop System

This examples is designed to demonstrate simulation of coupled systems where
the couplings bring about algebraic loops. Two systems A and B are described
as,

ẋ[A] = −x[A] + u[A] (27a)

y[A] = x[A] − u[A] (27b)

u[A] = y[B] (27c)

ẋ[B] = −x[B] + u[B] (27d)

y[B] =
1

2
u[B] (27e)

u[B] = y[A] (27f)

The coupled system can be solved algebraically by making use of the coupling
relations to �rst solve the algebraic loop problem,

y[A] = x[A] − u[A] = x[A] − y[B] = . . . = x[A] − 1

2
y[A] (28)

Solving for y[A] gives,

y[A] =
2

3
x[A] (29)

Using Eq (29) with Eq (27a) and applying the integrating factor method gives a
solution to system A. Using the results with system B gives the analytic solution
to the coupled system,

x[A](t) = Ce−
2
3 t (30a)

x[B](t) = 2Ce−
2
3 t +De−t (30b)

The two systems were modelled in Modelica and compiled to FMUs with the
JModelica.org tool and as Python problems with Explicit_Problem_Model.
An integration was conducted with CVode in Assimulo using tolerances atol =
rtol = 10−8 for two seconds with initial conditions,

x[A] = 9.0 (31a)

x[B] = 2.0 (31b)

resulting in C = 9 and D = −16 in Eq (30). The algebraic loops were solved us-
ing Kinsol at each right-hand-side function evaluation. Results are compared
to the analytic solution in Figure 6 that shows the error of x[A] and x[B] for
both FMU and Assimulo sub-systems in log-scale.

28



0.0 0.5 1.0 1.5 2.0
Time (s)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

E
rr

o
r

Error of Coupling Induced Algebraic Loop System

FMU x[A]

FMU x[B]

Assimulo x[A]

Assimulo x[B]

Figure 6: Error of aggregated system with coupling induced algebraic loops
described in Section 4.2 in log-scale. Simulated with CVode with tolerances
atol = rtol = 10−8 for two seconds. Simulation results are compared to the
analytic solution.

4.3 Coupled Pendulums as FMUs

This example demonstrates application of advanced coupling with FMU models.
Two systems, each describing a pendulum in Cartesian coordinates, are coupled
with a linear spring to an aggregated system. The setup can be seen in Figure
7. Each pendulum, modelled with unit mass and length, and with a forced
excitation on the pivot, is described as,

˙̄x1 = x̄3 (32a)
˙̄x2 = x̄4 (32b)
˙̄x3 = ū1 − 2x̄1λ+ ū2 (32c)
˙̄x4 = −g − 2x̄2λ+ ū3 (32d)

0 = x̄2
1 + x̄2

2 − 1 (32e)

ȳ1 = x̄1 (32f)

ȳ2 = x̄2 (32g)

where x̄1, x̄2 are positions and x̄3, x̄4 are velocities relative to the pendulums
pivot. To properly de�ne system constraints λ has been added as an algebraic
variable. Inputs ū2 and ū3 are forces acting on the bob in the x and y directions
respectively and ū1 is an acceleration due to forced motion of the pivot. Inputs

29



Figure 7: Setup of spring coupled pendulums.

are separated into external excitations and coupling related inputs,

ū[i] = [ ū
[i]
1︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3︸ ︷︷ ︸

û[i]

]. (33)

The pendulums are coupled with a linear spring describing the coupling equa-
tions u = c(y, w) as,

û
[1]
2

û
[1]
3

û
[2]
2

û
[2]
3

 = k


(ȳ

[1]
1 − a+ w[1])− (ȳ

[2]
1 − b− w[2])

ȳ
[1]
2 − ȳ

[2]
2

−((ȳ
[1]
1 − a+ w[1])− (ȳ

[2]
1 − b− w[2]))

−(ȳ
[1]
2 − ȳ

[2]
2 )


︸ ︷︷ ︸

=:ρ

(34)

where k is the sti�ness ratio. Variables a and b represent the x-coordinates of
the two pendulums' pivots in a Cartesian coordinate system. External input
vector is,

u1 = [w[1], w[2], ŵ[1], ŵ[2]]. (35)

From Eq (34), the bene�t of including time dependent inputs in couplings is
evident. It must be noted that for this example ŵ[i] must be chosen ẅ[i].

The pendulum is modelled in Modelica and compiled to an FMU using
JModelica.org. The pendulum is described as a DAE of index 3 and the JMod-
elica.org tool is responsible for transforming the model to an FMI supported
ODE.

30



The coupled aggregated system was integrated using CVode in Assimulo
with Jacobian approximated with forward di�erences and initial conditions,

x̄
[1]
1 = 1 (36a)

x̄
[1]
2 = 0 (36b)

x̄
[2]
1 = −1 (36c)

x̄
[2]
2 = 0 (36d)

It must be noted that the initial conditions are from the reference point of each
pendulums pivot. The pivots are positioned at a = (−2, 0) for the pendulum to
the left and b = (2, 0) for the one to the right. To model external excitations
the function sin(t) was chosen giving time dependent inputs,

w[i] = sin(t) (37a)

ŵ[i] = − sin(t) (37b)

Sti�ness ratio of the spring k = 1.0 N/m.
The system was simulated for �ve seconds using CVode with atol = rtol =

10−8. As reference the coupled system was modelled as a monolithic system
in Modelica and simulated in Dymola using the solver Dassl with tolerance
tol = 10−12. Figure 8 shows the error of x, y positions in log-scale.

31



0 1 2 3 4 5
Time (s)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
rr

o
r

Error of x, y Positions of FMU Coupled Pendula Problem

x
[1]
1

x
[1]
2

x
[2]
1

x
[2]
2

Figure 8: Error of x, y positions of pendulums coupled with linear spring mod-
elled as FMUs. Simulated using CVode solver in Assimulo with tolerances
atol = rtol = 10−8 for �ve seconds. Variables x[i]

1 represents the x-coordinate
and x[i]

2 the y-coordinate.

4.4 Coupled Pendulums with Mixed Models

To demonstrate coupled systems of mixed FMU and Assimulo models the aggre-
gated system described in Section 4.3 is here remodelled in polar coordinates.
Both pendulums are modelled with length 1 m, mass 1 kg and a forced excita-
tion on the pivot. As outputs the models give the angle and angular velocity.
The ODE system of a pendulum is described as,

˙̄x1 = x̄2 (38a)
˙̄x2 = (−g + ū3) sin(x̄1) + (ū1 + ū2) cos(x̄1) (38b)

ȳ1 = x̄1 (38c)

where x̄1 is the angular displacement with respect to the pivot, x̄2 the angular
velocity, g gravitational acceleration, ū1 is an input of acceleration due to forced
motion of the pivot, ū2 force in x-direction acting on the bob and ū3 force in
y-direction on the bob.

Splitting the input vector into external inputs and coupling related inputs
gives,

ū[i] = [ ū
[i]
1︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3︸ ︷︷ ︸

û[i]

]. (39)

32



The linear spring coupling the pendulums is described as,
û

[1]
2

û
[1]
3

û
[2]
2

û
[2]
3

 = k


(sin(ȳ

[1]
1 )− a+ w[1])− (sin(ȳ

[2]
1 )− b− w[2])

(− cos(ȳ
[1]
1 )− (− cos(ȳ

[2]
1 ))

−((sin(ȳ
[1]
1 )− a− w[1])− (sin(ȳ

[2]
1 )− b− w[2]))

−((− cos(ȳ
[1]
1 )− (− cos(ȳ

[2]
1 )))


︸ ︷︷ ︸

=:ρ

(40)

where k is the sti�ness ratio. Variable a represents the left-hand-side pendulums
pivot point in x-coordinates, variable b is the same for the pendulum to the right.
The time dependent external inputs are the same as for the system described
in Section 4.3,

ū1 = [w[1], w[2], ŵ[1], ŵ[2]] (41)

where w[i] has to be chosen ẅ[i]. The system was modelled in Modelica and
compiled to FMUs with JModelica.org, as Assimulo models and mixed FMU-
Assimulo systems. Initial conditions of the angles and angular velocities were
chosen as,

x̄
[1]
1 =

π

2
(42a)

x̄
[1]
2 = 0 (42b)

x̄
[2]
1 = −π

2
(42c)

x̄
[2]
2 = 0 (42d)

with spring sti�ness ratio k = 1.0 N/m and a sin(t) signal as forced motion on
the pivot.

The three aggregated systems were integrated with CVode with tolerances
atol = rtol = 10−8 for �ve seconds and the Jacobian approximated with forward
di�erences. Results were then compared to a monolithic reference model written
in Modelica and simulated with Dassl in Dymola using tolerance tol = 10−12.
Figure 9 shows the error in log-scale of the angle x̄[1]

1 of all three systems. Error
of angle x̄[2]

1 is shown in Figure 10.

33



0 1 2 3 4 5
Time (s)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [1]
1  Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 9: Error of angle x[1]
1 of coupled pendulums modelled as FMUs, As-

simulo models and mixed FMU and Assimulo models. Simulated with CVode
in Assimulo with tolerances atol = rtol = 10−8 for �ve seconds. Variable x[1]

1

represents angular displacement of pendelum to the left.

0 1 2 3 4 5
Time (s)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [2]
1  Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 10: Error of angle x[2]
1 of coupled pendulums modelled as FMUs, As-

simulo models and mixed FMU and Assimulo models. Simulated with CVode
in Assimulo with tolerances atol = rtol = 10−8 for �ve seconds. Variable x[2]

1

represents angular displacement of pendelum to the right.

34



4.5 Coupled Pendulums with Externally Added Events

Coupled Pendula Problem With External State Events

3 2 1 0 1 2 3
x coordinate

3

2

1

0

1

2

3

y
 c

o
o
rd

in
a
te

Time = 1.2s

Figure 11: Setup of coupled pendulum system with externally added events as
walls blocking the swinging motion of the pendulums.

This example is for demonstrating externally added events to a coupled
aggregated system. The coupled pendulum system described in Section 4.3 is
reused with the modi�cation that the forced excitations of the pivots have been
removed. The spring constant remains at k = 1.0 N/m and so do the pivot
coordinates, a = (−2, 0) and b = (2, 0).

External events added to the system are walls blocking the pendulum motion,
one wall for each pendulum. When the bob swings into the wall a discontinuity
occurs. This is handled by de�ning event indicators that trigger each time an
impact occurs. The event indicators are de�ned as zero-crossings,

event[i] = wall[i] − x̄[i]
1 (43)

where wall[i] is the x-coordinate of the wall blocking pendulum [i] with respect
to the pendulums pivot. The impact is modelled as an elastic collision and
the event is handled by reversing the direction of the velocity. The walls are
placed asymmetrically with the wall blocking the left pendulum placed directly
below its pivot meaning that an event occurs when the bobs x-coordinate reaches
x̄

[1]
1 = 0 with respect to its pivot. The wall blocking the motion of the pendulum

on the right side is placed slightly to the right of its pivot giving a discontinuity
when the bob impact the wall at x-coordinate x̄[2]

1 = 0.3 with respect to its
pivot. The setup can be seen in Figure 11. Initial conditions and parameters
are the same as in Section 4.3.

35



The system was integrated using CVode with tolerances atol = rtol = 10−8

for �ve seconds. Figure 12 shows the x-displacement of the two pendulums
with respect to their pivots. The horizontal lines represent each pendulums'
respective wall.

0 1 2 3 4 5
Time (s)

1.0

0.5

0.0

0.5

1.0

D
is

p
la

ce
m

e
n
t 

in
 x

-c
o
o
rd

. 
w

it
h
 r

e
sp

e
ct

 t
o
 p

iv
o
t 

p
o
in

t

x Coordinates of Coupled Pendulums with Impact on Walls

x
[1]
1

wall[1]

x
[2]
1

wall[2]

Figure 12: Coupled pendulums with externally added events as walls. Shows x-
coordinate displacement with respect to each pendulums' pivot, [1] is pendulum
to the left and [2] is to the right. The horizontal lines represent walls blocking
the swinging motion.

4.6 Formula 1 Race Car

This example demonstrates the software being used with a large complex model.
The test model has been used in previous work [1], and describes a Formula 1
race car driven around an eight shaped race course with increasing velocity. The
system containing 47 continuous states and 44 event indicators was modelled as
two FMUs, one representing the chassi and the other a wheel. Both sub-systems
were then compiled to ME 2.0 FMUs with Dymola. By de�ning 43 necessary
coupling relations between a wheel and the chassi the complete system with 172
couplings was created. Figure 13 shows the phase plot of the car driven around
the course simulated for 20 seconds with atol = rtol = 10−6 using CVode in
Assimulo.

As reference the complete system was modelled as a monolithic system and
compiled to an FMU. The reference system was the loaded into Python with
PyFMI and simulated for 20 seconds using CVode in Assimulo with atol =
rtol = 10−10. Figure 14 shows the error of the coupled race car system compared
to the monolithic system.

36



15 10 5 0 5 10 15
x

30

20

10

0

10

20

30

y

Position

Figure 13: Phase plot of Formula 1 race car simulation with atol = rtol = 10−6

for 20 seconds. Shows the race cars position on the race track over time.

0 5 10 15 20
Time (s)

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
rr

o
r

Error of x, y Coordinates

Figure 14: Error of x, y coordinates of Formula 1 model simulated in CVode
for 20 seconds with atol = rtol = 10−6. The monolithic reference model was
simulated in CVode with atol = rtol = 10−10.

37



5 Conclusions

The main goal has been to solve coupled ODE systems while maintaining cou-
pling relations throughout the simulation. Looking at the results in Section 4
the proposed concept delivers in this regard. The concept and the implemen-
tation can be used to simulate coupled systems with discontinuities, externally
added events, algebraic loops and non-linear couplings. All experiments have
been tested against result accuracy and not computation time. The race car
simulation, a large complex model, gives reasonable results but took a long
time to compute. This has more likely to do with poor implementation than
faults in concept.

Sub-models can be coupled in many di�erent ways. This allows for re-
use of existing sub-systems for many di�erent applications, as was the case
in Sections 4.3-4.5. It is also of huge bene�t to be able to swap out speci�c
components of a complex system to compare di�erences in performance without
remodelling the entire system.

5.1 Improvements

The implementation can be improved in many aspects. A big problem has been
to �nd correct execution order for couplings. The implemented method tries a
backtracking technique using dependency information to �nd an order of how
inputs must be set. If a loop is detected during tracking all inputs and outputs in
the coupled system are seen as part of the loop. Instead of iterating all variables
in the coupled system when solving an algebraic loop problem one could try to
identify which variables are part of the loop and iterate them only. Going further
one could �nd several unrelated loops that can be iterated separately. Tarjan's
algorithm from graph theory could be used for this purpose.

A lot of computation time is spent approximating state space matrices. Cur-
rently all sub-system state space matrices are re-approximated each time a call
to compute the Jacobian is made. Considering that some models may have one
or more constant state space matrices they can be stored in memory for faster
access. Another important detail when it comes to matrices is approximation
accuracy. The method implemented is a standard forward di�erence scheme.
For better accuracy a higher order scheme can be implemented, unfortunately
it usually costs in computation time. It would be interesting to see an imple-
mentation of automatic di�erentiation for approximating state space matrices,
both in regards to computation time and approximation accuracy.

5.2 Future Work

The implemented concept does deliver when it comes to simulating coupled
systems. One thing that has not been analysed or discussed is simulation per-
formance. By that is meant total computation time, number of steps, number
of Jacobian evaluations etc., compared to simulation of a monolithic system.

38



Performance is something one usually considers when choosing a numeric solver
or a method for solving a problem and should be analysed.

Currently a challenge in the �eld of computational modelling is to �nd a way
of coupling ME and CS FMUs. The target is to �nd a master algorithm that
su�ciently handles coupling relations and discontinuities. Perhaps the concept
of aggregating MEs can be used as part of the solution.

39



References

[1] Christian Andersson. A Software Framework for Implementation and Evaluation

of Co-Simulation Algorithms. Licentiate thesis, Centre for Mathematical Sciences,
Lund University, Lund, Sweden, 2013.

[2] Christian Andersson, Claus Führer, and Johan Åkesson. Assimulo: A
uni�ed framework for ode solvers. Math. Comput. Simulat., 2015. doi:
10.1016/j.matcom.2015.04.007. In press.

[3] Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, Christoph
Clauss, Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss,
Dietmar Neumerkel, Hans Olsson, and Antoine Viel. Functional mockup interface
2.0: The standard for tool independent exchange of simulation models. In In 9th

International Modelica Conference 2012. Modelica Association, 2012.

[4] Dassault Systèmes. Dymola - Multi-Engineering Modeling and Simulation - Ver-
sion 2016. http://www.dymola.com/, 2016. Accessed: 2015-08-01.

[5] Edda Eich-Soelner and Claus Führer. Numerical Methods in Multibody Dynamics.
European Consortium for Mathematics in Industry (ECMI). Teubner, 1998. ISBN
3-519-02601-5.

[6] Emil Fredriksson, Christian Andersson, and Johan Åkesson. Discontinu-
ities handled with events in Assimulo. In Hubertus Tummescheit and Karl-
Erik Årzén, editors, Proceedings of the 10th International Modelica Confer-

ence, number 96 in Linköping Electronic Conference Proceedings, pages 827�
836. Linköping University Electronic Press, Linköpings universitet, 2014. URL
http://dx.doi.org/10.3384/ECP14096827.

[7] Peter Fritzon and Hilding Elmqvist, editors. Proceedings of the 11th Interna-

tional Modelica Conference, Versailles, France, September 21-23, 2015, Linköping
Electronic Conference Proceedings, 2015. Linköping University Electronic Press,
Linköpings universitet. doi: http://dx.doi.org/10.3384/ecp15118.

[8] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban,
Dan E. Shumaker, and Carol S. Woodward. Sundials: Suite of nonlinear and
di�erential/algebraic equation solvers. ACM Trans. Math. Softw., 31(3):363�396,
September 2005. ISSN 0098-3500. doi: 10.1145/1089014.1089020.

[9] Modelica Association. Modelica: A uni�ed object-oriented language for physi-
cal systems modeling, language speci�cation version 3.3 revision 1, 2014. URL
http://www.modelica.org/.

[10] Modelon AB. PyFMI - Version 2.1. Technical report, 2015. Accessed: 2015-05-18.

[11] Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and
Hubertus Tummescheit. Modeling and optimization with Optimica and
JModelica.org�languages and tools for solving large-scale dynamic optimiza-
tion problem. Comput. Chem. Eng., 34(11):1737�1749, November 2010. doi:
http://dx.doi.org/10.1016/j.compchemeng.2009.11.011.

40



6 Appendix

In this section the models described in Section 4 are shown in Modelica or
Python code. The Formula 1 Race Car system described in 4.6 is not shown in
code.

6.1 Coupling Induced Algebraic Loops

Models described in Section 4.2 modelled in Modelica and in Python as Assimulo
problems.

6.1.1 System A in Modelica

System A used in Section 4.2 in Modelica.

model A
Real x(start = 9.0);
input Real u;
output Real y;

equation
der(x) = -x + u;
y = x - u;

end A;

6.1.2 System B in Modelica

System B used in Section 4.2 in Modelica.

model B
Real x(start = 2.0);
input Real u;
output Real y;

equation
der(x) = -x + u;
y = 0.5*u;

end B;

6.1.3 System A in Python as Assimulo Problem

System A used in Section 4.2 as Assimulo problem.

t0 = 0

def rhsA(t, x, u=None, sw=None):
return -x + u

def yA(t, x, u=None, sw=None):
return x - u

41



x0A = np.array([9.])

modA = Explicit_Problem_Model(rhsA, x0A, t0,
outputs=(yA, [('y', 0)]), inputs=(1, [('u', 0)], None))

6.1.4 System B in Python as Assimulo Problem

System B used in Section 4.2 as Assimulo problem.

t0 = 0

def rhsB(t, x, u=None, sw=None):
return -x + u

def yB(t, x, u=None, sw=None):
return 0.5*u

x0B = np.array([2.])

modB = Explicit_Problem_Model(rhsb, x0B, t0,
outputs=(yB, [('y', 0)]), inputs=(1, [('u', 0)], None))

6.2 Coupled Pendulums as FMUs

The coupled pendulum model described in Cartesian coordinates in Section 4.3
modelled in Modelica.

6.2.1 Pendulum Model in Modelica in Cartesian Coordinates

Model of coupled pendulum problem used in Section 4.3 in Cartesian coordi-
nates.

model PendulumCartesianCoordinates
Real x1(start=1.0, fixed = false); // x coordinate
Real x2(start=0.0, fixed = false); // y coordinate

Real x3, x4; // x3=xvel, x4=yvel

// Lambda
Real lambda;
constant Real g = 9.82;

input Real w, u1; // w, u1=aw
input Real u2, u3; // u2=Fx, u3=Fy

output Real y1, y2;
equation

der(x1) = x3;

42



der(x2) = x4;

der(x3) = u1 - 2*x1*lambda + u2;
der(x4) = -g -2*x2*lambda + u3;
0 = x1^2 + x2^2 - 1;

y1 = x1; // x coordinate
y2 = x2; // y coordinate

end PendulumCartesianCoordinates;

6.2.2 Monolithic Reference Model in Modelica

Monolithic reference model described in Modelica for example in Section 6.2.

model CoupledPendulumsReferenceCartesian
// x, y coordinates of left pendulum
Real x1(start = 1.0, fixed = true);
Real y1(start = 0.0, fixed = false);

Real vx1, vy1; // Velocities, left pendulum

// x, y coordinates of right pendulum
Real x2(start = -1.0, fixed = true);
Real y2(start = 0.0, fixed = false);

Real vx2, vy2; // Velocities, right pendulum

Real lambda1;
Real lambda2;

constant Real g = 9.82;
parameter Real k = 1.0; // spring constant

// Pendulum pivot x-coordinates
parameter Real a = -2.0; // Left pendulum
parameter Real b = 2.0; // Right pendulum

// Coupling, Spring Forces
Real Fx, Fy;

// External excitations on pivots
input Real w1, aw1;
input Real w2, aw2;

equation
// Left Pendulum Dynamics
der(x1) = vx1;
der(vx1) = aw1 - 2*x1*lambda1 + Fx;

der(y1) = vy1;
der(vy1) = -g -2*y1*lambda1 + Fy;

0 = x1^2 + y1^2 - 1;

// Right Pendulum Dynamics
der(x2) = vx2;

43



der(vx2) = aw2 - 2*x2*lambda2 - Fx;

der(y2) = vy2;
der(vy2) = -g -2*y2*lambda2 - Fy;

0 = x2^2 + y2^2 - 1;

// Coupling with Linear Spring

Fx = k*((x1 - a + w1) - (x2 - b - w2));
Fy = k*(y1 - y2);

// Inputs handled internally
w1 = Modelica.Math.sin(time);
aw1 = -Modelica.Math.sin(time);

w2 = Modelica.Math.sin(time);
aw2 = -Modelica.Math.sin(time);

end CoupledPendulumsReferenceCartesian;

6.3 Coupled Pendulums with Mixed Models

The coupled pendulum model described in Polar coordinates in Section 4.4 mod-
elled in Modelica and as Assimulo problem in Python.

6.3.1 Pendulum Model in Modelica in Polar Coordinates

Coupled pendulums problem in polar coordinates used in Section 4.4.

model PendulumPolarCoordinates
Real x1(start = 0.0, fixed=false); // theta angle
Real x2(start = 0.0, fixed=false); // thetadot angular velocity

constant Real g = 9.82;

input Real u2, u3; // u2 = Fx, u3 = Fy
input Real w, u1; // u3 = aw

output Real y; // theta angle
equation

// System dynamics
der(x1) = x2;
der(x2) = (-g + u3)*Modelica.Math.sin(x1) +

(u1 + u2)*Modelica.Math.cos(x1);

// Outputs
y = x1; // theta angle

end PendulumPolarCoordiantes;

44



6.3.2 Coupled Pendulum in Polar Coordiantes as Assimulo Problem

Coupled pendulum in Polar coordinates in Python as Assimulo problem:

##########################################################
# Dynamics
def rhs(t, x, u=None, sw=None):

g = 9.82

theta = x[0]
theta_dot = x[1]

w = u[3]
aw = u[0]
Fx = u[1]
Fy = u[2]

return np.array([theta_dot, (-g + Fy)*np.sin(theta) +
(Fx+aw)*np.cos(theta)])

# Outputs; theta and theta_dot
def y(t, x, u=None, sw=None):

return x

# Initial conditions
x0left = np.array([theta_L0, thetaDot_L0])

##########################################################

p_left = Explicit_Problem_Model(rhs, x0left, t0,
outputs=(y, [('y', 0), # y = theta; angle

('y1', 1)]), # y1 = thetadot; angular velocity
inputs=(4,

[('u1', 0), # aw
('u2', 1), # Fx
('u3', 2), # Fy
('w', 3)],
(['w', 'u1'], traj)) )

##########

x0right = np.array([theta_R0, thetaDot_R0])

p_right = Explicit_Problem_Model(rhs, x0right, t0,
outputs=(y, [('y', 0), # y = theta; angle

('y1', 1)]), # y1 = thetadot; angular velocity
inputs=(4,

[('u1', 0), # aw
('u2', 1), # Fx
('u3', 2), # Fy

45



('w', 3)],
(['w', 'u1'], traj)) )

6.3.3 Monolithic Reference Model in Modelica

Monolithic reference model for coupled pendulum problem in polar coordinates
used in Section 4.4.

model CoupledPendulumsReferencePolar
// Left Pendulum
Real x1(start = 3.14*0.5, fixed=true);
Real x2(start = 0.0, fixed=false);

// Right Pendulum
Real x3(start = -3.14*0.5, fixed=true);
Real x4(start= 0.0, fixed=false);

constant Real g = 9.82;

parameter Real k = 1.0; // Spring constant

// Pivot x-coordinates
parameter Real a = -2.0; // Left Pendulum
parameter Real b = 2.0; // Right Pendulum

// Forces From Coupled Spring
Real Fx, Fy;

// External Excitations
Real w1, aw1;
Real w2, aw2;

equation
// Left Pendulum Dynamics
der(x1) = x2;
der(x2) = (-g + Fy)*Modelica.Math.sin(x1) +

(Fx + aw1)*Modelica.Math.cos(x1);

// Right Pendulum Dynamics
der(x3) = x4;
der(x4) = (-g - Fy)*Modelica.Math.sin(x3) +

(-Fx + aw2)*Modelica.Math.cos(x3);

// Spring Coupling
Fx = k*( (Modelica.Math.sin(x1) - a + w1) -

(Modelica.Math.sin(x3) - b - w2));

Fy = k*( -Modelica.Math.cos(x1) + Modelica.Math.cos(x3));

// Inputs Handled Internally

w1 = Modelica.Math.sin(time);
w2 = Modelica.Math.sin(time);

46



aw1 = -Modelica.Math.sin(time);
aw2 = -Modelica.Math.sin(time);

end CoupledPendulumsReferencePolar;

6.4 Bouncing Ball Demonstration

In this section scripts for the bouncing ball demonstrations are presented.

6.4.1 Bouncing Ball as Assimulo Problem

A script of the demonstration described in Section 3.1.1 is presented:

####
#### Bouncing Ball as Assimulo Problem

# Imports
from assimulo.problem import Explicit_Problem
from assimulo.solvers import CVode

import matplotlib.pyplot as plt
import numpy as np

# Dynamics
def rhs(t, x, sw):

"""
Right-Hand-Side function of bouncing ball problem.

x[0] : Height of ball (m)
x[1] : Velocity of ball (m/s)
"""
return np.array([x[1], -9.82])

# Event indicators
def state_events(t, y, sw):

"""
State event function. Defines zero-crossings.
"""
event1 = y[0] if sw[0] else 5 # y[0] if ball is falling

down.
event2 = y[1] if sw[1] else 5 # y[1] if ball is going up.
return np.array([event1, event2])

# Event handling
def handle_event(solver, event_info):

"""
Event handling function. Changes switches and
velocity direction.
"""
ev_info = event_info[0] # Only looking at state events.

47



if ev_info[0] !=0:
# Ball bounces up.
solver.sw[0] = False
solver.sw[1] = True
solver.y[1] = -0.8*solver.y[1] # 0.8 elasticity

else:
# Ball is at top, starting to fall downwards.
solver.sw[0] = True
solver.sw[1] = False

# Initial conditions
x0 = np.array([1.0, 0.0])
t0 = 0

# Defining problem with Assimulo problem class
prob = Explicit_Problem(rhs, x0, t0)
prob.state_events = state_events
prob.handle_event = handle_event
prob.sw0 = [True, False]

# Creating solver instance
sim = CVode(prob)

# Simulating problem
t, h = sim.simulate(2.0, 40) # tf=2.0, ncp=40;

# Plot results
plt.figure()
plt.plot(t, h[:,0])
plt.title('Bouncing Ball as Assimulo Problem')
plt.xlabel('Time (s)')
plt.ylabel('Height above ground (m)')
plt.plot(t, [0]*len(t)) # Plot ground
plt.show()

6.4.2 Bouncing Ball with PyFMI

Code for demonstration described in Section 3.1.2. Modelica model:

model BouncingBall
Real h(start = 1.0);
Real v(start = 0.0);

constant Real g = 9.81;
equation

der(h) = v;
der(v) = -g;

when h < 0 then

48



reinit(v, -0.8*v);
end when;

end BouncingBall;

Python script demonstrating import and simulation of an FMU with As-
simulo solvers:

####
#### BouncingBall with FMU

# Imports
from pymodelica import compile_fmu

from pyfmi import load_fmu
from pyfmi.simulation.assimulo_interface import FMIODE2
from pyfmi.common.io import ResultHandlerFile

from assimulo.solvers import CVode
import matplotlib.pyplot as plt
#######################################################
# Compile model
name = compile_fmu('BouncingBall', 'model.mo', target='me',

version='2.0')

# Load FMU
fmu = load_fmu(name)

# Result handler
opts = fmu.simulate_options()
res = ResultHandlerFile(fmu)
res.set_options(opts)

# Initialize FMU
fmu.setup_experiment()
fmu.initialize()
fmu.event_update()
fmu.enter_continuous_time_mode()

# Create Assimulo-FMU interface instance
mod = FMIODE2(fmu, result_handler=res)

# Star result handler
res.simulation_start()

# Solver instance
sim = CVode(mod)

# Simulation
sim.simulate(2.0, 40) # tf=2.0, ncp=40;

49



# Stop result handler
res.simulation_end()

# Plot result
h = res.get_result().get_variable_data('h').x
t = res.get_result().get_variable_data('time').t

plt.figure()
plt.title('Bouncing Ball as FMU')
plt.xlabel('Time (s)')
plt.ylabel('Height above ground (m)')
plt.plot(t, h)
plt.plot(t, [0]*len(t))
plt.show()

50







Coupling Model Exchange FMUs for

Aggregated Simulation by Open Source Tools

Pukashawar Pannu1 Christian Andersson1,2 Claus Führer1 Johan Åkesson2

1Centre for Mathematical Sciences, Lund University, Sweden
2Modelon AB, Sweden

Abstract

The Functional Mock-up Interface standard allows to
generate stand-alone sub-systems which can be simu-
lated and verified individually. In this paper we present a
design of a model aggregation which allows to simulate
several Functional Mock-up Units as a coupled model.
The formulation is based on Assimulo as a numeri-
cal integration environment. Assimulo problem classes
are extended to a class for aggregated problems which
collects information provided by the Functional Mock-
up Units through the tool PyFMI together with Python
based problem classes defined by Assimulo. This allows
to set-up test environments of complex models composed
of several sub-systems.
Keywords: FMI, Jacobian, Algebraic loops, Events,

Model Exchange 2.0, Assimulo

1 Introduction

The Functional Mock-up Interface (FMI) (Blochwitz
et al., 2012) has gained momentum in simulation of
dynamical systems and in exchanging dynamic simula-
tion models between tools. The standard has proven to
be highly successful as it fills a gap where there were
costly custom integrations before. The open source tools
PyFMI 1 together with Assimulo (Andersson et al., 2015)
provide a solid foundation for performing simulations
and experiments on single Functional Mock-up Units
(FMUs).

A key feature that is currently lacking is the ability
to easily simulate coupled systems and thus fully taking
advantage of the standard.

In this article, an extension to the open-source tools
PyFMI and Assimulo is presented that allows for simu-
lation of coupled model exchange FMUs following the
FMI 2.0 standard. The extension enables coupling of
FMUs and models written directly in Python to a so-
called aggregated model.

1http://www.pyfmi.org PyFMI - Version 2.1. Accessed,
2015-05-18

The dynamical models considered here can be de-
scribed as,

˙̄x = f̄ (x̄, ū) (1a)

ȳ = ḡ(x̄, ū) (1b)

where x̄ represents the states, ū the input signal and ȳ the
output, consistent with the FMI.

Commonly, a full system model is represented by sev-
eral stand-alone sub-systems coupled together by cou-
pling equations to a model for a global system. This re-
sults in the following general system description,

ẋ = f (x,u,w) (2a)

y = g(x,u,w) (2b)

u = c(y,w) (2c)

where x represents the combined states from the separate
models. The local inputs for the ith model, ū[i], has here
been separated into two vectors, ū[i] = [û[i], ŵ[i]], and sub-
sequently combined into the global vectors (for N mod-
els), u = [û[1], . . . , û[N]] and w = [ŵ[1]

, . . . , ŵ[N]]. This as
to separate between inputs determined by the coupling,
u, and external inputs acting on the coupled system, w.
In general the external inputs can not only influence the
model behaviour directly but also the coupling, Eq (2c),
which is highlighted in Section 3.

When solving a coupled system, an approach is co-
simulation as is explored in (Andersson, 2013) where
the systems have their own integrator and the focus is on
communication between systems. In this paper however,
the focus is on coupling model exchange FMUs under a
single solver.

2 Concept

The idea is to take N coupled sub-systems, either FMUs
or Python models, and aggregate them into a single sys-
tem and treating the final full system as any other model.
In order to facilitate the general description of a sub-
system, as is defined in FMI, for the aggregated system,

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

903



care needs to be considered in how for example the Ja-
cobian is defined. The Jacobian is a necessity when us-
ing implicit methods for solving the resulting system and
is discussed in Section 2.3. Additionally, the events for
each sub-system and external events need to be consid-
ered, discussed in Section 2.2, as well as algebraic loops
which can occur due to the coupling, Section 2.4.

Now, looking at N sub-systems,

˙̄x[1]1 = f̄
[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1 ) (3a)

ȳ
[1]
1 = ḡ

[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1 ) (3b)

ū
[1]
1 = c̄

[1]
1 (ȳ[1], ŵ

[1]
1 ) (3c)

...

˙̄x[N]
N = f̄

[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N ) (4a)

ȳ
[N]
N = ḡ

[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N ) (4b)

ū
[N]
N = c̄

[N]
N (ȳ[N]

, ŵ
[N]
N ) (4c)

and the resulting aggregated system,

ẋ = f (x,u,w) =






f̄
[1]
1 (x̄

[1]
1 , û

[1]
1 , ŵ

[1]
1 )

...

f̄
[N]
1 (x̄

[N]
1 , û

[N]
1 , ŵ

[N]
1 )




 (5a)

y = g(x,u,w) =






ḡ
[1]
N (x̄

[1]
N , û

[1]
N , ŵ

[1]
N )

...

ḡ
[N]
N (x̄

[N]
N , û

[N]
N , ŵ

[N]
N )




 (5b)

u = c(y,w) =






c̄
[1]
1 (ȳ[1], ŵ

[1]
1 )

...

c̄
[N]
N (ȳ[N]

, ŵ
[N]
N )




 (5c)

The vectors x, y, u and w of the aggregated system are
defined as:

x =






x̄
[1]
1
...

x̄
[N]
N




 , y =






ȳ
[1]
1
...

ȳ
[N]
N




 , u =






û
[1]
1
...

û
[N]
n




 ,w =






ŵ
[1]
1
...

ŵ
[N]
N






2.1 Aggregated Problem

Using the open-source tools PyFMI together with
Assimulo, an FMU can be accessed from Python
together with being solved using solvers available
in Assimulo. With this in mind two Assimulo
problem classes have been worked on. One that
creates an input/output problem structure called
ExplicitProblemModel. The other aggregates
several FMUs, or ExplicitProblemModels,

to one large problem that can be integrated us-
ing one of Assimulos available solvers, called
AggregatedProblem. For simplicity an al-
ready existing problem class, ExplicitProblem,
was extended to handle the aggregation. To define an
aggregated problem class some basic data is required:

• Aggregated states.

• RHS (Right-Hand-Side) function of aggregation.

• Coupling handling.

Through PyFMI there exists already a wrapper in-
terface that can load an FMU ME 2.0 and inte-
grate it using Assimulo. When instantiating the
AggregatedProblem class a list of FMUs is pro-
vided from which the initial states are easily accessible
and aggregated,

f o r model in models :

a g g r e g a t e d _ x 0 a g g r e g a t e mode l .x0

The crucial part of the aggregated problem class is how
to handle the right hand side function. The first major
difference between an aggregated problem and an As-
simulo problem is the presence of couplings. For each
call to the RHS, coupling terms must be up to date. The
condition can be satisfied by updating the coupling rela-
tions within the RHS-function.

Since the separate problem classes already have an
RHS-function structure, computing the RHS-function of
the aggregated system is simply to call the RHS-function
of each sub-system,

s e t _ c o n n e c t i o n s ( )

f o r model in models :

a g g r e g a t e d _ r h s a g g r e g a t e m o d e l . r h s

Coupling handling is done in set_connections(). For

simple cases when for example system A input u
[A]
2 needs

inputs from system B output y
[B]
4 , the function simply sets

u
[A]
2 = y

[B]
4 . However, this is not always the case which is

further discussed in Section 2.4.
For implicit solvers a Jacobian is required and must be

provided by AggregatedProblem. More advanced
models require AggregatedProblem to take into ac-
count events and algebraic loops. The three mentioned
topics are affected by aggregation and are discussed in
the following sections.

2.2 Events

Many models include discontinuities. One way of in-
tegrating such systems is by using events (Eich-Soelner
and Führer, 1998) which requires that a set of event in-
dicators are monitored during the integration. The inte-
gration is interrupted when conditions on the event indi-

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

904 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903



cators are violated and the event (discontinuity) is appro-
priately handled, finally the integration is restarted. Most
of the solvers available in Assimulo have this functional-
ity (Fredriksson et al., 2014).

The aggregated problem can access event indicators
of an FMU. When asked for event indicators by an As-
simulo solver the AggregatedProblem combines all
event indicators from the sub-systems and hands them
to the solver. Once an event has been detected and
the integration stopped, the problem class identifies the
triggered event and calls the corresponding sub-system’s
event handling.

Another type of events in FMUs are time events,
which are known at the start of a simulation. They split
up the integration into segments by setting up end times
for the simulation at which point an event is handled (An-
dersson, 2013). This could be, for instance, a force peri-
odically applied to the system. It is up to the aggregated
system to search through all sub-systems for the closest
time event to define the end time of the next integration
segment and handle the event.

From the Assimulo problem design it is simple to add
events to a problem. For the aggregated problem, adding
of events would be to add external events to a coupled
system. Events can not only be provided through the
sub-systems but also through how the system is coupled.
Consider a pendulum with no knowledge of its surround-
ings. Now, in the system model the pendulum is posi-
tioned such that its degree of freedom is limited by for
instance positioning close to a wall. The limitation can
be considered as an external event that needs to be taken
into account. In the problem formulation this is easily
done by providing extra sets of event indicators for the
integrator to monitor.

2.3 Jacobian

When solving an ODE the Jacobian can be explicitly pro-
vided or numerically approximated. For an uncoupled
input/output system where the inputs are only time de-
pendent the Jacobian, ∂ f̄

∂ x̄
, is computed. When looking at

a coupled system the dynamic changes. Due to coupling
some input terms are state dependent instead of time de-
pendent as in the uncoupled case. Consider the coupled
system,

ẋ = f (x,u,w) (6a)

y = g(x,u,w) (6b)

u = c(y,w) (6c)

Inserting Eq (6c) into Eq (6a) and Eq (6b) gives:

ẋ = f (x,c(y),w) (7a)

y = g(x,c(y),w) (7b)

Differentiating Eq (7a) with respect to x yields:

J =
∂ f

∂x
+

∂ f

∂c

∂c

∂y

∂y

∂x
(8)

The term ∂y
∂x

is found by differentiating Eq (7b):

∂y

∂x
=

∂g

∂x
+

∂g

∂c

∂c

∂y

∂y

∂x
(9)

Solving for ∂y
∂x

gives:

∂y

∂x
=

(

I −
∂g

∂c

∂c

∂y

)
−1

∂g

∂x
(10)

Resulting in the Jacobian:

J =
∂ f

∂x
+

∂ f

∂c

∂c

∂y

(

I −
∂g

∂c

∂c

∂y

)
−1

∂g

∂x
(11)

For the system to be solvable there is necessary condition
that (I − ∂g

∂c
∂c
∂y
) is non singular. The ∂g

∂c
term handles the

coupling relations and ∂c
∂y

the sub-system feed-through
terms.

With FMI 2.0 models have an option to provide
directional derivatives. In case they are provided
AggregatedProblem uses directional derivatives to
approximate the aggregated Jacobian matrix. If direc-
tional derivatives are unavailable a forward difference
scheme is applied. The same applies for non-FMI mod-
els.

2.4 Algebraic Loops

When a system contains feed-through, i.e. when the par-
tial derivative of Eq (6b) with respect to u is not the zero
matrix, then, in general, an equation system needs to be
solved to maintain consistent input and output values sat-
isfying,

y = g(x,u,w) (12a)

u = c(y,w). (12b)

By rewriting Eq (12a) to,

y−g(x,c(y,w),w) = 0 (13)

the algebraic loop can be solved by an iterative method.
AggregatedProblem creates a residual function of
the left-hand-side of Eq (13) and uses the Kinsol solver
in Assimulo to solve the problem. Kinsol is a non-
linear algebraic equation solver, part of the SUNDIALS
suite (Hindmarsh et al., 2005). When the outputs are
known, Eq (12b) is used to update the inputs.

2.5 Workflow

The simulation flow of coupled systems using the aggre-
gated problem class and an Assimulo solver is illustrated
in Figure 1. The simulation flow is essentially equiva-
lent to that of simulating an ODE with Assimulo, how-
ever, some nodes are affected by aggregation and these
are coloured blue in the figure.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

905



Figure 1. Assimulo simulation flow of coupled systems using
FMUs, Assimulo problems and the aggregated problem class.
The blue color represents nodes that are affected by aggrega-
tion.

3 Examples

In this section, the proposed framework is demonstrated.
The ability to couple model exchange FMUs is shown
together with coupling of FMUs with models directly
defined in Python. Additionally, simulation of coupled
models with externally defined events is demonstrated.

3.1 Coupled Pendula

This example demonstrates how two FMUs, each de-
scribing a pendulum, are coupled to an aggregated
model. The full system consists of two pendula coupled
by a force and excited by two inputs acting on the pivots.

The pendulum, with mass 1 kg and length 1 m, is de-
scribed by,

˙̄x1 = x̄3 (14a)
˙̄x2 = x̄4 (14b)
˙̄x3 = ū1 −2x̄1λ + ū2 (14c)
˙̄x4 =−g−2x̄2λ + ū3 (14d)

0 = x̄2
1 + x̄2

2 −1 (14e)

ȳ1 = x̄1 (14f)

ȳ2 = x̄2 (14g)

where x̄1, x̄2 are positions and x̄3, x̄4 velocities relative to

the pendulum’s pivot. The inputs are forces, ū2 and ū3,
acting on the body’s center and an acceleration, ū1 due
to a forced motion of the pivot. The outputs, ȳ, are the
positions.

In order to couple two pendula, i = [1,2], the input
vector is split for each pendulum into external excitations
and inputs determined by the coupling,

ū[i] = [ ū
[i]
1

︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3

︸ ︷︷ ︸

û[i]

]. (15)

The two pendula are coupled by a linear spring which is
determined by the equation, u = c(y,w),








û
[1]
2

û
[1]
3

û
[2]
2

û
[2]
3







= k








ȳ
[1]
1 −a+w1 − (ȳ

[2]
1 −b−w2)

ȳ
[1]
2 − ȳ

[2]
2

−(ȳ
[1]
1 −a+w1 − (ȳ

[2]
1 −b−w2))

−(ȳ
[1]
2 − ȳ

[2]
2 )








︸ ︷︷ ︸

=:ρ

(16)

where k is the stiffness ratio. Variable a represents the
pivot points x-coordinate of the left pendulum and b the
point of the right pendulum. The external input vector is,

w = [w1,w2, ŵ
[1]
, ŵ[2]]. (17)

The setup is shown in Figure 2. As previously men-
tioned, it is necessary to include the external inputs into
the coupling as is made evident in this example. Note
also, that in this example ŵ[i] has to be chosen as ẅ[i].

Figure 2. Two pendulums coupled via a spring.

The pendulum is modelled in the Modelica language
and using the open-source tool JModelica.org (Åkesson
et al., 2010) the Modelica model is compiled into an
FMU. The tool is responsible for transforming the pen-
dulum which is described as a DAE of index 3 into an
ODE that FMI supports.

The aggregated system was integrated using Assimulo
CVode solver with tolerances atol = rtol = 10−8 for 5

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

906 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903



seconds and the Jacobian approximated with forward dif-
ferences. Initital conditions for the system,

x̄
[1]
1 = 1 (18)

x̄
[1]
2 = 0 (19)

x̄
[2]
1 =−1 (20)

x̄
[2]
2 = 0 (21)

note that the initial conditions are from the reference
point of each pendulums pivot. The pivot points are lo-
cated at (−2,0) for the left pendulum and (2,0) for the
pendulum to the right. As external forces acting on the
pivots the sin(t) function was chosen. Stiffness ratio of
the spring is set to k = 1.0 N/m.

As reference a monolithic model of the system was
created in Modelica and simulated in Dymola (Dassault
Systèmes, 2016) using the solver Dassl with tolerance
tol = 10−12. Error of both pendulums x, y positions is
presented in Figure 3 in log-scale.

0 1 2 3 4 5
time (s)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

E
rr

o
r

Error of x, y Positions of FMU Coupled Pendula Problem

x
[1]
1

x
[1]
2

x
[2]
1

x
[2]
2

Figure 3. Error of x, y positions of aggregated coupled pen-
dulum described in Section 3.1, simulated with CVode with
atol = rtol = 10−8 for 5 seconds. x

[i]
1 denotes the x-coordinate

and x
[i]
2 the y of model i. Model [1] is the pendulum to the left

and [2] the one to the right.

3.2 Coupled Pendula with Different Model

Types

Three aggregated systems of coupled pendulas were
modelled and compared to a monolithic reference model.
The first system built by two FMU models modelled in
Modelica and compiled with JModelica.org. The second
by two Assimulo models and the third with the left pen-
dulum as an Assimulo model and the right pendulum as
an FMU. For this example the pendulums were modelled
as ODEs in polar coordinates with unit mass and length,

˙̄x1 = x̄2 (22a)
˙̄x2 = (−g+ ū3)sin(x̄1)+(ū2 + ū1)cos(x̄1) (22b)

ȳ1 = x̄1 (22c)

where g is gravitational acceleration, x̄1 is angular dis-
placement with respect to the pivot point, x̄2 angular ve-
locity. The inputs ū2 and ū3 are forces acting on the bob
horizontally and vertically respectively. ū1 is an input
of acceleration due to a forced motion of the pivot. The
output, ȳ1, is the angular displacement.

Similarly to the example described in Section 3.1 the
input vector is split into external excitations and inputs
by coupling.

ū[i] = [ ū
[i]
1

︸︷︷︸

ŵ[i]

, ū
[i]
2 , ū

[i]
3

︸ ︷︷ ︸

û[i]

]. (23)

The linear spring coupling the two pendulas is deter-
mined by,








û
[1]
2

û
[1]
3

û
[2]
2

û
[2]
3







= k








(sin(ȳ
[1]
1 )−a+w1)− (sin(ȳ

[2]
1 )−b−w2)

(−cos(ȳ
[1]
1 )− (−cos(ȳ

[2]
1 ))

−((sin(ȳ
[1]
1 )−a−w1)− (sin(ȳ

[2]
1 )−b−w2))

−((−cos(ȳ
[1]
1 )− (−cos(ȳ

[2]
1 )))








︸ ︷︷ ︸

=:ρ

(24)

where k is the stiffness ratio. Variables a and b represent
the pivot points x-coordinate for the left-hand-side and
right-hand-side pendulas respectively. The external input
vector is,

u1 = [w1,w2, ŵ
[1]
,

ˆw[2]]. (25)

As with example in Section 3.1, ŵ[i] has to be chosen as
ẅ[i].

Initial conditions for the aggregated system were cho-
sen for the pendulas to mirror each other with angles π

2
and −

π
2 for the left and right pendulas and zero initial

angular velocity.

x̄
[1]
1 =

π

2
(26a)

x̄
[1]
2 = 0 (26b)

x̄
[2]
1 =−

π

2
(26c)

x̄
[2]
2 = 0 (26d)

As external force exciting the pendula pivots a sin(t) sig-
nal was chosen and the springs stiffness ratio k = 1.0
N/m.

The aggregated system was integrated using the
CVode solver in the Assimulo package with tolerances,
atol = rtol = 10−8 for a time of 5 seconds and the Ja-
cobian approximated using forward differences. Results
were then compared to a reference where the coupled
pendulas were modelled as a monolithic system in Mod-
elica and simulated with Dassl in Dymola using toler-
ance tol = 10−12. Figure 4 shows the error in log-scale
of the angle x̄

[1]
1 of all three systems compared to the con-

trol. The same plot for angle x̄
[2]
1 is shown in Figure 5.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

907



0 1 2 3 4 5
time (s)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [1]
1  Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 4. Error of angle x
[1]
1 of aggregated FMU, Assimulo

and mixed systems, simulated for 5 seconds with tolerances
atol = rtol = 10−8 with CVode solver in Assimulo package.

0 1 2 3 4 5
time (s)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

E
rr

o
r

Angle x [2]
1  Error of Coupled Pendula System

Coupled FMUs
Coupled Assimulo Problems
Mixed FMUs and Assimulo Problems

Figure 5. Error of angle x
[2]
1 of aggregated FMU, Assimulo

and mixed systems, simulated for 5 seconds with tolerances
atol = rtol = 10−8 with CVode solver in Assimulo package.

3.3 Coupled Pendula Impact on Wall

The aggregated system constructed with two FMUs in
Section 3.1 is here reused with the addition of discon-
tinuities as two walls are externally placed in the path
of the two pendulums’ swinging motion. One wall for
each pendulum. This as to highlight the possiblity of
externally adding state events to the coupled problem.
Also the external forces acting on the pivots have been
removed.

When the bob hits the wall a discontinuity occurs.
This is handled by defining event indicators that trigger
an event when the impact occurs. Event indicators are
defined as zero-crossings as,

event [i] = wall[i]− x̄
[i]
1 (27)

where wall[i] is the x-coordinate of the wall blocking
pendulum [i]. The impact itself is elastic and the event
handling is done by simply reversing the velocity of the
bob. For the pendulum to the left a wall is placed di-
rectly below the pivot point and the impact occurs when

0 1 2 3 4 5
time (s)

1.0

0.5

0.0

0.5

1.0

D
is

p
la

ce
m

e
n
t 

in
 x

-c
o
o
rd

. 
w

it
h
 r

e
sp

e
ct

 t
o
 p

iv
o
t 

p
o
in

t

x Coordinates of Coupled Pendulums with Impact on Walls

x
[1]
1

wall[1]

x
[2]
1

wall[2]

Figure 6. Shows the x-coordinate displacement, with respect
to their own pivots, of the pendulums [1], to the left, and [2],
to the right, has they hit a wall. The horizontal lines represent
walls blocking each pendulums path.

the bobs x-coordinate reaches x̄
[1]
1 = 0 with respect to

its pivot. The right-hand-side pendulum wall is placed
slightly to the right of its pivot and the bob impacts the
wall when its x-coordinate reaches x̄

[2]
1 = 0.3 with re-

spect to its pivot. Initial conditions and parameters are
the same as for the example described in Section 3.1.

The aggregated system was integrated with the
CVode solver with tolerances atol = rtol = 10−8 for 5
seconds. Figure 6 shows the x-coordinate displacement
with respect to each pendulums pivot. The two horizon-
tal lines represent each pendulums respective walls.

4 Conclusion

In this paper, a framework has been presented for simu-
lation of coupled systems by aggregation. Care needs to
be taken when a coupled system contains feed-through as
an equation system needs to be solved in order to com-
pute the derivatives of the system. This puts a condition
on the sub-system feed-through terms that also presents
itself when computing the Jacobian.

The sub-system events are handled by aggregation.
A benefit of this approach is that events from all sub-
systems together with external events can be monitored
at once and handled through the aggregated system. Ex-
ample described in Section 3.3 shows that external events
can be added to an aggregated coupled system.

The FMI has all functionality needed to carry out the
presented scheme. By combining the discussed ideas
with Assimulo and allowing direct coupling of FMUs
and Python based problems one gets a flexible and pow-
erful environment for solving coupled dynamical prob-
lems.

Coupling Model Exchange FMUs for Aggregated Simulation by Open Source Tools

908 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118903



References

Christian Andersson. A Software Framework for Implementa-

tion and Evaluation of Co-Simulation Algorithms. Licenti-
ate thesis, Centre for Mathematical Sciences, Lund Univer-
sity, Lund, Sweden, 2013.

Christian Andersson, Claus Führer, and Johan Åkesson. As-
simulo: A unified framework for ode solvers. Math. Com-

put. Simulat., 2015. doi:10.1016/j.matcom.2015.04.007. In
press.

Torsten Blochwitz, Martin Otter, Johan Åkesson, Mar-
tin Arnold, Christoph Clauss, Hilding Elmqvist, Markus
Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar
Neumerkel, Hans Olsson, and Antoine Viel. Functional
mockup interface 2.0: The standard for tool independent ex-
change of simulation models. In In 9th International Mod-

elica Conference 2012. Modelica Association, 2012.

Dassault Systèmes. Dymola - Multi-Engineering Modeling
and Simulation - Version 2016. http://www.dymola.
com/, 2016. Accessed: 2015-08-01.

Edda Eich-Soelner and Claus Führer. Numerical Methods in

Multibody Dynamics. European Consortium for Mathemat-
ics in Industry (ECMI). Teubner, 1998. ISBN 3-519-02601-
5.

Emil Fredriksson, Christian Andersson, and Johan Åkesson.
Discontinuities handled with events in Assimulo. In Hu-
bertus Tummescheit and Karl-Erik Årzén, editors, Proceed-

ings of the 10th International Modelica Conference, num-
ber 96 in Linköping Electronic Conference Proceedings,
pages 827–836. Linköping University Electronic Press,
Linköpings universitet, 2014. URL http://dx.doi.

org/10.3384/ECP14096827.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S.
Woodward. Sundials: Suite of nonlinear and differ-
ential/algebraic equation solvers. ACM Trans. Math.

Softw., 31(3):363–396, September 2005. ISSN 0098-3500.
doi:10.1145/1089014.1089020.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization problem.
Comput. Chem. Eng., 34(11):1737–1749, November 2010.
doi:http://dx.doi.org/10.1016/j.compchemeng.2009.11.011.

Poster Session

DOI
10.3384/ecp15118903

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

909







Master's Theses in Mathematical Sciences 2015:E49
ISSN 1404-6342

LUTFNA-3036-2015

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/




