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Efficient Modeling of a Flexible Beam in Dymola using Coupled

Substructures in a Floating Frame of Reference Formulation

by Anders Ericsson

Anton Kjellander

In this Master Thesis a three dimensional Euler-Bernoulli beam model was implemented

in the simulation software Dymola. The beam model is based on the Floating Frame

of Reference formulation combined with the Craig-Bampton method. The theory is de-

veloped with the scope to capture the dynamic and static responses of a beam model

in a compact and computer efficient implementation. The Thesis includes derivation

of kinematic description, mass matrix, stiffness matrix and force vectors of an Euler-

Bernoulli beam in three-dimensional space. Two one-dimensional models have been

derived as well. The implementation in Dymola is described together with validation of

the model, discussion and conclusions. The validation of the model shows great accuracy

in static loading both in elongation, torsion and bending. Excitation of eigenfrequencies

is possible but the results slightly differs from the analytical solutions. Dynamic tests

of the beam model shows realistic responses but further testing on this subject is rec-

ommended. Compatibility with other components in Dymola works fine. However there

are some minor issues that should be solved to enhance the efficiency. Overall the static

and dynamic responses of the beam model works sufficiently well.
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Chapter 1

Introduction

1.1 Background

The Master Thesis project was proposed by Modelon AB, a Swedish company with

an expertise within physical modeling, simulation and optimization of dynamic systems.

Their expertise focuses on Dymola, a dynamic modeling software written in the equation

based language Modelica. A majority of Modelon’s customers are manufacturers within

the automotive industry, an industry with short development cycles that demand efficient

and accurate modeling of complex mechanical systems.

Advanced models of mechanical systems need to take into account structural elasticity

of different components. Currently the Modelica standard library only supports rigid

components. Beams are important structural elements that are used in many different

mechanical applications. Adding support for elasticity will improve model accuracy

especially for models with large structures or loads (such as a heavy vehicle drive line).

Since Dymola is a software most widely used in modeling of large mechanical systems the

need for a efficient and yet relative simple beam model is required to maintain certain

standards in computational time. The purpose has been to create a structural beam

component that provides information concerning dynamics and deformation as a part

of large multibody systems. Common information within structural mechanics such as

internal stresses and strains has been disregarded in favour of reducing the complexity

of the model.

1.2 Objectives and Delimitations

The objectives specified from Modelon AB were from the start

1
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• Review of the model reduction methods with special focus on Floating Frame of

Reference formulation combined with Craig-Bampton method and the Absolute

Nodal Coordinates method.

• Review the specifics of object-oriented equation based modeling and identify pos-

sible pit-falls with the methods.

• Implementation of the two methods in 3D in form of a Modelica library compatible

with the standard multibody library.

• Implementation of the two methods in 1D in form of a Modelica library compatible

with the standard rotational and translational libraries.

• Development of test models and performance comparison of the methods.

During the project it was determined that an investigation and implementation of both

methods mention above would be to time consuming and focus shifted to the Floating

Frame of Reference formulation in combination with the Craig-Bampton method. At

first the ambition was also to implement a geometrically parametrized flexible beam i.e.

the beam could have a rectangular or circular cross section. However due to lack of time

the three-dimensional model was only implemented for a rectangular cross section.

An Euler-Bernoulli beam model is used in this thesis and the limitation on this model

is presented in Section 1.5.3. Additionally the following assumptions were also made:

• The material is isotropic and homogeneous.

• The material is linearly elastic and there is no consideration of plastic behaviour.

• The cross-sections of the beam are symmetric around the y- and z-axis.

• Only small strains are considered which in turn implies small angular deformation.

• The geometry of the beam is constant with time and calculated in the reference

configuration.

• In the 1D translational model only rectangular cross sections are considered.

• In the 1D rotational model both rectangular and circular cross sections are con-

sidered.

• In the 3D model only rectangular cross sections are considered.

These delimitations were made to simplify the model and hence make it more efficient.
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1.3 Description of Methodology

Throughout this project the focus has been to implement a flexible beam component

based on theory of the Floating Frame of Reference(FFoR) formulation . The FFoR

formulation was chosen due to it’s capabilities and advantages in modeling multibody

systems as well as similarities with the current implementation of components in Dymola.

The FFoR formulation is described in detail in Chapters 2, 3 and 4 while the structure

in Dymola is described in Chapter 5.

The FFoR formulation is a methodology which structures the equations of flexible multi-

body systems through the principle of Langrangian Dynamics. It follows from the prin-

ciple of virtual work and provides the equations of motion for the system. The FFoR

formulation can be applied to any flexible multibody system, it is however necessary to

provide information regarding the bodies deformable behaviour. The deformation is de-

scribed through the so called shape functions, which in this project are chosen according

to the Craig-Bampton method. The Craig-Bampton method divides the flexible body

into coupled substructures which imposes certain constraints on the shape functions.

In this project the shape functions of the substructures consists of analytical solutions

from the Euler-Bernoulli beam theory, the solutions are derived from both static and

dynamic cases of deformation. Where the dynamic shape functions are solutions from a

eigenvalue analysis of a vibrating flexible beam. The Craig-Bampton method is further

explained in Sections 2.4 to 2.7.

1.4 Previous Work

The project to develop a flexible beam model in Dymola started in 2009. There has

previously been two Master Thesis within this topic at Modelon AB. Both of the projects

used the Floating Frame of Reference formulation in combination with other theories.

The first project focused on the Finite Element Method [1], the objective was to link

Dymola with the FEA software Abaqus in order to run coupled simulations between the

two software’s. The project encountered different problems due to the underestimation

of the workload.

The second project focused on analytical solutions from eigenvalue analysis of vibrating

flexible beams [2]. The approach was similar to the one presented in this thesis but

the formulation didn’t include solutions to static cases of deformation which made the

model inefficient for those cases. The model also required the user to specify boundary

condition’s, a problem which has been solved differently in this project.
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1.5 Constitutive Relations within Solid Mechanics

This Section is meant to provide the reader with an review of the constitutive relations

used in this report. The beam model is based on these fundamental theories and the

equations in this Section are recurring content throughout the report.

1.5.1 Longitudinal Deformation

For a bar with arbitrary cross section geometry the constitutive relation between strain

and tensile force can be described as [3, p. 308]

ε(x, t) =
∂u(x, t)

∂x
, F (x, t) = AEε(x, t) (1.1)

where ε and F (x, t) is the elongation and tensile force, A is the cross-section area, E the

elasticity modulus and u(x, t) the longitudinal displacement a long the x-axis. Here it

is assumed that the area and elasticity modulus remain constant through the length of

the bar.

1.5.2 Torsional Deformation

In comparison to longitudinal deformation, torsional deformation of a shaft can be de-

scribed by the following constitutive relation. [3, p. 325]

M(x, t) = GK
∂θ(x, t)

∂x
(1.2)

Where M(x, t) is the torque and θ(x, t) is the torsional angle around the x-axis. G is

the shear modulus and K is the torsion stiffness factor depending on the cross section

geometry. Both the shear modulus and torsion stiffness is assumed to be constant

through the shaft.

1.5.3 Euler Bernoulli Beam Theory

The beam models created in this Master Thesis follows the Euler Bernoulli beam theory.

This model was chosen due to it’s simplicity in comparison to the Timoshenko beam

theory. There are some advantages with the Timoshenko beam theory, such as taking

shear deformation into account which makes it more suitable for describing short, thick

beams or high frequency excitation. However, it also involves two differential equations

instead of one which increases the complexity of the solution. Euler Bernoulli theory is
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more widely used and accounted for in the literature, making it a safer choice. These

arguments makes it a better candidate for the purpose of implementing a computer ef-

ficient model.

In Euler Bernoulli beam theory the following assumptions are made:

• The beams cross sections are considered flat and remain flat after deformation.

• Cross sections that are perpendicular to the centreline of the beam before defor-

mation remains perpendicular after deformation.

• The cross sections of the beam have initially a constant shape through the beam

length and the shape of the cross section remains the same after deformation.

These three assumptions imply zero shear deformation and leads to the following con-

stitutive relations [4, p. 115-116]

EI
∂2w(x, t)

∂x2
= −M(x, t) (1.3)

EI
∂3w(x, t)

∂x3
= −T (x, t) (1.4)

EI
∂4w(x, t)

∂x4
= q(x, t) (1.5)

θ(x, t) =
∂w(x, t)

∂x
(1.6)

where w(x, t) is the deflection in the bending plane, E the elasticity modulus, I the

planar second moment of area around the axis of bending, M(x, t) the bending moment,

T (x, t) the shear force and q(x, t) is the applied load per unit length with respect to the

x-coordinate .



Chapter 2

Kinematic Description

This Chapter explains the kinematic theory of the deformable beam. It starts from

the general formulation provided in the theory of Floating Frame of Reference and

applies this to the special case of an Euler Bernoulli beam. The position, velocity and

acceleration of any given material point in the beam is derived, which is later connected

with the theory of the Craig-Bampton method and the selection of shape functions.

2.1 The Position Vector

In the Floating Frame of Reference formulation the position of an arbitrary point p in

any body B can be described by the vector rp. This vector is defined in a fixed global

coordinate system. Introduce a local coordinate system in body B and the position of

point p can be described as,[5, p. 192]

rp = R + Aū (2.1)

where R is a vector from the origin of the global coordinate system to the origin of

the local coordinate system. A = A(θ) is the transformation matrix from the local

to the global coordinate system, it is defined by the rotational coordinates θ and has

orthogonal properties, i.e. ATA = I. ū describes the position of point p in the body

B, the bar above the vector denotes that this vector is defined in the local coordinate

system. In the case of rigid body motion the vector ū remains constant, in the case of

body B being a deformable body the vector ū changes depending on position and time.

The position ū can then be defined as

ū = ū0 + ūf (2.2)

6
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where

ū0 =


x

y

z

 (2.3)

describes the initial position of point p in the body and the vector

ūf =


uf1

uf2

uf3

 (2.4)

describes the displacement of p. Using separation of variables ūf can be separated into

two functions, one function depending on the position and one function depending on

the time[5, p. 190-191]. The deformation vector can then be expressed as

ūf (x, y, z, t) = S(x, y, z)qf (t) (2.5)

where x, y, z are the Cartesian coordinates in the local coordinate system, S(x, y, z) is

the shape function matrix that describes the shape of the deformation of body B. The

shape function matrix contains shape functions for each degree of freedom that has to

satisfy the kinematic constraints imposed on the boundary of the deformable body. The

vector qf (t) contains the generalized coordinates corresponding to the shape functions.

Combining equation (2.1), (2.2) and (2.5) yields the following expression for the po-

sition of point p

rp = R + A
(
ū0 + S(x, y, z)qf (t)

)
(2.6)

This is the general expression for describing the position of a point p on any body B.

For a beam under the influence of bending it is needed to consider the deformation due

to rotation around the local coordinate axis’s. The local position vector ū should then

be defined as

ū = ūc + ūp/c + ūf =


x

0

0

+


0

y

z

+ uf (2.7)

Where ūc is a vector along the beam axis to the cross section of interest. ūp/c is a vector

in the plane of the cross section, defined from the beam centreline to the point p. Con-

sult Figure 2.1 where these position vectors are illustrated in a beam with rectangular

cross section.
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rp

R

X

Y

Z

Figure 2.1: The position vector rp defined in the global coordinate system. The figure
also illustrates the two local position vectors ūc and ūp/c.

The deformation of point p can be divided into two terms. One describing the deforma-

tion of the beam centreline and one term describing the deformation due to the cross

section subjected to rotational effects.

ūf = ūr + ūθ (2.8)

Where

ūr =


ux

uy

uz

 , ūθ =


uθx

uθy

uθz

 (2.9)

and the deformation ūθ is defined as

ūθ = Af ūp/c − ūp/c ≈ (I + θ̃f )ūp/c − ūp/c = θ̃f ūp/c = −˜̄up/cθf (2.10)

where Af = Af (θf ) is a local rotation matrix that describes the rotation of the cross

section and

θf =


θx

θy

θz

 (2.11)
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is the angular deformation that arises due to the effects of bending and torsion. In this

formulation it is assumed that these angles can be approximated as small such that

tan(θf ) ≈ 0 (2.12)

Furthermore ˜̄up/c and θ̃ are the skew symmetric matrices of the vectors ūp/c and θ

defined as

˜̄up/c =


0 −z y

z 0 0

−y 0 0

 , θ̃ =


0 −θz θy

θz 0 −θx
−θy θx 0

 (2.13)

In general the ” ∼ ” sign above a vector denotes the skew symmetric matrix of this

vector. Now considering that each degree of freedom in point p can be described by

shape functions emerging from the equations in Section 1.5 and therefore only dependent

on the local x-coordinate. This implies the following

ūr = Sr(x)qf , Sr(x) =


Sx(x)

Sy(x)

Sz(x)

 (2.14)

θf = Sθ(x)qf , Sθ(x) =


Sθx(x)

Sθy(x)

Sθz(x)

 (2.15)

Where Sr(x) and Sθ(x) are matrices of the size [3 × n]. The vector qf is of the size

[n × 1] and n is the number of shape function used. Combining equation (2.14) and

(2.15) with (2.8) and inserting into equation (2.10) yields

ūf = (Sr − ˜̄up/cSθ)qf (2.16)

where the shape function matrix S can be identified as

S = S(x, y, z) = Sr(x)− ˜̄up/c(y, z)Sθ(x) =


Sx

Sy

Sz

−


0 −z y

z 0 0

−y 0 0




Sθx

Sθy

Sθz

 (2.17)

or in a more explicit form

S =


S1

S2

S3

 =


Sx + zSθy − ySθz

Sy − zSθx
Sz + ySθx

 (2.18)

which is used to describe the position of point p in equation (2.6).
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2.2 The Velocity Vector

The velocity of a arbitrary point p is obtained by differentiating equation (2.1) with

respect to time, which yields

ṙp = Ṙ + Ȧū + A ˙̄u (2.19)

where the second term can be written as Ȧū = −A˜̄uω̄,[5, p. 197] which can be used

along with ˙̄u = Sq̇f to write the velocity as

ṙp = Ṙ−A˜̄uω̄ + ASq̇f (2.20)

where ω̄[3×1] is the angular velocity vector defined in the local coordinate system. The

angular velocity depends on the rotational coordinates through [5, p. 52]

ω̄ = Ḡθ̇ (2.21)

where Ḡ = Ḡ(θ) is a transformation matrix expressed in the local coordinate system

depending on the rotational coordinates of the body. These rotational coordinates can

be chosen either as Euler parameters/quaternions, Rodriguez parameters, Euler angles

or other coordinates in favour. In this thesis it was decided to use Euler parameter-

s/quaternions since it simplifies the quadratic velocity vector which is further explained

in Section 3.6. This implies that the transformation matrices becomes [5, p. 31,51]

θ =


θ0

θ1

θ2

θ3

 , Ḡ = 2


−θ1 θ0 θ3 −θ2
−θ2 −θ3 θ0 θ1

−θ3 θ2 −θ1 θ0

 (2.22)

A =


1− 2(θ2)

2 − 2(θ3)
2 2(θ1θ2 − θ0θ3) 2(θ1θ3 + θ0θ2)

2(θ1θ2 + θ0θ3) 1− 2(θ1)
2 − 2(θ3)

2 2(θ2θ3 − θ0θ1)
2(θ1θ3 − θ0θ2) 2(θ2θ3 − θ0θ1) 1− 2(θ1)

2 − 2(θ2)
2

 (2.23)

where the quaternions need to fulfil the constraint

θTθ = 1 (2.24)

However, inserting equation (2.21) into (2.20) yields a final expression for the velocity

vector

ṙp = Ṙ−A˜̄uḠθ̇ + ASq̇f = Lq̇ (2.25)
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where L is a matrix and q̇ a vector defined as

L =
[
I −A˜̄uḠ AS

]
(2.26)

q =


R

θ

qf

 , q̇ =


Ṙ

θ̇

q̇f

 , q̈ =


R̈

θ̈

q̈f

 (2.27)

where q is the generalized coordinate vector, containing all the generalized coordinates

R[3 × 1], θ[4 × 1] and qf [n × 1] associated with rigid body translation and rotation as

well as deformation.

2.3 The Acceleration Vector

Differentiating equation (2.25) with respect to time yields the acceleration of an arbitrary

point p

r̈p = L̇q̇ + Lq̈ (2.28)

where everything is known except for L̇, which is given by

L̇ =
[
0 −Ȧ˜̄uḠ−A ˙̄̃uḠ−A˜̄u ˙̄G ȦS

]
(2.29)

which leads to the definition of the vector av. This vector contains all terms associated

with the quadratic velocity formulated in Section 3.6.

av = L̇q̇ =
[
0 −Ȧ˜̄uḠ−A ˙̄̃uḠ−A˜̄u ˙̄G ȦS

]
Ṙ

θ̇

q̇f

 (2.30)

By carrying out the matrix multiplication and using the following identities [5, p. 48,52]

ω̄ = Ḡθ̇

Ȧ = A ˜̄ω (2.31)

˙̄̃uω̄ = − ˜̄ωSq̇f (2.32)

Where the algebraic rule

x̃y = −ỹx (2.33)

and that

˙̄u = Sq̇f (2.34)
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has been used. The vector av becomes

av = A(˜̄ω)2ū−A˜̄u ˙̄Gθ̇ + 2A ˜̄ωSq̇f (2.35)

and equation (2.28) can be written as

r̈p = Lq̈ + av =
[
I −A˜̄uḠ AS

]
R̈

θ̈

q̈f

+ A(˜̄ω)2ū−A˜̄u ˙̄Gθ̇ + 2A ˜̄ωSq̇f (2.36)

2.4 The Craig-Bampton Method

As described in Section 2.1 the Floating Frame of Reference formulation factorizes the de-

formation in to two parts, namely the shape functions and generalized coordinates. The

shape functions represents how the deformation is described dependent on the location

within the body while the generalized coordinates are dependent on time. Multiplying

them together forms the full displacement field of the body. There are various methods

on how to select these shape functions and throughout this project the focus has been

on the Craig-Bampton method [6].

The Craig-Bampton method is a reduction technique which divides complex deformable

structures in to a assemblage of substructures. Each substructure has its own mass and

stiffness matrix associated with a set of generalized coordinates. The set involves two

forms of generalized coordinates, boundary generalized coordinates and internal general-

ized coordinates. The boundary generalized coordinates prescribe the displacements and

rotation at the boundaries while the internal generalized coordinates are related to the

free vibration modes of the substructure, with completely restrained boundaries. Con-

sequently the two sets of generalized coordinates become decoupled at the boundaries

of the substructure and coupled internally.

Applying this method to a Euler-Bernoulli beam model in a Floating Frame of Reference

formulation, implies that the shape functions matrix in equation (2.18) should consist

of two sets of shape functions, static and dynamic shape functions. The static shape

functions correspond to the boundary generalized coordinates while the dynamic shape

functions correspond to the internal generalized coordinates. The static shape functions

are selected according to what essential boundary conditions are applied to the beam

while the dynamic shape functions are calculated for a case of free vibration of the beam

while the boundaries are fixed.
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This method allows the static shape functions to fully describe the deformation at the

boundaries while the dynamics within the body is described as a linear combination

of the static and dynamic shape functions. The linear combination of the two within

the body together with the generalized deformation coordinates makes it possible to

provide time dependent solutions such as vibrations and with high accuracy describe

the displacements in a efficient manner.

2.5 Static Shape Functions

The static shape functions or mode shapes are determined in a similar manner as used

for a beam element Finite Element Method [7, Chapter 17]. The shape functions are

approximated as polynomials that should satisfy the constitutive relations described in

Section 1.5, additionally they also need to describe the body’s degrees of freedom and

the arbitrary motion of these independent from each other. These function are normal-

ized i.e. the function can vary between 0 and 1 if nothing else is stated.

Since these functions are expressed in the local coordinate system which in turn is

attached to the beams left end as seen in Figure 2.1, the boundary conditions for all

degrees of freedom at x = 0 are fixed. While for the right end at x = L, the boundary

conditions are considered free. This implies that there is no need to determine the static

shape functions for the left end since only the right end will move relative the local

coordinate system.

2.5.1 Longitudinal Deformation

Let Nx(x) be the static shape function for longitudinal deformation.

Nx(x) = α0 + α1x (2.37)

This function approximates the form of the displacement ux(x, t) = Nx(x)qf (t) along

the beams centreline and can represent arbitrary strain through equation (1.1).

Applying the boundary conditions for a beam that is fixed at the left end and free

at the right end determines the values of α0 and α1, the static shape function then

becomes [7, p. 99]

Nx(x) =
x

L
(2.38)
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2.5.2 Torsional Deformation

As seen in equation (1.2) and (1.1), the constitutive relation for torsional deformation

and longitudinal deformation have the same form. This implies that the static shape

function used for torsional deformation are equal to the one used for longitudinal defor-

mation, seen in equation (2.38).

Nθx =
x

L
(2.39)

2.5.3 Bending Deformation

x

y
u1

u2 u4

u3

z

Figure 2.2: Degrees of freedom for a beam in the x− y plane.

Consider a beam under the influence of bending in a plane. The simplest possible

representation of the beam consists of four degrees of freedom, two deflections and two

rotations, (see figure 2.2) and therefore requires that the static shape functions are at

least polynomials of the 3rd order. Let Ny(x) be the static shape function for bending

in the x− y plane.

Ny(x) = α0 + α1x+ α2x+ α3x
2 + α4x

3 (2.40)

This approximation of the shape function satisfies the constitutive relations (1.3), (1.4),

(1.5) and (1.6) through uy(x, t) = Ny(x)qf (t). It can also describe arbitrary deflection

and rotation a long the x-axis.

By using

uy(x, t) = Ny(x)qf (t), θz(x, t) =
∂uy(x, t)

∂x
=
dNy(x)

dx
qf (t) (2.41)

where uy is the bending displacement in y-direction and θz is the rotation around the

z-axis. Then the shape functions can be derived from letting them fully describe the

displacement of each degree of freedom at the boundaries. Since the shape functions are

expressed in the local coordinate system attached in the left end, only the displacement

at the right end needs to be considered.
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Described Dis-
placement

N(x = 0) (dNdx )x=0 N(x = L) (dNdx )x=L

u3 0 0 1 0
u4 0 0 0 1

Table 2.1: Boundary conditions for static shape functions associated with bending in
the x− y plane.

The two cases described in table 2.1 can be used to determine the αn coefficients in

equation (2.40) and implies the following two static shape functions [7, p 326]
N1
y (x) = x2

L2 (3− 2 xL)

N2
y (x) = x2

L ( xL − 1)

(2.42)

Here N1
y represent the deflection while N2

y represent the slope at the right end of the

beam. These functions are valid when bending occurs in the x−y plane. When bending

in the x−z plane is considered the shape function corresponding to the the slope changes

sign. This due to the definition of the right-handed coordinate system, see figure 2.3.

x

z
u1

u2 u4

u3

y

Figure 2.3: Degrees of freedom for a beam in the x− z plane.

uz(x, t) = Nz(x)qf (t), θy(x, t) = −∂uz(x, t)
∂x

= −dNz(x)

dx
qf (t) (2.43)

where uz is the bending displacement in z-direction and θy is the rotation around the

y-axis. For this case table 2.1 becomes

Described Dis-
placement

N(x = 0) (dNdx )x=0 N(x = L) (dNdx )x=L

u3 0 0 1 0
u4 0 0 0 -1

Table 2.2: Boundary conditions for static shape functions associated with bending in
the x− z plane.
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which yields the following static shape functions
N1
z (x) = x2

L2 (3− 2 xL)

N2
z (x) = x2

L (1− x
L)

(2.44)

Note that

N1
z = N1

y N2
z = −N2

y

due to the definition of the right-handed coordinate system.

2.6 Dynamic Shape Functions

According to the Craig-Bampton Method the dynamic shape functions should be de-

termined from a beam under the influence of free vibrations while it’s being fixed at

both ends. The solution can be derived for each degree of freedom from the constitu-

tive relations in Section 1.5 together with D’Alembert’s principle. By assuming that

displacements are small, each case of vibration can be described independent from each

other and derived individually. This procedure is presented in [3, Chapter 5] where the

author solves the free vibration problem for each case.

2.6.1 Longitudinal Vibration

By differentiating equation (1.1) with respect to x, the incremental difference in force

between two adjacent cross sections becomes

dF (x, t) = AE
∂2ux(x, t)

∂x2
dx (2.45)

when considering dynamics the incremental difference in force can be written as

dF (x, t) = Aρ
∂2ux(x, t)

∂t2
dx (2.46)

where ρ is the material density. Combining equation (2.45) and (2.46) together with

D’Alembert’s principle yields the following equation of motion for an infinitesimal ele-

ment within the bar [3, p. 308-310]

∂2ux(x, t)

∂t2
= α2∂

2ux(x, t)

∂x2
(2.47)
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where

α2 =
E

ρ
(2.48)

Recall that the displacement can be written as ux(x, t) = Sx(x)qf (t), which separates

(2.47) into two differential equations.

d2Sx(x)

dx2
+ p2Sx(x) = 0 (2.49)

d2qf (t)

dt2
+ λ2qf (t) = 0 (2.50)

where

p2 =
λ2

α2
(2.51)

Equation (2.49) is the differential equation for the normal modes and describes the mo-

tion of the bar depending on the location along the x-axis while equation (2.50) describes

the motion of the bar depending on time. λ is the eigenfrequency of the free vibration,

p is the frequency for corresponding normal mode.

The general solution to equation (2.49) is [3, p. 309]

Six(x) = Ccos(pix) +Dsin(pix) i = 1, 2, 3... (2.52)

which are the longitudinal shape functions or mode shapes of the free vibration problem.

The constants C and D depend on the boundary conditions applied at the bar’s ends

and i denotes the order of the mode shape.

The boundary conditions for a bar fixed at both ends implies that

Six(0) = 0, Six(L) = 0 (2.53)

which combined with the additional condition |Sxi(x)| ≤ 1 yields the following solution

to (2.52)

Six(x) = sin(pix), pi =
iπ

L
, i = 1, 2, 3... (2.54)

which are the dynamic shape functions used for longitudinal displacement.

The solution to (2.50) can be obtained in an identical approach, but in this beam model

that solution is obtained from equation (3.49) according to the Floating Frame of Ref-

erence formulation.
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2.6.2 Torsional Vibration

The equation of motion for a shaft under the influence of torsional vibration can in the

same manner as the longitudinal case be derived from (1.2) in Section 1.5. Together with

the incremental difference in moment between two adjacent cross sections the equation

of motion becomes [3, p. 325-326]

∂2θx(x, t)

∂t2
= β2

∂2θx(x, t)

∂x2
(2.55)

where

β2 =
GK

Jx
(2.56)

G is the shear modulus, K is the torsion stiffness depending on the geometry of the

cross section and Jx is the moment of inertia around the x-axis per unit length. In the

case of a circular shaft equation (2.56) can be reduced to

β2 =
G

ρ
(2.57)

since K = πr4

2 [8, p. 333] and Jx = ρπr4

2 where ρ is the density of the beam and r is the

radius of the cross section.

Equation (2.55) can, by knowing that θx(x, t) = Sθx(x)qf (t), be written as two separated

differential equations as
d2Sθx(x)

dx2
+ h2Sθx(x) = 0 (2.58)

d2qf (t)

dt2
+ λ2qf (t) = 0 (2.59)

where (2.58) is identical to (2.49) with the exception of

h2 =
λ2

β2
(2.60)

Both equations share the same general solution and by applying the boundary conditions

for a shaft fixed at both ends then the solution for the torsional vibration becomes

Siθx(x) = sin(hix), hi =
iπ

L
, i = 1, 2, 3... (2.61)

2.6.3 Bending Vibration

The applied load per unit length of a free beam in bending can be written as [3, p. 331-

332]
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q = −Aρ∂
2uy(x, t)

∂t2
(2.62)

Note that in equation (2.62) q is applied load per unit length. By using D’Alemberts

principle and (2.62) inserted into equation (1.5) yields the following equation of motion

for a infinitesimal element within the beam

EI
∂4uy(x, t)

∂x4
= −Aρ∂

2uy(x, t)

∂t2
(2.63)

or
∂2uy(x, t)

∂t2
+ β2

∂4uy(x, t)

∂x4
= 0 (2.64)

β2 =
EI

Aρ

With uy(x, t) = Sy(x)qf (t) and the assumption of harmonic motion, e.i. qf (t) =

Asin(λt) + Bcos(λt) then the differential equation for the normal modes can be de-

rived from (2.64) as
d4Sy(x)

dx4
= k4Sy(x) (2.65)

where k4 = λ2

β2 . Equation (2.65) has the general solution [3, p. 331-344]

Siy(x) = C1sin(kix) +C2cos(kix) +C3sinh(kix) +C4cosh(kix), i = 1, 2, 3... (2.66)

The boundary conditions for a beam with clamped ends are

Siy(x = 0) = 0, Siy(x = L) = 0 (2.67)

(
dSiy
dx

)x=0 = 0, (
dSiy
dx

)x=L = 0 (2.68)

Applying them to (2.66) implies that C1 = C3 = 0 and Siy(x) becomes

Siy(x) = cos(kix)− cosh(kix) + C(sin(kix)− sinh(kix)), i = 1, 2, 3... (2.69)

where

C =
C4

C2
=
cos(kiL)− cosh(kiL)

sinh(kiL)− sin(kiL)
(2.70)

and the eigenfreqency ki of the normal modes can be obtained by solving [3, p. 343-344]

cos(kiL)cosh(kiL) = 1 (2.71)
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Equation (2.69) gives the dynamic shape functions used for bending in the x− y plane,

these are exactly the same for bending in the x− z plane or in other words

Siz = Siy (2.72)

The slope of the beam is related to the bending according to equation 1.6. It follows

that the dynamic mode shapes related to rotation around the y- and z-axis’s will be.

Sθy = −dS
i
z

dx
(2.73)

Sθz =
dSiy
dx

(2.74)

where the minus sign is due to the definition of the coordinate system.

2.7 The 3D Shape Function Matrix

As expressed in Section 2.1, the shape function matrix is

S =


S1

S2

S3

 =


Sx + zSθy − ySθz

Sy − zSθx
Sz + ySθx

 (2.75)

Using the static and dynamic shape functions derived in Section 2.5 and 2.6, the shape

function vectors in

Sr =


Sx

Sy

Sz

 , Sθ =


Sθx

Sθy

Sθz

 (2.76)

can be assembled individually as

Sx =
[
Nx S1

x . . . Sn1
x 0n1+2 . . . 0n1+n2+n3+n4+6

]
(2.77)

Sy =
[

0 . . . 0n1+1 N1
y S1

y . . . Sn2
y 0n1+n2+3 . . . 0n1+n2+n3+n4+5 N2

y

]
(2.78)

Sz =
[
0 . . . 0n1+n2+2 N1

z S1
z . . . Sn3

z

0n1+n2+n3+4 . . . 0n1+n2+n3+n4+4 N2
z 0

] (2.79)
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Sθx =
[

0 . . . 0n1+n2+n3+3 Nθx S1
θx

. . . Sn4
θx

0 0
]

(2.80)

Sθy =
[
0 . . . 0n1+n2+2 −dN1

z
dx −dS1

z
dx . . . −dS

n3
z

dx

0n1+n2+n3+4 . . . 0n1+n2+n3+n4+4 −dN2
z

dx 0
] (2.81)

Sθz =
[

0 . . . 0n1+1 dN1
y

dx

dS1
y

dx . . .
dS

n2
y

dx 0n1+n2+3 . . . 0n1+n2+n3+n4+5 dN2
y

dx

]
(2.82)

Where n1, n2, n3 and n4 are the number of dynamic shape functions corresponding

to the degrees of freedom ux, uy, uz and uθx . The size of all S function vectors is

[1× (n1 +n2 +n3 +n4 + 6)] where the addition of 6 is due to the static shape functions.

It follows that the generalized deformation coordinates qf are structured as follows

qf =



qx

qy

qz

qθx

qθy

qθz


(2.83)

qx =


qsx

q1x
...

qn1
x

 qy =


qsy

q1y
...

qn2
y

 qz =


qsz

q1z
...

qn3
z

 (2.84)

qθx =


qsθx
q1θx
...

qn4
θx

 qθy = qsθy qθz = qsθz (2.85)

where the index s denotes that the generalized deformation coordinate corresponds to

a static shape function. The size of qx,qy,qz,qθx will depend on number of dynamic

shape functions chosen. qf will be of size [6×1] if no dynamic shape functions are used.
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Equations of Motion

In this Chapter a derivation of the equations of motion is presented. The mass matrix,

damping matrix, stiffness matrix and forces vectors are derived according to the Floating

Frame of Reference and the Euler Bernoulli beam theory.

3.1 Mass Matrix

The kinetic energy for an arbitrary body B is by definition [5, p. 200]

T =
1

2

∫
V

ρṙTp ṙpdV (3.1)

where ρ is the density of the body and the velocity vector ṙp is defined in equation

(2.25), insertion yields

T =
1

2
q̇T
∫
V

ρLTLdV q̇ (3.2)

since the vector of generalized coordinates q only depends on time. The mass matrix

can then be identified as

M =

∫
V

ρLTLdV =

∫
V

ρ


I

−(A˜̄uḠ)T

(AS)T

[I −A˜̄uḠ AS
]
dV (3.3)

22
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where it clearly shows that the mass matrix is symmetric. An explicit expression for the

mass matrix can be obtained by carrying out the matrix multiplication, which yields

M =

∫
V

ρ


I −A˜̄uḠ AS

ḠT ˜̄uT ˜̄uḠ ḠT ˜̄uS

sym STS

 dV =


mRR mRθ mRf

mθθ mθf

sym mff

 (3.4)

where the indices R, θ and f denotes translation, rotation and deformation respectively.

The mRR, mθθ and mff represents the mass matrices related to rigid body translation

and rotation as well as deformation, the other submatrices couples translation, rotation

and deformation. While mRR and mff are constant, the other submatrices depend

on the rotational coordinates θ as well as the elastic coordinates qf and are therefore

dependent on time.

The dependency on the generalized coordinates increases the complexity of the for-

mulation and requires that the submatrices are derived in efficient manner. The rest of

this section is devoted to explaining the derivation of the submatrices.

The most simple matrix is mRR, it can be determined as

mRR =

∫
V

ρIdV =


m 0 0

0 m 0

0 0 m

 (3.5)

where it clearly shows that this matrix is constant due to conservation of mass and it’s

associated with the rigid body motion.

The submatrix mRθ can be written as

mRθ = −
∫
V

ρA˜̄uḠdV = −A˜̄StḠ (3.6)

in which the skew symmetric matrix ˜̄St is defined as

˜̄St =

∫
V

ρ˜̄udV =


0 −S̄t3 S̄t2

S̄t3 0 −S̄t1
−S̄t2 S̄t1 0

 (3.7)

and its components can be calculated from the integrals in vector form

S̄t =

∫
V

ρūdV =

∫
V

ρ(ū0 + ūf )dV =

∫
V

ρ(ū0 + Sqf )dV (3.8)
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It is favourable to calculate S̄t with qf outside of the integral and define the two terms

as

S̄t = Ī0 + S̄qf (3.9)

where

Ī0 =

∫
V

ρū0dV (3.10)

S̄ =

∫
V

ρSdV (3.11)

The matrix in equation (3.11) is also needed for the calculation of submatrix mRf since

mRf = A

∫
V

ρSdV = AS̄ (3.12)

The next submatrix is mθθ, which is somewhat more complex in its derivation and

requires the calculation of several volume integrals. The matrix is declared in equation

(3.4) as

mθθ =

∫
V

ρḠT ˜̄uT ˜̄uḠdV = ḠT ĪθθḠ (3.13)

where Īθθ is the inertia tensor defined as

Īθθ =

∫
V

ρ˜̄uT ˜̄udV =

∫
V

ρ


(ū2)

2 + (ū3)
2 −ū2ū1 −ū3ū1

(ū1)
2 + (ū3)

2 −ū3ū2
sym (ū1)

2 + (ū2)
2

 dV (3.14)

The components in the inertia tensor can be derived as∫
V

ρ((ūk)
2 + (ūl)

2)dV = Ikk + 2I?kkqf + qTf S̄kkqf + Ill + 2I?llqf + qTf S̄llqf∫
V

ρūkūldV = Ikl + I?klqf + I?lkqf + qTf S̄klqf , k, l = 1, 2, 3 (3.15)

where the inertia shape integrals Ikl, I?kl and S̄kl are defined as

Ikl =

∫
V

ρxkxldV (3.16)

I?kl =

∫
V

ρxkSldV (3.17)

S̄kl =

∫
V

ρSTk SldV (3.18)

k, l = 1, 2, 3
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Here Sk is the kth row of the shape function matrix and x1, x2 and x3 are the components

of the initial position vector u0,

u0 =


x

y

z

 =


x1

x2

x3

 (3.19)

Note that the integrals in equation (3.16), (3.17) and (3.18) are of different sizes. Calcu-

lating the integrals for all combinations of k and l yields a [3 x 3] matrix from equation

(3.16), nine vectors of length [1× n] from (3.17) and nine matrices with the size [n× n]

from equation (3.18), where n is the total number of shape function used.

Some of these integrals are also needed to calculate the submatrix mθf , the matrix

is defined in equation (3.4) as

mθf = ḠT

∫
V

ρ˜̄uSdV = ḠT Īθf (3.20)

where Īθf can be calculated as

Īθf =

∫
V

ρ˜̄uSdV =

∫
V

ρ


ū2S3 − ū3S2

ū3S1 − ū1S3

ū1S2 − ū2S1

 dV (3.21)

Using equation (2.2) makes it possible to divide the above equation into two terms

Īθf =

∫
V

ρ


qTf (ST2 S3 − ST3 S2)

qTf (ST3 S1 − ST1 S3)

qTf (ST1 S2 − ST2 S1)

 dV +

∫
V

ρ


x2S3 − x3S2

x3S1 − x1S3

x1S2 − x2S1

 dV (3.22)

carrying on using equation (3.17) and (3.18) yields

Īθf =


qTf (S̄23 − S̄32)

qTf (S̄31 − S̄13)

qTf (S̄12 − S̄21)

+


I?23 − I?32

I?31 − I?13

I?12 − I?21

 (3.23)

which is the final expression for Īθf . Finally the last submatrix mff can be written,

using equation (3.18), as

mff =

∫
V

ρSTSdV = S̄11 + S̄22 + S̄33 (3.24)

and the derivation of the mass matrix is complete.
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3.2 Stiffness Matrix

The stiffness matrix can be derived from the definition of strain energy, the strain energy

per unit volume in index notation is defined as [9, p. 68]

U0 =

εij∫
0

σijdε
?
ij (3.25)

Where εij and σij denotes the current strains and stresses in the body. The other

variables ε?ij , denotes the integration variables, the indices i and j denotes the direction

of the stresses and strains. Due to the assumptions made, associated with the Euler-

Bernoulli beam theory in Section 1.5.3, most of the terms in equation (3.25) becomes

zero and the equation undertakes a more explicit form

U0 =

εxx∫
0

σxxdε
?
xx + 2

εxθ∫
0

σxθdε
?
xθ (3.26)

Where the first term is related with deformation due to axial and bending loads, the

second term is due to torsional deformation. Using the constitutive relation for a linear

elastic material and carrying out the calculation of the integrals yields [10, p. 93]

U0 =

εxx∫
0

Eεxxdε
?
xx + 4

εxθ∫
0

Gεxθdε
?
xθ =

E

2
ε2xx + 2Gε2xθ (3.27)

The two expressions for the displacements can be written as

uf1 = ux − y
duy
dx
− z duz

dx
(3.28)

uθx = rθx(=
√
y2 + z2θx) (3.29)

which implies that the strains are

εxx =
∂uf1
∂x

=
dux
dx
− yd

2uy
dx2

− z d
2uz
dx2

(3.30)

εxθ =
1

2

∂uθx
∂x

=
1

2
r
dθx
dx

(3.31)

Insertion of equation (3.30) and (3.31) into (3.27) yields

U0 =
1

2
E(
dux
dx
− yd

2uy
dx2

− z d
2uz
dx2

)2 +
1

2
G(r

dθx
dx

)2 (3.32)
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and the strain energy becomes

U =

∫
V

U0dV =
1

2

∫
V

E(
dux
dx
− yd

2uy
dx2

− z d
2uz
dx2

)2dV +
1

2

L∫
0

G(r
dθx
dx

)2dV (3.33)

Here the volume integrals can be reduced to integrals over the length L of the beam,

it can be shown that all the terms except for the quadratic ones becomes zero in the

first integral due to symmetry around the beam centreline. The second integral which is

associated with torsion can in the easiest way be calculated for a circular cross-section,

the strain energy then becomes

U =
1

2

L∫
0

EA(
dux
dx

)2 + EIz(
d2uy
dx2

)2 + EIy(
d2uz
dx

)2 +GK(
dθx
dx

)2dx (3.34)

Where it has been used that

Iy =

∫
A

z2dA, Iz =

∫
A

y2dA, K =

∫
A

r2dA (3.35)

Note that even though the assumption concerning a circular cross-section, it can be

shown through St. Venants torsion theory and the relation between moment and angu-

lar displacement, that the strain energy becomes the same for any cross-section. The only

difference will then be the geometry dependent torsion stiffness factor K [11, Chapter 5].

Recall the individual shape function vectors defined in equation (2.77), (2.78), (2.79)

and (2.80). Inserting them into (3.34) yields

U =
1

2
qTf

L∫
0

EA
dSTx
dx

dSx
dx

+EIz
d2STy
dx2

d2Sy
dx2

+EIy
d2STz
dx2

d2Sz
dx2

+GK
dSTθx
dx

dSθx
dx

dxqf (3.36)

Then the stiffness matrix associated with the generalized deformation coordinates in

equation (3.36) can be identified as

Kff =

L∫
0

EA
dSTx
dx

dSx
dx

+ EIy
d2STy
dx2

d2Sy
dx2

+ EIz
d2STz
dx2

d2Sz
dx2

+GK
dSTθx
dx

dSθx
dx

dx (3.37)

Hence the stiffness matrix for the whole body becomes

K =


0 · · · 0
...

. . .
...

0 · · · Kff

 (3.38)
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which has the size [(7 + n) × (7 + n)] where n is the total number of shape functions

used.

3.3 Equations of Motion

The mass matrix and stiffness matrix have been derived and these will be used in the

equations of motion. The equations of motion can be derived from Lagrange’s equations

[5, p. 223-224] but in this section it will be derived from the expression of virtual work

since it was found to be more convenient. The virtual work of all forces δWF acting on

an arbitrary body B can be written as

δWF = δWs + δWe + δWg (3.39)

Where δWs is the virtual work of the elastic forces resulting from the deformation of the

body, δWe is the virtually work of externally applied forces, δWg is the virtually work

due to gravitation and δq is the virtual change in generalized coordinates. These can

be written as [5, p. 214,216]

δWs = −δqTKTq (3.40)

δWe = δqTQe (3.41)

δWg = δqTQg (3.42)

Where K is the stiffness matrix expressed in equation (3.38), Qe are the generalized

external forces and Qg are the generalized forces caused by gravitation.

The virtual work of inertia forces are defined in [5, p. 226] as

δWI =

∫
V
ρδrTp r̈pdV (3.43)

Where δrp is the virtual change in position of point p governing from both rigid body

motion and deformation, defined as

δrp = δR−A˜̄uḠδθ + ASδqf (3.44)

Inserting equation (3.44) and (2.36) into (3.43) and simplifying the expression yields

δWI = δqT (

∫
V
ρLTLdV q̈ +

∫
V
ρLTavdV ) (3.45)
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where av is defined in equation (2.35). This equation can be written in a more convenient

form by using equation (3.3) and introducing the quadratic velocity vector Qv

δWI = δqT (Mq̈−Qv) (3.46)

Qv = −
∫
V
ρLTavdV (3.47)

The virtual work of all forces acting on the body must be equal to the virtual work of

inertia forces, putting δWF = δWI yields

δqT (−KTq + Qe + Qg) = δqT (Mq̈−Qv) (3.48)

Which can be rewritten in to the equations of motion

Mq̈ + Cq̇ + Kq = Qe + Qg + Qv (3.49)

where damping has been added to the system through the damping matrix C. This

matrix can be defined in different ways, in this beam model Rayleigh damping is used,

which defines the damping matrix as [12, p. 145]

C =


0 · · · 0
...

. . .
...

0 · · · Cff

 (3.50)

where

Cff = ηmff + δKff (3.51)

η and δ are parameters depending on the eigenfrequencies of the system and the critical

damping at these eigenfrequencies. Kff is defined in equation (3.37) and mff is defined

in equation (3.24).

Note that in [5, p. 224] the equations of motion also contains a vector for kinematic

constraints imposed on the body. In this project that method is not used since Dy-

mola imposes the kinematic constraint functions through connectors, which is further

explained in Chapter 5.
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3.4 Generalized External Forces

The external forces acting on a body can be derived from the external virtual work

written as

δWe = QT
e δq =

[
(Qe)

T
R (Qe)

T
θ (Qe)

T
f

]
δR

δθ

δqf

 (3.52)

Where (Qe)R, (Qe)θ and (Qe)f are the generalized external forces associated with the

translational, rotational and generalized deformation coordinates of the body. These

forces depends on the applied external loads on the body and the position they are

applied at.

Consider the body being under the influence of a force and moment applied at point p,

the external virtual work due to these load would be

δWe = FT δrp + MT δθp (3.53)

Where δθp is the virtual change in rotations, defined as

δθp = AḠδθ + ASθqf (3.54)

where δθ is the virtual change of the rotational coordinates defined in equation (2.22).

Inserting equation (3.44) and (3.54) into (3.53) and simplifying the expression yields

δWe = FT δR + (MTAḠ− FTA˜̄uḠ)δθ + (FTAS + MTASθ)δqf (3.55)

or in vector formulation

δWe =
[
FT (MTAḠ− FTA˜̄uḠ) (FTAS + MTASθ)

]
δR

δθ

δqf

 (3.56)

where the generalized external forces in (3.52) can be identified as

(Qe)R

∣∣∣
p

= F (3.57)

(Qe)θ

∣∣∣
p

= ḠTATM + ḠT ˜̄uATF (3.58)

(Qe)f

∣∣∣
p

= STATF + STθ ATM (3.59)

Note that these components should be evaluated at the location of point p in order to

obtain a correct expression for the external work.
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3.5 Generalized Gravitational Forces

The derivation of the generalized gravitational forces is almost identical to the derivation

of the generalized external forces, with the exception of gravitation acting as a body force

at each point in the body. The virtual work caused by gravitation can be calculated

through

δWg = QT
g δq =

[
(Qg)

T
R (Qg)

T
θ (Qg)

T
f

]
δR

δθ

δqf

 =

∫
V

ρgT δrpdV (3.60)

where

g =


0

0

−g

 (3.61)

is expressed in the global coordinate system, δrp is defined in equation (3.44) and g is

the gravitational constant. Insertion of equation (3.44) into (3.60) yields

δWg =

∫
V

ρgT (δR−A˜̄uḠδθ + ASδqf )dV (3.62)

which can be written in vector form as

δWg =

[∫
V

ρgTdV
∫
V

ρgTA˜̄uT ḠdV
∫
V

ρgTASdV
]

δR

δθ

δqf

 (3.63)

which in comparison with equation (3.52) can be used to identify the components of the

generalized gravitational force vector Qg as

(Qg)R = mg (3.64)

(Qg)θ = −ḠT

∫
V

ρ˜̄udVATg = ḠT ˜̄StA
Tg (3.65)

(Qg)f =

∫
V

ρSTdVATg = S̄TATg (3.66)

where equations (3.7) and (3.8) have been used.
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3.6 Quadratic Velocity Vector

As with the generalized external forces, the quadratic velocity vector can be divided by

their corresponding generalized coordinates, namely

Qv =


(Qv)R

(Qv)θ

(Qv)f

 (3.67)

The quadratic velocity vector arises due to the coupling between rigid body motion

(rotation, translation) and deformation, it includes the effect of Coriolis and centrifugal

forces and is a nonlinear function of the generalized coordinates and velocities. It’s

components can be derived from equation (3.47) which states that

Qv = −
∫
V
ρLTavdV = −

∫
V
ρ


I

−ḠT ˜̄uTAT

STAT

 (A(˜̄ω)2ū−A˜̄u ˙̄Gθ̇+ 2A ˜̄ωSq̇f )dV (3.68)

The component (Qv)R can be identified as the first matrix multiplication in equation

(3.68).

(Qv)R = −A[(˜̄ω)2
∫
V
ρūdV −

∫
V
ρ˜̄udV ˙̄Gθ̇ + 2˜̄ω

∫
V
ρSdV q̇f ] (3.69)

Inserting equation (3.8), (3.7) and (3.11) into (3.69) yields

(Qv)R = −A[(˜̄ω)2S̄t − ˜̄St
˙̄Gθ̇ + 2˜̄ωS̄q̇f ] (3.70)

Carrying on with the second matrix multiplication in equation (3.68) to get (Qv)θ

(Qv)θ = ḠT

∫
V
ρ˜̄uT (˜̄ω)2ūdV − ḠT

∫
V
ρ˜̄uT ˜̄udV ˙̄Gθ̇ + 2ḠT

∫
V
ρ˜̄uT ˜̄ω ˙̄udV (3.71)

where the orthogonality of the transformation matrix has been used (AAT = I) and

that ˙̄u = Sq̇f . Equation (3.71) can be rewritten into

(Qv)θ = −ḠT ˜̄ω

∫
V
ρ˜̄uT ˜̄udV ω̄ − ḠT

∫
V
ρ˜̄uT ˜̄udV ˙̄Gθ̇ − 2ḠT

∫
V
ρ˜̄uT ˙̄̃udV ω̄ (3.72)

by using the following operations

x̃T ỹx̃y = ỹx̃T x̃y (3.73)

x̃y = −ỹx (3.74)
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which holds for any vectors x and y [13]. Insertion of equation (3.14) and making use

of the chain rule
˙̄Iθθ =

dĪθθ
d˜̄u

˜̄u

dt
= 2

∫
V
ρ˜̄uT ˙̄̃udV (3.75)

then equation (3.72) becomes

(Qv)θ = −ḠT ˜̄ωĪθθω̄ − ḠT Īθθ
˙̄Gθ̇ − ḠT ˙̄Iθθω̄ (3.76)

The last component of the quadratic velocity vector is obtain from the last matrix

multiplication in equation (3.68), which can be simplified into

(Qv)f =

∫
V
ρST ˜̄ω ˜̄udV ω̄ +

∫
V
ρST ˜̄udV ˙̄Gω̇ + 2

∫
V
ρST ˙̄̃udV ω̄ (3.77)

or by using equation (3.20), in a more explicit form

(Qv)f = ĪQvω̄ − ĪTθf
˙̄Gθ̇ − 2˙̄ITθf ω̄ (3.78)

where

ĪQv =

∫
V
ρST ˜̄ω ˜̄udV =

ω̄1(I
∗
22 + I∗33)− ω̄2I

∗
21 − ω̄3I

∗
31

−ω̄1I
∗
12 + ω̄2(I

∗
11 + I∗33)− ω̄3I

∗
32

−ω̄1I
∗
13 − ω̄2I

∗
23 + ω̄3(I

∗
11 + I∗22)


T

+


qTf (ω̄1(S̄22 + S̄33)− ω̄2S̄

T
12 − ω̄3S̄

T
13)

qTf (−ω̄1S̄12 + ω̄2(S̄11 + S̄33)− ω̄3S̄
T
23)

qTf (−ω̄1S̄13 − ω̄2S̄23 + ω̄3(S̄11 + S̄22))


T

(3.79)

ω̄ =


ω̄1

ω̄2

ω̄3

 (3.80)

and the body integrals I∗kl, S̄kl are obtained from equation (3.17) and (3.18). ˙̄Iθf is

obtained by the time derivative of equation (3.23)

˙̄Iθf =

∫
V
ρ ˙̄̃udV =


q̇Tf (S̄23 − S̄32)

q̇Tf (S̄31 − S̄13)

q̇Tf (S̄12 − S̄21)

 (3.81)

This summarizes the derivation of the components of the quadratic velocity vector into

(Qv)R = −A[(˜̄ω)2S̄t − ˜̄St
˙̄Gθ̇ + 2˜̄ωS̄q̇f ]

(Qv)θ = −ḠT ˜̄ωĪθθω̄ − ḠT Īθθ
˙̄Gθ̇ − ḠT ˙̄Iθθω̄

(Qv)f = ĪQvω̄ − ĪTθf
˙̄Gθ̇ − 2˙̄ITθf ω̄ (3.82)
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Note that ˙̄Gθ̇ is a null vector when quaternions are used [5, p. 52,58] and the quadratic

velocity vector can be simplified.



Chapter 4

One Degree of Freedom

In this Chapter a derivation of a translational and a rotational beam model is presented.

They are derived individually in two different sections by using the same principles

presented in Chapter 3.

4.1 Translational Formulation

4.1.1 Position and Velocity Vector

Applying the equations from the previous Chapter to a one-dimensional problem reduces

the number of equations drastically. The global and local coordinate systems are only

related by a distance along one axis and there is no rotation between them. The position

of an arbitrary point p on a body B then instead becomes, consult Figure 4.1

rp = R+ u = R+ u0 + uf (4.1)

Where R denotes the distance between the global and local coordinate systems, u0 is

the rigid body motion and

uf = Sqf =
[
Nx S1

x . . . Snx

]

qsx

q1x
...

qnx

 (4.2)

is the deformation. Here S becomes a row vector instead of a matrix due to the re-

duction in dimensions, the length of the vector depends on the number n dynamic

35
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shape-functions, same goes for the generalized elastic coordinates qf . The components

of the S shape function vector are the same as in equation (2.77).

R

Figure 4.1: Position of the point p under the influence of longitudinal deformation.

The velocity and acceleration can then be expressed as

ṙp = Ṙ+ u̇f = Ṙ+ Sq̇f = Lq̇ (4.3)

r̈p = R̈+ Sq̈f = Lq̈ (4.4)

and the row vector L can then be identified as

L =
[
1 S

]
(4.5)

as well as the generalized coordinate vector

q =

[
R

qf

]
(4.6)

4.1.2 Mass Matrix and Stiffness Matrix

As seen in equation (4.5) there are no matrices associated with rotation which leads to

the mass matrix taking the following form

M =

∫
V
ρLTLdV =

∫
V
ρ

[
1 S

ST STS

]
dV =

[
mRR mRf

sym mff

]
(4.7)

The components of the mass matrix can be identified as
mRR =

∫
V ρdV = m

mRf =
∫
V ρSdV

mff =
∫
V ρS

TSdV

(4.8)

The stiffness matrix associated with the generalized deformation coordinates becomes

the same as the first term in equation (3.37) with the exception of Sx being replaced
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with S. This leads to

Kff =

L∫
0

EA
dST

dx

dS

dx
dx (4.9)

and the full stiffness matrix can be written as

K =

0 . . .
... Kff

 (4.10)

4.1.3 Generalized External Forces

Using equation (3.52) and neglecting rotation the virtual external work of a translational

body may be written as

δWe = QT
e δq =

[
QR QT

f

]
δq (4.11)

If an external force is applied at an arbitrary point p of a body then the virtual work

becomes

δWe = Fpδr (4.12)

where

δr = δR+ Sδqf = Lδq (4.13)

Which leads to

QT
e = FpL = Fp

[
1 S

]
(4.14)

An the two components of the generalized external forces vector can be identified asQR = Fp

Qf = FpS
T

(4.15)

where the components should be evaluated at point p.

4.1.4 Equations of Motion

In the same manner as for the multidimensional case the equations of motion become

Mq̈ + Cq̇ + Kq = Qe (4.16)
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where C is defined in the same manner as in equation (3.50).Equation (4.16) can be

written in a more explicit form

[
mRR mRf

mT
Rf mff

][
R̈

q̈f

]
+ C

[
Ṙ

q̇f

]
+

0 . . .
... Kff

[R
qf

]
=

[
QR

Qf

]
(4.17)

Note that the quadratic velocity vector is not present in this set of equations, this is due

to the absence of rotation in the system. Gravitational forces are also neglected due to

the reduction in degrees of freedom.

4.2 Rotational formulation

4.2.1 Position and Velocity Vector

The rotational formulation only considers motion in one rotational degree of freedom,

namely rotation around the beam centreline. The derivation is very similar to the

translational formulation, the angular position of a point p can be described as, consult

figure 4.2

θp = θR + θ0 + θf (4.18)

Where θp is the total angle of interest, θR defines the rotation of the local coordinate

system relative the global, θ0 is the initial angle of point p and θf is the angular defor-

mation

θf = Sqf =
[
Nθx S1

θx
. . . Snθx

]

qsθx
q1θx
...

qnθx

 (4.19)

θR

Figure 4.2: Angular position of the point p under the influence of torsional deforma-
tion

Differentiate equation (4.18) with respect to time yields the angular velocity
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θ̇p = θ̇R + Sq̇f =
[
1 S

] [θ̇R
q̇f

]
= Lq̇ (4.20)

The velocity for any point p on a cross-section can be described as

vp = rθ̇p = rLq̇ (4.21)

where

r =
√
y2 + z2 (4.22)

is the distance between the beam centreline and point p in the y − z plane.

4.2.2 Mass and Stiffness Matrix

Using equation (4.21) the kinetic energy becomes

T =
1

2
q̇T
∫
V
ρr2LTL dV q̇ (4.23)

where the mass matrix can be identified as

M =

∫
V
ρr2LTL dV =

∫
v
r2

[
1 S

ST STS

]
dV =

[
mθθ mθf

mfθ mff

]
(4.24)

and the submatrices are

mθθ =

∫
V
ρr2dV mθf =

∫
V
ρr2S dV mfθ =

∫
V
ρr2ST dV mff =

∫
V
ρr2STS dV

(4.25)

The stiffness matrix associated with torsion is derived in Section 3.2 and can be identified

as the last term in equation (3.37) as

Kff =

∫ L

0
GK

dST

dx

dS

dx
dx (4.26)

where G is the shear modulus depending on material and K is the geometry dependent

torsion stiffness factor. The fully assembled stiffness matrix then becomes

K =

0 . . .
... Kff

 (4.27)
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4.2.3 Generalized External Forces

The virtual work of external forces in torsion can be written as

δWe = QT
e δq =

[
QT
θ QT

f

] [ δθ

δqf

]
(4.28)

Where QT
θ and QT

qf
are generalized forces associated with the generalized coordinate

δθ and δqf respectively. If an external moment is applied at an arbitrary point p of a

body the external virtual work becomes

δWe = Mδθp (4.29)

where

θp = δθR + Sδθf = Lδq (4.30)

This leads to

QT
e = ML (4.31)

and the generalized external forces becomes

Qθ = M Qf = MST (4.32)

4.2.4 Equation of motion

The equations of motion takes the form

Mq̈ + Cq̇ + Kq = Qe (4.33)

and in a more explicit form[
mθθ mθf

mfθ mff

][
θ̈

q̈f

]
+ C

[
θ̇

q̇f

]
+

[
0 0

0 Kff

][
θ

qf

]
=

[
QTθ

Qqf

]
(4.34)

The quadratic velocity vector and the gravitational force vector are not present in this

equation. This due to the reduction of degrees of freedom in the system.
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Implementation in Dymola

This Chapter gives a introduction to Dymola, a computer modeling software used in

this Thesis. The implementation of the theoretical beam model and the structure of the

model is presented and different aspects of the implementation are discussed.

5.1 Introduction to Dymola

Dymola is an object orientated computer software with the possibility to model large

physical systems. The program spans over different fields of engineering such as electri-

cal, mechanical, hydraulic, thermodynamic. One of the advantages with Dymola is the

possibility to integrate different fields of engineering in the same system model. Each

specific field has its own library with all the necessary tools required to build a model

such as components, connectors, sources. These can be used to build models with a

drag and drop technique. The language used in Dymola is named Modelica and is an

equation based language. Every component is described by physical equations and the

connections between components contains flow and potential couple equations, i.e. for a

component in the Mechanical library the flow equation is the force and the position is the

potential equation. Dymola is designed to solve ordinary differential equations efficiently

and the Modelica language has an in-built time derivative operator which makes it easy

to break down differential equations of higher order in to sets of first order. When the

equations of the model are defined, Dymola solves it using numerical time integration

schemes integrated within the software.

41
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5.2 Frames

In the Modelica Multibody Dynamics library frames are used to describe an objects

spatial position and orientation. Each frame can be seen as a local coordinate system

attached at some point in the body. A frame contains a position vector, r0, rotation

object R, force vector f and torque vector t. The position vector r0 describes the position

of the frame relative an inertial frame. This vector is defined in the inertial frame. The

rotation object R contains a transformation matrix T and the angular velocity vector

ω. The transformation matrix T transforms the inertial frame into the local frame. ω

is the angular velocity of the local frame with respect to the inertial frame, defined in

the local frame. The force vector f and the torque vector t are both defined in the local

frame. An illustration of frame variables is presented in Figure 5.1.

Figure 5.1: Illustration of the connection between two frames in Dymola. World is
the inertial frame.

There are two different approaches available in order to define the rotation object R in

the Multibody library, quaternions(i.e. Euler parameters) or angles. Quaternions defines

a three angle rotation through four parameters and therefore an additional equation is

required in the implementation, see equation (2.24). Angles uses three different angles

and requires the user to specify in what sequence the rotation should be preformed e.g.

Euler angles or Bryant angles. In Dymola there are implemented functions that can be

used to create a rotation object from chosen angular description or vice versa.

Mentioned above is the use of an inertial frame. In Dymola this is represented by a model

called Worldframe. This model creates a frame fixed to ground that all other components

will refer to. Worldframe is also used to activate gravity or enable animation in a system

model. There are three options for the gravity parameter namely uniform gravity field,

point gravity or no gravity. The animation parameter can be set to true if animation

should be enabled or false if no animation is required.
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5.3 States

Dymola uses a set of states to describe the dynamics of a multibody model. The states

can be position, angular representation or their time derivatives. The states corresponds

to each degree of freedom in the model. Since there might be several potential states for

each degree of freedom, the user can manually specify the set of states directly. If not,

Dymola will select a suitable set.

The states describe the motion of the body. If the body is deformable then additional

states are necessary to describe the deformation of the body. Hence all generalized

deformation coordinates qf and their time derivatives are used as state when the beam

model is simulated. Therefore the number of states in the beam model is depending on

the number of shape functions used.

When a multibody model is simulated in Dymola there are a lot of possible states.

Before the simulation starts Dymola uses the kinematic constraint equations to reduce

the number of states to a minimum.

5.4 Roots and branches

Each of the components have a set of states and some kinematic constraints. For ex-

ample a revolute joint constraints the angular motion around two directions and all

translational motion. This component has two internal states, namely a angle and it’s

time derivative. The revolute joint will give a kinematic connection between two bodies.

When solving the model Dymola needs to know where to start. This is handled with a

flag that tells Dymola if the component is a root or not. If the component is a root then

Dymola start with this component and works through the model. The beam model in

this thesis is a potential root which mean that the beam is used as a root if necessary,

e.g. a beam in free fall. If for instance the beam is connected to a fixed frame, then the

fixed frame will be the root and the beam will use the known states of the fixed frame

to calculate the states within the beam i.e. the beam is no root in this case.

When building a multibody model in Dymola its possible to construct kinematic loops.

A kinematic loop is when several components are connected with kinematic constraints

and more than one component is selected as root. The tool needs to take extra care

to handle this automatically. Dymola builds an abstract connection graph of the model

and sees if there is any loops present. If so it contains an algebraic loop and need to

cut it. The Modelica modelling language features language elements for building such a

graph, and letting the component developer tell the tool how the component interacts in
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the connection graph. Components with no internal kinematic constraints e.g. spherical

joints can be used as a cut to divide a kinematic loop in to different branches. Then

Dymola solves each branch individually to later ”bind” them together again by iterating

a nonlinear system of equations. An example of such a problem is illustrated in Figure

5.2.

Figure 5.2: Dymola schematic illustration of the concepts roots, branches and cuts.

5.5 Beam Model

5.5.1 Model Structure

The theory described in Chapter 2, 3 and 4 was implemented as components in Dymola.

Each component were created in individual libraries named after the their degree of

freedoms, a total of three libraries were created, namely Translational, Rotational and

Multibody. Each library has a main component, a Functions package and a TestModels

package. The main component includes the equation of motion and all other necessary

equations to describe the beam. Functions include functions used to calculate the nec-

essary information needed to describe the dynamics of the beam. TestModels include

different test models. The geometry dependent parameters are calculated in the package

Geometry. A scheme of the libraries can be seen in Figure 5.3
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Figure 5.3: Libraries scheme.

The Functions package in the Multibody library were divided into different packages

dependent on which equations it is associated with, these groups were: MassMatrix,

S functions, Frequencies, ForceVectors and Graphics. Consult figure 5.4.
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Figure 5.4: Multibody functions scheme

Most importantly the S functions package contains all functions associated with the

shape functions and their integrals. The functions in the package were designed so that

all time independent integrals could be calculated in a pre-processor to save computation

time, therefore they were divided into time independent and time dependent functions.

The time independent functions comprises calculation of (3.10), (3.11), (3.16), (3.17)

and (3.18) as well as the integrals shown in (3.37). While the time dependent functions

comprises calculation of (3.9), (3.14) and (3.21).

The packages MassMatrix contains functions calculating individual submatrices defined

in (3.4) as well as a function that assembles it to full size. The stiffness matrix only

contains one submatrix and therefore the assembly is done in the same function that

calculate equation (3.37). Furthermore the package Frequencies includes functions to

calculate the eigenfrequencies of the beam and Graphics calculate necessary properties

for the visualization. Finally the last mentioned package, ForceVectors, contains func-

tions used to evaluate the external force vector, the gravitational force vector and the

quadratic velocity vector.

In Figure 5.5 a work flow scheme can be seen. This scheme gives an idea of how the

beam model works.
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Figure 5.5: Work flow scheme of the main component FlexBeam.

5.5.2 Main Component

The equations of motion described in Section 3.3 were implemented in the model main

component named FlexBeam. The main component connects the Functions package with

information regarding given geometry and material properties as well as the equations of

motion. The size of the equations of motion depends on the number of shape functions

used, which also depends on the number of normal modes used for each DoF.

Each mechanical component in Dymola needs connectors to be able to connect to other

components. These connectors uses frames that are placed at points where the boundary

conditions are described. It could be another component but also external loads or

prescribed motions. In the main component FlexBeam two frames are used, that is one

at each end.

The two frames are named frame a and frame b, the beam component uses frame a as

a reference for its local coordinate system and uses the equations of motion to calculate

the position, orientation and angular velocity of frame b. If another component is con-

nected to frame a then the beam component receives position, orientation and angular

velocity from that component. If nothing is connected then the beam component uses

its internal initial states to solve the equations of motion. This is handled through roots

and branches as mentioned in Section 5.4.
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5.5.3 Graphical Representation

To visualize the beam a Dymola model called SurfaceFrame is used. This model makes

a parametrized surface out of given input coordinates. Two parameters are used to

define the number of grid point used to parametrize the beam surface, namely nu and

nv. Where nu is the number of grid points along the beam axis and nv is the number of

grid points needed to describe the boundary of the cross-section. The beam model only

supports rectangular visualisation and therefore nv is set to five. This due to the fact that

all four corners of the cross-section are needed to describe the surface. The fifth point is

the same as the starting corner coordinates and enables the cross-section to be closed.

nu can be set to a suitable integer value chosen by the user. Necessary coordinates are

calculated with the help of two functions evalS gridpoints and eval gridPosition. Where

evalS gridpoints evaluates the shape function matrix in every grid point, which is done

before the iteration process starts. eval gridPosition calculate the position of each grid

point in every iteration using the shape functions for each grid point and the generalized

coordinate vector qf .

Since the deformations of the beam are assumed to be small, a scaling option has been

implemented. This was done to enable visualization of the deformation. It is possible

to scale the deformation in the x-, y- and z-direction. A blue beam is used to visualize

the scaled deformation and a red beam is used to visualize the unscaled deformation as

seen in Figure 5.6.

Figure 5.6: An animation of a beam with rectangular cross section before deformation.
The x-axis coincide with the beam centreline. Direction of gravity is shown by the green

arrow.

5.5.4 Geometry

There are a lot of parameters depending on the cross-section geometry in the beam

model, for instant torsion stiffness, inertia and planar second moment of area. These

parameter are calculated in a function called Rectangle. This function extend the partial
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function CrossSection. The idea of this structure is to enabled the user to chose a cross-

section, define the geometry and then all necessary parameters can be calculated. The

three-dimensional beam model however only supports a rectangular cross-section.

5.5.5 Equations of Motion using ω

Mentioned above is the use of states when solving models in Dymola. If quaternions are

used four parameters and one constraint function describes the rotation. This means

that Dymola can make the choice to use these parameters as states. The formulation

using quaternions as possible states works fine if the body is a root. In this case the

angular velocity and transformation matrix are calculated using the quaternions. If

the body is not a root information regarding angular velocity and the transformation

matrix will be know at one of the frames. In this case the quaternions are calculated

from the angular velocity and transformation matrix. Due to the complexity of the

relation between the angular velocity, the transformation matrix and the quaternions it

is more convenient to rewrite the equation of motion with angular velocity instead of

quaternions. This can be done using equation (2.21) and its time derivative

ᾱ = ˙̄ω = ˙̄Gθ̇ + Ḡθ̈ (5.1)

The first therm in equation 5.1 will be a null vector when quaternions are used according

to [5, p. 227]. If equation 5.1 is used in 3.4 then the mass matrix can be written as

M =

∫
V

ρ


I −A˜̄u AS

ḠT ˜̄uT ˜̄u ḠT ˜̄uS

sym STS

 dV (5.2)

By multiply the second row of the equation of motion by Ḡ and make use of the quater-

nions identities from [5, p. 58] and the definition of Ḡ [5, p. 52].

Ḡ = 2Ē (5.3)

ḠḠT = 4ĒĒT = 4I (5.4)

The equation of motion can be rewritten.
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mRR A˜̄STt AS̄

Īθθ Īθf

symmetric mff




R̈

ᾱ

q̈f

 =


(Qe)R

(Qe)α

(Qe)f −Kffqf −Cff q̇f

+


(Qv)R

(Qv)α

(Qv)f

+


(Qg)R

(Qg)α

(Qg)f


(5.5)

where the components in the mass matrix are defined in Chapter 3. The components in

the force vectors associated with rotation will be

(Qe)α = ATM + ˜̄uATF (5.6)

(Qg)α = ˜̄StA
Tg (5.7)

(Qv)α = − ˜̄ωĪθθω̄ − ˙̄Iθθω̄ (5.8)

5.5.6 Calculations of the Inertia Shape Integrals

In Section 3.1 the mass matrix was derived. The mass matrix contains different integrals

of the shape functions that needs to be evaluated. This was done using the software

Maple and the free computational knowledge engine Wolframalpha. When evaluating

equation (3.10), (3.11), (3.16) and (3.17) only one shape function vector is present and

no special treatment is necessary. However when equation (3.18) is calculated there

are vector multiplications of the shape function vectors. To simplify the calculations

the orthogonal properties of the dynamic shape functions were used. This states that

the integral over the length of two shape functions with two different frequencies will

be zero. This can be shown by using integration by part combined with the boundary

conditions.

Making use of equation (2.49) with the two different eigenfrequencies pn and pm

d2Snx (x)

dx2
= −p2nSnx (x)

d2Smx (x)

dx2
= −p2mSmx (x)

By multiplication of the first equation with Smx and the second with Snx and subtracting

the first with the second one gets

p2m − p2n
a2

SnxS
m
x = Smx

d2Snx
dx2

− Snx
d2Smx
dx2

Integrating both sides over the length and using integration by parts yields

p2m − p2n
a2

∫ L

0
SnxS

m
x =

[
Smx

dSnx
dx
− Snx

dSmx
dx

]L
0

−
∫ L

0

dSmx
dx

dSnx
dx
− dSmx

dx

dSnx
dx

dx = 0
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Where the boundary conditions in equation 2.53 has been used.

This proves the orthogonality for longitudinal dynamic mode shapes. In the same way

the orthogonality for the torsional dynamic mode shapes can be proved. The proof for

orthogonality of lateral vibrations can be done in a similar way [3, p. 334].

The dynamic mode shapes of the slope Sθy and Sθz are related to the lateral shape

functions by equation (2.73) and (2.74). In this master thesis these shape functions are

assumed to have the orthogonality properties, but this has not been proven.



Chapter 6

Validation

In this Chapter, test cases for validation are presented for both the one-dimensional and

three-dimensional models. The results are compared with analytical solutions from the

Euler Bernoulli beam theory, described in Section 1.5.

6.1 Three-Dimensional Model

In order to verify the three-dimensional model it was required to test each degree of

freedom and their response in different loading situations. The test was divided into

three main categories: static loading, free vibration and forced vibration. The tests

were carried out on a beam fixed in frame a and free in frame b, i.e. the load was

applied at frame b. The displacements were calculated at frame b.

During static loading the beam was subjected to a linearly increasing load. The displace-

ments were measured and the results were compared with the analytical solution for a

Euler Bernoulli beam. In the free vibration test case the displacement of the beam was

set to an initial value which caused the beam to vibrate freely. The natural frequency of

the beam was observed and measured and then compared with the analytical solution.

The forced vibration test case investigated if the beam model could enter mechanical

resonance when subjected to a harmonic force.

In addition to verification of the shape functions some additional tests regarding gravi-

tational and centrifugal forces were made in order to verify the beam response to these

phenomenons.

52
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6.1.1 Static Loading

The following material and geometric parameters were used for the static force load

cases: E = 210GPa, ρ = 2700Kgm−3, L = 1m, h = 0.1m, b = 0.07m and v = 0.3.

Where E is the Young’s modulus, ρ material density, L length of the beam, h and b are

the hight and width respectively. Possion’s ratio is denoted by v. The force at frame

b was set to increase linearly from F = 0N to F = 1000N during one second while

the other directions were set to zero. After one second the force remain constant. The

damping of the stiffness matrix was set to δ = 10−4 to avoid vibrations in the beam.

This damping was introduce to reduce simulation time and numerical noise. The mass

matrix damping coefficient η was set to zero during all simulations. The models were

simulated during 1.5 seconds with 5000 steps.

The same material and geometric parameters were used in the static torque load cases,

with exception of the width b being changed to b = 0.08m to simplify the analytical

solution. The torque or bending moment was set to increase linearly from M = 0Nm to

M = 3000Nm during one second and then kept constant. The torque/bending moment

around the other axes were set to zero. Simulations were carried out with the same

number of steps and simulation time as the static force models.

6.1.1.1 Force x-direction
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Figure 6.1: Displacement ux,dym at frame b, force applied in x-direction

Dymola solution

ux,dym = 6.80272 · 10−7m
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Analytical solution [4, p. 21]

ux,analytic =
FL

AE
= 6.802721088 · 10−7m

Error difference

errorux =
|ux,dym − ux,analytic|
|ux,analytic|

= 1.599936 · 10−5%

6.1.1.2 Force y-direction
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Figure 6.2: Displacement uy,dym at frame b, force applied in y-direction
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Figure 6.3: Angular deformation θz,dym around the z-axis at frame b, force applied
in y-direction
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Dymola solution

uy,dym = 5.55325 · 10−4m

θz,dym = 8.32987 · 10−4rad

Analytical solution [8, p. 344]

uy,analytic =
FL3

3EIz
= 5.553241705 · 10−4m

θz,analytic =
FL2

2EIz
= 8.329862557 · 10−4rad

Error difference

erroruy =
|uy,dym − uy,analytic|
|uy,analytic|

= 1.493722125 · 10−4%

errorθz =
|θz,dym − θz,analytic|
|θz,analytic|

= 8.9353215 · 10−5%

6.1.1.3 Force z-direction
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Figure 6.4: Displacement uz,dym at frame b, force applied in z-direction
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Figure 6.5: Angular deformation θy,dym around the y-axis at frame b, force applied
in z-direction

Dymola solution

uz,dym = 2.72109 · 10−4m

θy,dym = −4.08163 · 10−4rad

Analytical solution

uz,analytic =
FL3

3EIy
= 2.721088435 · 10−4m

θy,analytic = − FL
2

2EIy
= −4.081632653 · 10−4rad

Error difference

erroruz =
|uz,dym − uz,analytic|
|uz,analytic|

= 5.751375001 · 10−5%

errorθy =
|θy,dym − θy,analytic|
|θy,analytic|

= 6.49985 · 10−5%
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6.1.1.4 Torque x-axis
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Figure 6.6: Angular deformation θx,dym at frame b, torque applied around the x-axis

Dymola solution

θx,dym = 4.2259 · 10−3rad

Analytical solution [4, p. 65]

θx,analytic =
ML

GK
= 4.2259015 · 10−3rad

Error difference

errorθx =
|θx,dym − θx,analytic|
|θx,analytic|

= 3.549538483 · 10−5%
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6.1.1.5 Torque y-axis
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Figure 6.7: Displacement uz,dym at frame b, torque applied applied around the y-axis
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Figure 6.8: Angular deformation θy,dym at frame b, torque applied around the y-axis

Dymola solution

uz,dym = −1.07143 · 10−3m

θy,dym = 2.14286 · 10−3rad
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Analytical solution [8, p. 344]

uz,analytic = −ML2

2EIy
= 1.0714286 · 10−3m

θy,analytic =
ML

EIy
= 2.142857 · 10−3rad

Error difference

erroruz =
|uz,dym − uz,analytic|
|uz,analytic|

= 1.306666632 · 10−4%

errorθy =
|θy,dym − θy,analytic|
|θy,analytic|

= 1.35333336 · 10−4%

6.1.1.6 Torque z-axis
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Figure 6.9: Displacement uy,dym at frame b, torque applied around the z-axis
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Figure 6.10: Angular deformation θz,dym at frame b, torque applied around the z-axis
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Dymola solution

uy,dym = 1.67411 · 10−3m

θz,dym = 3.34821 · 10−3rad

Analytical solution

uy,analytic =
ML2

2EIz
= 1.6741071 · 10−3m

θz,analytic =
ML

EIz
= 3.3482143 · 10−3rad

Error difference

erroruy =
|uy,dym − uy,analytic|
|uy,analytic|

= 1.732266711 · 10−4%

errorθz =
|θz,dym − θz,analytic|
|θz,analytic|

= 1.28426666 · 10−4%

6.1.2 Free Vibration

The geometric and material parameters used for the free vibration test case were: E =

210GPa, ρ = 2700Kgm−3, L = 1m, h = 0.1m, b = 0.08m and v = 0.3. The free

vibration test was modelled by setting the deformation at frame b to an initial value

which caused the beam to exhibit a harmonic motion.

The test was conducted using three different settings for each degree of freedom. One

undamped model with one dynamic shape function, one undamped model with ten

dynamic shape functions and one damped model with three dynamic shape functions.

The damped model had δ 6= 0, i.e. the stiffness matrix coefficient of the damping matrix

was not equal to zero. This coefficient vary between 10−3 − 10−6 depending on load

case used. The damping was used to reduce numerical noise and to reduce simulation

time. The mass matrix coefficient of the damping matrix η was set to zero during all

simulations.

The period of the vibration in each case was measured in Dymola and a natural frequency

calculated from the period. The natural frequency was then compared to the analytical

solution provided in 2.6.
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6.1.2.1 Initial Deformation x-direction

The initial displacement at frame b was set to ux,0 = 2.5 ·10−4m while the displacements

in the other directions were set to zero.
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Figure 6.11: Displacement ux,dym at frame b, one dynamic shape function, no damp-
ing
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Figure 6.12: Displacement ux,dym at frame b, ten dynamic shape functions, no damp-
ing
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Figure 6.13: Displacement ux,dym at frame b, three dynamic shape functions, damp-
ing set to δ = 10−6

The first natural frequency for a beam fixed in one end and free in another is [3, p. 309-

310]

fx,analytic =
1

4L

√
E

ρ
= 2204.792751Hz

The period from the test cases in Dymola was measured as

Tx,dym = 0.00045s (6.1)

which yields the natural frequency

fx,dym =
1

Tx,dym
= 2222.222222Hz

Error

errorfx =
|fx,dym − fx,analytic|
|fx,analytic|

= 0.7905261459%

6.1.2.2 Initial Deformation y-direction

The initial displacement at frame b was set to uy,0 = 2.5 ·10−4m, θz,0 = 3.75 ·10−4 while

the displacements in the other directions were set to zero. The initial value of θz,0 was

calculated according to Section 6.1.1.2, i.e. for a static load case with constant force

applied at frame b.
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Figure 6.14: Displacement uy,dym at frame b, one dynamic shape function, no damp-
ing
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Figure 6.15: Displacement uy,dym at frame b, ten dynamic shape functions, no damp-
ing
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Figure 6.16: Displacement uy,dym at frame b, three dynamic shape functions, damp-
ing set to δ = 10−5

The first natural frequency for a beam fixed in one end and free in the other is [3, p. 344]

fy,analytic =
1

2π

√
EIz
Aρ

k2 = 113.9593084Hz

where A = bh is the cross section area and k = 1.875. The period from the test case in

Dymola was measured as

Ty,dym = 0.0087s (6.2)

which yields the natural frequency

fy,dym =
1

Ty,dym
= 114.9425287Hz

Error

errorfy =
|fy,dym − fy,analytic|
|fy,analytic|

= 0.8627819121%

6.1.2.3 Initial Deformation z-direction

The initial displacement at frame b was set to uz,0 = 2.5 · 10−4m, θy,0 = −3.75 · 10−4

while the displacements in the other directions were set to zero.
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Figure 6.17: Displacement uz,dym at frame b, one dynamic shape function, no damp-
ing
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Figure 6.18: Displacement uz,dym at frame b, ten dynamic shape functions, no damp-
ing
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Figure 6.19: Displacement uz,dym at frame b, three dynamic shape functions, damp-
ing set to δ = 10−5

The first natural frequency for a beam fixed in one end and free in another is

fz,analytic =
1

2π

√
EIy
Aρ

k2 = 142.4491355Hz

where A = bh is the cross section area and k = 1.875. The period from the test case in

Dymola was measured as

Tz,dym = 0.00698s (6.3)

which yields the natural frequency

fz,dym =
1

Tz,dym
= 143.2664756Hz

Error

errorfz =
|fz,dym − fz,analytic|
|fz,analytic|

= 0.5737768061%

6.1.2.4 Initial Angular Deformation around the x-axis

The initial deformation at frame b was set to θx,0 = 3.75 · 10−4 while the angular

deformation in the other directions were set to zero.



Chapter 6. Validation 67

0.000 0.002 0.004 0.006 0.008 0.010
-4E-4

-3E-4

-2E-4

-1E-4

0E0

1E-4

2E-4

3E-4

4E-4

A
n

g
u

la
r 

d
is

p
la

c
e

m
e

n
t 

x-
a

xi
s
 [

ra
d

]

Time [s]

Figure 6.20: Angular deformation θx,dym at frame b, one dynamic shape function, no
damping
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Figure 6.21: Angular deformation θx,dym at frame b, ten dynamic shape functions,
no damping

The first natural frequency for a beam fixed in one end and free in the other is [3,

p. 325-326]

fθx,analytic =
1

4L

√
GK

Jx
= 1225.978272Hz

where Jx is the moment of inertia around the x-axis per unit length calculated as Jx =
ρA
12 (b2 + h2). The period from the test case in Dymola was measured as

Tθx,dym = 0.000804s (6.4)
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Figure 6.22: Angular deformation θx,dym at frame b, three dynamic shape functions,
damping set to δ = 10−6

which yields the natural frequency

fθx,dym =
1

Tx,dym
= 1243.781095Hz

Error

errorfθx =
|fθx,dym − fθx,analytic|

|fθx,analytic|
= 1.452132016%

6.1.3 Forced Vibration

The forced vibration test cases used the same geometric and material properties as the

free vibration test cases i.e. E = 210GPa, ρ = 2700Kgm−3, L = 1m, h = 0.1m,

b = 0.08m and v = 0.3, no damping was applied. The tests were modelled by applying

a harmonic force at frame b, the frequency of the harmonic force was set to the analyt-

ical frequency as well as the frequency of free vibration derived in Section 6.1.2. The

displacement at frame b was calculated and analysed to see if the beam was under the

influence of mechanical resonance.

6.1.3.1 Force x-direction

The force in the x-direction at frame b was set to F = 1000sin(f2πt) while the other

directions were set to zero. The frequency f was set as either the analytical solution

fx,analytic = 2204.792759Hz



Chapter 6. Validation 69

or the solution from the free vibration test

fx,dym = 2222.222222Hz
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Figure 6.23: Displacement ux,dym at frame b as an response to the frequency
fx,analytic. One, three and five dynamic shape functions shown in green, red and blue

colors.
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Figure 6.24: Displacement ux,dym at frame b as an response to the frequency fx,dym.
One and ten dynamic shape functions shown in blue and red colors.

Clearly the analytical frequency causes the beam to excite it’s natural frequency. The

beat frequency of the red graph in figure 6.24 are equal to the difference between

fx,analytical and fx,dym, i.e.

fbeat = fx,dym − fx,analytical = 17.429463Hz
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which is a phenomenon that occurs when the harmonic force is close to the natural

frequency.

6.1.3.2 Force y-direction

The force in the y-direction at frame b was set to F = 1000sin(f2πt) while the other

directions were set to zero. The frequency f was set as either the analytical solution

fy,analytic = 113.9593084Hz

or the solution from the free vibration test

fy,dym = 114.9425287Hz (6.5)
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Figure 6.25: Displacement uy,dym at frame b as an response to the frequency
fy,analytic. One and ten dynamic shape functions shown in blue and red colors.

As shown in Figure 6.25 the analytical frequency doesn’t excite the beam in to mechani-

cal resonance. The same result occurred with the frequency from the free vibration test.

The beat frequency of the red graph in Figure 6.25 can be calculated as

fy,beat = 0.1223391241Hz

Subtracting the beat frequency from the analytical frequency and the actual natural

frequency of the system is obtained as

fy,actual = fy,analytic − fy,beat = 113.8370449Hz
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The displacement response from this frequency is shown in Figure 6.26 which clearly

indicates mechanical resonance.
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Figure 6.26: Displacement uy,dym at frame b as a response to the frequency fy,actual.
One and ten dynamic shape functions shown in blue and red colors.

The error of fy,actual compared to the analytical can be calculated as

errorfy =
|fy,beat|
|fy,analytic|

= 0.1073533403%

6.1.3.3 Force z-direction

The force in the z-direction at frame b was set to F = 1000sin(f2πt) while the other

directions were set to zero. The frequency f was set as either the analytical solution

fz,analytic = 142.4491355Hz

or the solution from the free vibration test

fz,dym = 143.2664756Hz
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Figure 6.27: Displacement uz,dym at frame b as an response to the frequency
fz,analytic. One and ten dynamic shape functions shown in blue and red colors.

As with the forced vibration in y-direction the analytical frequency doesn’t cause me-

chanical resonance which is presented in Figure 6.27. The same result occurred with the

frequency from the free vibration test. The beat frequency of the red graph in Figure

6.27 can be calculated as

fz,beat = 0.2571798176Hz

Subtracting the beat frequency from the analytical frequency and the actual natural

frequency of the system is obtained as

fz,actual = fz,analytic − fz,beat = 142.1919557Hz

The displacement response from this frequency is shown in Figure 6.28 which clearly

indicates mechanical resonance.
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Figure 6.28: Displacement uz,dym at frame b as an response to the frequency fz,actual.
One and ten dynamic shape functions shown in red and blue colors.

The error of fz,actual compared to the analytical can be calculated as

errorfz =
|fz,beat|
|fz,analytic|

= 0.1805415082%

6.1.3.4 Torque x-axis

The torque around the x-axis at frame b was set to M = 3000sin(f2πt) while the other

directions were set to zero. The frequency f was set as either the analytical solution

fθx,analytic = 1225.978272Hz

or the solution from the free vibration test

fθx,dym = 1243.781095Hz
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Figure 6.29: Displacement θx,dym at frame b as a response to the frequency
fθx,analytic. One, three and five dynamic shape functions shown in green, red and

blue colors.

As seen in Figure 6.29, the analytical natural frequency fθx,analytic causes the beam to

excite with enough dynamic shape functions. The frequency from the free vibration

test fθx,dym had an identical behaviour as seen in Figure 6.24 for forced vibration in

x-direction, although it is not presented here.

6.1.4 Gravitational Force

The implementation of the gravitational force was tested with two simple models. One

model where an arbitrary beam fell freely for the duration of 1 second and it’s position

relative to the inertial frame was recorded, where the initial velocity and position was

set to zero. One model in which the beam was fixed in frame a and free in frame b,

the displacement at frame b was calculated and compared with an analytical solution

for a fixed-free beam with distributed load. The geometric and material properties for

the beam were: E = 210GPa, ρ = 2700Kgm−3, L = 1m, h = 0.1m, b = 0.1 and

v = 0.3. The models were simulated with 15000 steps and the gravitation was set to

g = 9.81ms−2 in the negative y-direction.
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Figure 6.30: The y-position of the beam relative the inertial frame during free fall in
the gravitational field.

As seen in Figure 6.30 the y-position of the beam is ry,dym = −4.905m after 1 second of

free fall. The analytical solution to the problem at t = 1s is

ry,analytic = −gt
2

2
= −4.905m

Which implies that the solution in Dymola and the analytical solution are identical.
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Figure 6.31: Displacement uy,dym at frame b due to gravitation, the beam is fixed
in frame a. The beam is modelled with three dynamic modeshapes for the y-direction

and damping set to δ = 10−3.

The displacement in figure 6.31 stabilizes after t = 0.2s at the value

uy,dym = −1.88872 · 10−5m
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The analytical solution is obtained by approximating the gravitational force as a dis-

tributed load Q such as

Q = −gm
L

= −gρAL
L

= −gρhb = −264.87
N

m

where m is the beam mass, A the cross section area. The displacement at the free end

for a fixed-free beam with distributed load is [8, p. 344]

uy,analytic =
QL3

8EIz
= −1.89192857 · 10−5m

The error between the analytical solution and the solution from Dymola is

erroruy =
|uy,dym − uy,analytic|
|uy,analytic|

= 0.169592555%

6.1.5 Centrifugal Force

To test the centrifugal forces, a model was created with a beam connected to a revolute

joint at frame a. The revolute joint was connected to a fixed inertial frame in the

other end. Frame b was considered free and not connected to any other component.

By setting the angular velocity or torque at the revolute joint to a constant value the

beam would start rotating around the y-axis of the inertial frame and deform due to the

arising centrifugal forces. The geometric and material properties of the beam were the

same as in Section 6.1.4 and the test included three dynamic shape functions in the x-

and z-direction. The test was simulated for 1 second with 15000 steps for two different

setups at the revolute: the angular velocity set to ω = 50rads−1 or the torque set to

M = 100Nm. The deformation of the beam was calculated at frame b.
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6.1.5.1 Constant Angular Velocity
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Figure 6.32: The displacement in the x-direction ux,dym at frame b with constant
angular velocity ω = 50rads−1. Damping was set to δ = 10−4.

Figure 6.32 shows that the deformation ux,dym stabilizes after some time at

ux,dym = 1.07144 · 10−5m

The analytical solution to the problem can be obtained by integrating the incremental

elongation over the beam’s length. Let the incremental elongation be defined as

dux,analytic =
x

AE
dF =

x

E
ρω2xdx

where dF = ρAω2xdx is the centrifugal force acting on an incremental mass. Integrating

the incremental elongation yields

ux,analytic =
ρω2

E

∫ L

0
x2dx =

ρω2L3

3E
= 1.071428571 · 10−5m

The error between the solution in Dymola and the analytical solution can be calculated

as

errorux =
|ux,dym − ux,analytic|
|ux,analytic|

= 0.0010667067%
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Figure 6.33: The displacement in the z-direction uz,dym at frame b with constant
angular velocity ω = 50rads−1. Damping was set to δ = 10−4.

Figure 6.33 indicates that the beam vibrates for a short duration of time in the beginning

since the starting angular velocity is zero. After some time the displacement uz,dym

stabilizes at zero due to damping.
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Figure 6.34: The force in the x-direction at frame a with constant angular velocity
ω = 50rads−1. Damping was set to δ = 10−4.

The reaction force at frame a is shown in figure 6.34, it stabilizes at the constant value

Fx,dym = −33750N
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The analytical calculation of the force is derived by integrating the incremental centrifu-

gal force dF = ρAω2xdx over the beam’s length.

Fx,analytic = −
∫ L

0
ρAω2xdx = −ρAω

2L2

2
= −33750N

Which is identical to the solution obtained in Dymola.

6.1.5.2 Constant Torque
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Figure 6.35: The displacement in the x-direction ux,dym at frame b with constant
torque M = 100Nm. Damping was set to δ = 10−4.

Figure 6.35 shows that the elongation ux,dym of the beam increases with time. At t = 0.5s

and t = 1s the displacements are

ux,dym|t=0.5 = 1.31563 · 10−7m

ux,dym|t=1 = 5.26358 · 10−7m

The analytical solution can be obtained in a similar approach as in the case with constant

angular velocity. The angular velocity at an arbitrary time t1 is defined as

ω =

∫ t1

0
αdt =

∫ t1

0

M

Ia
dt =

M

Ia
t1

where α is the constant angular acceleration, M the applied moment at frame a, Ia the

constant inertia at frame a around the y-axis. The incremental centrifugal force can

then be defined as

dF = ρAω2xdx = ρAxdx(
Mt1
Ia

)2
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Recall that dux,analytic = x
AEdF which implies that the elongation can be calculated as

ux,analytic =
ρ

E
(
Mt1
Ia

)2
∫ L

0
x2dx =

ρM2L3

3EIa
2 t

2
1

Evaluating ux,analytic at t1 = 0.5s and t1 = 1s yields

ux,analytic|t=0.5 = 1.316162285 · 10−7m

ux,analytic|t=1 = 5.264649141 · 10−7m

where it has been used that

Ia =
m(h2 + L2)

12
+m

L2

4

The error between the solution in Dymola and the analytical solution at these two points

becomes

errorux,t=0.5 = 0.0404422248%

errorux,t=1 = 0.0203079256%
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Figure 6.36: The displacement in the z-direction uz,dym at frame b with constant
torque M = 100Nm. Damping was set to δ = 10−4.

The bending deformation in the z-direction at frame b, uz,dym, is shown in Figure 6.36.

The deformation at t = 0.02s is

uz,dym = 1.563 · 10−5m
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The analytical solution can be derived considering that the tangential acceleration at

acting on a infinitesimal thin section can be written as

at =
dvt
dt

=
d(ωx)

dt
= αx =

M

Ia
x

Where vt is the tangential velocity of the section. The incremental force acting on this

section becomes

dF = atdm =
M

Ia
xρAdx

Which indicates that the force acts as a linear increasing distributed load with respect

to the x coordinate. The distributed load Q can be calculated as

Q =
F

L
=
MρA

LIa

∫ L

0
xdx = 149.6259352

N

m

The displacement can be derived considering that the load causes the beam to deflect

relative it’s local coordinate system in frame a. In the local coordinate system the beam

is considered fixed in frame a and free in frame b, which implies that the displacement

is given by [8, p. 344]

uz,analytic =
11QL3

60EIy
= 1.567509797 · 10−5m

The error between the solution in Dymola and the analytical solution is

erroruz =
|uz,dym − uz,analytic|
|uz,analytic|

= 0.2877045708%

6.1.5.3 Constant Torque - Increased Simulation Time
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Figure 6.37: The deformation in the z-direction uz,dym at frame b with constant
torque M = 100Nm. Damping was set to δ = 10−4. Simulation time is 20 seconds.
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The analytical solution uz,analytic proposed in Section 6.1.5.2 implies that the deforma-

tion is constant for a constant torque applied at frame a. The results from the simulation

in Dymola and the analytic solution coincide if the simulation time is short. If the sim-

ulation time is increased, i.e. the force is applied for a longer duration, then uz,dym

increases with time. The phenomenon is presented in Figure 6.37 where the same model

has been simulated for 20 seconds with 30000 steps.

Consequently the reaction force in the z-direction at frame a increases as shown in Figure

6.38.
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Figure 6.38: The force in the z-direction at frame a with constant torque M =
100Nm. Damping was set to δ = 10−4. Simulation time is 20 seconds.

The angular acceleration of the revolute joint slightly decreases at the same time pre-

sented in Figure 6.39.
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Figure 6.39: The angular acceleration at the revolute joint with constant torque
M = 100Nm. Damping was set to δ = 10−4. Simulation time is 20 seconds.
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6.2 One-Dimensional Models

To verify the one-dimensional the models same tests were preformed as those done for

the three-dimensional model. Hence three tests were made: static loading, free vibration

and force vibrations. A cantilever beam was used i.e. the beam is fixed in flange a and

free at flange b. Force was applied at flange b and the displacement was calculated at

the same flange. A flange is a connector used for one-dimensional bodies in the same

way as frames are used in three-dimensional bodies.

During the static load case the beam was subjected to a linearly increasing load for a

specified time and then kept constant. The displacement at the end of the simulation was

then compared to analytical solution of an Euler Bernoulli beam. In the free vibration

test the initial displacement was set to a specific value and then the beam could vibrate

freely. The time period of the response was measured and the natural frequency was

calculated and compared to analytical solutions. To test the forced vibration a periodic

force with a frequency equal to the natural frequency was applied.

6.2.1 Static Loading

In the translational test the same parameters were used as in the static loading of

the three-dimensional beam model. The load case was identical to the load case in

x-direction preformed in section 6.1.1.1.

In the rotational test the same parameters were used as in the static loading of the

three-dimensional beam model. This test was identical to the load case, Torque x-axis

in section 6.1.1.4.

6.2.1.1 Translational

Dymola solution, figure 6.40

udym = 6.80272 · 10−7m
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Figure 6.40: Displacement udym at flange b as a response to the static load

Analytical solution [4, p. 21]

ux,analytic =
FL

AE
= 6.802721088 · 10−7m

Error difference

errorux =
|udym − uanalytic|
|uanalytic|

= 1.599936 · 10−5%

6.2.1.2 Rotational

Dymola solution

θdym = 4.2259 · 10−3

0.0 0.4 0.8 1.2 1.6

0.000

0.001

0.002

0.003

0.004

A
n

g
u

la
r 

d
is

p
la

ce
m

e
n

t 
x-

a
xi

s 
[r

a
d

]

Time [s]

Figure 6.41: Angular deformation θdym at flange b as a response to the static torque
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Analytical solution [4, p. 65]

θanalytic =
ML

GK
= 4.2259015 · 10−3

Error difference

errorθ =
|θdym − θanalytic|
|θanalytic|

= 3.549538483 · 10−5%

6.2.2 Free Vibrations

In this test the same parameters as in the three-dimensional test case were used, see

Section 6.1.2. Tests were done with one, three and ten dynamic shape functions re-

spectively. The natural frequency were calculated from the time period measured in

Dymola. This frequency was then compared with the analytical solution. Note that

the test preformed with three dynamic mode shapes had damping in the system with

δ = 10−6.

6.2.2.1 Translational

The initial deformation at flange b was set to u0 = 2.5 · 10−4m. The responses for the

different number of dynamic mode shapes can be seen in Figures 6.42, 6.43 and 6.44
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Figure 6.42: Free vibration of the translational model, one dynamic mode shape
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Figure 6.43: Free vibration of the translational model, ten dynamic modes shapes
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Figure 6.44: Free vibration of the translational model, three dynamic modes shapes.
Damping δ = 10−6

The first natural frequency for a beam, fixed in one end and free in the other, is [3,

p. 309-310]

fx,analytic =
1

4L

√
E

ρ
= 2204.792751Hz

The period from the test cases in Dymola was measured as

Tx,dym = 0.00045s (6.6)

which yields the natural frequency

fx,dym =
1

Tx,dym
= 2222.222222Hz
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Error

errorfx =
|fx,dym − fx,analytic|
|fx,analytic|

= 0.7905261459%

6.2.2.2 Rotational

The initial deformation at flange b was set to θx,0 = 3.75 · 10−4. The response can be

seen in Figures 6.45, 6.43 and 6.47. Note that the test preformed with three dynamic

mode shapes had damping in the system δ = 10−6.
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Figure 6.45: Free vibration of the rotational model, one dynamic mode shape.
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Figure 6.46: Free vibration of the rotational model, ten dynamic mode shapes.
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Figure 6.47: Free vibration of rotational model, three dynamic mode shape. Damping
δ = 10−6

The first natural frequency for a beam fixed in one end and free in the other is [3,

p. 325-326]

fθx,analytic =
1

4L

√
GK

Jx
= 1225.978272Hz

where Jx is the moment of inertia around the x-axis per unit length calculated as Jx =
ρA
12 (b2 + h2). The period from the test cases in Dymola was measured as

Tθx,dym = 0.000804s (6.7)

which yields the natural frequency

fθx,dym =
1

Tx,dym
= 1243.781095Hz

Error

errorfθx =
|fθx,dym − fθx,analytic|

|fθx,analytic|
= 1.452132016%

6.2.3 Forced Vibrations

The force vibration test used a harmonic applied force at flange b with a frequency

corresponding to the eigenfrequency of the beam.
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6.2.3.1 Translational

The force in flange b was set to F = 1000sin(f2πt). The frequency f was set to the

analytical solution

fanalytic = 2204.792759Hz

The responses can be seen in Figure 6.48
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Figure 6.48: Displacement udym at flange b as a response to the frequency fanalytic.
One, three and five dynamic shape functions shown in green, red and blue colors.

Figure 6.48 shows that excitation occurs for the analytical eigenfrequency. It’s clear that

more dynamic mode shapes gives a better excitation behaviour. The beating phenomena

is also present in this model.

6.2.3.2 Rotational

The torque at flange b was set to M = 3000sin(f2πt). The frequency f was set to the

analytical solution

fθ,analytic = 1225.978272Hz

The response can be seen in Figure 6.49.
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Figure 6.49: Deformation θdym at flange b as an response to the frequency fθ,analytic.
One, three and five dynamic shape functions shown in green, red and blue colors.

Figure 6.49 show the same kind of response as the translational model. More dynamic

mode shapes give a better excitation behaviour. The beating behaviour occur in this

model as well due to the differences of fθ,dym and fθ,analytic

6.2.4 Comparison in Dynamic Response

A comparison was made between the one-dimensional models, three-dimensional model

and an analytical solution of a dynamic response in a cantilever beam. The analytical

solution was taken from problem 5.6 in [14, p. 3]. The problem is a cantilever beam that

is subjected to a force in the direction of the beam. The solution can be written as [14,

p. 24]

u(x, t) =
P

EA
x− 8PL

π2AE

n∑
i=1

(−1)i−1

(2i− 1)2
sin

(
(2i− 1)πx

2L

)
cos
(

(2i− 1)
πc

2L
t
)

(6.8)

with the parameter values P = 10000N , ρ = 8000 kg
m3 , L = 1m , A = 2 × 10−4m2,

c =
√

EA
m , m = ρA t = 0 . . . 0.05. In this simulation 5000 time steps were used and

n = 10 is the number of mode shapes used. The displacement was investigated at

x = 0.5m.

This solution was compared with the one-dimensional and three-dimensional model with

the same values on parameters and force. Ten dynamic mode shapes were used in the

simulations. The responses can be seen in Figures 6.50, 6.51 and 6.52.
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Figure 6.50: Dynamic response of the one-dimensional translational beam model at
x = 0.5m
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Figure 6.51: Dynamic response of the three-dimensional beam model in the x-
direction at x = 0.5m
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Figure 6.52: Dynamic response of the analytical solution at in the x-direction at
x = 0.5m

The solution of problem 5.6 in [14, p. 3] can be used as a solution to the rotational

problem as well. This is due to the similarities in the governing equation in 1.1 and 1.2.

The solution will be

θ(x, t) =
M

GK
x− 8ML

π2GK

n∑
i=1

(−1)i−1

(2i− 1)2
sin

(
(2i− 1)πx

2L

)
cos
(

(2i− 1)
πc

2L
t
)

(6.9)

with M = 100Nm, ρ = 8000 kg
m3 , L = 1m , b = 0.1m, h = 0.1m, E = 200× 109, v = 0.3

G = E
2(v+1) , c =

√
GK
ρIp

, Ip = bh(b2+h2)
12 t = 0 . . . 0.05 During the simulation 5000 time

steps were used. The number of shape functions used is n = 10. In the one-dimensional

and three-dimensional models, ten dynamic mode shapes are used. The displacement

was investigated at x = 0.5m. Note that M is a constant torque applied in flange b.

The responses can be seen in Figures 6.53, 6.54 and 6.55.
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Figure 6.53: Dynamic response of the one-dimensional rotational beam model at
x = 0.5m
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Figure 6.54: Dynamic response of the three-dimensional beam model at x = 0.5m
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Figure 6.55: Dynamic response of the analytic solution at x = 0.5m
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6.3 Summary of Errors from the Validation

The substantial results from the validation process are gathered here in a more compact

format to give the reader an overview of the accuracy of the model.

6.3.1 Three Dimensional Model

The errors from the different test cases for the three-dimensional model are presented

in Tables 6.1, 6.2, 6.8, 6.4 and 6.5.

Static Load/

Error ux(%) uy(%) uz(%) θx(%) θy(%) θz(%)

Force x 1.6 · 10−5 − − − − −
Force y − 1.49 · 10−4 − − − 8.94 · 10−5

Force z − − 5.75 · 10−5 − 6.5 · 10−5 −
Torque x − − − 3.55 · 10−5 − −
Torque y − − 1.31 · 10−4 − 1.35 · 10−4 −
Torque z − 1.73 · 10−4 − − − 1.28 · 10−4

Table 6.1: The deformation error results from the static loading test cases for the
three dimensional model.

Free Vibration/

Error fx(%) fy(%) fz(%) fθx(%)

Initial Deformation x-dir. 0.79 − − −
Initial Deformation y-dir. − 0.86 − −
Initial Deformation z-dir. − − 0.57 −
Initial Deformation x-axis. − − − 1.45

Table 6.2: The frequency error results from the free vibration test cases for the three-
dimensional model.

Forced Vibration/

Error fx(%) fy(%) fz(%) fθx(%)

Force x-dir. 0 − − −
Force y-dir. − 0.11 − −
Force z-dir. − − 0.18 −

Torque x-axis. − − − 0

Table 6.3: The frequency error results from the forced vibration test cases for the
three-dimensional model.
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Gravitational Force/

Error ry(%) uy(%)

Free Fall 0 −
Fixed-Free Grav. Load − 0.17

Table 6.4: The error results from the gravitational test cases for the three-dimensional
model.

Centrifugal Force/

Error ux(%) ux|t=0.5(%) ux|t=0.5(%) uz(%) Fx(%)

Const. Ang. Vel. 0.001 − − − 0

Const. Torque − 0.04 0.02 0.29 −

Table 6.5: The error results from the centrifugal test cases for the three-dimensional
model.

6.3.2 One Dimensional Models

The errors from the different test cases for the one-dimensional models are presented in

Tables 6.6, 6.7 and 6.8.

Static Load/

Error ux(%) θx(%)

Translational 1.6 · 10−5 −
Rotational − 3.55 · 10−5

Table 6.6: The deformation error results from the static loading test cases for the
one-dimensional models.

Free Vibration/

Error fx(%) fθx(%)

Translational 0.79 −
Rotational − 1.45

Table 6.7: The frequency error results from the free vibration test cases for the one-
dimensional models.
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Forced Vibration/

Error fx(%) fθx(%)

Translational 0 −
Rotational − 0

Table 6.8: The frequency error results from the forced vibration test cases for the
one-dimensional models.
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Applications

In addition to the validation of displacements and dynamic behaviour the beam was

tested in a common mechanical application, namely the slider crank mechanism. The

idea was to verify that the beam model works properly when connected to other compo-

nents in a more complex mechanical system than those presented in Chapter 6. Addi-

tionally it was also of interest to sample the computational time of such an application

and compare the required computational time for models with rigid or flexible beams.

7.1 Slider Crank

The slider crank model (Figure 7.2) was constructed in three different ways, one with

both crank and rod as rigid beams, one with crank as rigid and rod as flexible and

one with both crank and rod as flexible beams. The rigid model worked as a reference

to validate the forces in the flexible models. All three of the models were connected

in identical ways and the material properties of the components in the models were

equal. The crank was connected to the inertial frame through a revolute joint in order

to constrain the movement in the x−y plane. The crank, rod and piston were connected

together with a universal and a spherical joint as seen in Figure 7.1. The movement of

the piston was constrained by connecting with a prismatic joint which only allowed a

translational movement along the x-axis of the inertial frame.
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Figure 7.1: Overview of the slider crank model with rigid crank and flexible rod.

The angular velocity at the revolute joint was set to ωz = 6rads−1 and the initial angle

to φz = 45 deg relative the x-axis of the inertial frame. The initial position of the model

can be seen in Figure 7.2. The geometric and material properties of the crank, rod and

piston is shown in Table 7.1.

Figure 7.2: Animation of the initial position of the slider crank model. Frame b is
visualized at the right end of the red beam. The crank, rod and piston is seen from left

to right in the same order.

Property Crank Rod Piston

Length L 0.5 m 1 m 0.3 m
Height h 0.05 m 0.05 m 0.05 m
Width b 0.05 m 0.05 m 0.05 m

Density ρ 2700 kg
m3 2700 kg

m3 7700 kg
m3

Mass m 3.375 kg 6.75 kg 5.775 kg

Young’s
Modulus E

210 GPa 210 GPa (Rigid)

Poisson’s
Ratio

0.3 0.3 (Rigid)

Table 7.1: Geometric and material properties for the different components. The
elastic properties are only applied to the flexible parts.
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7.1.1 Forces and Deformation

The number of dynamic shape functions used in the flexible beams were chosen to be

three in the x-direction and three in the y-direction since they were the only directions

of possible deformation. The three models were simulated for 3 seconds with 5000 steps

and damping set to δ = 10−4. The forces at frame b of the rod in the rigid model

are shown in Figures 7.3 and 7.4. Note that all the forces and displacements presented

here are defined in the local coordinate system of frame b, which is rotated relative the

inertial frame depending on the orientation of the beam (see Figure 7.2).
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Figure 7.3: Force in the x-direction at frame b of the rod (rigid model).

0 1 2 3
-40

-30

-20

-10

0

10

20

30

40

F
o

rc
e

 y
-d

ir
e

ct
io

n
 [

N
]

Time [s]

Figure 7.4: Force in the y-direction at frame b of the rod (rigid model).

The forces in the rigid model can be compared with the forces at the same location

in the model with a flexible rod shown in Figures 7.5 and 7.6 or the model with both

flexible crank and rod presented in Figures 7.7 and 7.8.



Chapter 7. Applications 100

0 1 2 3
-100

-50

0

50

100

150

200

F
o

rc
e

 x
-d

ir
e

c
tio

n
 [

N
]

Time [s]

Figure 7.5: Force in the x-direction at frame b of the rod (rigid crank, flexible rod).
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Figure 7.6: Force in the y-direction at frame b of the rod (rigid crank, flexible rod).
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Figure 7.7: Force in the x-direction at frame b of the rod (flexible crank, flexible rod).
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Figure 7.8: Force in the y-direction at frame b of the rod (flexible crank, flexible rod).

The response in deformation to these forces are presented in Figure 7.9 and 7.10 for the

model with rigid crank and flexible rod as well as Figures 7.11 and 7.12 for the model

with flexible crank and rod.
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Figure 7.9: Displacement in the x-direction at frame b of the rod (rigid crank, flexible
rod).
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Figure 7.10: Displacement in the y-direction at frame b of the rod (rigid crank,
flexible rod).
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Figure 7.11: Displacement in the x-direction at frame b of the rod (flexible crank,
flexible rod).
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Figure 7.12: Displacement in the y-direction at frame b of the rod (flexible crank,
flexible rod).

As seen in Figures 7.9, 7.10, 7.11 and 7.12 the rod is influenced by vibrations in the

beginning of the simulation which later disappears due to damping. By comparing the

figures one can see that the model with two flexible beams vibrates differently and more

intense than the one with only a flexible rod. A close up on the displacements of the

model with flexible crank and rod is presented in Figures 7.13 and 7.14.
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Figure 7.13: Close up on the displacement in the x-direction at frame b of the rod
(flexible crank, flexible rod).
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Figure 7.14: Close up on the displacement in the y-direction at frame b of the rod
(flexible crank, flexible rod).

7.1.2 CPU Benchmark

The slider crank models with flexible beam components were also a part of a CPU

benchmark. The benchmark compared the computational time required to simulate the

models depending on the number of dynamic shape functions. Additionally the number

of states and time-varying variables were recorded during the tests. The two flexible

slider crank models were run with one, three and five dynamic shape functions in the x-

and y-direction. In the model with two flexible beams, both beams were set with equal

number of dynamic shape functions in each test. All the simulated tests were conducted

on a laptop with 6 GB RAM and a Intel Core i5 CPU with four cores at 2.6 GHz and

animation was set to on.

The benchmark for the model with a rigid crank and a flexible rod is presented in Table

7.2 while the benchmark for the model with both crank and rod as flexible is presented

in Table 7.3. The required computational time versus the elapsed simulation time for

the two models is shown in Figures 7.15 and 7.16. The results can be compared with

the same variables for the rigid model which are CPUTime = 0.126s, Continuous Time

States = 1 (one degree of freedom system) and Time Varying Variables = 91.



Chapter 7. Applications 105

CPU Variable One shape function Three shape functions Five shape functions

CPU Time 1.714 s 2.737 s 4.699 s

Continuous

Time States

18 26 34

Time Vary-

ing Variables

681 733 785

Table 7.2: CPU variables for different number of dynamic shape functions (x-, y-
direction) used in the model with rigid crank and flexible rod.
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Figure 7.15: Required computational time for different number of dynamic shape
functions (x-, y-direction) used in the model with rigid crank and flexible rod.

CPU Variable One shape function Three shape functions Five shape functions

CPU Time 9.737 s 21.3 s 43.324 s

Continuous

Time States

34 50 66

Time Vary-

ing Variables

1214 1314 1414

Table 7.3: CPU variables for different number of dynamic shape functions (x-, y-
direction) used in the model with flexible crank and flexible rod.
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Figure 7.16: Required computational time for different number of dynamic shape
functions (x-, y-direction) used in the model with flexible crank and flexible rod.
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Discussion

8.1 Response and Behaviour

The beam models respond well to the static loading cases as presented in Sections 6.1.1

and 6.2.1. The Figures in these Sections indicates that a slowly linearly increasing force

implies an identical behaviour in displacement. The angular displacement respond well

to lateral forces and vice versa to applied torques.

By comparing the Figures from the free vibration test cases in Sections 6.1.2 and 6.2.2,

the model seem to work much better with damping applied. The damping seems to re-

move numerical noise and lessen the activation of dynamic shape functions that doesn’t

provide any substantial contribution to the solution. By increasing the number of dy-

namic shape functions, the free vibration response in x-direction and around the x-axis

provides a more realistic behaviour. This doesn’t seem to be the case for the same

tests in the y- and z-directions in which Figures 6.14 and 6.15 shows almost identical

behaviour. This phenomenon could be due to differences in coverage of frequencies and

modeshapes between a Fixed-Free and a Fixed-Fixed beam as implied by the Craig-

Bampton method.

The results from the forced vibration test cases in Sections 6.1.3 and 6.2.3 proves that

the beam model can represent mechanical resonance. If the applied force is not acting

precisely in the model’s eigenfrequency then the model responds with vibrations in a

overriding beat frequency. The beat frequency is a natural behaviour in any mechanical

system and something expected when vibrations do not occur in the eigenfrequency.
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The displacements seem realistic when the model is subjected to gravitational and cen-

trifugal forces. The Figures in Section 6.1.5.1 shows that the displacement in the x-

direction stabilises at a constant value while the displacement in the z-direction is zero,

which should be the case when the angular velocity is constant.

However when the torque is constant and the angular velocity is linearly increasing, the

displacement in the x-direction increases exponentially with time while the displacement

in the z-direction seem to adjust to a constant value as seen in Figures 6.35 and 6.36.

This should be the case when the torque is constant but when the simulation time is

increased it seems as if additional energy is added to the model as indicated by Figures

6.37 and 6.38 even though the torque is constant. That additional energy would be

added to the model doesn’t align with the fact that the angular acceleration is slightly

decreasing as seen in Figure 6.39. The results indicates that something could be wrong

in the implementation of the quadratic velocity vector described in Section 3.6, but it

could as well be a numerical error in Dymola. At the moment there is not enough

information to make any conclusions regarding this issue.

The results from all the test cases done with both the three-dimensional and one-

dimensional models are identical which indicates that the implementation of these de-

grees of freedoms have been done correctly. Especially the results from Section 6.2.4

shows that the displacement and frequency response of the beam models are very simi-

lar to the analytical solution. However, it seems as if the results from the beam models

shows an overshoot in displacement that increases with time as seen in Figures 6.50,

6.51, 6.53 and 6.54. This is something that could be related to the additional energy

associated with the results from the centrifugal force test cases. It could also be a conse-

quence to the absence of damping and the models capability in modeling free vibration

of undamped beams as previously discussed. Another hypothesis is that it’s related with

the simplifications made with the Craig-Bampton method. Setting up a identical test

case where the beam is modeled with several beam components would be of interest to

further investigate this behaviour.

8.2 Accuracy

As presented in Table 6.1, the errors in the displacement in the static loading cases

are close to non-existent and the model’s accuracy in prescribing static deformation is

almost equivalent to the theory described in Section 1.5.

The errors in frequency are larger in the free vibration test cases compared to the forced

vibration test cases as seen in Tables 6.2 and 6.8. Interestingly there are errors for the
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free vibration test cases in the x-direction and around the x-axis which are not in the

result from the forced vibration test cases where these errors are zero.

It seems as if the model has a different stiffness, mass or inertia depending on the

applied forces or displacements and therefore different eigenfrequencies. The model

underestimates the eigenfrequencies in the free vibration test cases in comparison to

the forced vibration test cases where the frequencies are overestimated in the y- and

z-directions. Furthermore this shouldn’t be the case since the beams in both test cases

have the same geometric and material parameters and therefore should result in equal

eigenfrequencies.

The errors presented in Section 6.3, with the exception of the free vibration test cases,

are much lower than one percent. This indicates that the beam model in question has the

potential of representing the Euler Bernoulli beam theory, in both static and dynamic

load cases.

8.3 Compatibility with the Dymola Library

The flexible slider crank models presented in Chapter 7 shows that the beam model

can be connected and run with other components in the standard mechanical library in

Dymola. The results in Figures 7.3, 7.4, 7.5, 7.6, 7.7 and 7.8 indicate that the forces are

almost identical in the flexible and rigid models. The displacements in the flexible model

follows the change in direction of the forces as presented in Figures 7.9, 7.10, 7.11 and

7.12, which indicates that a successful connection between external forces and internal

displacements has been made.

The vibrational response in the system can be captured by exchanging rigid components

with flexible components as seen in Figures 7.13 and 7.14. Adding additional flexible

components increases the vibrational response which seems logical since the system has

become more elastic.

In the slider crank models the flexible beams were attached with their respective frame a

closest to the fixed inertial frame (see Figure 7.1). This was done intentionally since the

local coordinate system of the beam model is attached to frame a as described in Section

7.1. Connecting the components differently causes the model to calculate the inverse

of the equations of motion since Dymola evaluates the system according to the defined

roots and branches. This is due to the kinematic description, where the displacement is

described relative a local coordinate system that needs to be attached at one end (see

equation (2.6)). However, it works to connect the beams with frame b closest to the

root but it is far from ideal since it forces Dymola to select variables as states that were
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not thought of as states in the implementation (e.g. the transformation matrix between

frame a and b). Connecting the beams in this manner might cause Dymola to crash

during the simulations.

8.4 Computational Efficiency

The benchmark presented in Table 7.2 shows that a common mechanical application

with one flexible beam can without any problems run on a low performance laptop with

a CPU time below the elapsed simulation time.

The simulation time increases non-linearly when adding further complexity to the model

by increasing the number of dynamic shape functions as seen in Figure 7.15. If another

flexible beam is added to the system the number of time varying variables and time

states are almost doubled while the CPU time increases more drastically as presented

in Table 7.3.

Since the models haven’t been run on any other computer software it is hard to know

weather the beam model is efficient or not. However, the results indicate that the model

runs smoothly if few dynamic shape functions are used (one to three), which should be

sufficient for most applications.



Chapter 9

Conclusion and Future Work

9.1 Conclusion

A flexible beam library has been implemented in Dymola using the Craig-Bampton

method in a Floating Frame of Reference formulation. The library contains three differ-

ent components, one translational, one rotation and one multibody component, each one

compatible with the standard mechanical library in Dymola. The implemented models

are based on the Euler Bernoulli beam theory and have shown significantly promising

results throughout the validation process. Especially impressive is the models accuracy

in representing static deformation which is better than the accuracy in representing dy-

namic deformation. The models show different response in eigenfrequencies depending

on the given case of dynamic deformation. The eigenfrequency deviates further from the

analytical solution in free vibration in comparison to forced vibration. Furthermore an

increase in the systems energy has been observed while the beam is subjected to certain

loads. It is recommended to further investigate whether the mentioned issues are due

to the simplifications made with the Craig-Bampton method, if there are faults within

the implementation or if it could be due to numerical errors in Dymola.

Modeling an elastic beam with coupled substructures provides the advantage of neglect-

ing prescribed kinematic boundary conditions. In large mechanical systems this is a

great advantage since the user can connect multiple elastic beam components without

providing any information concerning kinematic constraints. In combination with the

Floating Frame of Reference formulation, it leads to a compact format, suitable with the

object-oriented equation based environment in Dymola, providing short computational

times on low performance computers.
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9.2 Future Work

As a concluding remark we recommend Modelon AB to put further effort in developing

and investigating the following:

• Differences in eigenfrequencies in free and forced vibrational cases of deformation

and if this can be related to the Craig-Bampton method.

• Run more and longer simulations in order to identify other situations in which

additional energy seem to appear in the system.

• Model a single beam with several beam components to investigate if this increases

the accuracy of the solution.

• Test the models in larger mechanical applications such as a vehicle suspension or

drive line and compare with similar models in other modeling software products.

• Test the models with other material properties that are more common in mechan-

ical applications than those presented in Chapters 6 and 7.

• Implement a material database with the properties of common materials so that

these can easily be exchanged in the models.

• The Rayleigh damping coefficients should be evaluated according to chosen mate-

rial properties and model structure.

• The beam component should identify which frame is closest to the root and auto-

matically define the origin of the local coordinate system in that frame.

• Circular cross sections should be implemented in the three-dimensional component.

• The user should be able to turn static shape functions on and off in order to

conveniently exchange flexible components with rigid ones.

• An implementation of Euler/Bryant angles as rotational coordinates to add ex-

tended compatibility with the standard libraries.
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