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Abstract
The aim of this thesis was to investigate methods for artifact removal in PPG signals and to
implement and evaluate a few existing algorithms claiming that the amplitude information
is recovered when removing motion artifacts from photoplethysmographic signals (PPG)
captured from pulse oximeters. We developed a new proposed method that uses a two-stage
based approach with singular value decomposition and fixed fast ICA algorithm in order
to generate a PPG-correlated reference signal that is used in adaptive noise cancellation.
The results were promising and our proposed method is easy to implement and converges
quickly with good extraction performance. It has a few design parameters and only needs
the estimated period of the PPG signal. Our method could be used in a clinical routine
for prediction of intradialytic hypotension. However it should be mentioned that although
our method has great potential the simulations were only conducted on two healthy males.
Further studies on a larger dataset might be needed in order to establish a full value of the
efficacy of our method.
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1 | Introduction

1.1 Background
In recent years biomedical technologies has increased rapidly for more accurate diagnoses and
effective treatments. In order to obtain clinically reliable measurements medical monitoring
devices should be optimized. Optimized devices will give a better utilization of health care
and facilitate the clinician to make correct medical decisions.

Pulse oximetry is one such medical device regarded as standard in operating rooms and
intensive care units (ICU). It is a non-invasive method for evaluating a patients arterial
blood oxygen saturation or heart rate. [1]

The requirement when performing measurements is that the patient must remain still
while the assessment is accomplished. However in reality and especially in ambulatory moni-
toring during patient transportation noise caused by motion is inevitable. The deterioration
of the signal caused by these movements, with the clinician unaware of it, can lead to false
medical decisions and unreliable readings. Reliable readings are thus of huge importance in
the presence of motion artifacts. [2]

Results from previous studies suggest that the envelope of the PPG signal may be used to
predict acute symptomatic hypotension which is the most common complication associated
with hemodialysis treatment and occur in approximately 25% of all sessions. [3] [4] [5] The
photopletysmography (PPG) signal obtained from the pulse oximeter is disturbed by noise
and motion artifacts that may influence the accuracy of envelope estimation.

Hence the removal of motion artifact which is stochastic in nature and present as in-band
noise of importance in clinical settings due to the above mentioned reasons.

The objective of this thesis is to implement and evaluate algorithms for noise and artifact
removal in PPG signals with respect to maintained amplitude information. Few scientific
papers claims that the amplitude information is reserved when the effect of motion artifact
is reduced using adaptive filters and independent component analysis (ICA) [6] [7]. The goal
is to investigate these algorithm implementations in Matlab for evaluation, validation and
improvement for the pulse oximeter CardioHolter 6.2 used in this thesis work. The results
from this study could be used in clinical routine for prediction of intradialytic hypotension
where the PPG signal is analyzed with respect to changes in amplitude.

This report is organized by first introducing relevant background about pulse oximeters
and artifacts in PPG signals, furthermore signal processing, optimization, adaptive filter
and independent component analysis theory will be covered, followed by methods, experi-
mentational setup and measurements. Finally the results are presented and discussed.
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2 | Pulse Oximeters
A pulse oximeter is a device used to continuously monitor and measure the arterial blood
oxygen saturation (SpO2) or heart rate non-invasively. The simplicity and ability to provide
fast and inexpensive measurements makes the pulse oximeters important in clinical settings.
Patients risking respiratory failure, hypoxemia or cardiac problems can easily be detected
by clinicians. Cardiopulmonary diseases and sleep disorders can also be screened [8].

2.1 Principles of pulse oximeters
Pulse oximeters utilizes a microprocessor unit and a peripheral probe consisting of a pho-
todetector on one side of the probe and a pair of light-emitting diodes (LED) on the other
side. The two LEDs emit lights at different wavelengths. One in the red spectrum at a
wavelength of 660 nm and the other in the infrared spectrum at a wavelength of 940 nm.
A translucent part of the body is used for measurements such as finger tips, earlobes, toes
and foreheads. The transmitted light from the diodes through the tissue bed is determined
by the photodetector (the amount of light not absorbed by the tissue). [9]

The different light-absorbing characteristics between oxyhemoglobin (HbO2) and deoxy-
hemoglobin (Hb) is the basis of the principle. The absorption is notably lower for oxyhe-
moglobin at 660 nm (red region of light spectrum) than deoxyhemoglobin. At 940 nm in
the infrared region of light spectrum the absorption of deoxyhemoglobin is lower in relation
to oxyhemoglobin.

Figure 2.1: Light spectrum characteristics of HbO2 (oxyhemoglobin) and Hb (reduced
hemoglobin).

The arterial oxygen saturation estimate from the pulse oximeter is denoted as SpO2 and is
an estimate of SaO2 which is defined as in the equation below.

SaO2 = cHbO2

cHbO2 + cHb + cCOHb + cMetHb
× 100% (2.1)

2



CHAPTER 2. PULSE OXIMETERS 3

The total amount of hemoglobin in the denominator of equation 2.1 is not only Hb and HbO2
but also other forms of hemoglobin as carboxyhemoglobin (COHb) and methemoglobin
(MetHb). The latter two are referred as dysfunctional hemoglobin because of reduced oxygen
transportation and the former functional hemoglobin. A pulse oximeter uses the definition
of functional oxygen saturation defined in the equation below [10].

SpO2 = cHbO2

cHbO2 + cHb
× 100% (2.2)

The signal retrieved from the pulse oximeter is called photoplethysmographic (PPG) and is
produced as a result of the periodic heart contractions and relaxation. It is a volumetric
measurement associated with arterial blood volume changes. The AC part is the pulsatile
component of the PPG signal related to the arterial blood volume change by cause of systolic
and diastolic phases of the cardiac cycle. The DC part is the non-pulsatile component of
the PPG signal associated with light intensity baseline depending on tissue, skin, bone and
venous blood [6]. The sudden drop in the systolic phase in the PPG signal is called dicrotic
notch and is caused by aortic valve closure [11].

Figure 2.2: Light attenuation and the PPG waveform. [12]

2.1.1 Estimation of oxygen saturation
The estimation of the arterial oxygen saturation and the principle of pulse oximeters is
based on Beer-Lambert law [10]. The law states that there exists an exponential relationship
between the attenuation of light passing through a medium with respect to the properties
of the material. The intensity of the transmitted light through the material is given by

I = I0e
−A

where A = − ln I/I0 = ε(λ)cl
(2.3)

and I0 is the light intensity entering the volume, l is the length of the optical path, c the
substance concentration of the light-absorbing material and ε(λ) the molar absorptivity or
extinction coefficient as a function of wavelength λ. A is the absorbance amount. In the
case of multiple absorbers the equations become as following.
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I = I0e
−A

A =
∑
i

Ai =
∑
i

εi(λ)cil (2.4)

Taking into account the different concentrations and absorbance coefficients of the human
body (bone, tissue, skin and hair), Beer-Lamberts law can be used to express the light

intensity of the non-pulsatile components Inp = I0e

∑
i

−εi(λ)cil
. The ratio between the

maximum light intensity at diastole (peak) and the minimum at systole at wavelength λ1 is
calculated as

Imax
Imin

= Inpe
−(εHbO2 (λ1)cHbO2 +εHb(λ1)cHb)l

Inpe
−(εHbO2 (λ1)cHbO2 +εHb(λ1)cHb)(l+∆l)

= e(εHbO2 (λ1)cHbO2 +εHb(λ1)cHb)∆l
(2.5)

where ∆l is the optical path length between diastole and systole. This ratio is independent of
the effect of surrounding tissues as well as the incident light intensity. In order to eliminate
the optical path length ∆l also, the ratio of ratios gives the following relationship

Λ =
ln( ImaxImin

|λ1)
ln( ImaxImin

|λ2)

= εHbO2(λ1)cHbO2 + εHb(λ1)cHb
εHbO2(λ2)cHbO2 + εHb(λ2)cHb

(2.6)

Solving for the arterial oxygen saturation level yields in an equation with a one-to-one
relationship between the ratio and saturation. In the second evaluation of the equation
below typical values are inserted.

SpO2 = εHb(λ1)− εHbO2(λ2)Λ
εHb(λ1)− εHbO2(λ1) + [εHbO2(λ2)− εHb(λ2)]Λ

= 0.81− 0.18Λ
0.63 + 0.11Λ

(2.7)

However in most practical settings the above equation is rarely evaluated, instead a normal-
ization technique is used by dividing the peak-to-peak AC component of the PPG signal
with the DC component (equation 2.8). Manufacturers then relate the ratio of ratios to
empirical calibration in order to obtain the arterial oxygen saturation. The Beer-Lambert
model gives erroneous estimates of the true value below 85% due to scattering of light by
red blood cells, hence the use of look-up tables based on empirical studies [13].

Λ = ACr
DCr

/ACir
DCir

(2.8)
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Figure 2.3: Calibration curves for pulse oximeters. [5]

2.2 Artifacts in PPG signal
There are numerous factors that influence the accuracy and limits the performance of a
pulse oximeter causing a deteriorated PPG signal. The most critical limitations that can
corrupt the signal to such an extent that it might not be used in clinical settings are the
following.

2.2.1 Motion artifacts
This is a common name of the problematic noise that occurs due to displacement of the
sensor probe which is present in real-world by movements during patient treatment such
as waving, rubbing, seizures etc. The shape of the PPG signal is corrupted and leads to
inefficient, unreliable treatment and an increased cost of care. One type of motion artifact
is connected to a physically active individual moving the finger horizontally or vertically
inducing low venous pressure. This perturbation can influence the AC part of the PPG
signal resulting in lower SpO2 readings [14]. It is often difficult to remove motion artifacts
since the frequency band overlaps that of the PPG signal. Typically the frequency band
caused by motion artifacts is 0.1 Hz and above. The PPG signal is in the range 0.5-4 Hz and
hence the overlapping makes the use of classical signal processing techniques impractical in
order to separate it [15]. It has been the subject of several biomedical research projects to
remove motion artifacts completely.

2.2.2 Ambient light interference
Light sources other than the LED included within the pulse oximeter such as operating
room lamp may result in ambient light artifacts leading to erroneous reading. Other types
of interferences may also interfere such as electromagnetic radiation by magnetic resonance
imaging MRI and the presence of intravascular dyes (methylene blue or indigo carmine). It
may alter the red and infrared light-absorption properties of tissues. [8]

2.2.3 Anemia
Anemia is defined as the decrease of the amount of red blood cells and can effect the
PPG signals resulting in large errors in the measured oxygen saturation [16]. Hypothermia,
the potentially dangerous drop in body temperature leading to vasoconstriction is another
complication [17].



CHAPTER 2. PULSE OXIMETERS 6

2.3 Optical theory adopting Schuster’s theory
The assumption when using Beer-Lamberts law is that the medium must not scatter the
radiation. As mentioned before scattering of light leads to erroneous readings and therefore
Aoyagi adopted Schuster’s theory of radiation through a foggy atmosphere in his report in
order to give more precise predictions [20]. The absorption in blood as a function of blood
vessel thickness changes (∆lb) is derived as following through experimentation by Aoyagi:

∆Ab =
√
εh(εh + F ) · ctotHb ·∆lb + Zb∆lb

εh = S · εHbO2 + (1− S)εHb
(2.9)

ctotHb is the hemoglobin concentration in the blood, F is a scattering constant, S the oxygen
saturation and Zb is a constant independent of wavelength which is zero when the optical
receiver is wide enough. Modifying the above equation taking into consideration the tissue
effect the expression become as

∆Ab =
√
εh(εh + F ) · ctotHb ·∆lb + Zb∆lb + Zt∆lt (2.10)

where Zt is a tissue constant independent of the wavelength and ∆lt is the tissue thickness
change [7]. The above equation holds for one blood vessel. The effect of both arterial and
venous blood vessels expands the expression in the following form

∆Ab =
√
εha(εha + F ) · ctotHba ·∆lba +

√
εhv (εhv + F ) · ctotHbv ·∆lbv + ∆As (2.11)

where subscripts a and v refers to arterial blood and venous blood respectively and ∆As
is the accumulated effect of both tissue and blood thickness changes that is wavelength
independent.



3 | Signal Processing
In daily life noise and interference may be present in a signal (entity that carries infor-
mation) and consequently the need for signal processing is of vital importance concerning
representation and manipulation of signals. A signal may be a function of continuous vari-
ables or discrete variables. In this section the fundamental concepts of discrete time signals
and systems will be presented as it is of importance in biomedical signal processing. The
characteristics of the PPG signal is time-varying due to motion and local tissue changes
and it is therefore natural to view it as an stochastic process rather than deterministic
[21]. Stochastic processes will be described as well as topics including stationarity auto-
and crosscorrelation. Frequency representation of the signal will also be introduced. Finally
wiener filtering and linear prediction is explained.

3.1 Stochastic processes
A stochastic process is also called a random process and is a function of time on some
observation interval. The name derives from the fact that it is not possible to predict or
describe the exact waveform when conducting an experiment. Discrete time and uniformly
spaced stochastic processes arise in practical applications such as radar, seismic, digital
computer data and biomedical signals. [22] Before considering stochastic processes a brief
review of basic terminology of the properties of random variables and distributions will be
presented.

3.1.1 Random variables and distributions
Random variables are found in almost any practical application and it is therefore important
to understand and manipulate them. There are two types of random variables, discrete
random variables on a sample space Ω (set of all possible outcomes) consisting of a discrete
set of events wi (subsets of sample space) and continuous random variables assuming a
continuum of values [23]. For a real-valued random variable x the cumulative distribution
function (cdf) is defined as following for discrete type:

FX(x) = P (X ≤ x)

=
∑
xi≤x

pX(xi) (3.1)

In most cases the process is characterized by density function instead of cdf, the probability
density function (pdf) of a discrete random variable is shown below, respectively.

pX(x) = P (X = x) (3.2)

The density function of a gaussian probability distribution is used frequently in signal pro-
cessing operations, one conventional use is to describe additive white noise. The gaussian
density function is given by (µ is the mean and σ is the standard deviation):

7



CHAPTER 3. SIGNAL PROCESSING 8

pX(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 (3.3)

3.1.2 Expectations, mean, covariances and correlation
The expectation of a quantity g(x) derived from a random vector x is useful for processing
and analyses in signal processing and is defined as:

E{g(x)} =
∫ ∞
−∞

g(x)px(x)dx

x = (x1, x2, . . . , xn)T
(3.4)

where g(x) could be either a vector, scalar or a matrix. The mean vector or sometimes
called first moment of a random vector is defined as the expectation of x:

mx = E{x} =
∫ ∞
−∞

xpx(x)dx

mxi = E{xi} =
∫ ∞
−∞

xipxi(xi)dxi
(3.5)

where the second equation is computed as the ith component of the n-dimensional vector
mx. The statistical relationship and dependence between random variables or sets of data
using second-order statistics is another important issue, hence the use of correlations. The
correlation between component i and j is denoted as rij and is given by the second moment.
The n×n correlation matrix Rx of the vector x forms all correlations rij where the element
is found in row i and column j. The correlation matrix is symmetric, positive semidefinite
and all its eigenvalues are real and nonnegative if the matrix is positive definite. [23]

rij = E{xixj} =
∫ ∞
−∞

xixjpx(x)dx

Rx = E{xxT }
(3.6)

Central moments or also called covariances are calculated in a similar way by subtracting
the mean vectors from the random vector. The elements of the covariance matrix Cx are
called covariances (cij) and can be found in the matrix in the same way as for the correlation
matrix above.

cij = E{(xi −mi)(xj −mj)}
Cx = E{(x−mx)(x−mx)T }

(3.7)

The relationship between correlation and covariance matrix is easily shown using the proper-
ties of expectation operator, notice that if the mean vector is zero then the matrices become
the same.



CHAPTER 3. SIGNAL PROCESSING 9

Rx = Cx + mxmx
T (3.8)

The cross-correlation and cross-covariance matrices is also used when dealing with two
different vectors x and y that could have different dimensions. In general they are not
symmetric and not necessarily square matrices.

Rxy = E{xyT }
Cxy = E{(x−mx)(y−my)T }

(3.9)

3.1.3 Estimating expectations
If the probability density function is unknown the expectation of g(x) could be estimated
by averaging over a set of N available samples of the vector x.

E{g(x)} ≈ 1
N

N∑
i=1

g(xi) (3.10)

In similar way the sample mean and the cross-correlation matrix can be estimated, this can
be readily obtained also for R̂xx, Ĉxx and Ĉxy.

m̂x = 1
N

N∑
i=1

xi

R̂xy = 1
N

N∑
i=1

xiyi
T

(3.11)

3.1.4 Uncorrelatedness and independence
The definition of uncorrelatedness is that two random vectors are said to be uncorrelated
if their cross-covariance matrix is zero. The same holds for two scalar random variables,
equivalently their covariance is zero. This means that there is no linear relationship between
the variables. Zero covariance implies zero correlation.

Cxy = E{(x−mx)(y−my)T } = 0 (3.12)

Statistical independence is a key concept in many areas and two random variables or vectors
are said to be independent if the occurrence of one does not give any information of the
value of the other. In mathematical terms this can be described as a factorization of the
joint density into the product of the marginal densities of two random variables x and y.
[23]

px,y(x, y) = px(x)py(y) (3.13)
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The definition can be extended in a general way expressing the equation for more than
two random variables, for random vectors x, y, z, . . . , the independence condition is as
following.

px,y,z,...(x,y, z, . . .) = px(x)py(y)pz(z) . . . (3.14)

Two random variables that are independent are said to be uncorrelated, however the oppo-
site, that uncorrelatedness implies independence does not always hold. [23]

3.1.5 Stochastic processes
A discrete-time stochastic process x(t) is defined at a set of discrete times t1, t2, . . . , tk and
is said to be strictly stationary if its joint probability distribution is time shift invariant.
Consequently that implies that parameters such as mean and variance do not change over
time. In order to characterize stochastic processes, the mean function, autocovariance and
autocorrelation functions are defined. [24] The mean-value function is defined as

mx(t) = E{x(t)} (3.15)

When the stochastic process is strictly stationary the mean-value function is simply constant
mx [25]. The autocovariance function is defined below, especially for lag τ = 0 it reduces
to the variance σ2

x for a stationary process.

cx(t, t− τ) = E{(x(t)−mx(t))(x(t− τ)−mx(t− τ))}, τ = 0,±1,±2, . . . (3.16)

The autocorrelation function of the stochastic process is defined below and generally if lag
τ = 0 the function reduces to a constant rx(0) = E{x(t)2} for a stationary process.

rx(t, t− τ) = E{x(t)x(t− τ)}, τ = 0,±1,±2, . . . (3.17)

Moreover for strictly stationary processes the autocovariance and autocorrelation functions
only depend on the difference between t and t− τ , that is to say only depending on the lag
τ .

rx(t, t− τ) = rx(τ)
cx(t, t− τ) = cx(τ)

(3.18)

A weaker form of stationarity in signal processing is often called wide-sense stationary
(WSS). Such processes are common in practice since many physical processes are at least
mildly nonstationary. The following properties hold for a WSS process in general:

• mx(t) = mx constant for all t

• Time shift invariance of autocorrelation function rx(t, t− τ) = rx(τ)

• Finite variance rx(0) = E{x(t)2} <∞



CHAPTER 3. SIGNAL PROCESSING 11

Representing the stochastic process at time n using the random vector

x(n) = [x(n), x(n− 1), . . . , x(n−m)]T (3.19)

the correlation matrix can be defined as the outer product of the vector with itself using
the expectation operator as below, where H denotes Hermitian transpose (transposition
combined with complex conjugation).

Rx = E{x(n)xH(n)} =


rx(0) rx(1) rx(2) · · · rx(m)
rx(1) rx(0) rx(1) · · · rx(m− 1)
...

...
...

. . .
...

rx(m) rx(m− 1) rx(m− 2) · · · rx(0)

 (3.20)

The correlation matrix is Toeplitz, that is to say, all the main diagonal and subdiagonal
elements are equal. The toeplitz property holds for wide sense stationary stochastic processes
and is helpful when solving linear equations enabling faster algorithms.

3.1.6 Mean ergodic theorem and time averages estimation
A stochastic process is ergodic if the mean and autocorrelation (usually unknown) can
be estimated to its ensemble average by replacing the expectation operators and calculate
sufficiently long time averages from a single realization of the process [26]. Assuming that
N samples are available, the estimates can be written as:

m̂x(N) = 1
N

N∑
n=1

x(n)

r̂x(l, N) = 1
N − l

N−l∑
n=1

x(n+ l)x(n)

(3.21)

3.1.7 Frequency domain representation
To gain more insight and understanding of a process it could be easier to represent it in the
frequency domain instead of time domain. The statistical parameter is called power spectral
density, assuming a WSS process, it is defined as the discrete-time Fourier transform of the
autocorrelation series. [27]

Sx(w) =
∞∑

k=−∞
rx(k)e−jwk (3.22)

The time domain representation can be obtained by applying the inverse discrete-time
Fourier transform of the power spectral density.

rx(k) = 1
2π

π∫
−π

Sx(w)ejwkdw (3.23)
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The power spectrum is a periodic, real-valued, even and continuous function of the angu-
lar frequency. If the process is complex valued then its power spectral density might not
necessarily be even. Using the z-transform instead, the power spectral density can be written

Sx(z) =
∞∑

k=−∞
rx(k)z−k (3.24)

3.1.8 Linear Prediction
As mentioned before linear prediction is the case when estimating or predicting future values
of the desired signal based on linear combination of previous values of noisy observations. In
linear prediction the operation is called one-step predictor and the Wiener filter theory may
be used in order to estimate future values. Specifically if the desired signal d(n) = u(n+ 1)
then it is referred to as forward linear prediction and if d(n) = u(n−1) it is called backward
linear prediction. In the case of forward linear prediction the Wiener-hopf equations for
the optimum linear prediction is as following, the same method can be applied in the case
of backward linear prediction, the only difference is that the cross-correlation between the
desired response and the input signal will be different. [28] [29]

rdu(k) = E{d(n)u∗(n− k)} = E{u(n+ 1)u∗(n− k)} = ru(k + 1)


ru(0) r∗u(1) . . . r∗u(p− 1)
ru(1) r∗u(0) . . . r∗u(p− 2)
. . . . . . . . . . . .

ru(p− 1) r∗u(p− 2) . . . ru(0)




w(0)
w(1)
. . .

w(p− 1)

 =


ru(1)
ru(2)
. . .
ru(p)


(3.25)

The forward prediction error or the mean-square error is

Jmin = rd(0)−
p−1∑
k=0

w(k)r∗u(k + 1) (3.26)



4 | Optimization
In this section the mathematical development of different optimization algorithms will be
formulated. Optimization arise in many areas and the objective is to find an optimal solution
to a given quantity with subject to possible restrictions. The goal may be to find a minimum
or a maximum of a function. The objective function is the function to be optimized, decision
variables are the parameters associated with the function and the restrictions on allowed
parameter values is called constraints. Generally a constrained optimization problem can
be formulated as

minimize
x∈Rn

f(x), x = (x1, x2, . . . , xn)T

subject to gi(x) = 0, i = 1, 2, . . . , n
hi(x) ≤ 0, i = 1, 2, . . . ,m

(4.1)

where gi(x) = 0 is called equality constraints and hi(x) ≤ 0 inequality constraints. The
feasible solution is the vector x that satisfies all the constraints, all such points forms the
feasible region [30]. The optimal point or feasible point x∗ to the above problem must satisfy
the condition f(x∗) ≤ f(x) for all x. Naturally an optimization problem can also be formu-
lated as the maximization of a function in which case the constraints and the conditions will
be of the reverse. An optimization problem with no constraints is called an unconstrained
optimization problem. There are many classes, families and subfields of optimization,convex
optimization is one where the objective function is convex (segment joining two points lies
entirely above function graph) and hence there is only one optimal solution which is globally
optimal. Other subfields are linear programming (LP) where the constraints and objective
function is linear and nonlinear programming (NLP) where some objective function or con-
straints may be nonlinear. [31]

Some methods require only equality constraints in order to be solved (e.g. Lagrangian
methods), thus a transformation of the inequality constraints into equality constraints is es-
sential. This can be done introducing squared slack variables zi transforming the inequality
constraints hi(x) ≤ 0 into equality constraints as following. [32]

hi(x) + z2
i = 0 (4.2)

4.1 Gradient ascent
Gradient ascent is a first-order unconstrained optimization method also known as steepest
ascent. It is an iterative method that finds local maximum of a continuously differentiable
multivariate function [33]. The approach is to take steps in the direction proportional to
the positive gradient. If moving in the direction of the negative gradient the approach is
called steepest descent or gradient descent and the local minimum is searched for. Consider
maximizing a function f(x) starting with an initial guess x0 and moving in the direction
of the positive gradient of the function (∇f(x0)) by a distance controlled by the positive
scalar step-size parameter µ adjusting the length. The algorithm is generally described as
following. [34]

13
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xn+1 = xn + µ∇f(xn) (4.3)

4.2 Newton’s method
Newton’s method can be used to solve unconstrained optimization problems when finding
minimum or maximum of an objective function f(x) [35]. Using the Taylor series expansion
around xn yields

f(x) ≈ f(xn) +∇f(xn)T (x− xn) + 1
2(x− xn)T∇2f(xn)T (x− xn) (4.4)

where ∇f is the gradient vector and ∇2f is called the Hessian matrix and is defined as
below.

H =∇2f(x) =


∂2f(x)
∂x1∂x1

. . . ∂2f(x)
∂x1∂xn

...
∂2f(x)
∂xn∂x1

. . . ∂2f(x)
∂xn∂xn



∇f(x) =
(
∂f(x)
∂x1

, . . . , ∂f(x)
∂xn

)T
(4.5)

The unique solution that minimizes f(x) is obtained if the Hessian matrix is positive definite
and it is negative definite if maximum is searched for [36]. Computing the gradient of the
Taylor series expansion above with respect to x− xn and setting equal to zero gives

∇f(xn) +∇2f(xn)(x− xn) = 0 (4.6)

which yields in the symmetric linear system

(x− xn) = −(∇2f(xn))−1∇f(xn) (4.7)

which results in the iterative equation below converging towards the minimizer x∗.

xn+1 = xn − (∇2f(xn))−1∇f(xn) (4.8)

4.3 Lagrange multiplier method
The Lagrange multiplier method solves constrained optimization problems with equality
constraints [37]. The theory can also be extended in order to deal with inequalities. Consider
the equality constraint problem
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minimize
x∈Rn

f(x), x = (x1, x2, . . . , xn)T

subject to gi(x) = 0, i = 1, 2, . . . , n
(4.9)

where the function and constraints are continuously differentiable in Rn. The Lagrange
multiplier method is based on the Lagrangian function in the equation below. Solving for
stationary points of the Lagrangian function yields in solution of the original constrained
problem, however not all points guarantee this fact and hence optimality conditions are
necessary [38].

L(x, λ) = f(x) +
k∑
i=1

λigi(x), λ = (λ1, . . . , λk) (4.10)

The vector λ contains the Lagrange multipliers and if x∗ is an optimal solution then the
following necessary optimality conditions known as Karush-Kunn-Tucker (KKT) conditions
will be satisfied by λ∗

∇xL(x∗, λ∗) = 0 ⇐⇒ ∇f(x∗) +
k∑
i=1

λ∗i∇gi(x∗) = 0

∇λL(x∗, λ∗) = 0 ⇐⇒ gi(x∗) = 0, i = 1, . . . , k

(4.11)

Setting up the system of linear equations using the above conditions and solving for the sta-
tionary points will determine the optimal solutions. If the second order sufficient condition
also known as local convexity assumption is satisfied (∇2

xxL(x∗, λ∗) > 0) or put in other
words the Hessian is positive definite then a local minimum is found. The feasible point is
a local maximizer if the Hessian is negative definite. [39]

{
∇f(x) +

∑k
i=1 λi∇gi(x) = 0

gi(x) = 0, i = 1, . . . , k
(4.12)

Extension of the Lagrange multipliers method can be done covering the case of both in-
equality and equality constraints. Consider the optimization problem stated in equation
2.48, then the Langrangian function is defined as

L(x, λ, µ) = f(x) +
k∑
i=1

λigi(x) +
k∑
i=1

µihi(x) (4.13)

where µ = (µ1, . . . , µk) are Lagrange multipliers for each constraint hi(x) ≤ 0. Inequality
constraints hi(x) can be active or inactive. If hi(x) = 0 at a feasible solution then the
constraint is said to be active and inactive if hi(x) ≤ 0. Inactive constraints have no
influence in local properties satisfied by the optimal solution and hence if it were known
a priori which constraints were active the solution could be determined by treating all
constraints as equality constraints [40]. The necessary KKT conditions for determining the
optimal solutions is now as following.
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∇f(x) +
k∑
i=1

λi∇gi(x) +
k∑
i=1

µi∇hi(x) = 0

hi(x) ≤ 0, i = 1, . . . , k
gi(x) = 0, i = 1, . . . , k
µi ≥ 0, i = 1, . . . , k
µigi(x) = 0, i = 1, . . . , k

(4.14)

4.3.1 Dual problem
The dual problem separates the optimization problem into two parts, the primal problem
which is the original objective and the dual problem that will provide a lower bound on the
solution of the primal objective. The convergence properties may not be very satisfying,
however the dual problem is often easy to implement and improves the approximation of the
solution [40]. The Lagrange dual function is defined as infimum of the Lagrangian function

φ(λ, µ) = inf
x
L(x, λ, µ) (4.15)

The infimum is defined as the largest number as a lower bound on a collection of points and
it is easy to show that the dual function gives a lower bound on the optimal value φ∗ ≤ f∗.
Hence by maximizing the duality function will give the best approximation of the lower
bound. The dual problem is therefore defined as

maximize φ(λ, µ) (4.16)

4.3.2 Penalty methods
Constrained optimization problems can be replaced by unconstrained problems and this is
accomplished by adding a term called penalty function to the objective function multiplied
by a penalty parameter that violates the constraints [41]. The idea is that the penalty
problem will converge to the solution of the original constrained problem when the penalty
parameter tend towards infinity. Consider the optimization problem below with only equal-
ity constraints

minimize
x∈Rn

f(x)

subject to g(x) = 0
(4.17)

then a common and standard unconstrained penalty problem by adding a quadratic penalty
term is

minimize f(x) + 1
2c ‖g(x)‖2 (4.18)

where c is the scalar penalty parameter and ‖·‖ denotes the Euclidian norm [42].
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4.3.3 Augmented Lagrangian Method
Combining the concepts of duality and penalty method one arrives at a concept called the
augmented Lagrangian method or alternatively referred to as multiplier method. It is one of
the most effective methods eliminating disadvantages associated with both methods alone
[40].

Equality constraints
Consider the optimization problem in equation 2.64, as mentioned the equivalent problem
is obtained using penalty functions as stated in equation 2.65. Combining this with duality
problem by the following definition of the dual function

φ(λ) = min{f(x) + λTg(x) + 1
2c ‖g(x)‖2} (4.19)

and updating the multipliers with the following iterative process (based on steepest ascent)
in order to maximize the dual function [40].

λk+1 = λk + cg(x(λk)) (4.20)

Inequality constraints
Inequality constraints can be incorporated and the derivation is straightforward but tedious.
Consider the optimization problem with inequality constraints only

minimize
x∈Rn

f(x)

subject to h(x) ≤ 0
(4.21)

Using the concept of slack variables as introduced before, the above problem can be stated
as an equality constrained version in which one can apply the dual function in equation
2.66.

minimize
x∈Rn

f(x)

subject to hi(x) + z2
i = 0, i = 1, . . . ,m

(4.22)

As to simplify the analytical derivation vi = z2
i is defined for convenience. The dual function

is hence

φ(µ) = min{f(x) +
m∑
i=1

(µi[hi(x) + z2
i ] + 1

2c
∥∥hi(x) + z2

i

∥∥2)}

= min{f(x) +
m∑
i=1

(µi[hi(x) + vi] + 1
2c ‖hi(x) + vi‖2)}

(4.23)

Minimization of the introduced slack variable must be carried out in order to obtain a dual
function that only depends on minimization with respect to x. The expression below is
defined as the part where the slack variable is involved in the dual function [40].
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Pi = µi[hi(x) + vi] + 1
2c ‖hi(x) + vi‖2 (4.24)

Taking the derivative with respect to the constraint function and solving for vi and with
the condition vi ≥ 0 in mind the following solution is obtained.

vi =
{
−hi(x)− µi

c , if− hi(x)− µi
c ≥ 0

0 otherwise
⇐⇒ vi = max

[
0,−hi(x)− µi

c

]
(4.25)

Substituting the above solution in equation 2.71 yields

Pi =


−µ

2
i

2c , for vi = −hi(x)− µi
c

1
2c{[µi + chi(x)]2 − µ2

i }, for vi = 0
(4.26)

which is equivalent to

Pi = 1
2c{[max(0, µi + chi(x))]2 − µ2

i } (4.27)

The dual function for the the inequality constrained optimization problem is hence

φ(µ) = min{f(x) +
m∑
i=1

Pi} (4.28)

where Pi is defined as in equation 2.74. The optimum multipliers µ can be obtained itera-
tively in the exact same way as for the constrained version as seen in equation 2.67.

Combined augmented lagrangian method
By combining the result from the inequality constrained and the equality constrained op-
timization problem the general augmented lagrangian method is obtained. The total dual
function in vector form is hence

φ(λ) = min{f(x) + 1
2c{[max(0, µ+ ch(x))]2 − µ2}+ λTg(x) + 1

2c ‖g(x)‖2} (4.29)

or if one wishes to define the Lagrangian function instead

L(x, λ, µ) = f(x) + 1
2c{[max(0, µ+ ch(x))]2 − µ2}+ λTg(x) + 1

2c ‖g(x)‖2 (4.30)

with the optimum multipliers found iteratively based on steepest ascent as below.

µk+1 = max(0, µk + ch(x(µk)))
λk+1 = λk + cg(x(λk))

(4.31)



5 | Adaptive filters
An adaptive filter models the relationship between two signals in real time and relies for
its operation on a recursive algorithm. The filter will be able to perform adequately in
a setting where the characteristics of a relevant signal is unknown. Predetermined set of
initial conditions is essential to start the algorithm. The block diagram below (figure 2.5)
shows the structure of the adaptive filtering problem, where u(n) is the input signal to the
adaptive filter and y(n) the output signal at time n. Comparison between the output signal
and a desired response signal d(n) is made. Subtracting the two signals a difference signal
e(n) is given which is known as the error signal.

e(n) = d(n)− y(n) (5.1)

The error signal will alter the filter parameters till the output signal y(n) of the adaptive
filter hopefully becomes an improved match to the desired signal response d(n) [28].

Figure 5.1: Block diagram representation of the adaptive filtering problem.

In this section a brief introduction of wiener filter and three different adaptive algorithms
will be presented. Least mean squares (LMS), normalized least mean squares (NLMS)
and recursive least squares (RLS). Also the method of adaptive noise cancellation will be
explained.

5.1 Wiener Filter
In this section the design of linear optimum discrete-time filters, generally known as Wiener
filters will be studied. In many applications the desired signal may be distorted and noisy.
Wiener filter theory provides filters that are optimum in a sense that the best estimate of
the desired signal will be produced. The assumption that is made is that the signal and
the additive noise v(n) are wide-sense stationary linear stochastic processes. The goal is to
reproduce a desired signal d(n) from noisy observations u(n). Consider the block diagram
in the figure below where an input u(n) is filtered with W (z) producing an estimate d̂(n)

19
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accompanied by error with statistical characteristics of its own. The estimation error e(n)
is the difference between the desired response d(n) and the estimate. The objective is to
minimize the estimation error in a statistical sense. To optimize the filter the mean-square
error J as the cost function will be minimized [28].

u(n) = d(n) + v(n)
e(n) = d(n)− d̂(n)
J = E{|e(n)|2}

(5.2)

Figure 5.2: Block diagram representation of Wiener filtering problem.

For the development of Wiener filter theory in this section the finite impulse response (FIR)
filter will be used since it is inherently stable, easy to implement, consists of only forward
paths and are linear phase (no distortion of the phase). A choice of using infinite impulse
response (IIR) filter could be made also, the choice depends on practical considerations. IIR
filters include also feedback which can make the filter unstable and oscillate. Depending on
how the desired signal is related to the noisy observation signal several problems could be
solved [29]. These are some of the problems:

• Filtering
The problem of estimating a desired signal d(n) from noisy observations x(n) using a
causal filter. Current and past values of d(n) is used.

• Smoothing
This is the same as the filtering problem except for the fact that noncausal filter is used
when estimating the desired signal.

• Prediction
This is the problem of estimating future values of the desired signal based on linear
combination of previous values of noisy observations x(n). The Wiener filter in this case
is called a linear predictor.

• Deconvolution
If the noisy observation x(n) and the desired signal d(n) are related in the following way
x(n) = d(n)∗g(n)+v(n) where g(n) is the unit sample response of a linear shift-invariant
filter the problem is called deconvolution. Estimating g(n) is the main objective.

5.1.1 FIR Wiener Filter
Assume that the input and the desired signal are jointly WSS and denote the unit sample
response of the Wiener filter w(n), then the goal is to find the filter coefficients of the FIR



CHAPTER 5. ADAPTIVE FILTERS 21

filter w(k) that minimizes the mean square error. With u(n) as the input to the filter W (z)
(p-1 order filter) the estimate d̂(n) can be expressed as the convolution of w(n) and u(n).
[28] [29]

d̂(n) = w(n) ∗ u(n) =
p−1∑
l=0

w(l)u(n− l)

J = E{|e(n)|2} = E{e(n)e∗(n)} = E{|d(n)− d̂(n)|2}

(5.3)

Taking the derivative of the cost function with respect to the filter coefficients equal to zero
yields in

∂J

∂w∗(k) = ∂

∂w∗(k)E{e(n)e∗(n)} = E{e(n) ∂e
∗(n)

∂w∗(k)} = 0 (5.4)

Insertion of the estimate error in the derivate gives

E{e(n) ∂

∂w∗(k) [d∗(n)−
p−1∑
l=0

w∗(l)u∗(n− l)]} = −E{e(n)u∗(n− k)} = 0 (5.5)

and finally we have the following equation which is known as the orthogonality principle.

E{e(n)u∗(n− k)} = 0 k = 0, 1, . . . , p− 1 (5.6)

Substituting the error e(n) in the above equation and using the fact that ru(k − l) =
E{u(n− l)u∗(n− k)} and rdu(k) = E{d(n)u∗(n− k)} gives the Wiener-Hopf equations
below.

p−1∑
l=0

w(l)ru(k − l) = rdu(k) k = 0, 1, . . . , p− 1 (5.7)

Using matrix notation the Wiener-hopf equations can be expressed as

Ruw = rdu (5.8)


ru(0) r∗u(1) . . . r∗u(p− 1)
ru(1) r∗u(0) . . . r∗u(p− 2)
. . . . . . . . . . . .

ru(p− 1) r∗u(p− 2) . . . ru(0)




w(0)
w(1)
. . .

w(p− 1)

 =


rdu(0)
rdu(1)
. . .

rdu(p− 1)

 (5.9)

Applying the orthogonality principle in the same way as for the derivation of the Wiener-
hopf equation one can arrive at the minimum mean square error as below.
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Jmin = rd(0)−
p−1∑
l=0

w(l)r∗du(l) = rd(0)− rHduR−1
u rdu (5.10)

The optimum tap-weight vector of the filter is computed by solving the Wiener-hopf equa-
tions.

wo = R−1
u rdu (5.11)

5.2 Least Mean Squares (LMS)
In the LMS algorithm the statistics of a signal is estimated continuously. This means that
the correlation matrix R and the cross-correlation vector p is determined as below.

R̂(n) = u(n)uH(n)
p̂ = u(n)d∗(n)

(5.12)

The main principle is to minimize the mean-square error. It can be summarized in the
following way where a desired output is computed by filtering the input with the tap-weight
vector first. Then the estimation error is calculated as the difference between the desired
signal and the filter output. Lastly the tap-weights are updated in accordance with the
error.

d̂(n) = ŵH(n)u(n)
e(n) = d(n)− d̂(n)
ŵ(n+ 1) = ŵ(n) + µu(n)e∗(n)

(5.13)

The mean square error can be expressed in the following by setting ε(n) = ŵ(n)−wo (where
wo is the optimal Wiener solution).

J(n) = E{|e(n)|2} = Jmin + Jex(n) = E{|eo(n)|2}+ E{εH(n)R̂ε(n)} (5.14)

Convergence property of LMS is that the step-size parameter should be in the interval
0 < µ < 2

λmax
, however since the eigenvalues are rarely known the tap-input power is used

and the interval is rewritten as 0 < µ < 2
Mr(0) where M is the filter order and r(0) the

input variance. At best the LMS arrives at error Jmin + Jex(∞), so there will be a gradient
noise. The misadjustment (M = Jex(∞)

Jmin
=
∑M
i=1

µλi
2−µλi ) is a measure of how far away from

the optimal solution the LMS is. This can also be approximated by M = µ
2Mr(0). [28]

5.3 Normalized Least Mean Squares (NLMS)
The difference between the standard LMS and the Normalized LMS is that the tap-weight
vector is normalized by taking the squared Euclidian norm on the tap-input vector. This is
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because the LMS suffers from gradient noise amplification when u(n) is large, so to overcome
this we normalize. A positive protective constant a is also added to the normalized tap-
input vector in the denominator of the update equation in order to prevent the step size
from being infinite. The method is the same as for the LMS, but the update equation now
looks like this.

ŵ(n+ 1) = ŵ(n) + µ̃

a+ ‖u(n)‖2
u(n)e∗(n) (5.15)

The step-size parameter varies now in the interval 0 < µ̃ < 2. It can also be noted that the
parameter is dimensionless whereas for the LMS algorithm it has the dimension of inverse
power. [28]

5.4 Recursive Least Squares (RLS)
Recursive least square method is an adaptation of the least squares method that recursively
finds the filter coefficient by minimizing a cost function. The input signals of the RLS
algorithm are considered deterministic compared to the LMS which are stochastic. A benefit
of the RLS compared to other algorithms is that it has extremely fast convergence. The
recursive least square uses a value called the forgetting factor, λ. It is a decaying value
making the algorithm forget about information in the past at a certain rate. If set to 1 the
algorithm does not forget anything and thus uses all information to estimate its parameters.
[28]

ŵ(0) = 0
P(0) = δ−1I

(5.16)

Initialization of the RLS algorithm is shown in equations (2.84) where δ is the regularization
parameter. The parameter is assigned a small positive value for high SNR and large positive
value for low SNR.

k(n) = P(n− 1)u(n)
λ+ uH(n)P(n− 1)u(n) (5.17)

ξ(n) = d(n)− ŵH(n− 1)u(n) (5.18)

ŵ(n) = ŵ(n− 1) + k(n)ξ∗(n) (5.19)

P(n) = λ−1P(n− 1)− λ−1k(n)uH(n)P(n− 1) (5.20)

The last equation above (2.88) is called the Riccati equation for the RLS algorithm, where
P(n) is the inverse correlation matrix and k(n) is referred to as the gain vector. Equation
(2.87) shows the desired recursive equation for updating the tap-weight vector, where ξ is
the a priori estimation error.
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5.5 Adaptive Noise Cancellation
The ANC consists of two inputs, the primary and a reference signal as shown in figure
2.6. The primary input is a mix of the signal from the source corrupted by noise (signal +
noise). The reference input is either correlated with noise or the signal. If correlated with
noise the output of the adaptive filter (ŷ(n)) are going to be a close estimate of the primary
input noise. By subtracting the noise estimate from the corrupted signal the system output
of the ANC will hence be an estimate of the signal. Similarly if the reference signal is
correlated with the signal source the system output of the adaptive noise canceller is going
to be an estimate of the noise. An adaptive process updates the filter coefficient based on
the algorithm that is being used. [28]

Figure 5.3: Block diagram representation of an Adaptive noise canceller.



6 | Independent Component Anal-
ysis (ICA)

ICA is the statistical method of which observed random multivariate data is linearly sepa-
rated into a representation of independent non-gaussian subcomponents. This representa-
tion is very common in many applications such as feature extraction and signal separation.
The general-purpose technique of ICA is used in many different areas of which some are
biomedical signal processing, image processing, audio processing, telecommunication and
econometrics [26]. A motivative example and illustration of ICA is the "cocktail party prob-
lem", where people are talking simultaneously in a room and the underlying speeches can
be recovered. In the room microphones are placed at different locations and each time
recording holds a different combination of the speakers’ voices. In order to formalize the
problem consider three people speaking in a room simultaneously and denote the emitted
speech from each speaker as s1(t), s2(t) and s3(t). Given three microphones the recorded
signals (x1(t), x2(t) and x3(t)) are weighted summations of the emitted speech from each
speaker as following

x1(t) = a11s1(t) + a12s2(t) + a13s3(t)
x2(t) = a21s1(t) + a22s2(t) + a23s3(t)
x3(t) = a31s1(t) + a32s2(t) + a33s3(t)

(6.1)

where aij are parameters that depends on the microphone locations relative to the speaker.
The assumption made is that neither the parameters aij nor the source signals sj(t) are
known. The problem is to reconstruct the source signals by only knowing the mixes xi(t).
This is done by using the statistical information of the source signals in order to estimate
the mixing parameters aij and consequently simply inverting the linear system to obtain
the source signal estimates. An adequate assumption is that the source signals sj(t) are
statistically independent or at least mildly and this is realistic in most applications [45].
ICA can also be used to separate motion artifacts from biomedical signals such as the
photoplethysmographic signal or electrocardiography (ECG) signal as research emphasizes
[43] [44]. The mathematical framework of ICA algorithm depicted in the box of the figure
below will be presented in this section. Firstly the definition and rigorous mathematical
framework will be presented, thereafter why centering and whitening of the variables is
necessary and lastly how the gradient algorithm for estimating the source signals is developed
by measure of non-gaussanity.

25
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Figure 6.1: ICA model of estimating source signals from observed mixtures.

6.1 Definition
To define the ICA model a statistical latent variable model is used where a linear combination
of random variables is present. The observed mixed signals is denoted as xi and are linear
combination of statistically independent components sj as below [46].

xi =
n∑
j=1

aijsj , i = 1, . . . , n (6.2)

Using vector-matrix notation which is convenient for ICA the mixing model is instead writ-
ten as

x = As (6.3)

where A is a mixing matrix with the mixing elements as in figure 2.5 and x and s random
vectors containing observed mixtures and independent components respectively. This basic
model neglects time delays and noise for simplicity. In order to simplify calculations the
mixing matrix is assumed to be square which means that the number of observed signals
are equal to the number of independent components. As mentioned before the goal is to
estimate the independent components when only the observed mixtures are known. Two
main assumptions stated below are made to obtain the independent components estimates.

• Statistically mutually independent components
A sufficient and important assumption that at each time instant the source signals must
be statistically independent. From the basic definition independence can be described as
a factorization of the joint density into the product of the marginal densities of the source
signals.

• Nongaussian independent components
ICA only works with nongaussian independent components. Components having gaussian
probability distribution cannot be estimated. Beforehand the distribution of the indepen-
dent components is often unknown and if some components are gaussian while others are
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nongaussian ICA still works. The nongaussian components can be estimated, however
the gaussian components will not be recovered. To see why gaussian components are
prohibited consider first the joint distribution of two independent components s1 and s2
having nongaussian distribution (uniform distribution in this case) in the figure below.

Figure 6.2: Joint distribution of nongaussian independent components s1 and s2.

Mixing the independent components with some arbitrary mixing matrix yields in two
observed mixtures x1 and x2. It turns out that the source signals can be estimated by
viewing the joint distribution of the mixtures. The edge of the parallelogram is in the
directions of the columns of the mixing matrix. Hence the source signals can be extracted
when having nongaussian independent components [47].

Figure 6.3: Joint distribution of observed mixtures x1 and x2.

Now let’s consider two gaussian independent components instead, assume that the mixing
matrix is orthogonal then it is easy to show that the joint distribution after mixing has
the exact same distribution as the original one. The distributions in the picture below is
symmetric and do not contain information of the directions of the columns of the mixing
matrix.
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Figure 6.4: Joint distribution of gaussian independent components and of mixtures.

6.2 Centering
One of the preprocessing steps in ICA is to center the variables, this means that the sample
mean E{x} is subtracted from the observed variables x. This simplifies the calculations
and the algorithms of ICA and both the independent components and the mixture variables
have zero mean. [26]

6.3 Whitening
Whitening is also beneficial in the sense that it makes the components uncorrelated and
of unit variance. Consequently the mixing matrix also becomes orthogonal which reduces
the complexity and allows a more efficient and robust performance of the methods [26]. A
well-known and common way to whiten the data is to use the eigenvalue decomposition
(EVD) of the covariance matrix. The whitening matrix from EVD is

V = ED−1/2ET (6.4)

where D is the diagonal matrix containing eigenvalues of covariance matrix and E is the
orthogonal eigenvector matrix. Multiplying this whitening matrix in the mixing model in
equation 2.81 one obtains a new transformation z and a new mixing matrix Ã that is
orthogonal.

z = VAs = Ãs (6.5)

6.4 Non-gaussianity
As mentioned in the previous section nongaussanity is crucial when estimating independent
components and can therefore be used in the ICA estimation. The independent components
can be estimated by finding the inverse mixing matrix as following.
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s = A−1x (6.6)

The central limit theorem can be applied in order to estimate one of the independent
components. The basic concept is that one considers a linear combination of the mixture
variables that results in one of the independent components. Given the following relationship

y = wTx =
∑
i

wixi (6.7)

where y is the one of the independent components and w is a vector that equals one of the
rows of the inverse of A. The equation above can be rewritten as a linear combination of
the independent components instead in order to find such a vector.

y = wTx = qT s (6.8)

Here q is equal to ATw and the vector contains only zeros except for one element which is
equal to 1. The central limit theorem states that the sum of independent random variables
is more gaussian than the original variables. In the case when one has the independent
component qT s will be least gaussian. By maximizing the nongaussianity of wTx (since in
practice the vector q and si is unknown) an independent component will be found [26]. The
question is now how to define and measure nongaussianity, there are two common types of
which one is kurtosis and the other negentropy. These will be described in the next section.

6.4.1 Kurtosis
Kurtosis is a measure of nongaussianity and is based on the fourth-order cumulant of a
random variable. It is defined as following

kurt(y) = E{y4} − 3(E{y2})2 (6.9)

where y is some random variable. The fourth moment (E{y4}) equals 3(E{y2})2 for a
gaussian variable, thus the kurtosis is zero for a gaussian random variable. For nongaussian
variables the kurtosis is nonzero and greater than zero for most. As a measure of nongaus-
sianity the absolute value is used and one can assume that the variables are normalized
which means that variance equals one, hence the optimization landscape is restricted on the
unit sphere [26]. In order to maximize the absolute value of the kurtosis lets assume that
whitened data z has been used. The gradient algorithm obtained is as follows

∂|kurt(wT z)|
∂w = 4sign(kurt(wT z))[E{z(wT z)3} − 3w ‖w‖2] (6.10)

w← w
‖w‖

where the vector w is projected on the unit sphere in each iteration. The vector w is moving
in the direction that gives the maximum absolute value of kurtosis, since it is the direction
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that is important then the change in norm is not significant and the latter term in equation
6.10 can be omitted. The gradient algorithm can then be written as

∆w ∝ sign(kurt(wT z))E{z(wT z)3}

w← w
‖w‖

(6.11)

Kurtosis is sensitive to outliers and not very robust and that is why negentropy is introduced
in the section below.

6.4.2 Negentropy
Negentropy is based on information theory and a measure called differential entropy. A ran-
dom variable tending to be more unpredictable is said to have a larger entropy. Specifically
gaussian variables are said to have the largest entropy, thus entropy can be used to define
nongaussianity. Differential entropy is defined as following

H(y) = −
∫
py(η) log py(η)dη (6.12)

where y is a random vector and py(η) its probability density function. Negentropy is the
normalized version of differential entropy which is nonnegative and zero only when y is of
gaussian type [26]. It is defined below where ygauss is a gaussian variable having the same
statistical properties (correlation and covariance) as y.

J(y) = H(ygauss)−H(y) (6.13)

In practice it is difficult to calculate negentropy because it would require an estimate of the
pdf, therefore approximating negentropy is a good idea. The approximation is

J(y) ≈
p∑
i=1

ρi[E{Gi(y)} − E{Gi(ν)}]2 (6.14)

where ρi is positive constants, Gi nonquadratic functions and ν a zero mean gaussian variable
with unit variance. For robust estimation it has been proven that the following nonquadratic
functions should be used.

G1(y) = 1
a1

log cosh a1y where 1 ≤ a1 ≤ 2

G2(y) = − exp(−y2/2)
(6.15)

Considering only one nonquadratic function in the approximation the gradient algorithm
can be derived by taking the gradient of the approximation with respect to w.
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∆w ∝ γE{zg(wT z)}

w← w
‖w‖

∆γ ∝ (E{G(wT z)} − E{G(ν)})− γ

(6.16)

In the above learning rule the normalization ‖w‖2 = 1 has been taking into account and
where γ = E{G(wT z)} − E{G(ν)} and g is the derivative of function G.

6.4.3 Constrained Independent Component Analysis
There are ambiguities of ICA such as the indeterminacy of the order and variance of the
resulting independent components. Constrained independent component analysis (cICA)
is a method that combines ICA and constrained optimization in order to avoid arbitrary
ordering on components [48]. By using reference signals and incorporating prior information
desired signals can be extracted and ordered according to some statistical measure. The
following constrained optimization problem with the objective function based on negentropy
is used when searching for a desired signal.

maximize J(y) ≈ ρ[E{G(wTx)} − E{G(ν)}]2

subject to g(w) = ε(y, r)− ξ ≤ 0
h(w) = E{y2} − 1 = 0

(6.17)

ε(y, r) denotes the closeness measure between the reference signal and the estimated output,
ρ is a positive constant. The closeness measure must be chosen in a suitable way, two com-
mon ways is correlation and mean square error by setting ε(y, r) = 1/(E{y ·r})2 or ε(y, r) =
E{(y−r)2} respectively. The threshold parameter ξ is in the region [ε(w∗Tx, r), ε(wT

1 x, r)]
where w∗ is the optimum vector when only one of the independent components (the desired
source) is the closest to the reference (ε(w∗Tx, r) < ε(wT

1 x, r) ≤ . . . ≤ ε(wT
n−1x, r)) [49].

A constraint g(w) = ε(y, r) − ξ ≤ 0 can therefore be constructed such that the closeness
measure is less than or equal to the threshold value only when the independent component is
the optimum (y = w∗Tx). The constraint h(w) makes the weight vector and J(y) bounded.
By introducing slack variables in order to transform inequality constraints to equality con-
straints and using the augmented lagrangian function theory the following lagrangian is
defined [50].

L(w, µ, λ) = J(y)− 1
2γ {[max(0, µ+ γg(w))]2 − µ2} − λh(w)− 1

2γ ‖h(w)‖2 (6.18)

Newton’s method in optimization can be used to maximize the Lagrangian function above,
the learning rule is shown below

wk+1 = wk − η(L
′′

w2
k
)−1L

′

wk

where L
′

wk
= ±ρE{xG

′

y(y)} − 1
2µE{xg

′

y(w)} − λE{xy}

and L
′′

w2
k

= s(w)Rxx

(6.19)
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where s(w) = ±ρE{xG′′y2(y)} − 1
2µE{xg

′′

y2(w)} − λ, Rxx is the covariance matrix and η a
learning rate constant. The final algorithm in order to find the weight vector that will give
the desired component together with the optimum multipliers that are updated iteratively
using gradient ascent method is hence

wk+1 = wk − ηR−1
xxL

′

wk
/s(wk)

µk+1 = max{0, µk + γg(wk)}
λk+1 = λk + γh(wk)

(6.20)



7 | Methods
In this section three methods will be presented and described in a detailed way. The pro-
posed methods uses adaptive noise cancellation in order to remove motion artifacts (MA).
Adaptive noise cancellation consisting of adaptive filters that updates the weight vector
based on an adaptive algorithm (LMS, NLMS or RLS) is an effective method of dealing
with motion artifacts, however a reference signal must be provided. The reference signal
could be correlated with the PPG signal or the MA based on the adaptive noise canceler
setting. As seen in fig. 7.1 (a) if the reference signal is correlated with the noise an enhanced
signal will be available at the output (e(n)) when minimizing error power in the mean square
sense. On the other hand if the reference signal is correlated with the signal part as in figure
(b) then the enhanced signal will be at the primary output (ŝ(n)) A reference signal that
is correlated with the MA could also be provided with the access to accelerometers, that
however would require the installation of extra hardware. Reference signals will be synthet-
ically generated in the proposed methods in different ways. In Peng’s method cICA is used,
in Yousefi’s method the optical density theory and in our proposed method extraction of
periodic signals using eigenvalue decomposition and fast fixed-point ICA is used in order to
obtain a reference signal.

Figure 7.1: Picture showing different adaptive noise canceler settings.

7.1 Methods

7.1.1 Preprocessing
The PPG signal contain unwanted high frequency noise which is the result of ambient light,
thermal noise or power interference/electromagnetic noise. In order to suppress the high
frequency components low-pass filtering of the PPG signal is done using linear-phase FIR
filter with hamming window in Matlab (MathWorks Inc.). The cutoff frequency was set to
8 Hz with 20 dB attenuation with a filter order of 13 to remove the bulk of noise. The
impulse response of the FIR filter is shown below

33
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h(n) = hlowpass(n) · whamming(n) = wc
π

sinwc(n− M−1
2 )

wc(n− M−1
2 )

· (0.54− 0.46 cos 2πn
M − 1) (7.1)

where wc is the normalized cutoff frequency and M the filter order. In order to remove
the baseline wander (DC part) an IIR-filter with 20 dB attenuation is used with transfer
function below.

H(z) = 1− z−1

1− 0.992z−1
(7.2)

In order to prevent phase shift due to the use of causal filters zero-phase digital filtering
is implemented using the filtfilt function in Matlab. This function basically performs
filtering in both forward and reverse directions and it can be shown that the spectrum of
the output signal from the time-reversed second filter pass is given by

Y (ejw) = |H(ejw)|2X(ejw) (7.3)

which shows that the signal is filtered with frequency response |H(ejw)|2 that is real-valued
and positive, hence no phase shift. In all three methods the same preprocessing step is made
on the IR and R signals.

7.1.2 Yousefi’s method
In the method proposed by Yousefi et al. [7] a two-stage adaptive noise cancellation setting
is used where a reference signal is generated synthetically in each stage in order to extract
a clean signal as possible. As seen from the block diagram in fig 7.8, the adaptive noise
cancelers M1 and M2 at the first stage (1) uses a reference signal based on subtraction
of IR and R PPG signals in order to remove unwanted tissue effect. In the second stage
(4 in fig. 7.8), the adaptive noise cancelers N1 and N2 uses a synthetical noise reference
signal associated with venous blood movement. The different parts of the algorithm will
be described in detail in each section below where part 3 is about finding the venous noise
reference using predictor filter and weighted subtraction based on the optical density theory
that was described in Chapter 2.3 earlier.
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Figure 7.2: Block diagram of Yousefi’s method.

(1) Reducing motion artifact due to the effect of tissue

During motion the effect of tissue is claimed to generate undesired fluctuations in the PPG
signal. The tissue effect in itself is manifested as DC component in the PPG signal, however
during motion the component is not constant anymore. In order to cancel out the effect
of tissue (Zt) and (Zb) that are wavelength independent in equation 2.10 the IR signal is
subtracted from the R signal resulting in a corresponding optical density change as follows

∆Ab = (
√
εhaIR (εhaIR + F )−

√
εhaR (εhaR + F )) · ctotHba ·∆lba

+ (
√
εhvIR (εhvIR + F )−

√
εhvR (εhvR + F )) · ctotHbv ·∆lbv

(7.4)

where one can notice that the term ∆As is removed from equation 2.11. This reference
signal that is now associated with blood pulsation is used in adaptive noise cancelers M1
and M2 (using NLMS as adaptive algorithm) which has the setting as in figure 7.1 b).
Thus enhanced red and infrared signal after the removal of tissue effect and adaptive noise
cancellation will be present in signals x1 and x2 in figure 7.8.

(2) and (3) - Design of venous noise reference signal

Extraction of the fundamental period in (2) is done in the same way as in Peng’s method
described in part 1 of the method. This fundamental period Ta will be used in a prediction
filter in order to minimize the prediction error that will give a clean arterial source signal.
During motion venous blood movement is a source of interference and should therefore be
cancelled. Designing a venous noise reference signal that will be fed into the adaptive filters
N1 and N2 will result in enhanced IR and R signals at the output with motion artifact due
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to venous blood movement removed. The blood absorption or the optical density for IR and
R signals can be described as

∆AIR =
√
εhaIR (εhaIR + F ) · ctotHba ·∆lba

+
√
εhvIR (εhvIR + F ) · ctotHbv ·∆lbv

∆AR =
√
εhaR (εhaR + F ) · ctotHba ·∆lba

+
√
εhvR (εhvR + F ) · ctotHbv ·∆lbv

(7.5)

Weighted subtraction of the above optical densities will be used in order to design the venous
noise reference, ∆Av = ∆AIR − β∆AR. Each recording has an arterial source signal and a
venous source signal as represented by subscripts a and v respectively in the equation above.
The weighted subtraction can also be rewritten with the optical density ratios ra and rv as
follows

∆Av = (ra − β)
√
εhaIR (εhaIR + F ) · ctotHba ·∆lba

+ (rv − β)
√
εhvIR (εhvIR + F ) · ctotHbv ·∆lbv

ra =
√
εhaIR (εhaIR + F )/

√
εhaR (εhaR + F )

rv =
√
εhvIR (εhvIR + F )/

√
εhvR (εhvR + F )

(7.6)

As suggested and developed by Masimo [54] the above equations can also be modelled in
the alternative way using the optical density ratios for arterial and venous signal as follows

x1 = rasa + rvsv

x2 = sa + sv
(7.7)

where x1 and x2 corresponds to ∆AR and ∆AIR respectively, sa and sv are arterial source
signal and venous source signal. The weighted subtraction can now be expressed in the
following way xv = x1 − βx2 = (ra − β)sa + (rv − β)sv. An interesting observation here is
that if the term β is properly tuned then one can obtain either the arterial source or the
venous source signal separately. There are several conditions now that can be examined,
let’s assume that there is motion present in the signal. When sweeping through range of
β and arriving at β = rv the weighted subtraction xv will contain the arterial source. If
arriving at β = ra then xv will have the venous source only. There exists a wider range
of β where the weighted subtraction term contain only the arterial component than for the
venous component. Extracting a signal that only consists of the venous component allows
for the use as a reference signal in adaptive noise cancelers in step 4 of figure 7.8. In order
to find the venous reference noise consider the structure below.
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Figure 7.3: Block diagram of the structure when finding the venous noise reference.

A linear FIR predictor filter B(z) = bz−Ta with the fundamental period extracted is used in
order to predict future values of the scaled arterial component ŝas. The goal is to minimize
the the error e(n) = ŝas(n) − b · ŝas(n − Ta) in the mean square sense to receive a close
estimate of the arterial signal. Optimization of rv and b is done by taking the gradient of
the cost function below with respect to each sought parameter.

J = E{e(n)2} = E{ŝ2
as(n)} − 2bE{ŝas(n)ŝas(n− Ta)}+ b2E{ŝ2

as(n− Ta)} (7.8)

When the prediction error is minimized by solving the system of equations the following
optimized parameters are obtained.

rv = −E{x
2
1}E{ŝasDx2}+ E{x1x2}E{ŝasDx1}

E{x2
2}E{ŝasDx1} − E{x1x2}E{ŝasDx2}

(7.9)

b = E{ŝas(n)ŝas(n− Ta)}
E{ŝ2

as(n− Ta)} (7.10)

Once the extraction of the scaled arterial signal estimate is done with the optimum param-
eters above the venous reference noise is obtained by removing this estimate (multiplying
with α and subtracting from x1) by minimizing the error e1 in the mean square sense. The
optimum value of α when the variance E{e2

1} is minimized is as follows

α = E{x2
1} − rvE{x1x2}
E{ŝ2

as}
(7.11)

(4) Reducing motion artifact due to venous blood change

The optimum values of rv, b and α gives a proper estimate of the venous noise motion
reference e1 used as a reference signal in adaptive noise cancelers N1 and N2. The reference
signal is correlated with MA and hence the output will be enhanced IR and R signals after
minimizing the error power. NLMS is used as the adaptive algorithm for the noise cancelers.

7.1.3 Peng’s method
This implementation is based on the algorithm developed by Peng et al. [6] with some slight
modifications and improvements. Basically what differs is the fundamental period extrac-
tion where fast fourier transform is used instead of autocorrelation and the adaptive filter
settings where RLS and NLMS is used also. The method combines constrained independent
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component analysis (cICA) together with adaptive filters in order to remove MA. In this
method the reference signal will be synthetically generated using cICA and the information
from the two-channel PPG signal. The ICA model (x = As) where x is the observed signal
samples of IR and R, A is the mixing matrix and s is the independent source signal samples
can also be written as following.

xIR(t) = a11s1(t) + a12s2(t)
xR(t) = a21s1(t) + a22s2(t)

(7.12)

s1(t) is the component representing the PPG signal and s2(t) is the independent noise
component (motion artifact). The reason why cICA is used and not ICA is because of
the ambiguities such as indeterminacy of the order and the variance of the independent
components. By using cICA a desired independent component can be estimated according
to some prior information. This prior information is basically a reference signal (that needs
to be generated somehow) with the same periodic information as the PPG signal serving as
input to the cICA algorithm.

Block diagram of the algorithm

Figure 7.4: Picture showing the block diagram of the algorithm with the main parts.

As seen in fig. 7.2 there are three main parts of the algorithm, the reference signal generation,
cICA algorithm and the adaptive noise cancellation part lastly. Assuming that each of the
original IR and R signals recordings are mixed with motion artifact that is fed into the
preprocessing step. The cICA output will be a PPG-correlated component, which will be
discussed later on how to retrieve it, that serves as input to the adaptive filters. A more
detailed explanation of the four parts of the algorithm is explained in the sections below.

Part 1 - Reference signal generation

Extracting a PPG-correlated component from cICA algorithm will require a reference signal
with prior information about the interested component. The fundamental period is hence
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needed in order to create a reference signal. Peng et al. [6] proposes a method of using
rectangular pulse waves with the same period information obtained from the original PPG
signals. Period extraction can be achieved using autocorrelation method suggested in [6][7].
However in this report Fast Fourier Transform (FFT) is used to estimate the period. FFT
computes the discrete fourier transform in an efficient way. The approach is straightforward,
by calculating the absolute value of the frequency representation (FFT) and finding the index
of normalized frequency with maximum energy the period is found. Mathematically this
can be described as following where xn captured signal in time domain and Xk the N point
fourier transform of the time series.

max
k
|Xk| = |

N−1∑
n=0

xne
−j2πnk/N |, k = 0, 1, . . . , N − 1

2
(7.13)

The fundamental frequency can then be calculated using the found index k, the sampling
frequency Fs and the length N of the FFT as following, which will give the period T .

f = kFs
N
↔ T = 1

f
(7.14)

The generated rectangular pulse reference with the periodic information of the PPG signal
is shown in fig. 7.3.
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Figure 7.5: Rectangular reference signal used in cICA.

Part 2 - Constrained Independent Component Analysis (cICA)

The red and IR PPG signals are modelled as linear mixture x of motion artifact PPG signal
source s. The linear mixture is centered and whitened before applying the cICA algorithm.
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The MA part is a combination of multiple sources and hence the use of cICA instead of
ICA due to the fact that the former needs no assumption regarding underlying sources in
order to extract a specific source. The goal is to find an optimum weight vector w that
estimates the independent component, in this case the PPG-correlated component. As ref-
erence signal r the signal developed in part 1 will be used. The closeness measure is set to
ε(y, r) = E{(y − r)2}. The nonquadratic function G is chosen as G(y) = log cosh y. The
iterative algorithm that is used when finding the optimum weight vector can be seen in eq.
6.20 in sec. 6.4.3.

The cICA output or the desired component that is generated is a PPG correlated com-
ponent shown in figure below. This output will be fed into the adaptive filter for artifact
cancellation. Constrained ICA manages to remove motion artifact but suffers in the way
that the energy information of the original signal is lost. The amplitude information is hence
not recovered. That is way the adaptive filters are used in order to recover the amplitude
information.
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Figure 7.6: The output from the cICA part.

Part 3 - Adaptive noise cancellation

Adaptive noise cancellation is used in order to recover the amplitude information that is
lost using cICA algorithm and as well as removing MA. The PPG correlated component
(cICA output) is fed into the adaptive filters, minimizing error power yields in enhanced IR
or R output from the adaptive filters. MA noise is the difference between the output from
the adaptive filter and the desired signal that is fed back into the adaptive algorithm. As
adaptive algorithms LMS, NLMS and RLS is used. Figure 7.5 shows a detailed view of part
3 in the implementation.
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Figure 7.7: Detailed view of the adaptive noise cancellation of part 3.

7.1.4 Our proposed method
In this method we propose a reference signal generated using eigenvalue decomposition and
fast fixed-point ICA. The PPG-correlated reference signal is then fed into adaptive noise
cancelers and the output after minimization of the error results in enhanced signals.

Figure 7.8: Block diagram of our method.

Reference signal generation

The reference signal generation used for this algorithm is proposed by Zhang et al. [51]
and it is a two-stage based approach using eigenvalue decomposition in the first stage and
fast fixed-point ICA in the second stage. Obtaining the PPG correlated component in this
method only requires the estimated fundamental period unlike the cICA algorithm which
needs a priori information such as the design of a reference signal closely related to the
desired component. The PPG-correlated component (desired component) is fed into the
adaptive filter serving as reference in order to suppress motion artifacts. Assuming that one
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observes a vector x = As with the IR and R recordings where A is unknow mixing matrix
and s the independent sources (PPG and motion artifact). To find the PPG-correlated
component one needs to find a vector w such that the scalar y = wTx is estimating the
desired component. The observed vector is assumed to be whitened and centered before the
algorithm.

First stage

The idea behind the proposal is to find P suitable time delays and use the definition of
autocorrelation in order to roughly extract the desired signal. The time delays are esti-
mated using the extracted period information and selecting peaks from autocorrelation.
Assume that the desired signal s1 is non-Gaussian and periodic with τ0 with the following
relationships satisfied

E{
P∑
p=1

s1(k)s1(k − lpτ0)} > 0

E{
P∑
p=1

sj(k)sj(k − lpτ0)} = 0 ∀j 6= 1

(7.15)

where lp is positive integers. The relationship above tell us that the autocorrelation for
the desired signal s1 is large while it is zero (or very small) for other source signals. This
information can be used in order to find the desired signal, by maximizing the autocorrelation
of the output signal y(k) = wTx(k) as following

max J(w) = E{y(k)y(k − lpτ0)} (7.16)

under the constraint ‖w‖ = 1 then the output signal y(k) estimates the desired signal. By
rewriting the objective function above using y(k) = wTx(k), the following optimization
problem is obtained with the mixing matrix involved.

max J(w) = 1
2J(w) + 1

2J(w)T

= 1
2wTE{x(k)x(k − lpτ0)T }w + 1

2wTE{x(k − lpτ0)x(k)T }w

= 1
2wTE{Rx(lpτ0) + Rx(lpτ0)T }w

(7.17)

Under the constraint ‖w‖ = 1 the above optimization problem is equivalent of finding the
eigenvector that belongs to the maximal eigenvalue of Rx(lpτ0)+Rx(lpτ0)T . Hence the final
algorithm of finding the reference signal is as follows.

w = EIG(Rx(lpτ0) + Rx(lpτ0)T )
where Rx(lpτ0) = E{x(k)x(k − lpτ0)T }

(7.18)

EIG is the operator that calculates the eigenvector that corresponds to the maximal eigen-
value.
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Second stage

In this second stage of the two-based approach the fast fixed-point one unit ICA algorithm
is used in order to make the solution even closer to the optimum one by reducing noise and
extracting a cleaner signal. The initial weight vector is the estimated w from the first stage.

w+ = E{x(wTx)3} − 3w

w = w+

‖w+‖
(7.19)

Running the algorithm on PPG signals the following extracted reference signal y = wTx is
obtained as in the fig. 7.7.
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Figure 7.9: The generated reference signal in our method.

7.2 Material

7.2.1 CardioHolter
The CardioHolter6.2 is an ambulatory medical device and is only used in clinical purposes.
During use in hemodialysis the Cardioholter can be on for 8 hours straight. The data that
are recorded with this device is only meant for research, so it cannot be used for patient
monitoring or in hospitals. The data that this device are capable of recording are ECG
signal, PPG signal, temperature, movements, breathing and time. As shown in figure 3.1
below, the Cardioholter is designed with a main electronic unit and attached to this unit
is four ECG cables with connector clips, three pulse oximeter sensors (PPG) where two
of the sensors are meant to be placed on left and right finger and the third sensor on the
forehead with a head belt. There is a power button on the front of the main unit and a
status indicating LED.
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Figure 7.10: Picture showing the main parts of the CardioHolter 6.2.

As shown in figure 3.2 below, the CardioHolter have three input ports. One input port
for charging the battery, one for isolated input of digital synchronization signal and a third
input port for inserting of a microSD memory card. Next to the memory slot there is a
charging LED indicator.

Figure 7.11: Picture showing the CardioHolters I/O.
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The photopethysmography data recoded by the CardioHolter is collected from the index
fingers and the forehead. When recording the system operates in pulsed mode by reason of
saving power. It means that to lit the RED and IR LED’s very short pulses (100ms) are
used. The pulses have a sampling rate of 250 times/s. The CardioHolter records the PPG
data at sampling frequency of 250 Hz.

7.2.2 CardioLogger
The application that is used for data collection is called CardioLogger (developed at Kaunas
Technical University, Lithuania). In figure 3.3 below the interface of the CardioLogger
application is shown. The program connects to the pulse oximeter (CardioHolter v6.2)
using bluetooth. Raw signal data is saved locally when turning the system off in a .dat file.
This file is converted to .mat file in Matlab for further processing.

Figure 7.12: User interface of the CardioLogger program.

Data collection of motion and PPG signals

In order to evaluate the algorithms data was collected from two healthy males aged 24
using the CardioHolter device and the CardioLogger software. In order to make statistical
performance evaluation motion was generated and added to a motionless PPG recording.
Four types of motion was considered, bending the finger, horizontal movement of the finger,
vertical movement of the finger and waving hand. Each total PPG recording is set to
approximately 1 min. A target PPG signal without motion was captured wearing the probe
on the index finger. Data acquisition of motion was generated using the finger probe to
create the artifacts during the different types of movements mentioned. The mixed signal
x(k) is then used for performance evaluation where s(k) is the target PPG signal and n(k)
the generated motion artifact that is added.

x(k) = s(k) + σn(k) (7.20)



CHAPTER 7. METHODS 46

The parameter σ is altered in order to define the portion of motion in the signal. The gen-
erated motion for the different types of movements was collected for different time periods.
A 10-second, 20-second, 30-second and 40-second interval of motion was recorded for each
type.

7.3 Performance evaluation

7.3.1 Signal-to-noise ratio (SNR)
In order to evaluate the quality and performance of the algorithms the signal-to-noise ratio
(SNR) value is calculated. It is a common measure of the signal power to the amount of
noise power occupied in the signal. The input SNR is defined as follows

SNRinput = 20 log RMS(s(k))
RMS(σn(k)) (7.21)

where RMS is the abbreviation of root mean square. After motion artifact reduction the
residual noise can be obtained as the difference between the clean signal and the noise
reduced signal y(k). The output SNR can hence be calculated as follows

SNRoutput = 20 log RMS(s(k))
RMS(s(k)− y(k)) (7.22)

7.3.2 Relative root mean square error (RRMSE)
Another measure of how close the output signal y(k) is to the clean wanted signal s(k) is
the relative root mean square error denoted as RRMSE. With this measure the efficiency of
the algorithms can be calculated as

RRMSE = RMS(s(k)− y(k))
RMS(s(k)) × 100% (7.23)

where a smaller value indicates a better performance.

7.3.3 Relative magnitude of capillary pulse (RMCP)
Reflecting changes in the envelope of the signal can be computed using integrated PPG
signal defined as

x(n) =
nK∑

k=nK−L+1
|p(k)| (7.24)

where the above signal is a summation of the absolute values of PPG signal p(k), K is the
downsampling step and L is the moving average interval. The relative magnitude of capillary
pulse (RMCP) estimates the PPG amplitude. In order to analyze amplitude difference for
the methods the following measure is used
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xdiff (n) = |xo(n)− xa(n)| (7.25)

where xo(n) is the RMCP signal before the method has been used and xa(n) is the RMCP
signal after the algorithm has been run.



8 | Results
In the first section of this chapter a performance evaluation of our and Peng’s method is
presented. In the second section a comparison of all the results for different cases is made.

8.1 Performance of our method for different adaptive
algorithms

Relative root mean square error is plotted against SNR for our method with three different
adaptive algorithms applied (LMS, NLMS and RLS) in fig. 8.1. In all cases (horizontal,
vertical and waving movement) RLS performs the best. Normalized LMS yields in a better
estimate of the PPG signal when horizontal and vertical motion is applied than for LMS as
seen in fig. 8.1. For LMS a filter order of 30 was used and a step-size of 0.00001, for NLMS a
step size of 0.00057 and filter order of 30 and lastly for RLS a forgetting factor equal to one
and a filter order of 32. These parameters were chosen by series of trials and will be used for
our method and Peng’s method throughout the results section for the different movements.
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Figure 8.1: Plot of RRMSE against SNR for RLS, NLMS and LMS.
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8.2 Comparison
In this section the results of the three methods will be presented. First a performance
evaluation of our method for different adaptive algorithms is displayed in three diagrams
showing all cases (horizontal, vertical and waving). Then the results of the horizontal
movement are presented followed by vertical and waving movement.

8.2.1 Horizontal movement
In fig. 8.2 (a) the original IR and R PPG signals as well as the generated horizontal motion
artifact is shown. In fig. 8.2 (b) the mixed signals x are used for the three methods in this
section. Throughout the results section RLS will be used as the adaptive algorithm for our
method and Peng’s method for all type of movements. In fig. 8.2 (c) the power spectrum
is shown for the motion artifact (upper plot) and the power spectrum of the PPG signal
mixed with the motion (lower plot).
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Figure 8.2: Characteristics of MA and the mixed PPG signals that will be used in the
methods. SNR is set to -8.3 dB.

Yousefi’s method

In fig 8.3 (b) the portion of MA that has been removed from the mixed PPG signal is shown.
In fig. 8.3 (c) the power spectrum of the enhanced signal and the original signal (non-mixed
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clean PPG-signal) is plotted against each other. Clearly the heart rate peak is visible at 1
Hz, one can notice also that the enhanced signal is overestimating the original signal which
is seen in fig. 8.3 (c) and (d).
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(b) MA removed from mixed IR and R
PPG signals.
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(d) Plot of original IR/R signal and the enhanced output from the
algorithm.

Figure 8.3
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Peng’s method

In fig 8.4 (b) the portion of MA that has been removed from the mixed PPG signal is
shown. In fig. 8.4 (c) the power spectrum of the enhanced signal and the original signal
(non-mixed clean PPG-signal) is plotted against each other. What we can notice is that the
peak at approximately 1.8 Hz associated with motion is not reduced completely resulting in
a output that has the shape as in fig. 8.4 (d).
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Frequency (Hz)
0 1 2 3 4 5 6 7 8 9 10

P
ow

er

×106

0

0.5

1

1.5

2

2.5
Power Spectrum of original and enhanced signals

Enhanced IR
Original IR

Frequency (Hz)
0 1 2 3 4 5 6 7 8 9 10

P
ow

er

×106

0

0.5

1

1.5

2

2.5

Enhanced R
Original R

(c) FFT plot for original IR/R signals and
enhanced output signals.

0 5 10 15 20 25 30 35 40
-2000

-1000

0

1000

2000
Original vs enhanced signal

Original IR
Enhanced IR

0 5 10 15 20 25 30 35 40
-2000

-1000

0

1000

2000

Original R
Enhanced R

(d) Plot of original IR/R signal and the enhanced output
from the algorithm.

Figure 8.4
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In these simulations the threshold value in cICA was set to ξ = 0.05, there exists no theory
on choosing the optimal value of this parameter. The value is chosen by a series of trial.
Altering the parameter and setting it to ξ = 1.3 gave a better estimate as seen in fig. 8.5.
For different SNR this threshold parameter needs to be adjusted in order for the method to
converge.
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Figure 8.5: Enhanced signal output using the same mixed signal as input but with a different
threshold value.

When ξ = 0.05 a reference signal as in fig. 8.6 is generated. This reference signal still
contains motion and hence in the adaptive noise cancellation when minimizing the error it
will result in a poor output as seen in fig. 8.4 (d). With the same threshold ξ = 0.05 for
different signal fig. 8.14 (d) the result gives a good output.
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Figure 8.6: Reference signal when threshold parameter is set to ξ = 0.05

The reference signal in fig. 8.7 associated with ξ = 1.3 contain no motion and hence resulting
in a better estimate of the PPG signal when used in adaptive noise cancellation. What we
can notice from the reference signal is that the amplitude information is lost, but the MA
part is removed.
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Figure 8.7: Reference signal when threshold parameter is set to ξ = 1.3

Figure 8.8 shows that when using ξ = 1.3 for a different signal in this case horizontal
movement with 30 seconds motion interval the result gives a poor output.
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Figure 8.8: Enhanced signal output using the same mixed signal as input but with ξ = 1.3
giving a bad result.

The reference signal in fig. 8.9 associated with ξ = 1.3 for horizontal movement with 30
seconds motion interval still contains motion and hence in the adaptive noise cancellation
when minimizing the error it will result in a poor output as seen in fig. 8.8.
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Figure 8.9: Reference signal when threshold parameter is set to ξ = 1.3

Our method

In fig 8.10 (b) the portion of MA that has been removed from the mixed PPG signal is
shown. In fig. 8.10 (c) the power spectrum of the enhanced signal and the original signal
(non-mixed clean PPG-signal) is plotted against each other. As seen from the plots the
enhanced signal is estimating the original signal in a good way. Most of the MA part is



CHAPTER 8. RESULTS 54

completely removed. In fig. 8.10 (d) the enhanced output follows the original signal slightly
worse in the beginning between 0 and 5 seconds. That may have been due to the settling
time of the algorithm.
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Comparison

In fig. 8.11 (a) the absolute value of the difference between the RMCP before and after the
method is plotted against different SNR values. The dotted cross lines shows the IR and R
signal before the algorithm is applied (the mixed signal containing PPG signal and MA).
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Figure 8.11: Comparison of the three methods.

The reason why the RMCP amplitude difference differs much for various SNR values in
fig. 8.11 (a) is that the same threshold value was applied when doing the simulations. For
horizontal movement with a motion interval of 40 seconds one can notice a SNR improvement
of 24.64 dB compared to Peng’s method which was 2.26 dB and 11.85 dB for Yousefi’s
method. It is seen that our method has the largest SNR improvement for all motion intervals
generally.

Motion interval [s] SNR (before) [dB] SNR (after) [dB] RRMSE [%]

Our Peng Yousefi Our Peng Yousefi

10 -3.19 12.42 12.20 0.025 0.23 0.25 0.39
20 -5.75 12.89 -2.63 0.008 0.23 1.35 0.93
30 -9.87 12.40 4.27 0.03 0.24 0.61 0.41
40 -11.8 12.84 -9.54 0.05 0.23 3.00 0.82

Table 8.1: SNR value before the algorithm is applied and after as well as RRMSE for the
three methods.
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8.2.2 Vertical movement
In fig. 8.12 (a) the original IR and R PPG signals as well as the generated vertical motion
artifact is shown. In fig. 8.12 (b) the mixed signals x are used for the three methods in this
section. In fig. 8.12 (c) the power spectrum is shown for the motion artifact (upper plot)
and the power spectrum of the PPG signal mixed with the motion (lower plot).
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Figure 8.12: Characteristics of MA and the mixed PPG signals that will be used in the
methods. SNR is set to -4.4 dB.
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Yousefi’s method

In fig 8.13 (b) the portion of MA that has been removed from the mixed PPG signal is
shown. In fig. 8.13(c) the power spectrum of the enhanced signal and the original signal
(non-mixed clean PPG-signal) is plotted against each other. The enhanced signal output is
underestimating the original signal as seen in fig. 8.13 (d). This will further be explained
in the discussion section later in the report.
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Peng’s method

In fig 8.14 (b) the portion of MA that has been removed from the mixed PPG signal is shown.
In fig. 8.14(c) the power spectrum of the enhanced signal and the original signal (non-mixed
clean PPG-signal) is plotted against each other. A threshold parameter of ξ = 0.05 was
used and it resulted in a good estimate as seen in fig. 8.14 (d).
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Our method

In fig 8.15 (b) the portion of MA that has been removed from the mixed PPG signal is
shown. In fig. 8.15(c) the power spectrum of the enhanced signal and the original signal
(non-mixed clean PPG-signal) is plotted against each other. Most of the MA part is reduced
and also the some noise due to light resulting in a clean estimate in fig. 8.15 (d).
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Comparison

In fig. 8.16 (a) the absolute value of the difference between the RMCP before and after the
method is plotted against different SNR values. The dotted cross lines shows the IR and R
signal before the algorithm is applied (the mixed signal containing PPG signal and MA).
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Figure 8.16: Comparison of the three methods.

The SNR improvement with the motion interval of 40 seconds for vertical movement was
24.24 dB for our method, 21.17 dB for Peng’s method and 12 dB for Yousefi’s as can be seen
in table 8.2. It is seen that our method has the largest SNR improvement for all motion
intervals generally.

Motion interval [s] SNR (before) [dB] SNR (after) [dB] RRMSE [%]

Our Peng Yousefi Our Peng Yousefi

10 -3.11 11.89 -2.80 0.034 0.25 1.38 0.29
20 -6.06 12.81 8.89 0.005 0.23 0.36 1.12
30 -8.92 11.66 -6.37 0.09 0.26 2.08 1.94
40 -12.06 12.18 9.11 0.006 0.24 0.35 1.33

Table 8.2: SNR value before the algorithm is applied and after as well as RRMSE for the
three methods.
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8.2.3 Waving movement
In fig. 8.17 (a) the original IR and R PPG signals as well as the generated vertical motion
artifact is shown. In fig. 8.17 (b) the mixed signals x are used for the three methods in this
section. In fig. 8.17 (c) the power spectrum is shown for the motion artifact (upper plot)
and the power spectrum of the PPG signal mixed with the motion (lower plot).
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Yousefi’s method

In fig 8.18 (b) the portion of MA that has been removed from the mixed PPG signal is
shown. In fig. 8.18 (c) the power spectrum of the enhanced signal and the original signal
(non-mixed clean PPG-signal) is plotted against each other. From the power spectrum in fig.
8.18 (c) we can notice that the enhanced spectrum for both IR and R channel overestimates
the original spectrum resulting in an enhanced output with an amplitude information that
is a bit larger than the original PPG signal.
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Peng’s method

In fig 8.19 (b) the portion of MA that has been removed from the mixed PPG signal is
shown. In fig. 8.19 (c) the power spectrum of the enhanced signal and the original signal
(non-mixed clean PPG-signal) is plotted against each other. From fig. 8.19 (d) it is clear
that most of the MA and the noise from the mixed signal in fig. 8.19 (b) is reduced, the
enhanced output is following the original signal well but with a slight overshoot.
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Our method

In fig 8.20 (b) the portion of MA that has been removed from the mixed PPG signal is
shown. In fig. 8.20 (c) the power spectrum of the enhanced signal and the original signal
(non-mixed clean PPG-signal) is plotted against each other. From fig. 8.20 (d) we can see
the excellent performance of our method, the MA is removed and the enhanced output is
estimating the original PPG signal with the amplitude information recovered.
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Comparison

In fig. 8.21 (a) the absolute value of the difference between the RMCP before and after the
method is plotted against different SNR values. The dotted cross lines shows the IR and R
signal before the algorithm is applied (the mixed signal containing PPG signal and MA).
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Figure 8.21: Comparison of the three methods.

For waving movement the SNR improvement can be read from table 8.3 for motion interval
of 40 seconds to 23.67 dB for out method, 16 dB for Peng’s method and 12 dB for Yousefi’s
method. It is seen that our method has the largest SNR improvement for all motion intervals
generally.

Motion interval [s] SNR (before) [dB] SNR (after) [dB] RRMSE [%]

Our Peng Yousefi Our Peng Yousefi

10 -3.09 10.73 -4.37 0.046 0.29 1.65 0.53
20 -6.04 12.18 -0.47 0.06 0.245 1.05 0.66
30 -8.99 10.85 5.75 0.05 0.286 0.52 0.59
40 -11.99 11.68 4.04 0.04 0.26 0.63 0.96

Table 8.3: SNR value before the algorithm is applied and after as well as RRMSE for the
three methods.



9 | Discussion
The results demonstrates that our proposed method outperforms Peng’s and Yousefi’s meth-
ods when extracting a clean estimate of the PPG signal with the MA component reduced.
From the results we can see that this is the case for all the types of motion that was gener-
ated (horizontal, vertical and waving movement).

Yousefi’s method claims to provide a clean PPG signal corresponding to the arterial blood
flow. During motion it is assumed that the non-arterial component (venous blood flow) is
associated with noise. The difficulty in Yousefi’s method lies in finding the value of β that
will give you either the arterial component or the venous component. If this parameter is
slightly different than ra the weighted subtraction term will contain both venous component
but also some of the arterial component. Accordingly in the adaptive noise cancellation a
small portion of the arterial signal component will also be cancelled, which is the case in fig.
8.13 (d) were the enhanced output is an underestimation than the original one. In the same
way if β is slightly different than rv the weighted subtraction will contain a small portion
of venous noise also. This could be a problem when extracting the scaled arterial signal ŝas
that is supposed to only contain the arterial component.

Peng’s method could perform better but depends strongly on the threshold parameter ξ
of the cICA algorithm. If the parameter ξ is chosen in a suitable way the desired indepen-
dent component will be obtained as optimum output. On the other hand if this parameter
is selected beyond the upper bound of the range, a completely different component may be
obtained. If ξ is chosen too small the method will not converge. The selection of this param-
eter therefore differs from one output to another and depends on the form of the reference
signal. That is the drawback with Peng’s method, you have to adjust a proper threshold
value in order for the method to converge. It should also be noted that in Peng’s method
when using cICA the assumption made is that the PPG signal and MA are independent. In
reality that is often the case, however if not the performance might be compromised. Con-
strained ICA algorithm may also produce an incorrect output if the MA and PPG signal
has the same period. The reference signal in Peng’s method plays a vital role and one needs
a lot of a priori information in order to create such a signal which is closely related to the
desired source signal. In this thesis we only needed the heart rate of the PPG signal in order
to create the reference signal, but one could design a more advanced reference signal taking
into consideration the shape and structure of the PPG signal. However that information
will not be available in many cases.

Our method converges quickly with good extraction performance and only needs the esti-
mated period information of the desired signal. It can also be mentioned that it is insensitive
to errors in the estimation of the period. This proposed method was first a modified version
of Peng’s method with the extracted PPG-correlated component from the two-stage based
approach as an advanced reference signal in the cICA algorithm. However we noticed that
this extracted component was not much different than the output from the cICA algorithm.
Hence we used the PPG-correlated component directly in the adaptive noise cancellation
step and disregarded the cICA step resulting in our proposed method. For our method the
best choice of adaptive algorithm was the conventional RLS algorithm. Generally the RLS
algorithm has a faster convergence rate and gave a better signal estimate, the limitation
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however is the computational complexity. Compared to LMS and NLMS the RLS algorithm
requires more operations in general.

In all three methods syntethical reference signals has been generated and used in adap-
tive noise cancelers. Adaptive filters are effective tools when it comes to removal of the
in-band noise given that the reference is correlated with eiter MA or PPG signal. Numerous
reports and research has been dealing with the reduction of motion artifact [43] [44] [51] [52]
[53] [54], however the amplitude information in these methods has not been taken into con-
sideration. There are other methods of providing reference signals such as accelerometers
or photoelectric devices, that however would require extra hardware, which is expensive.
Another way is to generate MA from the PPG signal using singular value decomposition or
independent component analysis. However the drawback with ICA is the arbitrary ordering
on the independent component outputs. Especially when having a large number of channels
it will require a highly subjective analysis on the large number of outputs.

It has to be mentioned that there may be limitations that has not been taking into consid-
eration when one conducts the simulations. First and foremost the experiments was only
tested on two healthy persons. In cases when we might have a person that has some kind
of health problems such as abnormal heart rhythm or intradialytic hypotension it might
temporarily reduce the quality of the algorithms. It should also be emphasized that only
vertical, horizontal and waving movements were tested, there are of course other types of
motion artifacts that could affect the amplitude of the PPG signal as well. That as well as
testing the methods on a larger dataset might be improvements for better conclusions in
future work.



10 | Conclusion
The objective of this thesis was to investigate methods for artifact removal in PPG signals
and to implement and evaluate a few existing algorithms dealing with motion artifact in
PPG signals with the amplitude information reserved. The results were promising and a
new proposed method was developed dealing with the reduction of MA with the amplitude
information recovered. Our proposed method is easy to implement and converges quickly
with good extraction performance. It has a few design parameters and only needs the
estimated period of the PPG signal. Our method could be used in a clinical routine for
prediction of intradialytic hypotension. However it should be mentioned that although our
method has great potential the simulations were only conducted on two healthy males.
Further studies on a larger dataset might be needed in order to establish a full value of the
efficacy of our method.
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