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Abstract 

 

The movement of carbon on Earth is based on exchange between pools that 

represent carbon in different physical forms, differing in chemical composition, 

structure and function. Dissolved organic carbon plays an important role in 

ecosystems because of its mobility, which can be relatively high in saturated soils, 

and because it is the most available fraction of organic matter for microorganisms in 

soil, being particularly active in microbial degradation processes through soil profile. 

The ability of moving through soil, that DOC has, makes it an essential part of the 

organic loading to the streams, forming a bridge between the carbon of terrestrial 

and aquatic systems. However, relatively little is known about the production and 

fate of DOC from its main source, which is plant organic matter. The correlation 

between the type of litter and the characteristics of the DOC produced from it 

represent the knowledge gap that this study aims to fill. The litter from six plant 

species was used to extract DOC over different extraction periods from one up to 

forty eight hours. Also, a degradation study on the DOC extracts was performed and 

the resulting degradation curves were analyzed in relation to the extraction time, 

percentage of aromaticity and to the nitrogen composition of the litter. The results 

showed that only in some of the species surveyed the DOC leaching from the wood 

litter is lower than the one from the leaf litter. Moreover, the DOC aromaticity did not 

increase over extraction time as was expected, but instead it tended to decrease. 

The degradation experiment showed an increase in lability until the 16 hours 

extraction, which was different to the expected pattern of decreasing lability as 

extraction time increased.  Significant differences in DOC leaching rate and lability 

were also found between evergreen plant litter and summer green plant litter. The 

differences in production and degradability of the DOC are thus related to a wide 

range of factors, other than the chemical composition of the litter. Other factors such 

as physiological variations among species and plant structures appear to play a 

significant role in the DOC production. The results show that assumptions made in 

models about DOC production depending only on chemical structure of litter can 

possibly be improved by including physiological differences among species and 

morphological structures. 
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Introduction 
 

Anthropogenic activities have led to a changed balance of the Earth cycles, which 

has affected the climate system, with impacts on all the natural systems on the 

planet. Evidence of these changes has been shown in the IPCC report that 

summarize the variations in climate during the last hundred years (IPCC 2007) 

The understanding of the biogeochemical cycles is crucial to assess the impacts of 

human activity in the local and global environment. Among these cycles, the carbon 

cycle is one of special interest, comprising two (CO2 and CH4) out of the main four 

gases (water vapor, CO2, CH4, and O3) that cause the greenhouse effect are present 

in this cycle (Kiehl & Trenberth 1997).  

The dissolved organic carbon (DOC) is produced from chemical leaching from 

organic material surfaces (Qualls et al. 1991; Zech et al. 1996), as a product of the 

biological decomposition of the organic matter (Guggenberger et al. 1994) and as a 

result of excretion of microbial metabolites and plant root exudates (Zsolnay & 

Steindl 1991; McDowell 2003). DOC plays an important role in the carbon cycle due 

to, among other things, its ability to move carbon hydrologically (laterally) between 

pools in the ecosystem (Hoover 2008). 

However, the linkage between the terrestrial and aquatic carbon is still unclear. One 

of the biggest problems is to relate the DOC present in water bodies to its origins, 

since a labile part, originated from the partial degradation of the DOC, has  high 

turnover rates and is usually consumed before it reaches water bodies (Blough & 

Green 1995). 

Approximations have been made in several areas in order to understand the 

processes related to the DOC dynamic, i.e. studying the mechanistic ways that DOC 

moves through the hydrological system in the soil before reaching the surface water 

(Laudon et al. 2011), the lability of the DOC depending on the soil source (Bowen et 

al. 2009), and the influence of environmental conditions such as moisture in DOC 

generation and degradation (Guelland et al. 2013). 

Moreover, even though DOC types derived from different plants have been studied 

(Don & Kalbitz 2005), most of these studies have been limited to comparisons 
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between plant species and ignore the morphological differences between parts of the 

same species. Specifically, a factor often neglected is the difference in production 

and lability of DOC between leaf and wood litter within a certain species.  

According to the studies made by Parton (1994) wood material leaches considerably 

less DOC than the leaf litter. Moreover, Schreeg (2011) found that the DOC that 

leaches from the litter reaches an asymptote in the first days of extraction following 

the function of enzyme kinetics by Michaelis & Menten (1913). Marschner & Kalbitz 

(2003) stated that the most stable fraction of the DOC is formed by breakdown 

products of cellulose, hemicellulose and lignin.  Lignin is the most thermally stable 

element of the cell wall and its degradation takes more time than any other structure 

in the plant cell (Hill 2006). Thus, it is expected that the leaching of lignin derived 

compounds would increase over time. To the best of my knowledge, there are only a 

few studies that identify the differences in the DOC degradation among different 

plant litter types (Lennon & Pfaff 2005). Nonetheless, approximations have been 

made in order to reach this goal (Bowen et al. 2009), but they have not managed to 

determine the potential degradability of DOC without an environmental influence. 

The extractions were made from soil and litter sources in situ, which can lead to 

difficulties when trying to understand the dynamics of the most labile part of the 

DOC. 

In this study, an analysis of DOC differences between different litter sources, both 

among species and within species between their wood and leaf parts, was 

performed. The main aim was to find correlations between DOC source and 

characteristics of the DOC leached. In this sense and based in the theoretical 

background, it was hypothesized that 1) the wood litter would leach less amount as 

well as less degradable DOC than the leaf litter in all the species, 2) leaf litter will 

release most of its water extractable organic carbon during the first extraction times, 

while wood litter continue to leach significant amounts for longer times, and 3) the 

lability of the DOC will decrease with increasing extraction time while the aromaticity 

will increase since more lignin derived compounds would leach with time, leading to 

a coupling between the aromaticity and the lability of the DOC.   

The plant species studied were Betula, Picea abies, Pinus sylvestris, Vaccinium 

myrtillus, Vaccinium vitis-idaea and Deschampsia flexuosa. 
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Background 
 

Biogeochemical cycles 

 

In order to understand the dynamics of climate change, it is important to undertake 

the study of biogeochemical cycles. The study of biogeochemical cycles refers to the 

cycling of elements or substances through biotic and abiotic pathways  (Lyons 2001). 

They are called cycles because the elements involved move between Earth systems 

and their mass is conserved through the whole system. The influence of human 

activities in biogeochemical cycles leads to environmental issues such as global 

climate change and its consequences (Vitousek et al. 2015).   

The most studied biogeochemical cycles are: oxygen, carbon, nitrogen, phosphorus,  

sulfur, water and rock cycle (Lyons 2001). 

 

The carbon cycle 

The carbon cycle is a key component to understand the effects of different human 

and non-human activities on climate change. In this cycle, carbon is distributed and 

interchanged among carbon pools. The carbon pools can be either sinks or sources 

of carbon (Bolin 1981; Siegenthaler & Sarmiento 1993). A distinction is made 

between organic carbon pools and inorganic carbon pools. The global inorganic 

carbon pool has a long term cycle where atmospheric carbon dioxide (CO2) 

contributes to chemical weathering of rocks, eventually leading to burial of calcium 

carbonate at the ocean floors where the carbon is further cycled through the 

lithosphere. Organic carbon is fixed into organic matter across the biosphere via 

photosynthesis. Then, this carbon is decomposed in the soil or it is transported  to 

aquatic systems ending up in coasts and oceans where it returns to the atmosphere 

as CO2 form (Glok Galli et al. 2014).  

The soil carbon pool is estimated to be in the range of 1500 - 2400 Pg C (1 Pg = 1015 

g) and 1700 Pg C only in permafrost soils (IPCC 2013). Approximately 55 Pg C from 

the soil carbon pool belong to the carbon that resides in the fresh litter or detritus that 

lay in the surface of the soil (Hilbe 2000). The concentration of soil organic carbon 

decreases exponentially as the depth increases, showing that the main source of 
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organic carbon in  soil comes from litter fall and root turnover, when they are not 

deep into mineral soil (Nakane 1976). The largest fraction of soil organic matter has 

been classified as humic material that as a product of microbial activity (Hilbe 2000). 

The pool of organic carbon in soil consists of a small pool of fresh debris with a 

relatively short half-life near the surface, and a much larger pool composed of humic 

materials with a slow turnover time. Thus, the major part of the CO2 emissions to the 

atmosphere can be attributed to the decomposition of the labile fraction of the carbon 

pool in the litter layer (Edwards & Sollins 1973; Bowden et al. 1993). The plant debris 

is decomposed in the soil, producing CO2 that is released into the atmosphere. A 

significant part of it does not follow this process and is exported from the soil system 

by the ground water. This part, defined as lateral export, can represent annually 4 – 

28% of annual net ecosystem exchange (NEE) (Oquist et al. 2014). 

 

Lateral fluxes 

Lateral fluxes are defined as the movement of carbon away from the places where 

the CO2 is originally extracted from the atmosphere. This movement creates 

differences in the regional carbon stocks comparing to the initial uptake (Sarmiento & 

Sundquist 1992). The equation by which the lateral fluxes can be represented is 

shown as follows: 

                  
                                                   (Eq. 1) 

The understanding of the impact of the lateral fluxes in the global carbon budget is 

still not clear even though they have been estimated, as mentioned before, to be 4 – 

28% of annual NEE ( Öquist et al. 2014) 

 

The dissolved organic matter and the dissolved organic carbon 

 

Dissolved organic matter (DOM) has been defined as the total organic matter that 

passes through a certain pore size filter, typically 0.45 µm (range 0.2-1 µm). The size 

of the pore used to filter, as well as the filtration methodology, influence in a minor 

yet potentially significant way the concentration and properties of the DOM obtained 
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(Schnabel et al. 2002). Thus, in order to have the most accurate comparison of 

results, the same size of pores filtered should be used in the DOM estimation. The 

importance of DOM relies on its solubility, high mobility and because it often contains 

labile organic compounds that can serve as a nutrient source for microorganisms. 

DOM is produced in different ways, for example, from chemical leaching of organic 

material on the surface of leaves, stems and plant litter (Qualls et al. 1991; Zech et 

al. 1996); as a product of the biological decomposition of the organic matter 

(Guggenberger et al. 1994); and as a result of excretion of microbial metabolites and 

plant root exudates (Zsolnay & Steindl 1991; McDowell 2003). Moreover, the amount 

of DOC that comes from the leaching of litter in forests is reported to be especially 

high compared to other sources (Mc Dowell et al. 1998). The DOM can leave the soil 

by several processes, such as utilization by microorganisms (Zsolnay & Steindl 

1991; Qualls et al. 1991; Nelson et al. 1994), leaching by percolating water (Qualls et 

al. 1991) and the uptake of some organic molecules by plant roots, with the last 

process being small in magnitude compared to the other two (Kielland 1994; 

Näsholm et al. 1998). 

The (DOC) represents approximately 50% of the total weight of all elements in the 

dissolved organic matter (Weishaar et al. 2003). The production, movement and fate 

of DOC is of special interest for understanding the overall carbon cycle (Yavitt & 

Fahey 1986). This interest is due to the significant importance (20-40%) of CO2 

emissions from litter mineralization to the entire soil carbon efflux (Joos et al. 2009; 

Kammer et al. 2012). Also, litter leaching of organic matter is essential for the supply 

of nutrients to the soil media (Mcdowell & Fisher 1976), and thus, it is important to 

understand the different characteristics of the leaching processes among the 

different plant species in the ecosystem. Moreover, the rate of mineralization from 

DOC to CO2 can vary dramatically depending on the chemical structure of the 

compounds from a labile pool when it is highly biodegradable, to a stable pool when 

the biodegradability is low (Bowen et al. 2009). The more labile pool commonly has a 

large amount of monosaccharides, low molecular weight organic acids and 

aminosugars, while the stable pool is formed by recalcitrant and complex organic 

compounds, products of the microbial metabolism and the decomposition of complex 

polymers and lignocellulose (Koivula & Hänninen 2001),  
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Degradation experiments longer than 7 days can give a clear idea of the dynamism 

and size of the stable carbon pool. Nonetheless, shorter bioassays (highly labile 

DOC) can provide valuable information from the aquatic perspective. This is because 

of the fact that during episodes of high runoff the DOC can travel faster from soil to 

aquatic systems, where shot-term labile DOC can contribute to the substantial and 

large-scale CO2 production rates recently found in streams (Hotchkiss et al. 2015; 

Berggren et al. 2010; Ågren et al. 2008; Berggren et al. 2010). However, for a 

broader understanding of labile DOC, experiments with periods of 7 days or longer 

should also be considered (McDowell et al. 2006).  

 

Aromaticity of the DOC 

 

The first time that the word aromatic was used as a chemical term was by Hofmann 

(1856) to characterize chemical compounds that had a phenyl radical. Aromaticity 

has not been defined as a function of chemical reactivity and stability, but as a 

function of the electronic structure of chemical compounds. Thus, it has been defined 

as aromatic compounds to any cyclic or polycyclic molecule or ion which has all the 

annular atoms participating in a group where all the π-electrons are disposed in a 

bonding molecular orbital between a closed shell (Badger 1969). 

The aromaticity plays an important role for characterizing DOC (Weishaar et al. 

2003). For instance, it has been stated that DOC rich in aromatic compounds and 

low in carbohydrates is a characteristic of the less biodegradable carbon pool of 

DOC (Kalbitz et al. 2003). Also, aromaticity in DOC has been proved to have 

correlations with its oxidation properties (Reckhow et al. 1990; Li et al. 2000; 

Westerhoff et al. 1999) and the ability to react with coagulants (Singer 1994).  

 

Modeling dissolved organic carbon  

 

Modeling of the behavior of DOC has been gaining special interest over the last 20 

years. The dynamics of DOC in the environment have been described in models 

including soil and water carbon dynamics (Currie & Aber 1997; Kalbitz et al. 2000). 

In DOC modeling several aspects are taken into account, such as the relationship 
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between water fluxes and the DOC released from the soils (Boyer et al. 1996), 

geochemical interaction between DOC compounds and the soil structure (Cresser 

1996), the decomposition of organic matter that becomes a potential source of DOC 

to the environment (Currie & Aber 1997) and the potential degradation of  different 

kinds of DOC in the environment. Field results and laboratory experiments are used 

to parameterize models and validate their performance. 

According to Parton (1994), leaves and wood litter that enter at the soil surface suffer 

a loss of water extractable organic carbon that is the amount of carbon that can be 

extracted with water and depends on the chemical structure of the litter. The 

potential amount of carbon that enters the ecosystem as DOC from the leaf and the 

wood litter is determined by the lignin: nitrogen ratio with the soluble fraction of the 

litter being between 5% and 25%.  

In order to calculate the amount of carbon that passes to the soil system as DOC 

from the litter sources, the following equation stated by Parton et al (1994) has been 

used: 

 

            (        )                                                                              (Eq. 2) 

 
           (        )                                                                              (Eq. 3) 

 

Where Sfl and Sfr are the soluble litter and the soluble fraction of roots respectively, 

and Sfcwd is the soluble fraction of the woody debris. LN is the lignin: nitrogen ratio of 

every litter type. 

In relation to the degradation rate of the extracted DOC, approximations have been 

done in order to simulate this process. One of these approximations is the one made 

by Tang (2015), which states that the mineralization of DOC pools follow first-order 

kinetics, being a function of the temperature response and the size of the DOC pool 

in the top and bottom layer.  

   (     (          ))         (     (          ))           

(Eq. 4) 
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Where BDM (day-1) is the basal mineralization rate of the DOC pool at 20◦C, RTop and 

RTbtm are the Q10 correlation of soil temperature at 0.25 m and 1.25 m which 

represent the middle point of the top and bottom layer respectively. 

The formulas of Eq. 2, 3 and 4 are shown only to explain some assumptions 

regarding the production and lability of the DOC. Thus, they were not use in the 

present study for any type of calculation.  
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Methods 
 

In order to investigate the amounts and characteristics of the extracted DOC from 

different litter sources, water extractions were performed on cut litter. Moreover, the 

extracted solutions were filtered and subjected to analysis of TOC and absorbance. 

The DOC extracts were, furthermore, subjected to a degradation experiment by 

adding a microbial inoculum and certain amounts of potentially limiting inorganic 

nutrients. 

 

Litter collection and preparation 

 

The samples were collected from the Vomb forest, that is situated at 55°40'03.9"N 

13°35'13.0"E and presents 6 plant species. The Vomb forest is located in Scania, 

Sweden at approximately 20 km to the east of the city of Lund. The samples of 

Betula leaf litter and the Deschampsia flexuosa were collected in October 24th 2014 

and were frozen until the day of the extraction. The twigs, needles, Vaccinium 

myrtillus leaf litter, Vaccinium vitis-idaea and the bark from the trees were collected 

in February 2015 from the same site. The species to study (Table 1) were: Betula 

spp. (birch), which is a deciduous hardwood tree; Picea abies (Norway spruce) and 

Pinus sylvestris (Scots Pine), which are evergreen coniferous trees; Vaccinium 

myrtillus (European blueberry) that is a summer green shrub; Vaccinium vitis-idaea 

(lingonberry), which is a short evergreen shrubs; and Deschampsia flexuosa (wavy 

hair grass), which is a bunchgrass. Samples of leaf litter and wood litter were taken 

for each of the species, except for the Vaccinium vitis-idaea that presented 

difficulties when separating leaves from the rest of the plant, and the Deschampsia 

flexuosa that does not possess wood litter. 

The leaf litter samples taken were the ones that showed to be about to fall from the 

trees. The leaves from Picea abies and Pinus sylvestris used in the experiment were 

the ones that showed brownish colors. The twigs were taken from trees that showed 

to be dead. In order to know if the tree was dead, several tree characteristics were 

evaluated. First, if the tree twigs showed a brown color instead of a green color when 

broken. Also, if the bark of the tree was lacking in some points of the trunk and there 

was no sign of recovering. Finally, if the tree showed branches on the ground around 
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it could suggest that the tree is dead. If these tree characteristics were present in the 

tree, branches and bark were taken from it. 

The sampling was performed in an area of 100 square meters. The collection was 

done in two sampling spots for each species. Approximately 100 gr of each litter type 

were collected separately in previously marked self-adhesive bags. The number of 

plastic bags used for each litter type varied depending on the density of the litter. 

During the sampling, care was taken not to grind the litter in the bags. 

 

Table 1. Abbreviations used for each sample. In order to identify leaf and wood litter, it has 
been placed an LL and a WL respectively at the end of each species. The Vaccinium vitis-
idaea and the Deschampsia flexuosa had only one type of litter because of the difficulties of 
separating the wood and the leaf litter in the first case, and because of the absence of wood 
material in the Deschampsia flexuosa. 

Sample Type Assigned name 

(Abbreviation) 

Betula spp. leaf litter Summergreen 

tree 

Betula LL 

Betula spp. wood litter Summergreen 

tree  

Betula WL 

Picea abies leaf litter Evergreen tree Picea abies LL 

Picea abies wood litter Evergreen tree Picea abies WL 

Pinus sylvestris leaf litter Evergreen tree Pinus sylvestris LL 

Pinus sylvestris wood litter Evergreen tree Pinus sylvestris WL 

Vaccinium myrtillus leaf litter Summergreen 

shrub 

Vaccinium myrtillus LL 

Vaccinium myrtillus wood litter    Summergreen 

shrub 

Vaccinium myrtillus 

WL 

Vaccinium vitis-idaea Evergreen 

shrub 

Vaccinium vitis-idaea 

Deschampsia flexuosa Grass Deschampsia 

flexuosa 
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Sample cut and drying 

 

The litter was cut and dried in order to have all the litter types in the same conditions 

that would lead to more accurate comparison of the extraction results (Schreeg 

2011). Also, a litter drying was necessary for the carbon and nitrogen analysis. Each 

litter sample was cut with scissors to a size of 1 – 2 mm. The cut litter was placed 

separately by litter type in previously marked wet strength paper bags designed for 

drying. The bags were closed and placed inside a laboratory oven at 60 ºC for 48 

hours. 

 

 

Carbon and nitrogen analysis 

 

An analysis of carbon and nitrogen composition of the litter was performed in order 

to find differences in the chemical composition of the litter and related to the DOC 

properties. The protocol for the sample preparation was designed based on the 

requirements of the Colorado Plateau Stable Isotope Laboratory of the Northern 

Arizona University.  

The dried samples were pulverized using a food processing machine. The parts of 

the processing machine exposed to the litter were cleaned after every sample, so 

that the samples did not get contaminated. The pulverized litter samples were filtered 

using a metal sieve with a pore size of 250 µm. The metal sieve was washed with 

Mili-Q water and dried after being used in every litter type. The obtained fine powder 

was weighted using a micro analytical balance with 3 decimal places of a milligram. 

The amount of litter weighted per sample was between 4.00 to 6.00 µg. The samples 

were weighted inside 4x6-mm tin capsules. Three tin capsules were filled for each 

litter sample as replicates. Once the tin capsules contained the weighted sample, 

they were crushed into small balls and weighted again in order to confirm the final 

mass. All the samples were placed in a 96 well polyethylene plates. Each well in the 

plate had an alpha numeric position (rows A through H, columns 1 through 12). The 
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type of sample, an assigned name, weight and the respective alpha numeric position 

were written down in a paper form.  

Once the plate was filled with the samples, it was closed and sealed before being 

sent to the Colorado Plateau Stable Isotope Laboratory of the Northern Arizona 

University. The samples were analyzed for carbon content and nitrogen content on 

an ECS4010 (Costech, Valencia, California, USA) or a NC2100 (Carlo Erba, Milan, 

Italy) Elemental Analyzer. The results of the analysis were given in percentage of 

carbon, percentage of nitrogen and carbon to nitrogen ratio. 

 

Dissolved organic carbon extraction 

 

The extractions were made based in the methodology suggested by Schreeg (2011) 

who evaluated several ways to perform DOC extractions in litter, referring to litter – 

solution ratio, oven dry temperature, size of the cut size of the litter and the speed at 

which the shaking process should be done. The procedure used in the present study 

is the one that Schreeg (2011) suggested as optimal for DOC extractions. 

First, a portion of each sample was added to a 250 ml plastic bottle which contained 

Milli-Q water. The amount of sample added was 5 gr for every 100 ml of Milli-Q water 

in order to obtain a proportion of 1gr of litter for every 20 ml of Milli-Q water (Schreeg 

2011). Two bottles were filled for every sample in every extraction time.  

Milli-Q water is a type of purified water that has been defined as ‗ultrapure‘ under the 

standards ISO 9001 v. 2000 and ISO 140001. It is produced by the Millipore 

corporation (Millipore 2015). 

Moreover, the plastic bottles containing the samples and the Milli-Q water were set in 

a shaking table at a rate 180 oscillations per minute. The shaking intervals were 1, 4, 

16, 24 and 48 hours. After every interval, the samples were subjected to vacuum 

filtration and through 1µm glass fiber filters. In the period of time between the 

shaking process and the beginning of the filtration, the samples were pre filtered 

using a sieve, so that the litter would stop leaching. After the filtration, the extracts 

were placed in 25 ml vials, marked and kept at 4 ºC for the further analysis.  
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Total organic carbon analysis 

 

A TOC analysis was carried out in order to determine the amount of DOC present in 

each filtered extract. The TOC analysis was performed using a TOC-V CPN 

Shimadzu analyzer. This is a PC – controlled standard model (Shimadzu 2015). 

The TOC analyzer uses combustion to determine the carbon concentrations. First, in 

order to eliminate the inorganic fraction of carbon, hydrochloric acid is added to the 

sample and then sample is sparged with sparge gas. Since some of the organic 

carbon might be lost with this procedure, the detected concentration is attributed to 

the non-purgeable organic carbon (NPOC). 

Moreover, the sample is injected into the combustion tube where the NPOC of the 

sample is oxidized to CO2. The CO2 produced is detected by a non-dispersive 

infrared detector (NDIR) that is connected in series with a chemiluminescence 

detector.  

The samples were diluted in order to be able to use the same calibration curve for all 

the measurements. Different dilution proportions were used for each extracted 

sample in order to obtain a concentration of carbon between 5 and 80 mg/l. A layer 

of Parafilm® was used to seal every vial. Two vials for every extract were placed in 

the TOC analyzer. 

The DOC concentrations were evaluated as a function of time with a Michaelis-

Menten and with a linear functions (Schreeg 2011). 

 

Calculation of potential water extractable organic carbon 

 

Schreeg (2011) did an approximation to simulate the extraction of the potential water 

extractable organic that can be obtained from litter sources using the Michaelis-

Menten function.  

The Michaelis-Menten model (Michaelis & Menten 1913) was originally an approach 

to enzyme kinetics. This function is an equation that relates the reaction velocity to 

the substrate concentration. The logic of the function is based on a system where an 

enzyme E binds reversibly to a substrate S to produce an enzyme-substrate complex 
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ES. Furthermore, a product P and the enzyme E are generated irreversibly from the 

complex ES (Eq. 5). 

 

                                                                                                  (Eq. 5) 

 

Under this logic, the equation that describes the system has been stated (Eq. 6). 

  

  
        

      
                                                                                               (Eq. 6) 

 

The Vmax represents the maximum velocity that the system can reach. Km represents 

the the concentration of substrate at which the velocity of the system would be one 

half of the maximum velocity. [S] is the concentration of the substrate. 

The plot of the Michaelis-Menten function (Figure 1) shows a curve with a slope that 

decreases overtime until the function reaches its maximum value at an asymptote 

defined as the maximum velocity of the system. 
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Figure 1. Michaelis - Menten saturation curve for enzyme reaction. The Vmax is the 
maximum rate that the system can achieve. The KM is the Michaelis constant and represents 
the substrate concentration at which the reaction rate is half of the maximum Vmax. Adapted 
from ―Die Kinetik der Invertinwirkung‖, by Michaelis, L. & Menten, M.L., 1913, Biochem z, pp. 
333-369   

 

The DOC extraction can be, thus,  modeled using the Michaelis-Menten function 

(Schreeg 2011). In the extraction of DOC the concentration of TOC in the liquid 

phase will increase rapidly in the beginning of the experiment, but as time passes the 

concentration of TOC will not increase above a certain maximum value.  

In the present study, the obtained DOC concentration data was simulated with the 

Michaelis-Menten model and with a linear model in order to determine if the DOC 

leaching can be adjusted to a Michaelis-Menten function.  

 

Absorbance analysis 

 

The absorbance was measured in Shimadzu UV-VIS 2600 Spectrophotometer 

equipment. The range of analysis was from 800 to 200 nanometers. This 

measurement was done in order to determine the different absorption values of the 

DOC extractions and furthermore calculate their respective percentage of 
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aromaticity. The utilization of the absorbance value as a tool to calculate the 

percentage of aromaticity was suggested by (Weishaar et al. 2003).  

 

Degradation analysis 

 

The degradation analysis was performed using a SensorDish reader (SDR) device, 

which is able to measure the concentration of dissolved oxygen in the samples over 

relatively short time steps (time step of 20 min was used in this study). This 

characteristic was of big importance for the purpose of the study because of the aim 

of characterizing relatively labile DOC degradation.  

The DOC solutions were diluted to a concentration of 20 mg C /l in order to avoid 

excess in microbial production (Hongve et al. 2000), and furthermore were subjected 

to inoculation. 

 

Inoculation 

 

The inoculum used was a mix of an extraction from several order streams as well as 

from lakes around the region. The volume of inoculum added to the samples was 

1ml for every 100 ml of sample (Kalbitz et al. 2003). It has been stated that the 

changes of DOC composition throughout the hydrological flow can make microbial 

communities adapt to different types of DOC (Myers et al. 2001; Judd & Kling 2002; 

Zak et al. 2003). However, Risse-Buhl et al. (2013) showed that when comparing 

microbial physiological capabilities, with inoculums obtained from soil, streams and 

ponds, leaded to a similar pattern in DOC consumption. Thus, it is expected that the 

results in the present study can be extrapolated to soil microbial DOC consumption. 

Also, nutrients were added to the solutions. The nutrients used in the experiments 

were ammonium sulfate ((NH4)2SO4) and monopotassium phosphate KH2PO4. The 

added amounts depended on the carbon concentrations in each solution. I aimed to 

obtain a final molar proportion of C:N:P:S:K ≤ 5:1:1:1:1 (Bowen et al. 2009). 

The process of adding inoculum and nutrients started 8 days after the extraction 

period. In this period of time, the samples were kept in a refrigerator at 4ºC. This 
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delay was a necessary in order to analyze the DOC concentration of each sample. 

The DOC concentration was used to calculate how much the samples should be 

diluted in order to reach the targeted 20 mgC/l. The loss of DOC during this time was 

assumed to be small because the water had been filtered and then kept at a low 

temperature. 

After the samples were taken out from the fridge, the samples remained at room 

temperature for approximately 5 hours, which is the amount of time that took to make 

the inoculum-nutrient-DOC solutions. 

    

Dissolved oxygen measurements 

 

The solutions and a duplicate for each sample were included in the experiment. The 

degradation experiments were performed in a SensorDish plate Reader (SDR). The 

duration of the experiment was for a period of 45 hours, with measurements of 

dissolved oxygen in each sample every 20 minutes. The vials used for the incubation 

had a volume of 5.2 ml. The amount added to each vial was enough to keep the 

sample without air bubbles that could interfere in the measurements. 

Once the measurements of biodegradability were completed, they were analyzed 

with the software Matlab (Matlab, 2013). Since only degradability of the labile DOC 

pool is compared in this study, linear functions were attributed to each of the 

degradation curves in order to get a degradation rate.  

It was found, during the incubation process, that concentrations of DOC in the 

samples (20 mg C/l) resulted to be too high for the amount of dissolved oxygen that 

the 5.2 ml SDR vials contained (~8 mgO2/l). This fact was noted when, after 

approximately 45 hours of incubation, the vials ran out of dissolved oxygen. 

Furthermore, only the data corresponding to the first 45 hours of degradation were 

taken into account for this study. 
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Data treatment and statistics 

 

DOC measurement 

 

The measurement of DOC was performed in the TOC analyzer, which uses [mg/l] as 

a concentration unit. In order to have comparable values, the DOC concentration 

values were transformed to mg of DOC per grams of dry litter. Hence: 

    [
  

 
]  

      

                
  

      

          
                                       (Eq. 7)                              

 

 

Aromaticity 

 

The absorbance was used to calculate the specific Ultra Violet absorbance (SUVA). 

The SUVA at 254 nm is strongly correlated to the percentage of aromaticity 

(Weishaar et al. 2003). Thus the SUVA254 value was used to calculate the 

percentage of aromaticity of the DOC (Eq. 8). 

         
     

   
                                                           (Eq. 8)              

 

Where UV254 is ultraviolet absorption at 254 nm measured in the spectrophotometer, 

b is the optical path length in meters used by the equipment (0.01 m), and C is the 

DOC concentration of the samples in milligrams per liter measured in the TOC 

analysis.   

Because of the correlation that exists between the percentage of aromaticity and the 

SUVA254 in a solution (Eq. 2), an approach has been implemented in order to use the 

SUVA254 to calculate the percentage of aromaticity (Weishaar et al. 2003): 

 

          (       )                                                         (Eq. 9) 

 



19 
 

where %Ar is the percentage of aromaticity of the solution and SUVA254 is the 

calculated value with Eq. 8 (L * mg C-1 * m-1). The relationship between the 

percentage of aromaticity and the SUVA254 were produced in a linear regression 

when comparing a known aromaticity of water samples with their respective value of 

SUVA254. The linear regression resulted in a well fitted line with an r2 value of 0.97 

(Weishaar et al. 2003). 

  

Units conversion of DOC degradation 

 

In this study, the DOC degradation is estimated with the dissolved oxygen 

consumption. The respiratory quotient (RQ) is the ratio of metabolic gas exchange 

between the CO2 and the O2 consumed. Moreover, the RQ differs depending on the 

DOC type (Berggren et al. 2012). For instance, for carbohydrates, the RQ values is 

1.000, for lipids is 0.696 and for proteins is 0.818 (Squires 1995). Moreover, since 

the most degradable part of the DOC is formed mainly by carbohydrates (Kalbitz et 

al. 2003), the RQ used in this study was 1.00. Thus, 

 

((   )       ) [
  

 
]  

          

            
  

           

          
  

            

           
 * 

 

  
                    

   [
    

 
]

                                           (Eq. 10) 

 

Where (dO2)0 and dO2 are the initial concentration of dissolved oxygen and the 

concentration of dissolved oxygen at the time (t) respectively.  

 

Analysis of statistical significance 

 

In order to compare the significance of differences between amounts of DOC 

leached by each litter type, a one way ANOVA was carried out. The ANOVA was 

conducted between the data of DOC concentrations of the extracts. Also, a one way 
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ANOVA was done in order to find significant differences between aromaticity values 

of the different extracts. In case of significance in the ANOVA with p < 0.05, a post 

hoc Tukey test was conducted in order to find significant differences between litter 

types.  

For the evaluation of the significance of the positive correlation between percentage 

of nitrogen in dry litter and degradation rate of DOC a test for the significance of the 

correlation coefficient was done. Also, the relationship between the aromaticity of the 

DOC and its degradation rate was evaluated testing the significance of their 

correlation coefficient. The p value established as significant was p < 0.05. The 

ANOVA, the correlation coefficient significance test and the regression lines were 

performed in MATLAB, version 2013 (Mathworks Inc., Natick, MA, USA).    
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Results 
 

 

Water Soluble Elements from Different Sources as a Function of Time – 

Hypothesis 1 

 

The one way ANOVA test between DOC leaching data yielded significant variations 

among samples (p<0.05), F (9, 59) = 8.541, p = 1.33E-7. Furthermore, a Tukey HSD 

post hoc test was conducted finding significance (p<0.05) in amounts of DOC 

leached among litter types.  Significant differences were found between Betula LL 

(mean = 117.58, standard deviation = 66.98) and Betula WL (mean = 36.90, 

standard deviation =18.02), and between Vaccinium myrtillus LL (mean = 131.63, 

standard deviation =62.2) and Vaccinium myrtillus WL (mean = 6.02, standard 

deviation =14.49). Moreover, no significant differences (p>0.05) were found between 

Picea abies LL (mean = 17.34, standard deviation =16.34) and Picea abies WL 

(mean = 6.05, standard deviation = 14.36) and between Pinus sylvestris LL (mean = 

14.10, standard deviation =15.38) and Pinus sylvestris WL (mean = 7.44, standard 

deviation =14.33).      

The leaf litter can be divided in two groups according to the obtained values of 

extracted DOC (Figure 2). The first group is Picea abies LL and Pinus sylvestris LL 

in one hand, which showed low amounts of water extractable organic carbon (they 

were not found to be significantly different in the Tukey HSD post hoc test, p>0.05). 

The other group is the Vaccinium myrtillus LL and the Betula LL which produced a 

higher amount of water extractable organic carbon (not significantly different to each 

other, p>0.05, when comparing with the Tukey HSD post hoc test). When comparing 

the values of extraction of any of the samples in the first group to the ones in the 

second group using the Tukey HSD post hoc test, the difference was statistically 

significant (p<0.05) for all comparisons. 

The amount of water extractable organic carbon from the Deschampsia flexuosa was 

not significantly different to the values from needle leaves and from wood litter 

(p>0.05). However, they showed to be significantly lower than the values from the 

broad leaves (p<0.05). 
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Table 2. Parameterization of DOC extracted over time with Michaelis-Menten (MM) 
functions. Vm represents the maximum amount, or asymptote, of DOC that can be extracted 
per gram of dry litter [mg DOC / g dry litter]. K represents the time at which the DOC 
extracted is equal to Vm/2 [hours]. The ―Maximum extraction value reached?‖ row shows if 
the extraction time of 48 hours was enough to reach the maximum extractable DOC of each 
sample. RMSE is the root mean square error of the measurements compared to the 
function. 

  Parameter 
1 (Vm ) [mg 
DOC/ g dry 
litter] 

Parameter 2 
(K ) [hours] 

Maximum 
extraction 
value 
reached? 

R – 
square 
value 

RMSE 

Betula LL 205 11.02 NO 0.918 4.82 
Betula WL 48.71 1.982 NO 0.994 0.64 
Picea abies LL 134.6 112.7 NO 0.727 1.08 
Picea abies WL 10.78 8.332 YES 0.823 1.48 
Pinus sylvestris LL 43.12 25.63 NO 0.982 4.31 
Pinus sylvestris WL 26.15 37.41 NO 0.226 15.04 
Vaccinium myrtillus LL 138.4 0.2055 YES 0.665 2.19 
Vaccinium myrtillus WL 10.22 5.674 YES 0.982 3.31 
Vaccinium vitis-idaea  142.2 25.89 NO 0.838 39.75 
Deschampsia flexuosa 30.84 17.69 YES 0.918 3.25 
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Figure 2. Amount of water extractable organic carbon obtained per gram of dry biomass 
plotted against the duration of the extraction time. The lines represent the Michaelis – 
Menten function adapted for the values of each sample. The data presented in dots 
represent the measured values of TOC for each sample at each extraction time. All the 
regression lines represent statistically significant relationships with the measured data (p < 
0.05).  
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DOC leaching rate - Hypothesis 2  

 

The obtained concentrations of DOC for each sample at different times were 

adequately predicted (Table 2) by the Michaelis-Menten function, excepting the 

Vaccinium myrtillus WL and LL litter, Betula LL and the Picea abies WL, where there 

were no signs of a plateau in DOC concentration, and thus a linear function had 

better fit (Figure 2).  

The extraction period of 48 hours was enough for only 3 out of the 10 analyzed 

samples to reach the calculated maximum value of water extractable organic carbon 

(Vm). Only the Picea abies WL, the Vaccinium myrtillus LL and Vaccinium myrtillus 

WL reached the maximum value of water extractable organic carbon calculated 

(Table 2). 

The sample that showed the highest amounts of DOC was the Betula LL even 

though the extraction time was not enough to reach the potential extractable 

concentration (Figure 2). The sample with the lowest amount of DOC extracted was 

the Vaccinium myrtillus WL. 

 

Changes in Aromaticity as a Function of Time – Hypothesis 3 

 

The values of aromaticity as a function of time were fitted to linear functions (Figure 

3). Linear functions were used since, to the best of my knowledge, no function that 

describes the decreasing in DOC aromaticity as a function of extraction time has 

been established. All litter sources showed a decreasing trend in the aromaticity over 

time. The decreasing in aromaticity was more dramatic for the Picea abies Wood 

Litter, which decreased from 39.85% in the first hour to 9.51% after 48 hours. After 

the end of the study period, the aromaticity of almost all the samples decreased to a 

level of approximately 10% (Figure 3). 

In the case of Vaccinium myrtillus Leaf Litter, the aromaticity remained almost 

constant throughout the study period, varying from 10.23% in the first hour to 9.49 

after 48 hours. The sample with the lowest final aromaticity was the Vaccinium vitis-

idaea with an aromaticity value of 5.7%, and the specie with the maximum final 

aromaticity was the Deschampsia flexuosa with 14.4% of aromaticity (Figure 3). 
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The one way ANOVA showed significant variations in aromaticity among litter type, 

F(9,40) = 83.418, p < 0.05. When comparing the leaf litter DOC aromaticity to the 

one from the wood litter using a post hoc Tukey test, none of the species showed 

significant differences (p ≥ 0.05).  

The leaf litter DOC aromaticity showed no differences among the species (p ≥ 0.05). 

On the other hand, the only significant difference was found when comparing the 

aromaticity values obtained from Deschampsia flexuosa with Betula LL, Betula WL, 

and Vaccinium vitis-idaea (p < 0.05). 

 

.  

Figure 3.  Changes in DOC aromaticity as function of time. The percentage of aromaticity 
was calculated using the absorbance values at 254mm wavelength and the SUVA254 – 
aromaticity relationship found by (Weishaar et al. 2003). The lines represent the simulated 
functions and the dots represent the calculated values. 

 

Changes of biodegradability - Hypothesis 3 

 

The results of the degradation experiment showed differences between extraction 

times (Figure 4) and between species (Figure 5). The samples that were extracted 

for 16 hours showed to be the most degradable in 8 out of the 10 cases (Figure 4). 

Only Picea abies LL and Vaccinium myrtillus LL showed a different pattern. 
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The sample that showed the higher total degradation rate was Vaccinium vitis-idaea 

and the lowest degradation rate was the one from Pinus sylvestris LL (Figure 4).  

 

 

 

Figure 4 Degradation rate changes in time for all the samples studied. The degradation 
rates are shown with standard errors (n=2). The degradation rate shows how fast the DOC 
was consumed in the incubation experiment in the first 45 hours of experiment after the 
adding of nutrients and microbial inoculum.  
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Figure 5 Mean degradation rates shown with standard errors (n=5). The mean degradation 

rate represents the mean of the slopes of the adapted DOC degradation line. The 
degradation rate shows how fast the DOC was consumed in the incubation experiment in the 
first 45 hours of experiment after the adding of nutrients and microbial inoculum. The graph 
shows an overview of the comparison in biodegradability of the DOC extracted from the 
studied species. 

 

When comparing the rate of degradation of the samples to the measured aromaticity, 

a significant logarithmic correlation, like the one found by Kalbitz et al. (2003), was 

found in the test for analysis of the significance of the correlation coefficient  (p = 

0.00024, n = 50) (Figure 6). 
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Figure 6. The relationship between the degradation rate of the DOC, which is the slope of 
the adapted degradation linear function, and the percentage of aromaticity calculated from 
the measure values of absorbance (p = 0.00024, n = 50). A logarithmic correlation was 
obtained. 

The correlation between the nitrogen percentages in the litter source with the mean 

degradation rate (Figure 7) was significant with the test for analysis of the correlation 

coefficient (p = 0.0059, n = 10).  

 

Figure 7. Relationship between the DOC degradation rate, which is the slope of the adapted 
degradation linear function, and the nitrogen percentage of the litter (p = 0.0059, n = 10). 
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Discussion 
 

The results showed in general that the hypotheses could not be fully confirmed. The 

hypothesis that states that the amount of DOC extracted from leaf litter is bigger and 

more degradable than the one extracted from wood litter was not always the case. 

Also, some species, besides having similar chemical composition, leached 

significantly different amounts and types of DOC, suggesting that more factors, 

others than chemical composition, play role in the amount and lability of DOC 

leached. Moreover, since the aromaticity did not increase, it suggests that none, or 

few, lignin derived compounds were present in the extracted DOC.  Furthermore, the 

degradability did not increase with time, suggesting changes in the composition of 

the DOC leached over time and also microbial activity during the extraction above 

the 16 hours.    

 

DOC production 

 

Hypothesis 1 referring to DOC leaching 

 

The first part of the first hypothesis of this study was not confirmed. This happened 

because no significant differences were found between the leaf and the wood litter of 

the Picea abies and the Pinus sylvestris species. 

The fact that the water extractable organic carbon from the leaf litter of the needle 

leaves did not differ significantly from their respective wood litter shows that the 

amount of DOC that will leach from these leaf litters will be on the same order than 

the ones from the wood litter. This statement represents a contradiction to the 

relation suggested by Parton ( 1994) which groups separately the leaf and the wood 

material when calculating the water extractable organic carbon.  

Previous studies about lignin content on leaf litter (Johansson 1995)  show low or no 

differences in lignin content between broad leaves and needle leaves. In this context, 

and taking into account the Parton et al. (1994) formula to calculate water 

extractable organic carbon, the concentration of DOC leached from needle leaves 

and broad leaves should be on the same order, which was shown to be inaccurate 

according to the results in this study (table 3). This fact can reveal that the amount of 
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water extractable organic carbon does not depend only on the amount of lignin of the 

species but also on the structure of the litter. 

The differences in the amount of water extractable organic carbon between the 

needle leaves (Picea abies LL and Pinus sylvestris LL) and the broad leaves (Betula 

LL and Vaccinium myrtillus LL) could be attributed to the thickness of the cuticule in 

the type of leaves. The cuticule, which is a wax that prevents the water loosing 

through evaporation (Schreiber & Schonger 2009), is almost twice thicker in needle 

leaves compared to broad leaves (2,64 µm for Vaccinium myrtillus, 6.5 µm Pinus 

sylvestris, 4.9 µm Picea abies, 1.9 µm Betula)(Baig & Tranquillini 1975; Semerdjieva 

et al. 2003; Connor & Lanner 1991; Ashton et al. 1998). The presence of this tick 

wax may be preventing the needle leaves to loose inner substances when they are 

exposed to water in the same way that it prevents the needles to loose water to the 

environment. These results were also found by (Kalbitz et al. 2003)  and were 

attributed to the difference in the thickness of the epidermic layers of the leaves. 

The fact that the amount of water extractable organic carbon from the Deschampsia 

flexuosa was as low as the values obtained from wood litters and from needle leaves 

suggests that the grass is not a big source of water extractable organic carbon like 

the broad leaf litter is. This result was contrary to what was stated in hypothesis 1 

when it was expected to obtain the same amounts of water extractable organic 

carbon from Deschampsia flexuosa than the rest of broad leaves litters. Moreover, it 

has to be taken into account that the samples of Deschampsia flexuosa used in this 

project were wilted by the time that the samples were taken from the forest. This fact 

might have leaded to an underestimation of the amount of DOC leached from 

Deschampsia flexuosa since it was exposed for an unknown amount of time to a 

natural leaching process in the environment before being extracted for this 

experiment.  

.  

Hypothesis 2 referring to DOC leaching rate, 

 

The second hypothesis was confirmed in this study for the broad leaves (Betula and 

Vaccinium myrtillus) but not for the needle leaves (Picea abies and Pinus sylvestris). 

The amount of DOC leached got close to the potential amount in the first hours for 

the broad leaves while their wood parts continued leaching. In the other hand, the 
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needle leaves did not follow the same pattern when leaching and their leaching rate 

did not decrease during the first extraction hours. 

The part of the material that does not leach as DOC in the extractions might be the 

part that needs microbial activity for decomposition, mostly lignin, which would 

increase the amount of water extractable carbon transferred from the litter to the 

ecosystem over longer periods of time (Don & Kalbitz 2005). In order to estimate the 

rate at which the portion of litter, that is not the water extractable carbon, passes to 

the ecosystem as DOC, experiments using microbial degradation on the stable 

matter should be performed. 

The fact that the water extractable organic carbon concentrations over time fitted 

with the Michaelis-Menten functions means that the leaching of water extractable 

organic carbon from a litter source in the first hours follows the logic explained by 

this function even though the extraction time was not enough to reach the maximum 

extractable DOC for 6 out of the 10 samples. The logic in the Michaelis-Menten 

function states that after a certain value of the on the independent variable, the 

dependent variable will not increase reaching an asymptote. This asymptote in the 

present study is represented by the maximum amount of water extractable organic 

carbon that can be extracted from a litter source before the microbial degradation of 

the lignin starts playing a significant role.  These results corroborate the results by 

Schreeg (2011) who also managed to fit Michaelis-Menten functions to extracted 

DOC using different litter to solution ratios. 

  

. 

Aromaticity of DOC 

 

Hypothesis 3 referring to aromaticity 

 

The third hypothesis stated in this study suggested that the aromaticity of the DOC 

extracted will increase over time. This fact could not be supported, and even a 

decrease of aromaticity was detected. The results were contrary to what was 

expected with the hypothesis. 
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Don & Kalbitz (2005) found that the amount of humic substances, measured with 

humification index, increased as degradation of the litter, measured in litter weight 

loss, increases. The humification index has been related to the percentage of 

aromaticity of the DOC (Kalbitz et al. 2003). The fact that aromaticity lightly 

decreased over time in the present study can suggest that little or no products of 

litter decomposition were present in the extracts. Also, the mass loss that Don & 

Kalbitz (2005) found represented up to 50% of the initial litter mass, which is 

considerably higher than the mass loss found in the present study (maximum ~20% 

of initial litter mass). 

The small difference between the aromaticity of the water extractable organic carbon 

from the leaf and the wood litter of Betula, the Pinus sylvestris and the Vaccinium 

myrtillus, suggests that the separation of wood and leaf litter when trying to 

understand the DOC produced is not accurate. Picea abies was the only with 

significant differences in aromaticity between the wood and leaf litter. This, together 

with the results of the DOC production rate experiment, suggest that the estimation 

of water extractable organic carbon from the different sources should also take into 

account, besides the chemical composition, the plant structure which has been 

shown to play an important role. 

The fact that the difference in aromaticity between the leaf litters was not significant 

might suggest that the compounds that are being obtained during the first hours of 

extractions come from the same cell structures and not from litter decay. 

The similarity in the aromaticity of the water extractable organic carbon from the 

Deschampsia flexuosa with the ones obtained from the wood litters shows that when 

leaching DOC the Deschampsia flexuosa behaves more like a wood litter rather than 

a leaf litter. Moreover, the samples were collected from wilted grass in the field, 

which could suppose a significant loss of DOC with low aromaticity leaving only the 

lignin derived DOC which is more aromatic (Hernes et al. 2013). 

The period of time used is not enough to determine more dramatic changes in 

aromaticity like the changes in humification index shown by Don & Kalbitz (2005). 

Since the products of the decay of the molecules of lignin are mostly aromatic and 

occur over longer periods of time, it can be speculated that the aromaticity should 

increase over time in periods up to one year as found by Don & Kalbitz (2005) . 
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Degradation rates 

 

Hypothesis 3 referring the lability of DOC 

 

The hypothesis 3 referring to the degradation of DOC could not be supported. This 

hypothesis stated that the lability of the DOC was expected to increase over time. 

Instead the degradation rate peaked at 16 hours. This fact suggests that the 

degradation of the components of the DOC changes over time and can be due to 

two factors. First, the extracted compounds change in the solution and become more 

degradable as time passes, reaching a peak around 16 hours. Second, the liberated 

DOC after 16 hours might start to get more stable than the one that is liberated in the 

first 16 hours. Also, Schreeg( 2011) warned that with extraction periods above 24 

hours, the autochthonous microorganisms might start interacting with the DOC, 

meaning that during the extraction process labile DOC is starting to get consumed 

inside the plastic bottles leaving only the more stable DOC. According to Marschner 

& Kalbitz (2003), a more stable pool can be derived from previous degradation steps. 

The hypothesis that stated a correlation between aromaticity and degradation rate 

could be confirmed with the results (Figure 6). 

 

Hypothesis 1 referring lability of DOC 

 

The hypothesis 1 referring to lability stated that the DOC will be more labile when is 

originated from a wood litter source than from leaf litter sources. However, this 

hypothesis could not be proven since the results of the degradation of Pinus 

sylvestris LL water extractable organic carbon showed that this litter type had the 

lowest mean degradation rate. This fact suggests that the rate at which the water 

extractable organic carbon from leaf litters is consumed differs widely between 

species depending not only on the chemical composition of the litter but also on their 

internal structure. The influence of the chemical composition, and especially of the 

nitrogen percentage, could be confirmed with the results obtained, which showed a 

correlation between the nitrogen content of the litter with the degradation rate of the 

water extractable organic carbon.  
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Future directions 

 

The results of the present study show that the difference in quantity and quality of 

the DOC produced between wood and leaf litter varies depending on plant species 

and on physiological characteristics of the plant parts. In this context, the estimation 

of the type and amount of DOC produced from plant litter is often subject to 

inaccurate assumptions. Thus, DOC production and lability in global carbon cycle 

models might be overestimated in some cases, and underestimated in some others. 

Because of the importance that DOC represents for the global carbon cycle, and 

thus in simulations of future scenarios under global warming conditions, more 

research in the production and fate of DOC in ecosystems is needed. 

The collection process of leaves, twigs and tree bark can be decisive in the quantity 

and characteristics of the extracted DOC. Thus, it is desirable to have leaves, 

branches and tree bark in the exact state in which they naturally come in contact with 

the ground and begin their process of degradation. 

 

The percentage of aromaticity can give an idea on the types of chemical compounds 

that are present in DOC solutions. However, by doing a fluorescence analysis and a 

further PARAFAC model it would be possible to identify in a more specific way the 

different components of extracted solutions.  

Because of the unexpected DOC difference, in amounts and lability, between wood 

litter from twigs and wood litter from tree bark, it is recommended to perform future 

studies focused on distinguishing the variations in DOC characteristics among plant 

parts. 

A degradation experiment with concentrations lower than 5 mg C/l can lead to a 

better understanding of the degradation of the most labile part of the extracts. 
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Conclusions 
 

The research aim of the study was to test if the assumptions that are made in the 

determination of the amount of DOC leached from litter, the types of DOC and the 

lability of them, can be applied in a broader context. In this study, it was found that 

the assumptions can be used only up to a certain point when more factors start 

playing an important role in the DOC dynamics. These factors, such as plant 

physiology, have been shown in this study to play a major role when determining the 

DOC production and characteristics.   

In this context, the results of this study are expected to stimulate further projects 

regarding more approximations of the characterization of amounts and types of DOC 

leached from litter based on chemical but also on physiological characteristics of the 

litter source.  
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