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Abstract 
New legislation involving emissions from internal combustion engines are pushing the manu-

facturers to develop new technology faster than ever before with the amount of greenhouse 

gases. To meet the standards new concepts need to be developed with lower fuel consumption 

and emissions. This thesis covers the implementation of a couple of methods to achieve this. 

These concepts are DEP with fully variable valves in a port fuel SI engine with high compres-

sion ratio (CR). The results show an increase in efficiency followed by lowered fuel consump-

tion. The improvements in fuel consumption are mainly found to be the result of raising the 

CR and because of decreases in pumping losses due to de-throttling via the Miller-cycle. The 

reduction in pumping losses by implementing the DEP concept was not as great as expected. 

The results show a decrease of fuel consumption of 9.5% at part load and 5 % at high load. 

The main improvement with the DEP concept was the reduction of the in-cylinder residual 

gases at 40 CAD before top dead centre firing (TDCF). This could be enough to be able to use 

such high CR that otherwise just wouldn´t be possible. 

The thesis reveals many of the difficulties involving combustion simulation and with no ex-

perimental work available in particular. The thesis would gain a lot from implementing a pre-

dicted combustion model to simulate EGR and the full capability of the DEP concept in terms 

of affecting the combustion, by for example changing the burn rate.  
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Nomenclature 
AFR Air to Fuel Ratio 

BFSC Brake specific fuel consumption 

BMEP Brake Mean Effective Pressure  

CAD Crank Angle Degrees 

CR Compression Ratio 

DEP Divided Exhaust Period 

ECR Effective Compression Ratio 

EGR Exhaust Gas Recirculation 

EIVC Early Intake Valve Closing 

ExDEP Externally Divided Exhaust Period 

GTP GT-Power 

IC Internal Combustion 

IVC Intake Valve Closing 

LIVC Late Intake Valve Closing 

LIVO Late Intake Valve Opening 

NTC Negative Temperature Coefficient  

PMEP Pumping Mean Effective Pressure 

PPC Partially Premixed Combustion 

PR Pressure Ratio 

RGF Residual Gas Fractions 

ROHR Rate Of Heat Release 

TDC Top Dead Centre 

TDCF Top Dead Centre Firing 

TDSI Turbocharge Direct Injected Spark Ignition 

TPSI Turbocharge Port Injected Spark Ignition 

VTEC Variable Valve Timing and Lift Electronic Control 

VVT Variable Valve Timing 
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1 Introduction 
The demands on engine efficiency and emissions is increasing fast and fully electrical cars 

still have a long way to go regarding battery capacity and charging time. This means the de-

velopment of new fuel efficient solutions for internal combustion engines is more important 

than ever. Various hybrid concepts such as the Toyota Prius is able to reduce the fuel con-

sumption but the trade-off is expensive electrical converters and in the consumers point of 

view a large decrease in resale values when batteries are worn out is a problem. Even though 

Tesla motors claims a range of 270 miles on one charge [1], approximately 432km, the possi-

ble reduction in carbon dioxide emissions highly depends on the electric mix in the country 

the car is charged. For the Nordic countries which have mostly hydro-, nuclear- and other CO2 

neutral energy production, electric cars is a good alternative. But for example the U.S who has 

mostly coal and natural gas based energy the extra energy conversion to electricity rather than 

directly from gas to work in a combustion engine will reduce or in some cases even worsen 

the overall efficiency. 

The Otto engine was invented in 1876 and ever since there have been endless attempts on 

making the engine more efficient and powerful[2]. Big breakthroughs have been made in ex-

haust energy recovery, by the means of adding a turbocharger, and advanced engine control. 

There are still many more improvements to be made, both in terms of advanced combustion 

methods such as partially premixed combustion, PPC, and further downsizing. This master 

thesis will study a couple of them. For instance increasing the compression ratio (CR) for 

faster more efficient combustion, decreasing the pumping losses by implementing throttle-free 

load control via fully variable valve train and by implementing the relatively new concept 

called divided exhaust period, DEP. 

The main focus in this master thesis is on investigating the potential of using DEP with fully 

variable valve timings to reduce BSFC at part load and knock issues for high loads in a 1.6l 

four cylinder port fuel injected spark ignited engine. Since no experimental engine is available 

the study will be conducted using 1D engine simulations in Gamma Technologies program 

GT-Power. Not only will DEP and valve timings be studied, but also the effect of intake and 

exhaust length via acoustic tuning. The latter is thought to help reducing knock. The engine 

model in GT-Power is based on a benchmark engine with potential for the typical downsizing 

feature of high boosting through turbocharging. The throttle-less operation will be achieved 

by applying the Miller-cycle i.e. early intake valve closing.  
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2 Variable valve trains 
In a conventional engine the intake and exhaust valves are controlled by a cam mechanism 

which limits the ability to control valve lift, valve overlap etc. This in turn restricts what you 

are able to achieve with the combustion. To have full control of the combustion it is beneficial 

to be able to fully control the valve events. 

2.1 Types of variable valve trains 
The last couple of years downsizing and turbocharging has been the major part of achieving 

lower fuel consumption without torque/power reduction and thereby compromising drivabil-

ity. In addition to this variable valve timing (VVT) and lift have the opportunity to reduce the 

pumping losses and increase volumetric efficiency and hence improve the brake specific fuel 

consumption (BSFC). Semi mechanical VVT-systems have been on the market for a while, 

e.g. Hondas VTEC system launched 1989[3] which is based on dual cam lobes with different 

lift and timing and a hydraulic shifter between the low speed and high speed lobe. Similar 

systems have been evaluated, such as in SAE-paper 2014-01-1699[4] were dual cam lobes 

and dual fixed rocker arms are used. The change between the two cam profiles is done by 

fixating the two rockers to each other via a sprint mechanism. The high speed profile is de-

signed in such way that it is dominant to the low speed profile regarding lift. The rpm for 

changing from low to high speed cam profile can be changed. A system which gives a higher 

freedom of cam strategies is the Multiair system developed by Fiat. This system is based on a 

fixed camshaft solution with a gap filled with hydraulic oil above the valve. The hydraulic oil 

is regulated via a solenoid valve, as the solenoid valve is open the oil is pressed into an accu-

mulator and thereby not transferring any force from the cam lobe to the valve. As the solenoid 

is closed the oil, which is incompressible, acts on the valve according to the fixed cam profile 

causing the valve to lift. If the valve is closed earlier than the cam profile the solenoid opens 

and releases the hydraulic oil, in order to slow down the valve as it approaches the valve seat 

a hydraulic break is used[5]. By slowing down the valve, noise is avoided as it settles towards 

the valve seat. To get a complete freedom of design a valve actuation system without mechan-

ically fixed profiles is needed. For this electronic-, hydraulic- or pneumatic actuation can be 

used. With these type of systems independent valve lifts for each cylinder is possible e.g. in 

order to introduce swirl at low loads, cylinder deactivation and square shaped lift profiles. 

One system on the market that has these features is FreeValves system [6]. 

2.2 Throttle-free load control 
Another benefit with having completely controllable valves is that you can eliminate the need 

of a throttle valve. The throttle valve increases the pumping losses in the engine and is thereby 

lowering the efficiency. Studies have been performed on this matter where one of them was 

made by Kaiserslautern Technical University, Germany [7]. Experiments were performed on 

a Turbocharged Port Injected Spark Ignited (TPISI) engine as well as on a Turbocharged Di-

rect Injected Spark Ignited engine (TDISI). The purpose of the study was to examine the dif-

ferences between the TDISI-engine and the port fuel injected one and also to see which is 

most suitable for the throttle free load application. 

The engines were equipped with continuously variable inlet valves, which can vary the valve 

lift and duration continuously. However the lift and the duration cannot be varied inde-

pendently in this case. This leads to very small and short inlet opening at low loads, which 
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prevents backflow of the cylinder charge but can also cause the turbulence to be lowered. On 

full load, however, the prevented backflow of the cylinder charge is said to yield 20% higher 

torque rating for the engine [7]. 

The direct injected engine equipped with the variable intake valves achieves the highest 

torque curve in comparison with the standard equipped engine. These torque increases was 

achieved in the engine speeds of 1200-1500 rpm, which is an important engine speed range. 

The torque is about 10% higher than in the GPI-engine with the otherwise same valve setup. 

The TPISI-engine with variable intake valves produces higher torque than the TPISI-engine 

with standard inlet valves although the difference is less noticeable. 

At low engine speeds the turbocharged engine is comparable to a naturally aspirated engine, 

due to the low turbocharger speed, this is where the shorter intake valve closing time achieve 

better cylinder filling and thus sends more mass flow towards the turbine and raises the turbo-

charger speed. 

The system also enables the use of wider valve spreads which would not be possible in a 

throttled engine due to the increase in residual gases in the cylinder. If the engine is throttle 

free the residual gas content can be controlled almost exclusively by varying the exhaust 

spread, which could easily be done with a fully variable valve system. Figure 1 explains the 

different types of valve spreads in an IC-engine.  

 
Figure 1. Exhaust spread explained 

 

The particular study shows a reduction in pump losses of about 5 % [7]. Again this could 

probably be done even more efficiently with the addition of a fully variable exhaust valve. 

The lower pumping loss leads to a reduction of about 1.2 % in fuel consumption.  

The improvement in fuel consumption due to less pumping losses is said to be more noticea-

ble in the TPISI-engine than in the TDISI engine. The TDISI-engine show an improvement of 

12 % in fuel consumption compared to the TDISI which only showed a 9% reduction. This is 

said to be caused by the use of a narrower spread between intake and exhaust which decreases 

the pumping losses further. Another reason for the higher fuel consumption is the higher fric-

tion caused by higher piston ring preload, higher piston mass and high pressure pump friction.  
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The torque, however, is greater in the TDISI- engine at low load were it exceeded the stand-

ard turbocharged engine with 10 percent. The writers of this study also makes the assumption 

of fuel saving of 20% using a downsized engine with fully variable intake valves and even 

higher when introducing variable exhaust valves. 

2.3 Valve lift/phasing strategies 
Throttle free control can be achieved with fully variable intake valves and there are multiple 

strategies for this. See the list below. 

 Early intake valve closing (EIVC) 

 Late intake valve opening (LIVO) + EIVC 

 Pre-lift 

 Multi-lift 

 Combinations of the above with different lift heights 

 High- and low speed static lift profiles 

2.3.1 EIVC 

By closing the intake valve early, Miller-cycle, a smaller charge than usual is present for the 

combustion. At the same time no backflow occurs but the effective compression ratio (ECR) 

drops. Another problem is after the IVC, when the piston is still moving down, the turbulent 

intensity is reduced. This results in slower flame propagation and thereby increasing the com-

bustion duration. The latter problem have been discussed in the SAE-paper 2013-24-0057 [5], 

where the possible solutions of introducing extra tumble by masking one side of the intake 

valves or swirl by using asymmetric intake valve lifts have been tested. The result was a de-

crease in combustion duration from the baseline engine by around 10 crank angle degrees 

(CAD) with extra tumble and by 6 CAD with swirl. These improvements were achieved at 

2000 rpm and 2bar BMEP. For higher loads or engine speeds the improvement decreases. At 

full loads the extra tumble masking resulted in a lowered turbulence intensity and hence a 

worsening in combustion and power. The 50% mass fraction burned (MBF 50%) were de-

layed by 8 CAD. For the extra swirl strategy there was no big difference from the baseline 

engine. 

 

2.3.2 LIVO + EIVC 

When a late intake valve opening is adopted the pumping losses increase drastically due to the 

syringe effect near top dead centre (TDC), as shown in SAE-paper 2014-01-1064 [8] the LI-

VO strategy have a higher ECR than the EIVC strategy. The big decrease in pumping losses 

results in a very small improvement regarding the brake specific fuel consumption (BSFC) 

compared to the baseline engine. To reduce the pumping losses this strategy can be combined 

with EIVC by using dual lifts. This will be further described under multi-lift. 

2.3.3 Pre-lift 

By opening the intake valve a small portion during the end of the exhaust stroke internal ex-

haust gas recirculation (EGR) is possible. As the piston moves towards TDC residual gases 

are pushed up in the intake port, causing large backflow, and in the beginning of the intake 

stroke these gases re-enter the cylinder. With the pre-lift strategy a high ECR is possible at the 

same time as the pumping losses are minimized, although the substantial EGR amount slows 

down the combustion. The latter effect has a bad influence on the BSFC but this could be lim-
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ited by the use of multi-lift. The strategy with pre-lift and the later described multi-lift sets 

higher demands on the valve actuation system. With pre-lift the system needs to be able to lift 

the valve a small step and then hold it at that lift for multiple CAD and then continue the lift 

in a second step. 

2.3.4 Multi-lift 

With a multi-lift solution the advantages with EIVC regarding low pumping work is main-

tained at the same time as the turbulent energy is boosted by the second small lift, this results 

in a faster combustion and higher constant volume heat release. Without the internal EGR as 

with pre-lift, the ECR will decrease a bit but still a large decrease in BSFC can be achieved 

[8]. 

2.3.5 High- and low speed static lift profiles 

The implementation of dual lift profiles, as in [4] or like Hondas VTEC system can offer 

some reductions in BSFC and increase in torque/power. By optimizing the lift profiles in GT-

power simulations an average BSFC reduction of 1.1% and 6.22% average increase in power 

is achieved for an 110cc motorcycle engine with CR 9.5:1. These results were compared to a 

baseline engine. For low speeds the optimized intake valve timings used a moderate LIVO + 

EIVC strategy (13 CAD later opening and 8 CAD earlier closing) with 6mm lift while the 

high speed profile had 3 CAD earlier opening and 9 CAD later closing and a lift of 7.6mm 

[4]. While these systems have a limited freedom of design they are well tested and reliable. 

2.3.6 Problems and solutions 

If using variable valves for non-throttled load control a new problem is encountered. The 

problem is that by eliminating the conventional butterfly valve the gases can move more 

freely in the intake and pressure waves which generate noise appears. These pressure waves 

would have otherwise been dampened by the throttle [9]. This problem introduces a multi 

variable optimization problem were valve lift and valve timing amongst things like air-box 

design needs to be considered to not compromise the BFSC. 
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3 Divided exhaust period 
We have yet to discover the full potential of fully variable valves. A study made by Borg 

Warner involves a concept for turbocharged engines. The concept involves separating the 

blowdown part of the exhaust stroke, which is the first part of the exhaust stroke which supply 

most of the work to the turbocharger, from the displacement part which is when the piston 

pushes out the last of the exhaust gases. What the study demonstrated was that by dividing the 

exhaust port into two and make one of them go straight to the turbine and the other one past 

by, this was called Divided Exhaust Period (DEP) and is demonstrated in Figure 2. In parallel 

with the practical experiments a model for simulation in GT-power was made and checked 

against the real results [10]. 

 
Figure 2. DEP-concept explained 

3.1 The DEP-concept so far 
There are some well-known issues encountered when turbocharging an engine. First there is 

the catalyst light-off time. The time it takes for the catalyst to reach working temperature. In a 

naturally aspirated engine this can be handled with ease by retarding the ignition and hence 

increasing the exhaust temperature. The problem with a turbocharged engine is that the tur-

bine acts as a heat sink and much heat energy is lost through the turbine and its housing [10]. 

By bypassing the exhaust straight to a close coupled catalyst you minimize the heat loss that 

otherwise would have occurred through the turbocharger. One thing to watch out for when 

doing this is if there is an expectable amount of power left, since the turbocharger is not in use 

and also because the cam duration for the scavenging valve is much shorter than for a stand-

ard engine, the mechanical stress to the cam shaft is more severe [10]. 
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To examine the light-off time for the catalyst from a cold start the amount of HC is measured 

downstream from the catalyst. Experiments show a decrease in temperature after the turbine 

in comparison to the standard engine. Before the turbine, however, the time it took to reach 

300 degrees Celsius was reduced by 50% with the DEP [10]. Other measurement was per-

formed to study the amount of HC after the catalyst and how long it would take for the con-

centration to be below 50 ppm. The experiments showed a 38% reduction in time [10]. 

Another goal with the DEP concept is to reduce the knock sensitivity and make it possible to 

increase the boost pressure. To accomplish this, the amount of residual gas fractions (RGF) 

left in the cylinder after the exhaust stroke needs to be reduced. This can be done with the 

DEP-concept thanks to its scavenging port which is used to flush the cylinder with fresh air 

and lowering the in-cylinder temperature. It comes at a price however, and that is the amount 

of unburned HC that passes straight through and out the exhaust. In a study made by Borg 

Warner the experiments showed that the HC-concentration was 3-5 times higher in the scav-

enge exhaust than in the blowdown exhaust [11]. To keep the HC from escaping through the 

exhaust the test engine was fitted with a “trapping valve”. This trapping valve was placed 

after the close coupled catalyst at the scavenging port and was used to regulate the back pres-

sure of the scavenging port and improve the trapping ratio [10]. The trapping valve was also 

beneficial for increasing the boost pressure at low engine speeds and closing the trapping 

valve increased the boost by 40%. This is said to be caused by the exhaust scavenging system 

acting as a buffer at the end of the stroke [10]. The trapping valve increased the PMEP at low-

er engine speeds and if the phasing of the exhaust valves would have been variable the need 

of the trapping valve would be eliminating by varying the blowdown to scavenging overlap 

[10]. 

A simulation model showed a reduction in residual gas content with 14% at high speed and in 

the lower speed range the reduction was up to 60% [10]. No real testing was performed at this 

stage but pressure differences from the intake to the exhaust system at TDC, were the DEP 

concept showed a positive pressure difference up to 4500 rpm, give a hint that residual gas 

content in theory is reduced [10]. This in turn also gave a 6% increase in BMEP and 16% re-

duction in BFSC.  

A few different combinations of scavenging and blowdown overlap have been tested and in-

dicated increase of about 20% in available torque when widening the overlap between intake 

and exhaust scavenging valve [10].  

 

3.2 The future of the DEP concept 
Power in the DEP engine was limited by the allowed exhaust temperature due to material con-

straints, this temperature was reached at around 2000 rpm. This is said to be the cause of split-

ting up the relatively cold exhaust from the displacement phase from the blowdown exhausts 

and thus not cooling down the turbine. The experienced lower temperature after the turbine 

could however be beneficial for the aging of the catalyst placed after the close coupled one, 

since it´s exposed to lower temperature. In the future the issue with the high exhaust tempera-

ture pre-turbo must be addressed to allow higher loads for the DEP-concept to be successful. 
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The flow across the exhaust valves was choked in the experiments even though the original 

valves were replaced with larger diameter ones [11]. One solution to this is to keep the origi-

nal valves and timing and instead mounting two extra valves in the exhaust which then di-

vides the flow to a blow-down and scavenging pipe respectively. This prevents the choking of 

the cylinder exhaust valves at higher engine speeds [12]. The concept is called “Externally 

Divided Exhaust Period” or ExDEP and may be a subject for future development of the DEP-

concept. 

It was discovered that the use of a “trapping valve”, as seen in Figure 2, can aid with control-

ling the pressure difference over the cylinder and thus influence the blow through [10]. The 

scavenging system resembled a wastegate, but a much more efficient one and can assist when 

using a smaller turbocharger that otherwise would create high backpressure and poor scaveng-

ing. Another thing discovered is that the relation between the scavenging cam position and 

BMEP is close to linear, indicating that the boost could be easily controlled with the cam 

phasing for the scavenging valve and eliminate the need of a wastegate valve [13]. 

In the first studies of the DEP concept they used a standard camshaft and changed between 

different ones to see the effects different phasing had [10]. The authors of that study ex-

pressed the benefits of having a fully variable valve train instead, in which case the need for a 

trapping valve as well as a wastegate could be evaded and thereby eliminating the PMEP pen-

alty and exhaust energy waste you otherwise would get.  

The DEP-concept seems to have a lot of benefits to existing system and is a good tool in 

meeting the higher demands on efficiency and emissions. 
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4 High Compression ratio 
To reach really low BSFC high compression ratio is needed, but with higher CR the in-

cylinder temperature and pressure is increased before the combustion. This will for high CR 

(~13-14:1) result in problems with knock in SI engines. To avoid knocking the ignition angle 

is delayed or/with combination of a richer mixture i.e. lower lambda. The latter will hurt the 

BSFC and move a possible three way catalyst out of its operation range, which for obvious 

reasons is not wanted. To avoid this fuel with higher octane rating can be used, such as etha-

nol or methanol, or different valve strategies can be applied. One strategy can be to apply a 

large valve overlap in order to remove all residual gases hence decreasing the in-cylinder 

temperature during compression and with a delay of the injection timing no extra hydrocarbon 

emissions will be introduced. Higher boosting and use of Miller-cycle can also reduce the in 

cylinder temperature since more heat can be conducted through the intercooler. 

A problem Mazda faced when developing their high CR “skyactiv” engines was that the 

flame in the early propagation hit the piston top just below the sparkplug. This caused a big 

heat transfer away from the flame and thereby slowing down the combustion process, which 

resulted in torque limitation due to knock. The solution to this problem was the introduction 

of a small cavity in the piston head below the sparkplug, which allowed the piston to start 

moving down before the flame could hit the surface [14]. 
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5 Engine modelling 

5.1 Combustion models 
When modelling the combustion it´s important to choose the right combustion model. This is 

often a matter of how much experimental result you have access to and how fast running you 

want your model to be. In some cases you have to choose a more advanced model to be able 

to predict certain parameters like knock or rate of heat release (ROHR). There are three cate-

gories of combustion models, which are described below. 

5.1.1 Non-predictive 

In a non-predictive combustion model you impose burn rate as a function of crank angle de-

grees (CAD). So the CA50 and CA10-90 is constant thus not affected by residual gas content 

or dilution. A model like this is adequate for optimizing intake runner length and looking at 

engine acoustics etc. [15] The non-predictive model have the advantage of running faster 

since the burn rate is not calculated. These models also have the advantage of not requiring as 

many input parameters as a semi-predictive and a predictive model needs and is thereby more 

suitable if experimental data are difficult to obtain. 

Mainly two combustion models are used for non-predictive modelling of SI combustion, im-

posed combustion profile and the SI Wiebe model. 

The imposed combustion profile is a predefined burn rate profile which can be useful if the 

cylinder pressure has been measured in experiments which then can be used to calculate the 

burn rate. 

The SI Wiebe model imposes the burn rate using a Wiebe-function which mimics the typical 

shape of a burn rate in a SI-engine. This model is very useful when you do not have access to 

any measured values through lab experiments. The Wiebe equations look like below [15]. 

 

𝐵𝑀𝐶 = − ln(1 − 𝐵𝑀) 
 

Burned Midpoint Constant (1) 

𝐵𝑆𝐶 = − ln(1 − 𝐵𝑆) 
 

Burned Start Constant (2) 

𝐵𝐸𝐶 = − ln(1 − 𝐵𝐸) 
 

Burned End Constant (3) 

𝑊𝐶 = [
𝐷

𝐵𝐸𝐶1/(𝐸+1) − 𝐵𝑆𝐶1/(𝐸+1)
]

−(𝐸+1)

 Wiebe Constant (4) 

𝑆𝑂𝐶 = 𝐴𝐴 −
(𝐷)(𝐵𝑀𝐶)1/(𝐸+1)

𝐵𝐸𝐶1/(𝐸+1) − 𝐵𝑆𝐶1/(𝐸+1)

 

 Start of Combustion (5) 
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Where 

AA = Anchor Angel 

D = Combustion Duration 

E = Wiebe Exponent (2.0 by definition) 

BM = Burned Fuel percentage at Anchor angle 

BS = Burned Fuel percentage at Duration Start 

BE = Burned Fuel Percentage at Duration End 

 

A typical Wiebe-function looks like in Figure 3 

 
Figure 3. Typical Wiebe function 

5.1.2 Semi-predictive 

A semi-predictive model uses the advantage of the faster running non-predictive models thus 

also impose the burn rate with a Wiebe-function. However the parameters for the Wiebe-

function are calculated from the input variables. This makes it dependent of other important 

parameters like intake pressure, spark timing and parameters which affect the burn rate. The 

semi predictive model predicts the three parameters used in the Wiebe-function as a function 

of variables that affect the combustion. For a SI-engine these variables are typically engine 

speed, trapped air mass at intake valve closing (IVC), temperature at (IVC), spark timing, air-

fuel ratio (AFR) and trapped residual gas fractions [15]. 

A semi-predictive model is more accurate than the non-predictive models without the penal-

ties of longer solution runtime.  

5.1.3 Predictive 

The last alternative is a predictive model. The predictive model can be used to model every-

thing from knock to injection timing etc. the disadvantage with a predictive model is that it 

requires a lot more computational power for the solution to converge. A lot of parameters on 

the combustion is needed from experimental studies to calibrate the model, which are not al-

ways available and has a lot of influence on the combustion rate [15]. 
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In terms of emissions the only way to calculate the amount of unburned hydrocarbon is to 

implement a predictive combustion model. An example of a model that can do this in GT-

Power is the “EngCylCombSITurb” [15]. 

One way of speeding up the calculation in a predictive model is to use a Wiebe-function for 

the first couple of engine cycles and in that way having a start of value closer to the solution. 

This helps systems like the turbocharger and manifolds reach a near steady state before start-

ing the real calculation with the predictive model [15]. 

5.2 Knock prediction model 
In a modern SI-engine it´s getting more and more common to use higher downsizing factor 

and thus increasing turbocharger boost. It is also beneficial to raise the compression ratio and 

by that increasing the thermal efficiency of the engine. These two means of decreasing fuel 

consumption result in a higher tendency to engine knock. The strategy to run an engine close 

to knock condition means that extra care has to be taken not to ruin the engine. However there 

are some techniques in order to reduce knock like increasing the amount of EGR, latter the 

ignition [2] and also by reducing the amount of RGF after each combustion cycle [10]. To 

further investigate the influence things like exhaust- and intake-geometry or valve timing 

have on knock in a simulation environment, you first need an appropriate combustion model 

and second, a working knock model. 

When it comes to predicting knock there is a couple of method available and implemented in 

the GT-suite software, Douaud-Eyzat, Franzke, Worret and the more recent one called Kinet-

ics-fit. These are explained below. 

5.2.1 Douaud-Eyzat 

Douaud-Eyzat is an empirical model based on the Arrhenius equation [16]. Out of all availa-

ble knock prediction models in GT-power the Douaud-Eyzat is the only one recommended for 

investigating pre-ignition knock. The Douaud-Eyzat is adequate for predicting knock but 

since the model does not take into account dilution it cannot be used properly when having 

more than 5% EGR [17]. As a result the Douaud-Eyzat knock model can´t be used when in-

vestigating the influence of EGR on knock. The Douaud-Eyzat model is capable of modelling 

negative temperature coefficients (NTC) and is influenced by temperature, pressure and oc-

tane number [18]. 

5.2.2 Franzke and Worret 

The Franzke and Worret knock prediction models are very similar since the Worret model is 

based on the Franzke which in turn is based on the Douaud-Eyzat [15, 19]. Franzke and Wor-

ret´s Knock prediction models are based on the matching of empirical data to the Arrhenius 

function [19] to determine the speed of the chemical reactions taking place in the combustion 

chamber. The Worret model however is an improvement from the much older Franzke model 

(from 1981) with more empirical data based on high-pass filtered heat release to back it up. 

Neither of these models are recommended for predicting pre-ignition knock [15]. 

5.2.3 Kinetics-fit 

The Kinetics-fit is a model developed by Gamma Technologies. Unlike the other knock mod-

els the Kinetics-fit is based on a triple Arrhenius equation. It is not recommended for predict-

ing Pre-ignition knock however but it is capable of calculating NTC and are influences by the 

same parameters as the Douaud-Eyzat with the addition of air/fuel ratio and dilution by inert 
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gases [18]. This model has limited validation against measured data and is not recommended 

to predict knock without validation against real data [15]. 

 

5.2.4 Alternatives 

One alternative to using any of the above mentioned knock prediction models is the couple 

GT-power to a more advanced software for chemical modelling. The burn rate is then calcu-

lated from hundreds of chemical species and if properly done this can yield a more accurate 

result [8]. The GT-power model can also be coupled with CFD-calculation to study the in-

cylinder flow and the effects of charge mixture. This would be preferable when studying the 

effect of pre-ignition knock that is sometimes caused by gasoline mixed with engine oil and 

influenced by for example injector position [20]. 
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6 Problem formulation 

6.1  Reducing fuel consumption 
One of the goals with this thesis is to uncover any potential in fuel saving using fully variable 

valves, high compression ratio and DEP as tools. The goal is to see how much of improve-

ment is possible to get by reducing the pumping work by the means of eliminating the throttle 

and using EIVC instead, but also by having the exhaust stroke divided into two parts.the ex-

haust is divided into one port that drives the turbine (blowdown) and one that by passes the 

turbine hence reducing pumping work (scavenge). That is the theory but to what extent the 

fuel consumption can be reduced will be investigated in this thesis. The overall thesis work 

was divided into two engine speed/load cases, namely the following. 

2000 rpm 4bar BMEP 

2000 rpm 20bar BMEP 

 

6.2  Reducing Knock probability 
To be able to run a compression ratio of 14:1 something needs to be done to prevent the en-

gine from knocking. This is where the DEP-concept really plays its role. The thesis aim to 

find out how much you could reduce both pre- combustion cylinder temperature and burned 

residual gases left in the cylinder prior to combustion. Both of these play a part in causing 

engine knock. 

  



15 

 

 

6.3  Delimitations 
When looking at a potential fuel savings some delimitation had to be done since the degree of 

freedom becomes larger in numbers when applying variable valves, where both the opening 

and closing timing angle of the valve can be adjusted freely as well as the lift height. For the 

first simulations focus was on investigating just the blowdown closing and the scavenge open-

ing and keeping the blowdown opening and scavenge closing at a pre-set CAD. This made it 

easier when analysing the results due to the fact that 3D surface plots could be used and no 

fourth or fifth dimension would be needed, which otherwise would further complicate the 

analysis of the result. This approach was kept during the thesis, only changing a maximum of 

two variables at a time.  

The thesis was focused on reducing fuel consumption at part load, 4 bar BMEP, at 2000 rpm, 

which is an important load point since it approximately represents driving on a highway road. 

The reducing of the knock probability is the most important at low engine speed and high 

loads. For this the case 2000 rpm at a load of 20 bar BMEP was investigated. When it comes 

to predicting knock this thesis is limited to reduce some known reasons for knock, the cylin-

der temperature and the RGF. Due to a limited time and resources, no knock model was used 

since it would have obliged the use of predictive combustion model, of which measured val-

ues for making it accurate was non-existing. The alternative of using Logesoft to do the 

Chemical kinetics and knock was scrapped due to the limited amount of time. 

Another criterion for the whole thesis is that lambda was kept at a constant value of 1.0 to 

ensure the function of a three way catalyst since no investigations was done on the emissions. 

These criterias also applies to the standard engine when comparison are made between stand-

ard and DEP-concept. 
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7 Method 

7.1  Model 
The building of the model in GT-power is critical for the whole thesis work. The model needs 

to be as correct as possible, without the use of experimental data. This puts a large pressure on 

getting the right setups for the different parts. Much of the model was originally borrowed 

from GT-Power´s own example library and with these came values on friction, flow coeffi-

cients etc. This would otherwise be hard to find, considering the lack of a physical engine in a 

test rig to extract these values from. 

7.1.1 Geometries 

The base geometries of the engine were given from the start and are shown in Figure 4. From 

the left it starts with a flow split to be able to measure the combined mass flow of the ports 

and inject the right amount of fuel. The flow split has an inlet diameter of 65 mm and two 

outlets of 36.6mm diameter each. The flow split is then connected to an inlet runner with the 

inlet diameter of 36.5 mm, outlet diameter of 32.5 and length, 100 mm which is then connect-

ed to a second inlet runner part with the outlet diameter of 26.5 mm and length, 90 mm. Next 

is the intake port which has an inlet diameter of 26.5 mm is 60 mm long and has an outlet 

diameter of 25.8 mm. Connected to one of the inlet ports is an fuel injector. In the end of the 

inlet port is the inlet valve which has a diameter of 29 mm. The cylinder object is then defined 

according to Table 1. 

Table 1. Cylinder geometry 

Cylinder bore 77 mm 

Stroke 85 mm 

Compression Ratio 14 

 

The exhaust valves have the same geometry as the inlet valves. The port however is different 

with an inlet diameter of 25.8 mm but an outlet diameter of 30 mm connected to an exhaust 

runner with the uniform length of 30 mm and length of 200 mm. 
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7.1.2 Valves 

To simulate the pneumatic valves used in this thesis a solenoid valve object was used. The 

input needed for this object was coefficient of discharge, both forward and backwards, but 

also the lift curve divided into an opening array and a closing array. The lift curve was re-

trieved from the supervisors and hade the appearance shown in Figure 5. 

 
Figure 4. Base model 
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Figure 5. Lift curves at 6000 rpm 

The lift curves were defined in lift at specified CAD but the GT-Power valve object was 

needed them to be specified in lift at specific time in milliseconds, since the lift depended on 

the engine speed with limited opening and closing speed. This needed to be accounted for by 

calculating the time corresponding to the given CAD in Figure 5, which corresponds to the lift 

at 6000 rpm. The lift per ms was then calculated by using equation 6 

𝑚𝑠 =
1000

6
∗

𝜃

𝑛
 

 

[6] 

The curve then needed to be divided into an opening and closing curve as Figure 6 illustrates. 

The same curves where used for both intake and exhaust. The distance D was varied for dif-

ferent valve lift durations where the lift height was kept at top lift for the distance D to get the 

closing timing angle aimed for, the closing angle was then set in GT-Power. 

 
Figure 6. Opening and closing curve 

7.1.3 Physical data 

Because there are no experimental data to be found on this particular engine many of assump-

tions had to be made. One of the assumptions was regarding the combustion object. A non-

predictive Wiebe model was used throughout the thesis work and typical values for CA50 and 

CA10-90 was given for full load from the supervisors of the thesis and can be seen in Table 2. 
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Table 2. Combustion data 

Full load combustion data 

RPM CA50 CA10-90 

0 3 22 

2000 6 23 

4000 7.5 25 

6000 9 27 

8000 9 29 

 

A delivery rate of 17 g/s was set to the fuel injector and the injection duration was then calcu-

lated by using the mass flow to reach the lambda target from a defined start of injection of 

250 CAD before TDC. The fuel demand for the DEP concept was unknown and thus the 

standard value from the GT-Power example model was used. A fluid object of indolene com-

bustion was chosen in the injector object representing gasoline combustion. 

7.1.4 Simplified model 

In order to get a fast start and to get familiar with the characteristics of the DEP concept a 

simplified model was imposed. This model was stripped down to only consist of inlet bounda-

ries, intake runners and -valves, cylinders, exhaust valves and -runners and two different out-

let boundaries. A schematic layout is depicted in Figure 7. 

 

Figure 7. Simple GTP model 

With such a simple model the simulation time was noticeably reduced, although it should be 

noted that the results will not be that accurate. A simple model has many limitations and it is 

important to understand the flaws the simplifications introduce. One of the most noticeable 

flaws when not simulating a turbo and only imposing a higher pressure at the blowdown 
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boundary is the lack of penalty in boost pressure when bypassing the turbine and letting much 

of the exhausts go through the scavenging exhaust port. This since the boost pressure imposed 

in the inlet boundary was not coupled to the amount of bypassed exhaust gases. 

 

7.1.5 Model with turbocharger 

With a better understanding of how the different parameters affected the characteristics of the 

system, a more advanced model including a turbo was implemented. To be able to model a 

turbo an intake distribution pipe, i.e. plenum, was built and a simple intercooler modelled. For 

simplicity the intercooler was modelled as a bundle of 200 identical rectangular pipes with a 

fixed wall temperature. This will result in a big heat sink that lets the user specify the inter-

cooler outlet temperature. This is a fast and easy way to model this. Since there is no room for 

designing and optimizing an intercooler in this thesis this is a good approximation. For the 

turbocharging a compressor was connected to the incoming air. The compressor was connect-

ed via a shaft to the exhaust turbine that connects to the blowdown valve collector. In order to 

stabilize the turbo in the simulation start a high inertia multiplier was set to the shaft connect-

ing the turbine and compressor to keep the initial speed. This multiplier was set very high 

during the first three iterations, 2000 times the normal inertia, and then it faded down to the 

actual inertia finally set as unity. For this case one big difference from a regular cam-driven 

valve-actuated turbocharged engine is that no wastegate is used. Instead the exhaust energy 

that is not needed to achieve the wanted boost pressure is passed by the turbine via the scav-

enging port. Alternatively the intake valve is closed earlier (Miller cycle) which allows for a 

higher pressure ratio for the compressor for a given amount of in-cylinder air. A schematic 

picture is shown in Figure 8. 

 

Figure 8. Turbo model 

At first a turbine and compressor map from a GTP tutorial was used, but since these maps had 

unrealistically large high efficiency zones an alternative map was used in the last simulations 

and comparisons were made between the two. The second turbocharger was taken from the 

benchmark engine and needed to be adjusted to fit the requirements of this model. The re-

quirements where that the turbocharger should be able to produce 20 bar BMEP at 2000 rpm 
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and 24 bar BMEP at 6000 rpm. However this proved to be difficult with the real turbocharger 

map since it was narrower than the one originally used. To make it work the load limit at 6000 

rpm was decreased to about 22 bar BMEP. The compressor performance maps for the two 

Turbochargers are illustrated in Figure 9 and Figure 10 

 
Figure 9. GT-Power compressor map 

 
Figure 10. more realistic compressor map 

7.2  Design of Experiments 
In order to easily get a good overview of the problem, DOE’s were used to change different 

parameters within a specified interval and later plot them in 3D graphs for analysing. The 

varied parameters was from the beginning the closing of the blowdown valve and the opening 

of the scavenge valve, while the blowdown opening and scavenge closing was fixed at 150 

CAD and 370 CAD. The intake closing angle was controlled via a PI-controller to meet the 

specified BMEP target and thus varied between 390-560 CAD. 

By running these relatively large setups of approximately 150 cases the trends are a lot easier 

to spot then by varying a parameter independently and in single cases by hand. When doing so 

it is easy to forget the changes and a trend cannot be displayed in e.g. a 3D- or contour plot. 

 

7.2.1 Amount of Scavenging 

The main experiment consisted of figuring out how the amount of scavenging affected the 

residual gases and pumping work. The blowdown closing and scavenge opening valve timings 

were varied with different overlaps, an overall timing DOE is seen in Table 3. The intake 

opening, blowdown opening and scavenge closing was locked in this experiment according to 

Table 4. The experiment was performed both with imposed backpressure in the simple model 

and with the more advanced turbo model. 
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Table 3. Scavenge DOE 

 min max # levels 

Blowdown closing 180 360 11 

Scavenge opening 180 360 11 

 

Table 4. Locked parameters 

 Timing angle [CAD] 

Intake opening 350 

Blowdown opening  150 

Scavenge closing 370 

 

Figure 11 illustrates how the valve timings were varied. The way which the timings were var-

ied presents a problem when the valve-overlap between the blowdown closing and the scav-

enge opening is negative. So called negative DEP-overlap, which is undesirable.  

 
Figure 11. Scavenging DOE 

7.2.2 Timing for the lowest BSFC 

The DOE of the scavenging gave a bigger picture to what could be accomplished with the 

DEP-concept and this knowledge was then used to further investigate any kind of improve-

ments in BSFC at both 4 and 20 bar BMEP at 2000 rpm, with emphasis on the 4 bar load 

point. The best points regarding BSFC was picked out for further investigation of the parame-

ters that was formerly locked to see if there was any improvements when varying these. 

For the case with 20 bar BMEP a DOE was designed for varying the intake open and scav-

enge closing as illustrated in Table 5. 
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Table 5. DOE valve overlap 

 Min CAD Max CAD # Levels 

Intake opening 330 360 6 

Scavenge closing 350 380 6 

 

Since the model had not been calibrated against experimental data it was compared to an iden-

tical benchmark engine with the exception of the DEP-concept and the variable valves. This 

to get some notion of whether there was any improvements when implementing DEP, variable 

valves and high CR and if so, how much. 

 

7.2.3 Timing for lowest residual gas content and cylinder temperature 

With the first scavenge DOE as starting point the minimising of residual gases and in-cylinder 

temperature was performed in similar fashion as with the minimising of BSFC. A compro-

mise of the points with the least amounts of residuals left in the cylinder and the point with 

the lowest in-cylinder temperature was chosen from the first DOE and was then further ana-

lysed. For further analysis the intake- and exhaust valve overlap was varied for the 20 bar 

BMEP load point, this time with an even greater overlap and a smaller increment for more 

detail as illustrated in Table 6. This was performed with the two different turbocharger per-

formance maps but focus will be on the latter one which represents a more realistic turbo-

charger. 

 Table 6. Minimizing RGF, DOE 

 

7.2.4 Intake and exhaust lengths 

From the beginning the geometries concerning the lengths of the intake runners was given but 

to see if there was any dynamic effect that could be used for better scavenging or/and lower 

fuel consumption a DOE was performed on pipe lengths. The DOE consisted of varying the 

intake-, blowdown- and scavenge lengths. For this the intake runner which earlier consisted of 

two separate runners divided into two sub-parts was merged to only two separate runners with 

no sub-parts as presented in Figure 12. 

 Min CAD Max CAD # Levels 

Intake opening 320 370 11 

Scavenge closing 355 400 11 
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Figure 12. Model for pipe lengths DOE 

 

The DOE were constructed as illustrated in Table 7. The exhaust runner would have to be 

varied separately which would have increased the CPU time exponentially and the main pur-

pose of this experiment was to reduce RGF which the blowdown exhaust was believed to 

have little to do with. Therefore only the scavenging length was varied. 

Table 7. DOE pipe lengths 

 

7.2.5 Internal EGR 

In order to further reduce the BSFC on part load the possibility of using internal EGR was 

tested. The test was divided in to two different strategies. Internal EGR through re-breathing, 

i.e. by letting the exhaust gases pass out into the exhaust system and then be sucked back into 

the combustion chamber. This is achieved by having the exhaust valves open past the TDC, or 

by opening the intake valves a large portion before TDC. This lets the exhausts go up in the 

intake runners and then sucked back into the cylinders. The other strategy used negative valve 

overlap, NVO, where the exhaust valves are closed before TDC and intake valves opened 

after TDC. In this way residual gases are trapped in the cylinders. By closing the exhaust 

valves at different angles the amount of internal EGR is easily controlled. The different strat-

egies are depicted with their characteristic valve timings in Figure 13 and Figure 14. When 

using re-breathing the valve lift was reduced in order to have valve to piston clearance. 

 Min mm Max mm # Levels 

Intake length 75 300 11 

Scavenge length 150 400 11 

Intake Exhaust 
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Figure 13 EGR through re-breathing 

 

Figure 14 EGR through NVO 

 

7.3  Post Processing 
The post processing was performed in GT-post and MATLAB. When processing larger DOE 

simulations the extension GT-post HUGE was used. Since GT-post HUGE allocated more 

memory at start-up, this was needed when processing large DOE-files. 

In order to easier describe the results of the DOE simulations the data was exported from GT-

post and plotted in MATLAB, this was due to the ease of more freely choosing the ascending 

order of the axis and plotting the actual data point in order to see the inter- and extrapolated 

data. This was done using a downloaded plot routine for MATLAB called Contoureplot.m, 

see Appendix. The difference between the GT-post and MATLAB plots is shown in Figure 

15. 
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Figure 15 Plots in GT-post (left) and MATLAB (right) 

As seen in Figure 15 when plotting in GT-post the axis numbering is interfering and the as-

cending order feels flipped when the highest values is present at the front and vice versa. This 

problem is solved by using MATLAB. Furthermore the chequered contour gives more depth 

to the plot which helps to interpret the difference in values. 
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8 Result 

8.1  Amount of Scavenging 
The amount of scavenging was examined with the simple model as well as the model with the 

turbocharger. The data points marked with a star (*) is simulated data points. Cells with no 

stars are inter- or extrapolated in the plot routine. This goes for all of the upcoming 3D sur-

face plots. 

8.1.1 Result with simple model 

First off is the result for when no turbo model was used and shows why negative DEP overlap 

has a negative effect on engine efficiency. 

Figure 16 is an illustration of what happens when the exhausts are trapped due to a negative 

DEP valve overlap. A pressure rise at the end of the exhaust stroke is the result. This pressure 

in later released when the intake valves opens, and thus the energy used for compressing is 

lost. 

 
Figure 16. Illustration of what happens when negative DEP overlap is applied 

8.1.1.1 Part load 

With the simple model, tests were run with the use of less than four valves. These setups are 

presented in Table 8. 

Table 8 Valve setup 

Intake Exhaust 

1 1 

1 2 

2 1 

2 2 

 

Only the case with 1-1 and 2-2 valve setup is presented below, this is due to the similarities 

between the cases 1-1 and 1-2 resp. 2-1 and 2-2. The results for case 1-2 and 2-1 are located 

in the appendix. The result for using one intake- and one exhaust valve is shown in Figure 17 
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and Figure 18Error! Reference source not found. below. The DOE was set to examine the 

overlap between the intake- and exhaust valves at TDC. It is seen that the lowest BSFC is 

located at the point with largest valve overlap. This is also the point where the lowest pump-

ing work is. The optimum is in this case located at an extremity, it would be interesting to 

simulate even larger valve overlaps. But this was not possible due to valve to piston clearance. 

This is a reoccurring problem. The valve timings for the lowest BSFC, 275 g/kWh, are pre-

sented in Table 9. 

Table 9 Valve timings for the case 1-1 valves 

 [CAD] 

Fuel intake opening 340 

Flush intake opening - 

Intake closing (PI regulated) 458 

Blowdown opening 160 

Blowdown closing 380 

Scavenge opening - 

Scavenge closing - 

 

 
Figure 17 BSFC for 1-1 valve setup where all exhausts go to the turbine 
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Figure 18 PMEP for 1-1 valve setup where all exhausts go to the turbine 

 

The results for the four valve setting is presented in Figure 19 and Figure 20, where the lowest 

BSFC, 268 g/kWh, is achieved with the valve timings presented in Table 10. The lowest 

BSFC is achieved when both exhaust valves is used as much as possible, this is due to the fact 

that when bypassing the turbo the pumping losses decreases. Since the outlet to the turbo has 

a higher pressure, but at low loads this pressure is not that high. This results in a benefit in 

using both valves fully instead of closing the valve towards the turbine. The BSFC for 4 

valves per cylinder is lower than for using only two valves, this could be explained by the 

possibility of spinning the turbine with the first exhaust gases with a higher pressure coming 

early from the cylinder and then close off the turbine to reduce pumping work. In the case 

with only two valves operating all the gases go to the turbine and a higher pumping work is 

needed. 

Table 10 Valve timings for case 2-2 valves 

 [CAD] 

Fuel intake open 360 

Flush intake open 360 

Intake closed (PI regulated) 442 

Blowdown open 160 

Blowdown close 320 

Scavenge open 180 

Scavenge close 370 
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Figure 19 BSFC  for 2-2 valve setup with amount of turbine bypassing 

 

 
Figure 20 PMEP for 2-2 valve setup with amount of turbine bypassing 
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8.1.1.2 Full load 

Figure 22 illustrates the efficiency when the blowdown closing and scavenge opening timing 

angle are varied with an imposed intake- and exhaust pressure through the end environments. 

The result show the highest efficiency when both of the valves are open as long as possible, 

with the longest overlap between blowdown and scavenge. This is further explained by the 

PMEP which shows the least pumping losses when the valves are open the longest, see Figure 

22.  

 
Figure 21. Indicated efficiency, DOE blowdown closing and scavenge open at 20 bar BMEP 2000  rpm 

 

 
Figure 22. PMEP, DOE blowdown closing and scavenge open at 20 bar BMEP 2000  rpm 
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8.1.2 Result with turbo model 

8.1.2.1 Part load 

The turbo model is divided into two setups where the difference is the turbine and compressor 

maps. Results with standard maps from GT-Power are presented in Figure 23, Figure 24 and 

Figure 25. In this case the blowdown valve opening was fixed at 160 CAD, the scavenge 

valve closing at 380 CAD, the intake fuel opening at 380CAD and the intake flush opening at 

350CAD. Lowest BSFC was achieved with the valve timings presented in Table 11. The op-

timal performance is achieved with as long exhaust durations as possible, this is due to the 

low load, 4bar BMEP, and thus the turbo does not make a large obstacle for the passing gases 

and only using one valve would make a larger obstacle. This is more accurate than the results 

from the simple model, since there the pressure representing the turbine was set as constant 

and the gain in boost pressure was the same regardless of the amount of gases passing the 

turbine. 

Table 11 Valve timings for turbo model with GTP maps 

 [CAD] 

Fuel intake opening 380 

Flush intake opening 350 

Intake closing (PI regulated) 444 

Blowdown opening 160 

Blowdown closing 380 

Scavenge opening 160 

Scavenge closing 380 

 

 
Figure 23 BSFC for turbo model with GTP maps 
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Figure 24 Indicated efficiency for turbo model with GTP maps 

 

 
Figure 25 PMEP for turbo model with GTP maps 

The results with turbo maps from the benchmark engine are presented in Figure 27, Figure 28 

and Figure 29. In this case the blowdown valve opening was fixed at 160 CAD, the scavenge 

valve closing at 380 CAD, the intake fuel opening at 380CAD and the intake flush opening at 

350CAD. Note that the resulting BSFC at such low load is not influenced by the turbo map 

since the operating point is very far down to the left in the map. This is seen in Figure 26. 
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Figure 26 Operating point in the turbo map at 4bar BMEP 

 

Lowest BSFC was located with the valve timings in Table 12. The result is very similar to the 

case with the GT-Power turbo maps, hence the same interpretation of the results is done. 

Table 12 Valve timings for turbo model with benchmark maps 

 [CAD] 

Fuel intake opening 380 

Flush intake opening 350 

Intake closing (PI regulated) 444 

Blowdown opening 160 

Blowdown closing 380 

Scavenge opening 160 

Scavenge closing 380 
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Figure 27 BSFC for turbo model with benchmark maps 

 

 
Figure 28 Indicated efficiency for turbo model with benchmark maps 
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Figure 29 PMEP for turbo model with benchmark maps 

8.1.2.2 Full load 

When running the DOE for the full load case with modelled turbocharger the valve timing 

also effects if the model is able to reach the load target of 20 bar BMEP. In Figure 30 the load 

is illustrated and show it is unable to reach the load target when the scavenge valve opens 

earlier than 240 CAD and also when there is a negative DEP valve overlap. 
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Figure 30. BMEP, full load turbo model 

A problem with analysing the result is that the intake closing angle is constantly varying and 

thus affecting the result. In Figure 31 the intake closing angle is illustrated. As can be seen the 

intake controller is bottomed out when the model is unable to reach the load target and closes 

very early for the cases where the scavenge valve opens late. 

 
Figure 31. Intake closing angle. full load turbo model 

The PMEP is depicted in Figure 32. The results are most favourable when the overlap be-

tween blowdown and scavenge is about 30-40 CAD and as predicted the result of negative 

DEP overlap is a high amount of pumping losses. 
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Figure 32. PMEP, full load turbo model 

The resulted indicated efficiency is depicted in Figure 33. The highest efficiency is achieved 

when the blowdown valve closes at around 280-290 with the scavenge overlap of around 40 

CAD at 240-250 CAD. At this point the scavenge open as early as possible without compro-

mising the load target. 

 
Figure 33. Indicated efficiency, full load turbo model 

 

  



39 

 

The goal in this thesis is BSFC reduction and thus a plot of the resulted BSFC is depicted in 

Figure 34. The point with the lowest BSFC coincides with the highest efficiency as predicted. 

 
Figure 34. BSFC, , full load turbo model 

Something that also is of interest is if scavenge timing also plays a role in the in-cylinder tem-

perature just before combustion. Figure 35 illustrates this temperature with the lowest temper-

ature when the scavenge valve is opened very late. A low in-cylinder temperature before 

combustion is good for reducing the probability of knock. 

 
Figure 35. Temperature at 40 CAD before TDCF , full load turbo model 
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Further investigations were made on the residual gas content in the cylinder 40 CAD before 

TDCF. This is illustrated in Figure 36. It appears there is a valley with low RGF when the 

scavenge valve opens at 306 CAD with the lowest RGF appearing at the longest negative 

DEP overlap shown in Figure 37. This is likely some dynamic in-cylinder effect. 

 
Figure 36. Burned mass fractions at 40 CAD before TDC firing,  full load turbo model 

 
Figure 37. Valve timing at lowest RGF, full load turbo model 
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The cases with lowest residuals, temperature and BSFC all occurs at different valve timings 

with different pumping loops as shown in Figure 38. Where the red curve corresponds to the 

lowest amount of RGF, the blue curve corresponds to the lowest BSFC and the green corre-

sponds to the lowest temperature. The red curves derives from the valley that could be seen in 

Figure 36 and shows an increase in pumping work but also some dynamic effects right before 

the overlap that causes an increase in pressure right before the overlap which could cause a lot 

of RGF escaping through the exhaust. For the green curve the pressure different between cyl-

inder and exhaust, as could be seen in the Figure 38, is higher than for the other cases and it 

so happens that the RGF are low even in this case. 

 
Figure 38. Pump loop PV-Diagram. full load turbo model 

8.2  Minimizing of BSFC 
To determine the effects of different DEP valve timings on the BSFC a set of DOEs was run 

with first the simple model and later with the more complete turbo model. These DOEs where 

run with a load of 4- respectively 20 bar BMEP at 2000 rpm. 

8.2.1 Turbo model 4bar 2000 rpm 

With the benchmark turbo map the BSFC was further reduced by testing different amounts of 

intake- and exhaust valve overlaps and exhaust openings, the starting point was the best point 

from the amount of scavenging DOE. The valve timings for minimum BSFC, 273 g/kWh, is 

presented in Table 13 and showed as valve curves in Figure 39. 

Table 13 Valve timings for optimized BSFC 

 [CAD] 

Fuel intake opening 345 

Flush intake opening 345 

Intake closing (PI regulated) 443 

Blowdown opening 155 

Blowdown closing 380 

Scavenge opening 155 

Scavenge closing 380 
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Figure 39 Valve curves for optimized BSFC 

The lowest BSFC was achieved by reducing the pumping losses with more efficient valve 

timings and more suitable intake and exhaust lengths. This can be seen in the Pv-diagram in 

Figure 40, the pumping loop has been zoomed in. Here it is seen that the work needed to 

pump the gases in and out of the cylinders is greater in the case from the DOE. As the opti-

mized valve timings results in a pressure closer to ambient during the intake stroke. The shift 

in pulsation during the exhaust stroke is due to different lengths of the exhaust manifold. 

 
Figure 40 Pumping loop in the Pv-diagram, optimized- and DOE BSFC 
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8.2.2 Turbo model 20 bar 2000 rpm 

When looking at minimizing BSFC the first approach was to use a DOE but after tinkering 

around with the different variables manually a better BSFC could be achieved. The scaveng-

ing point, were the blowdown closes and scavenge valve opens. From the earlier scavenge 

DOE was chosen and the inlet opening angles, blowdown opening and scavenge closing was 

changed manually. It was discovered that opening the fuel port later was necessary for mini-

mizing BSFC due to fuel otherwise escaping out the exhaust or having to open the intake later 

and increasing pumping work. An asymmetric opening of the intake valves proved most effi-

cient. The resulted timing angles are shown in Table 14. The resulting lowest BSFC was 210 

g/kWh with the turbocharger performance map found in GTP 

Table 14. Optimal valve timings, full load turbo model 

 [CAD] 

Fuel intake opening 375 

Flush intake opening 360 

Intake closing (PI regulated) 501 

Blowdown opening 147 

Blowdown closing 290 

Scavenge opening 250 

Scavenge closing 360 

 

The resulted pumping loop is illustrated in Figure 41. It shows a decrease in pressure during 

the exhaust stroke but the main reason for the decrease in BSFC is because the overlap be-

tween the scavenging and fuel port valve opening is eliminated. 
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Figure 41. Pump loop PV-Diagram lowest BSFC, full load turbo model 

Figure 42 shows the lift curves for the optimal BSFC valve timings. With a overlap between 

scavenge and blow down of around 40 CAD. The intake with the injector is also opened later 

to be able to increase the intake and exhaust overlap without letting fuel out the exhaust. 

 
Figure 42. Lift curves for lowest BSFC, full load turbo model 

It is known from literature that the DEP concept is likely to have choked flow over the ex-

haust valves and so is the case for the blowdown valve, as can be seen in Figure 43. This is 

not good since it indicates that a bigger valve area is needed for the gasses to flow sufficient-

ly. However the choking is not that large and only appears in the beginning of the valve lift, 

this is common for most engines. Especially for higher loads. 
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Figure 43. Mach-number over valves, full load turbo model 

8.3  Minimizing of RGF and in-cylinder Temperature 
When minimizing the residual gases in the cylinder the overlap was varied giving the lowest 

temperature at an overlap of 40 CAD as can be seen in Figure 44.  

 
Figure 44. Temperature at 40 CAD before TDCF. Full load turbo model overlap DOE 

The burned mass fractions left in the cylinder are as expected lower with a greater overlap as 

Figure 45 shows. As seen the residuals is almost entirely eliminated with exaggerated overlap 

between intake and exhaust. But there is also a sweet spot as can be seen toward the back cor-

ner of the contour plot.Figure 36 
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Figure 45. RGF at 40 before TDCF. Full load turbo model overlap DOE 

The peak cylinder pressure is not so trivial however as Figure 46 illustrates. The lowest cylin-

der pressure can be found near the 40 CAD overlap which also has the lowest temperature. 

The pressure did not vary more than 5 bars or 3% 

 
Figure 46. Peak cylinder pressure. Full load turbo model overlap DOE 

With a greater overlap more fuel escapes through the exhaust as expected but a compromise 

could be found near the point with the lowest pressure and temperature to get as much RGF 

decrease without compromising too much on fuel consumption. 
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8.4  Intake and Exhaust length 
Figure 47 - Figure 49 illustrates the results from the exhaust/intake length DOE 

 
Figure 47. Temperature before TDCF.  

Full load turbo model, intake and exhaust length DOE 

 
Figure 48. Residuals.  Full load turbo model, intake and ex-

haust length DOE  

 
Figure 49. Peak cylinder pressure. Full load turbo 

model, intake and exhaust length DOE 

 

From the DOE the best compromise between low cylinder temperature and pressure and RGF 

in the cylinder was chosen and match with the optimal scavenging point and overlap for low-

est RGF. The configuration can be seen in Table 15. 

Table 15. Lowest RGF. Full load turbo model, intake and exhaust length DOE 

 [CAD] 

Fuel intake opening 390 

Flush intake opening 340 

Intake closing (PI regulated) 501 

Blowdown opening 147 

Blowdown closing 290 

Scavenge opening 240 

Scavenge closing 390 

 [mm] 

Intake length  212 

Exhaust length 350 



48 

 

 

The difference in the pumping loop is illustrated in Figure 50. During the exhaust stroke they 

are very similar but the case with the low RGF suffers from extensive blow by which causes 

poor cylinder filling. A lower cylinder pressure during intake confirms this. 

 
Figure 50. PV-diagram comparison low RGF vs. Low BSFC. full load turbo model 
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8.5  Internal EGR 
By introducing different amounts of internal EGR with the purpose of reducing BSFC at low 

loads the amount of residuals at cycle start, BSFC and PMEP was analysed. Here only the 

case with NVO is presented since it showed a more stable control of the amount of residuals 

and an overall lower BSFC. The results shows a decrease in BSFC with a higher amount of 

internal EGR, but the BSFC reduction follows the decrease in pumping work with higher ac-

curacy, see Figure 51 - Figure 53. At this realisation a re-check of the characteristics of the 

used Wiebe-function showed that the combustion is not taking EGR into account. Due to this 

no conclusion regarding internal EGR can be done. The results are normalized and shown in 

Figure 54. 

 
Figure 51 BSFC with varying NVO 
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Figure 52 Internal EGR with varying NVO 

 

 
Figure 53 PMEP with varying NVO 
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Figure 54 Normalized comparison of PMEP, BSFC and internal EGR for different amounts of NVO 

8.6 Comparison with and without DEP 
To evaluate where the BSFC reduction compared to the benchmark came from, the model was 

modified to run without DEP and the CR was varied between 9.5:1 and 14:1. The resulting 

test was as seen in Table 16 Case comparison with and without DEPTable 16. 

Table 16 Case comparison with and without DEP 

With DEP Without DEP 

CR=14:1 CR=14:1 

4bar BMEP 4bar BMEP 

20bar BMEP 20bar BMEP 

CR=9.5:1 CR=9.5:1 

4bar BMEP 4bar BMEP 

20bar BMEP 20bar BMEP 

 

The simulations had valve timings for DEP as in Table 17. 

Table 17 Valve timings for DEP concept 

 4bar [CAD] 20bar [CAD] 

Fuel intake opening 370 365 

Flush intake opening 350 355 

Intake closing (PI regulated) 443 504@CR14 and 490@CR9.5 

Blowdown opening 160 145 

Blowdown closing 370 290 

Scavenge opening 160 250 

Scavenge closing 370 365 

 

Without DEP the valve timings were as presented in Table 18. 
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Table 18 Valve timings for non-DEP concept 

 4bar [CAD] 20bar [CAD] 

Fuel intake opening 380 370 

Flush intake opening 350 350 

Intake closing (PI regulated) 442 518@CR14 and 514@CR9.5 

Blowdown opening 160 145 

Blowdown closing 380 370 

Scavenge opening 160 145 

Scavenge closing 380 370 

 

The results are depicted in Figure 55 below. It is seen that the increase in CR gives a higher 

BSFC reduction than the DEP concept. For the low load this is logical since the DEP concept 

is not used as much, as the turbo is not a large pressure obstacle. But for the higher loads the 

use of DEP should in theory show a greater improvement, but the challenge to produce the 

required boost pressure and thus opening the blowdown valve early. This reduces the expan-

sion work and the overall improvement in BSFC is damaged. It can be summarised as at low 

loads DEP works but is not needed and at high loads, where it is needed the sufficient valve 

area is not possible within the cylinder geometry. 

 
Figure 55 BSFC differences between DEP and non DEP concept with varying CR(14:1 and 9.5:1) 
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8.7 Comparison with benchmark 
The goal with this thesis is to explore any advantages with the DEP and free valves compared 

to a benchmark engine. Comparison was made of BSFC, RGF and cylinder temperature. The 

benchmark engine was the same engine but with standard cam lobes, a throttle and a turbo 

with wastegate. The benchmark engine had a simulated BSFC of 302 g/kWh compared to its 

experimental value of 299 g/kWh. 

8.7.1 Part load 

A comparison was made between the simulated benchmark engine and the optimized BSFC 

with DEP-concept and high CR. The result is seen in Figure 56. 

 
Figure 56 Comparison of the optimized BSFC and the benchmark engine 

The large reduction in BSFC compared with the benchmark engine is the reduction in pump-

ing losses, due to the non-throttling featured by using fully variable valves and the application 

of the Miller-cycle. These can be seen in Figure 57 below. As shown earlier in Figure 55 the 

DEP concept did not improve the BSFC as much. 
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Figure 57 Pv-diagram for benchmark engine and optimized engine with DEP-concept 

8.7.2 Full load 

At 20 bar BMEP the difference is illustrated in Figure 58. In the figure all the values has been 

normalized so the standard engine is represented as 100% and the DEP concept as percentage 

of the standard engine. The results a show decrease in fuel consumption of 5%, a decrease in 

RGF of 96% (when compromising slightly on fuel consumption). 

 
Figure 58. Comparison with benchmark. full load turbo model 

To get a better understanding of the differences, a PV-diagram of the two is illustrated in Fig-

ure 59. As can be seen the pressure is much lower during the exhaust stroke and thereby caus-
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ing less pumping losses. The pressure difference is also greater during the scavenging which 

helps getting rid of unwanted residual gases and thus reducing the knock probability. 

 
Figure 59. PV Pumping loop comparison with standard engine 
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9 Discussion 

9.1 Part load 
At first a simple model was used which gave a good idea of the system, since the boost pres-

sure and backpressure set in the inlet- and outlet boundaries were both very low at part load. 

This is seen if a comparison is made between Figure 19 and Figure 27. It is already in Figure 

18 seen that the pumping work, or PMEP, can differ 0.1 bars between different exhaust to 

intake overlaps while the DEP overlap is not that important, at least not at part load. After 

simulating part load condition with the turbo model it was clear that the amount of exhaust 

gases delivered to the turbine and the amount of bypassed exhausts did not play much role in 

reducing the BSFC, only a small difference could be seen when bypassing all exhausts or 

feeding equally to the turbine and bypass. The latter is explained by the fact that feeding the 

turbine some exhausts will reduce the pressure loss that otherwise exists over the compressor 

on the inlet side. By spinning the turbo and not dragging it along with the intake air is benefi-

cial for the fuel consumption. 

As EGR could help reduce BSFC by improve the evaporation of the fuel as it is injected, in-

ternal non-cooled EGR. And thus improving the combustion, this was simulated. Although 

the simple wiebe-function used for modelling the combustion process in this master thesis 

does not account for EGR. A reduction in BSFC is however obtained, see Figure 51. This 

reduction can as stated before not be linked to the increase in internal EGR. But the large sim-

ilarities between the PMEP in Figure 53, and BSFC results in the different amounts of NVO 

explains the BSFC reduction. A cam of low pumping losses and hence low BSFC is found on 

the diagonal, the diagonal represents the line where the NVO is symmetric around TDC. In 

the case of symmetric NVO the compression work needed before TDC is re-gained as expan-

sion work after TDC, except for the heat losses that will occur during this time. 

By comparing the turbo model without the DEP-concept and testing both 14:1 and 9.5:1 in 

compression ratio the actual benefits with DEP in regards of BSFC is evaluated. As seen in 

Figure 55 the reduction in BSFC when applying DEP is not that big and the influence of the 

CR is greater and should probably reduce BSFC even more in reality. This since the imposed 

burn rate is not affected by the CR, which in reality would speed up the burn rate. At these 

low loads there is no problem with choking of the exhaust valves as stated earlier for higher 

loads, but instead the theoretical reduction in PMEP with DEP is at low loads too small to 

give a noticeable fuel reduction. Instead most of the exhaust gases are needed to spin the turbo 

and reduce the pressure drop over the compressor. 

The optimized DEP-engine setup was further compared to a simulated benchmark engine, the 

simulated benchmark engine performed a BSFC at 2000 rpm and 4bar load off 302 g/kWh 

while this engines experimentally tested BSFC was 299 g/kWh. This shows that the model in 

GTP is fairly accurate, at least for low loads, but it should not be forgotten that an imposed 

burn rate via the wiebe-function would be better if the burn rates were imposed related to en-

gine speed, -load and amount of residual gasses. The overall reduction in BSFC is seen in 

Figure 56, where the improvement in BSFC is around 10%. The reduction can be split in to 

two major parts, CR increase and de-throttling. The CR increase lowered the BSFC in the 

benchmark engine with around 3% and a further decrease of 7% is possible due to the reduced 

pumping losses as no throttle is used. Instead the Miller-cycle is applied. This is the main 

BSFC gain with fully variable valve timings. The pumping loop is shown in Figure 57 and the 

increased pressure during the intake stroke is clearly visible. 
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Another way of reducing the BSFC which has not been tested within this master thesis is cyl-

inder deactivation. This will reduce the BSFC through a kind of dynamic downsizing by deac-

tivating the injectors and fully close the valves. With the right amount of air trapped in the 

cylinder the heat losses could be minimized. 

9.2 Full load 
The simple model without the turbocharger gave a notion of how the system responds at full 

load but did not tell the whole story. The problem was that the boost pressure was not affected 

by the amount of scavenging since the inlet pressure was imposed. This meant opening the 

scavenging port earlier reduced the pumping losses, but there was no penalty for not supply-

ing mass flow towards the turbine. The simple model did however confirm at an early stage 

that negative DEP overlap was a bad thing to have, as shown in Figure 21 and Figure 22. 

When running the DOE of the scavenging, the simulation was not able to reach the load target 

that was imposed in some of the cases. Some measures was made to be able to reach higher 

loads at 2000 rpm but this resulted in having to close the intake valves earlier at the points 

with later scavenging. A better approach to this would have been to use a bigger turbocharger, 

optimized for a specific amount of scavenging and hence a more efficient load point for the 

turbocharger. Another approach could be to regulate the scavenging in parallel with the intake 

closing to be able to actively control the turbo performance and reduce pumping losses, kind 

of like variable turbine geometry. To really analyse the result considerations have to be made 

of the intake closing since this affects the result dramatically (see Figure 31). It could be ar-

gued that closing the intake valves later and regulate the load with earlier scavenging instead 

would have favoured the PMEP and resulted in higher efficiency. But it would also mean that 

less exhaust energy was recovered by the turbine. The first part of the exhaust contains most 

of the energy, while the last part contains a smaller amount of energy and is usually displaced 

by the piston. This part could preferably be wasted through the scavenge port with lower pres-

sure. 

The scavenging DOE also revealed a boundary with lower in-cylinder temperature at a scav-

enge opening at 306 CAD. The explanation is that the pressure difference between the exhaust 

and cylinder becomes greater with the pressure build up in the cylinder caused by the negative 

DEP overlap. The fact that there is a boundary when this happens implies that here are some 

dynamic effects and pulses could be seen in pressure in Figure 38. 

The highest improvement of the BSFC came from opening the intake valves asymmetrically, 

with the port which contained the injector opening later. This improvement came from not 

wasting fuel that otherwise would blow by the cylinder and out the exhaust during the over-

lap. The improvement was expected to be higher at this point with DEP. One reasons for this 

could be the choked flow past the blowdown valve, seen in Figure 43. The exhaust flow nor-

mally experiences some amount of choking but with the DEP this condition was aggravated 

even though the valve diameter was increased to prevent it. Most part of the BSFC improve-

ment in this thesis seems to be the result of increasing the CR and applying free valves. The 

CR increase would however maybe not be possible if DEP was not implemented, due to po-

tential knock limitations. 

It would have been interesting at this point to examine the impact that EGR would have had 

on fuel consumption. This was not possible since the simple combustion model used meant 

the burn rate was imposed and thus not affected by EGR. If there would have been experi-
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mental result available it would have been interesting to look at dedicated EGR from one cyl-

inder or from the scavenging valves. 

The biggest improvement from using DEP was the reduction of residual gases in the cylinder 

at 40 CAD before TDCF. The results however, showed that a compromise between really low 

RGF and fuel consumption had to be made. Generally the fuel consumption is less of concern 

at high loads and thus not the focus in this part of the thesis.  

The result showed a very high peak cylinder pressure and to lower this pressure, measures 

like retarding the ignition could be used. Retarding the ignition was not possible in this com-

bustion model however and would also decrease the efficiency. The case with the lowest 

BSFC had 60% less RGF than the standard engine, which is quite the improvement. 

The result in the exhaust length DOE showed that the exhaust length has major influence on 

removal of RGF but not so much on cylinder temperature and pressure. The temperature and 

pressure could be affected by the intake length. The results showed a sweet spot considering 

RGF when the exhaust was around 350 mm long, where there was a negative acoustic pulse. 

This could however raise some issues with packaging in a production car where you usually 

want to keep them short to decrease the temperature loss between the port and the turbo but 

also to make a smaller package. To get a lower cylinder pressure and temperature the goal 

was to get a negative expansion pulse just before closing the intake valve, which would cool 

the charge. This was found with the length of the intake kept short. 

The DEP proved very useful of reducing the RGF and not so efficient of decreasing pump 

losses, as expected, but then again the increase of CR may only be possible with the reduction 

of RGF. All the cases in this thesis were run with a lambda of 1 and this is far from possible 

with the standard engine at full load with a CR of 14. It is however more plausible with DEP 

and the use of free valves.   
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10 Conclusions 
At low loads the gain of using DEP is very limited as shown by the simulations, but the im-

plementation of fully variable valves has a potential for substantial fuel savings through throt-

tle less operation and Miller-cycle. The increase in compression ratio is also confirmed to 

increase fuel efficiency. These results is captured with both a very simple model and the more 

advanced turbo model, so for more extensive simulations of the acoustic length of the intake- 

and exhaust pipes the simple model can be used to reduce the simulation time. Although this 

high increase in CR will cause problems with knock at higher loads, this is where DEP comes 

into play. When applied correctly the residual gases and hence the in-cylinder temperature 

before ignition can be lowered. The same can be achieved with acoustic tuning of the intake 

lengths in addition. The DEP helped decrease the residuals by over 90% which could be cru-

cial for running with higher CR but it did not give the expected decrease in pumping losses. 

The results also showed a benefit of having 30-40 CAD overlap between blowdown and scav-

enge with scavenging as early as possible, without compromising turbocharger performance 

and load. 

For part load the BSFC has potential to be lowered even further by introducing internal EGR 

though NVO. This is not captured by the combustion model, but it can be reasoned that the 

BSFC would be reduced with some internal EGR. By the fact that the rate of combustion 

would be increased with some hot residuals in the cylinder, to help the fuel evaporate.  
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13 Appendix 

13.1  MATLAB plot routine 
function [ BMEPplot ] = Contourplot( 

xmax,xmin,ymax,ymin,zmin,zmax,xtick,ytick,Zlabel,FileName,BMEPMin,BMEPfilen

ame) 
M=dlmread(FileName); 
% Turn the scanned point data into a surface 12.8571 
figure 
hold on 
gx=xmin:12:xmax; 
gy=ymin:12:ymax; 
g=gridfit(M(:,1),M(:,2),M(:,3),gx,gy); 
colormap(jet(16)); 
surf(gx,gy,g); 

  
axis([xmin xmax ymin ymax zmin zmax zmin zmax]) 
colorbar 
xlabel('Blowdown close [CAD]') 
ylabel('Scavenge open [CAD]') 
zlabel(Zlabel) 
% set(gca,'DataAspectRatio', [12 12 1]) 
set(gca,'XTick', xtick) 
set(gca,'YTick', ytick) 
B=dlmread(BMEPfilename); 
BMEPplot=[]; 
for i=1:length(M) 
       if B(i,3)>=BMEPMin 
          BMEPplot(i,:)=M(i,:); 

           
       end 
end 
plot3(M(:,1),M(:,2),M(:,3),'*','Color',[0,0,0]) 
grid on 
hold off 
end 

 

13.2  Extra results 
When using two exhaust valves the DOE was set to vary the amount of exhausts passing by 

and through the turbine, the results are seen in Figure 60 and Figure 61. 
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Figure 60 BSFC for 1-2 valve setup, where the amount of bypassing is examined 

 
Figure 61 PMEP for 1-2 valve setup, where the amount of bypassing is examined 
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For the varying of overlap with two intake valves and one exhaust valve see Figure 62 Figure 

63. 

 
Figure 62 BSFC for 2-1 valve setup with TDC overlap variation 

 
Figure 63 PMEP for 2-1 valve setup with TDC overlap variation 

 


