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Abstract

The ever ongoing battle to beat the market is in this thesis fought with
the help of mathematics with a way to reduce the information to its core.
It is called PCA, Principal Component Analysis. This is used to build a
model of future commodity prices. To assist PCA, Copula is used - a sort
of mathematical glue which can bring multiple distributions together and
represented as one.

The data used is 5 years of prices for Brent Oil, WTI Oil, Gold, Copper
and Aluminium. The model parameters are fitted to 2.5 years of data and
then tested on the remaining 2.5 years.

MLE, Maximum Likelihood Estimation, was used for parameter estima-
tion and distributions that were found fitting were logistic and Student’s T
distribution

Cramér-von Mises tests were used to determine that T Copula was the
most suitable Copula.

The main results are that the mathematical estimations fit well and
profit can be generated, but with a low Sharpe Ratio.

Keywords: PCA, Copula, Mean-reversion, Momentum, Elliptical copu-
las, Maximum Likelihood, Cramér-von Mises, Sharpe Ratio.
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Chapter 1

Introduction

Many financial traders around the world struggle with the same question:
how can I beat the market? If one could come up with one easy way to do
this, their financial problems would forever be gone. An approach to model
the reality is in this thesis done with the help of PCA and Copula - two
mathematical tools.

1.1 Purpose

The purpose of this Master’s Thesis is to see if the prediction model pre-
sented will be able to generate a positive risk-adjusted absolute return or
not. To measure this, Sharpe Ratio is used. Since Sharpe Ratio includes
the risk-free rate rf , we set rf = 0 due to our only interest in absolute
risk-adjusted return.

1.2 The commodity market

The commodity market is one of the oldest (if not the oldest) and most
fundamental markets in the world. One could say that the commodity mar-
ket was the start of our civilized society [Banerjee, 2013]. It was there that
people first learned to trade with their own specialized good in order to
procure another good which they needed. The first commodity trading ac-
tivities stretch back to the ancient Sumerian civilization between 4,500 BC
and 4,000 BC. They then used clay tokens to represent the number of goods
to be delivered, for example the number of goats. These clay tokens were
then sealed in a vessel to represent the promise they had made to deliver x
number of goats.
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Nowadays, the commodity market is a vast system of different markets
all over the world where a future delivery of gold or corn just are some clicks
on your computer away. Naturally, the greatest price factor is supply and
demand, but this thesis will try to investigate if one can use mathematical
tools to forecast the price movements.

1.3 Futures contract

To procure the wanted commodity, the most used way is to use so called
futures. A futures contract is a standardized contract between two parties,
which settles for a specified asset with a certain price today but with a
future specified delivery and payment date [Hull, 2009]. Due to a default
risk, both parties are required to put up a margin - the initial amount of
cash. During a change in the futures price, these margins are transferred
between the parties, generally once a day. This means that all profits and
losses are settled continuously so at the delivery date, the exchanged amount
is the spot price(the price for getting something right away) [Hull, 2009] of
the underlying asset. Consequently, to take a position in a futures contract
is free, excluded transaction costs such as brokerage fees.

1.4 Overview

In the forecasting model Principal Component Analysis and Copula will be
used to generate buy and sell signals. These signals will then be used in
different types of trading strategies where profit can be generated as the
price goes up as well as when the price goes down. A total Sharpe ratio will
be calculated of these strategies to evaluate the performance.

1.5 Hypothesis

The hypothesis is that the presented forecasting model will be able to gen-
erate a positive risk-adjusted return.
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Chapter 2

Theory

In this chapter all the necessary theoretical background for the prediction
model is presented. The chapter starts out with theory regarding log re-
turns and PCA. Thereafter the main trading strategies are introduced -
mean reversion and momentum strategies. Then more mathematical the-
ory is presented; Copula, Elliptical Copulas and distributions. Moreover,
Dependence Theory, Parameter Estimation and Goodness of Fit test are
presented. Lastly, we will introduce the concept of Sharpe Ratio which is a
risk adjusted performance measure.

2.1 Log returns

In this thesis log returns are used which have several advantages. Below are
the main two reasons:

• There is a normalization of the variables, which means that all returns
are in a comparable metric.

• Log returns are time additive, which means that to get the n-period
return - we can simply add all the single period returns up to n.

To calculate the log returns the following equation is used.

ri,t = ln
Pi,t
Pi,t−1

, i = 1, ..., n (2.1)

where Pi,t is the price of the futures contract - i indicates which of the
commodities used at a given time t.
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2.2 Principal Components Analysis (PCA)

To introduce Principal Components Analysis, we take the following excerpt
from [Jolliffe, 2002]:

”The central idea of principal component analysis (PCA) is to reduce
the dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in the
data set. This is achieved by transforming to a new set of variables, the
principal components (PC’s), which are uncorrelated and which are ordered
so that the first few retain most of the variation present in all of the original
variables.”

With this concise explanation as a start, we are now ready for the defi-
nition of PCA.

Definition 1. Suppose that x is a vector of p random variables. The
first step is to look for a linear function α′1x of the elements of x having a
maximum variance, where α1 is a vector of p constants α11, ..., α12, α1p, and
”′” denotes transpose, so that

α′1x = α11x1 + α12x2 + ...+ α1pxp =

p∑
j=1

α1jxj (2.2)

Then, we look for a linear function α′2x, uncorrelated with α′1x having max-
imum variance, and so on, so that the k-th stage a linear function α′kx
is found that has maximum variance subject to being uncorrelated with
α′1x, α

′
2x, ..., α

′
k−1x. The k-th derived variable, α′kx is the k-th PC and p is

the number of commodities.

So, depending on what we choose k to be - we get k number of PC’s.
In this case we set the x in the above definition as y - the de-meaned log
returns.

y = x− xmean (2.3)

where xmean is the mean of x.

When we then project these vectors back on to our data, we get the
D-matrix.

D = AT · y (2.4)

7



where A = (a1, ..., ak)

We will later use this matrix D, which is the matrix of dimensionally reduced
returns, obtained after projecting y in the principal component space.

2.3 Mean-reverting Theory

In this trading model, two main trading strategies are used. The first is
called mean-reversion strategy [Investopedia, 2015] and is simply the theory
that prices should move back towards their moving average(their mean cal-
culated a constant x days back). As [Infantino et al., 2010] discusses this
is perhaps the most simple of all trading strategies but it does not take the
behavioural aspect of trading into account. The mean reversion theory is
used in this thesis as a foundation of the PCA. Our PCA gives us a first
model which tells us how the returns without noise should have been the last
period. We then act accordingly - if the model tells us that the prices are
too high, we sell and vice versa. Studies that mean reversion theory works
and actually generates alpha in commodity prices are discussed in [Lutz,
2010] which is taken into account in this prediction model.
Main input parameters into our model are; the T number of days we are
looking back at, the H future days of returns, the k number of principal
components.

The following formula is the foundation of the mean reverting section.

rt+1 + ...+ rt+H = β1

H∑
i=0

Dt−i,1 + ...+ βk

H∑
i=0

Dt−i,k (2.5)

where rt is the log return at time t, β is the factor that explains the ratio
between the log returns and the matrix D. That is, the β values want to ex-
plain the connection between past periods PC’s and coming periods returns.

We define a matrix B which includes all the β’s with dimensions k×
number of commodities.

We also define the matrix D̃t - the sum of the returns from the D-matrix:

D̃t =

H−1∑
i=0

Dt−i, t = (1, 2, ..., T ) (2.6)
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Finally, we get our prediction of the future log return S as,

St = D̃t ·B (2.7)

So if this S is higher than the actual log return, we sell and vice versa. We
get a long list of buy or sell signals, and the momentum strategy stated
below can overwrite those signals.

2.4 Momentum

In this model, the behavioural aspect of trading is represented by a momen-
tum strategy, which is the belief that if a price is in an upward trend, it
will continue going up. Likewise if the price is falling, momentum strategies
states that it will continue falling. In short, you could say that it is a ”ride-
the-wave” type of trading mindset - contradictory to the mean-reversion
theory. In [Jegadeesh et al., 1999] it is shown that financial instruments
with strong past performance continue to outperform those with poor past
performance. This momentum theory is implemented into our prediction
model.

To introduce the momentum strategy into our model, we use [Infantino
et al., 2010] ”the Cross Sectional Volatility of the Principal Components”,
which is the standard deviation σD(t) of the returns, projected onto the
principal components. Briefly you could say that we want to look at if the
rate of change in the discrete time (Euclidean distance EH - defined below)
grows. More specifically:

σD(t) =

√√√√ k∑
j=1

(dtj − d̂t)2

k − 1
, t = (1, 2, ..., T ) (2.8)

where k is the number of principal components, dtj is the reduced-dimensionality

return j at time t and d̂t is the cross sectional mean:

d̂t =
1

k

k∑
j=1

dtj (2.9)

We want to look at the changes in time, the derivative, to see if there
are great changes in the standard deviation. To decide if there are ”great
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changes” we define a measure ψ for the change of the standard deviation
compared to time.

ψ =
dσD
dt

(2.10)

To get a distance measure we define EH :

EH(t) =

√√√√ H∑
i

[ψ(t− i)]2 (2.11)

Finally, to decide if we are in a ”momentum” or not and to decide if we
should override the mean-reverting signal, we check:

EH(t)− EH(t− 1) (2.12)

So if this is less than or equal to zero, we continue with the mean-
reverting signal. Else, we switch so that we apply the momentum strategy
and continue ”riding-the-wave”.

2.5 Copula

To be able to study all our fitted distributions of our commodity prices,
one can use copula as a glue for these distributions. This is more formally
described below, from [Nelsen, 2006] first for a bivariate copula and then for
the n-dimensional case.

Definition 2. A two-dimensional subcopula is a function C ′ with fol-
lowing properties:

• DomC ′ = S1 × S2, where S1 and S2 are subsets of I containing 0 and
1.

• C ′ is grounded and 2-increasing.

• For every u in S1 and and every v in S2,

C ′(u, 1) = u and C ′(1, v) = v. (2.13)

Definition 3. A two-dimensional copula is a 2-subcopula C whose
domain is I2.

Equivalently, a copula is a function C from I2 to I with the following
properties:
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• For every u, v in I,

C(u, 0) = 0 = C(0, u),

C(u, 1) = u,C(1, v) = v.

• For every u1, u2, v1 and v2 in I such that u1 ≤ u2, v1 ≤ v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (2.14)

This is called the rectangle inequality of copula.

From [Nelsen, 2006] we find the theorems regarding Fréchet-Hoeffding
bounds.

Theorem 1 (Fréchet-Hoeffding bounds in 2-dimensions). Let C ′ be a
subcopula. Then for every (u, v) in DomC ′

max(u+ v − 1, 0) ≤ C ′(u, v) ≤ min(u, v) (2.15)

The n-dimensional case follows from [Nelsen, 2006]
Theorem 2 (Fréchet-Hoeffding bounds in n-dimensions). Let C be a

copula, then the following inequality is satisfied,

max(u1 + u2 + ...+ un − d+ 1, 0) ≤ C(u) ≤ min(u1, u2, ..., un). (2.16)

where u ∈ [0, 1]n

Theorem 3 (Sklar’s theorem).Let H be an n-dimensional distribution
function with margins F1, F2, ..., Fn. Then there exists a n-copula C such
that for all x in Rn,

H(x1, x2, ..., xn) = C(F1(x1), F2(x2), ..., Fn(xn)). (2.17)

If F1, F2, ..., Fn are all continuous, then C is unique; otherwise C is
uniquely determined on Ran F1× Ran F2× ... × Ran Fn. Conversely, if C
is a n-copula and F1, F2, ..., Fn are distribution functions, then the function
H defined by (2.16) is a n-dimensional distribution function with margins
F1, F2, ..., Fn.
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2.6 Elliptical Copulas

One can describe the elliptical copulas (named so for their elliptical contour
shape) as the most basic of copulas. One advantage that is used in this
thesis is that they can handle both positive and negative dependence.

To describe the dependence structure for elliptical copulas, the notation
of Σ is used to represent the correlation matrix. Elliptical copulas have the
following relationship between its dependence parameter and Kendall’s Tau.

τK =
2

π
arcsinρ (2.18)

where ρ is the corresponding ”off-diagonal” parameter of dependence in Σ.

2.6.1 Gaussian Copula

As defined in [Bouyé, 2000] the definition for multivariate gaussian copula
(MVN) is the following.

Definition 4.
Let ρ be a symmetric, positive definite matrix with diag ρ = 1 and Φρ

the standardized multivariate normal distribution with correlation matrix
ρ. The multivariate gaussian copula is the defined as follows:

C(u1, ..., un, ..., uN ; ρ) = Φρ(Φ
−1(u1), ...,Φ−1(un), ...,Φ−1(uN )) (2.19)

The density of the gaussian copula is then defined as follows.

Definition 5.

c(u1, ..., un, ..., uN ; ρ) =
1

| ρ |
1
2

exp(− 1
2
ζT (ρ−1−I)ζ) (2.20)

where ζn = Φ−1(un)

2.6.2 Student’s T Copula

Continuing with the writings from [Bouyé, 2000], the multivariate Student’s
T Copula (MVT) is defined as follows.

Definition 6.
C(u1, ..., un, ..., uN ; ρ, ν) = Tρ,ν(tν

−1(u1), ..., tν
−1(un), ..., tν

−1(uN )) (2.21)

12



with tν
−1 as the inverse of the univariate Student’s T distribution.

Corresponding density is

Definition 7.

c(u1, ..., un, ..., uN ; ρ, ν) = | ρ |−
1
2

Γ(ν+N
2 [Γν

2 ]N )(1 + 1
ν ζ

Tρ−1ζ)−
ν+N

2

[Γ(ν+1
2 )]NΓ(ν2 )

N∏
n=1

(1 +
ζn

2

ν
)−

ν+1
2

(2.22)

2.7 Distributions

Below are the distributions that were fitted to the log returns of the com-
modities. Both logistic distribution and Student’s T distribution are known
to have fatter tails than the normal distribution, which suited the log re-
turns.

2.7.1 Generalised Logistic Distribution

In [Shao, 2002] the generalised logistic distribution is described with the
following density function.

fGL1(x; θ, σ, α) =
α

σ
∗ e−(x−θ)/σ

(1 + e−(x−θ)/σ)α+1
, (2.23)

where θ is the location parameter, σ > 0 is the scale and α > 0 is the shape
parameter.

2.7.2 Student’s T Distribution

As described in [Jackman, 2009] the Student’s T distribution is defined as
follows.

Definition 8.
If x follows a (standardized) Student’s T density with ν > 0 degrees of
freedom, conventionally written x ∼ tν , then

p(x) =
Γ((ν + 1)/2)

Γ(ν/2)
√
νπ

(1 +
x2

ν
)−(ν+1)/2 (2.24)
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and has mean 0 and variance ν/(ν − 2).
In unstandardised form, the Student’s T density is

p(x) =
Γ((ν + 1)/2)

Γ(ν/2)σ
√
νπ

(1 +
1

ν
(
x− µ
σ

)2)−(ν+1)/2 (2.25)

and is conventionally written x ∼ tν(µ, σ2), where µ is a location param-
eter, σ > 0 is a scale parameter and ν > 0 is a degree of freedom parameter.

• The standardized version of the T density is and unstandardised T
density with µ = 0 and σ = 1.

• Provided ν > 1, E(x) = µ and V (x) = ν
ν−2σ

2.

• As ν →∞, p(x) tends to the normal density.

2.8 Dependence Theory

There are different types of dependence measures but the most common is
called linear correlation, or more formally - Pearson’s correlation coefficient.
This is calculated through,

ρX,Y =
cov[X,Y ]√

V ar[X]V ar[Y ]
(2.26)

But this dependence measure has three main disadvantages.

• It requires that mean and variance exists, else it is useless.

• It can only measure linear dependence between X and Y , so a modi-
fication in X must have a likewise constant proportional modification
in Y .

• It is not invariant to non-linear transformations.

So this is called correlation coefficient but when we are talking about
scale-invariant measures of dependence we call them measures of associa-
tion. One of the main measure of association - Kendall’s Tau, is presented
below (Spearman’s Rho is not used in this thesis, hence the lack of defini-
tion).
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2.8.1 Concordance

To define Kendall’s Tau, we need to explain what concordance is, which is
presented in [Nelsen, 2006],

Briefly, you could say that a pair of random variables are concordant if large
values of one tend to be associated with large values of the other. Likewise,
small values of one tend to be associated with small values of the other.
This is presented more accurately below.

Let (xi, yi) and (xj , yj) denote two observations from a vector (X,Y ) of
continuous random variables. We say that (xi, yi) and (xj , yj) are concordant
if xi < xj and yi < yj , or if xi > xj and yi > yj . Similarly, we say that
(xi, yi) and (xj , yj) are discordant if xi < xj and yi > yj , or if xi > xj and
yi < yj .

2.8.2 Kendall’s Tau

We are now ready to define the measure of association Kendall’s Tau in
terms of concordance and discordance.

Definition 9.
Let [(x1, y1), (x2, y2), ..., (xj , yj)] denote a random sample of n observations
from a vector (X,Y) of continuous random variables. There are

(
n
2

)
distinct

pairs (xi, yi) and (xj , yj) of observations in the sample, and each pair is
either concordant or discordant. Let c denote the number of concordant
pairs and d denote the number of discordant pairs. Then Kendall’s Tau is
defined as,

τK =
c− d
c+ d

= (c− d)/

(
n

2

)
(2.27)

2.9 Parameter Estimation

To estimate the parameters of both the margins of commodity prices and
the copulas Maximum Likelihood Estimation (MLE) is used.
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2.9.1 Maximum Likelihood Estimation

In [Myung, 2003] maximum likelihood estimation is the process of finding a
value θ which is the estimation that makes the underlying data as plausible
as possible. Generally, let x1, ..., xn be i.i.d observations of a random vari-
able X with density function f(x; θ), where θ is an unknown parameter in
the space ΩΘ. Then, the corresponding likelihood function Lx(θ) is defined
as follows,

Definition 10.

Lx(θ) =

n∏
k=1

f(xk; θ). (2.28)

and the MLE is the parameter θ̂mle which maximizes Lx(θ). Hence,

θ̂mle = argmaxθ Lx(θ). (2.29)

2.10 Goodness of Fit

To determine if you have found a fitting model or not, several tests can be
done. In order to determine if we had fitted our probability distributions
well, Quantile-Quantile plots are used. And to test whether a copula C can
be represented in a multivariate distribution, the Cramér-von Mises Method
is used. More on this below.

2.10.1 Quantile-Quantile Plot

The Quantile-Quantile Plot (QQ-plot called henceforth) is a graphical test
method to see whether our data fits to a distribution or not. The empirical
quantiles are plotted against the quantiles of the fitted theoretical distribu-
tion, the points will lie on the line of a 45 degree slope.

2.10.2 Cramér-von Mises Method

To test the goodnes of fit for a copula, one can use the Cramér-von Mises
method. This method [Genest et al., 2009] is originally based on the ”em-
pirical copula” as

16



Cn(u) =
1

n

n∑
i=1

l(Ui1 ≤ u1, ..., Uid ≤ ud), (2.30)

where u = (u1, ..., ud) in [0, 1]d.

Then, the goodness of fit test process is based on the empirical process

Cn(u) =
√
n(Cn − Cθ,n) (2.31)

where Cθ,n is an estimator of C, obtained under the null-hypothesis
H0 : C ∈ C0 for a class C0 of copulas. θn is the estimation of θ which is
derived from pseudo-obeservations.

Moreover, the test statistic Sn of Cramér-von Mises method can be calcu-
lated based on the empirical process to

Sn =

∫
[0,1]d

Cn(u2) dCn(u). (2.32)

where a large value of the test statistic Sn leads to rejection of the null-
hypothesis.

2.11 Portfolio Return

Given we have our buy and sell signals, return can be generated both by
going long (you buy the asset and generate return when selling if the asset
has risen in price) and by going short (you sell the asset and generate return
when buying back the asset if the asset has fallen in price). Whilst going
long, one unit of the asset is purchased and then sold the next trading day.
Whilst going short, one unit of the asset is sold and the bought the next
trading day. All of the portfolio returns are calculated in their real value,
but the calculations are made with the log returns.

2.12 Sharpe Ratio

Finally, to determine if our prediction model had performed well during our
data time frame, we measure the Sharpe Ratio. This is a measure to see if
we performed well compared to the risk taken. Defined [Investopedia, 2015]
as follows,
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Sr =
r̂p − rf
σp

(2.33)

where r̂p is the portfolio return, rf is the return of the risk free asset and σp
is the standard deviation of the portfolio.
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Chapter 3

Implementation and Results

The programs used for implementation of the model were Matlab and R.
Packages used in R were MASS, copula and glogis.

3.1 The Data Set

The data set consists of five different commodities; Brent Oil, West Texas
Intermediate (WTI) Oil, Gold, Copper and Aluminium. We have five years
of old 3-months futures prices stretching from September 2009 to September
2014. It is always the daily closing price that have been used. It should be
noted that different commodities have been trading different days, due to
holiday days and other occurrences where the market was closed. This have
been corrected such that the data used was only when all commodities were
trading at the same date. The original daily closing prices for the different
commodities are presented graphically below.
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(a) 3-months futures - Brent Oil (b) 3-months futures - WTI Oil

(c) Spot price for Gold (d) 3-months futures - Copper

(e) 3-months futures - Aluminium

Figure 3.1: Commodity prices in USD 2009-2014 - not adjusted for inflation.
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The log returns of these are given below.

(a) Log returns - Brent Oil (b) Log returns - WTI Oil

(c) Log returns for Gold (d) Log returns - Copper

(e) Log returns - Aluminium

Figure 3.2: Log returns for commodity prices 2009-2014 - not adjusted for
inflation.

Brent Oil, WTI Oil, Copper and Aluminium all are priced in their three
months contract, which means they are initially priced three months before
the date of delivery. Once this contract expires the next three months con-
tract is used. However, Gold is priced on the spot price, which means that
the buyer will send someone to pick up the Gold, unless the contract is sold
before that.
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3.2 Implementation

The implementation phase was divided into three parts, the first one only
the PCA with the mean reversion and momentum strategies was taken into
account. The second part only takes the Copula analysis into account. The
third and last part combines the two first parts for the final complete model.

3.3 Part One - PCA

The main model for the initial PCA was built in Matlab. To start out, the
log returns were calculated. Then, a PCA is conducted accordingly to the
Theory chapter. To determine how many principal components that should
be used to explain the variance a target is set to have the number of prin-
cipal components that explains close to 80 % of the variance. This results
in around 3 principal components, which will henceforth be the number of
principal components we use.

After this, both the mean-reverting strategy and the momentum strategy
are taken into account. As described in the Theory chapter, mean reversion
gives us a list of buy or sell signals. Some signals in this list will then be
overwritten if we are in a momentum - euclidean distance today compared
with euclidean distance yesterday. Hence, we end up with a long list of buy
or sell signals, where both mean reversion and momentum strategies are
taken into account.

To do a proper check if our model is sound so far, the 5-year data is
divided in half. So we apply our PCA-model to the first half and then check
if our parameters could be successful on the second half.

In the next step, an extensive testing is carried out. To decide which T
and H that should be used, multiple regressions to get the highest returns
with the lowest standard deviation were made with values ranging from T =
(7, 8, ..., 206) where H = (3, 4, ..., 103). Here the value T = 7 corresponds to
H = 3 and T = 8 corresponds to H = 4 and so forth. The results varied
for different commodities and the best T and H for the first 2,5 years are
presented below in Table 3:1.
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Commodity T H Mean Standard Deviation Sharpe Ratio (rf = 0)

Brent Oil 124 62 0.2470 1.684 0.1467
WTI Oil 88 44 0.2084 1.655 0.1259

Gold 26 13 1.658 17.24 0.0962
Copper 10 5 16.94 141.6 0.1197

Aluminium 35 17 4.671 34.95 0.1336

Table 3.1: Best T and H - all commodities during first 1:616 trading days.

It should be noted that all the calculations are done using log returns but
when we get the respective buy or sell signal - the original prices are used
to calculate the Mean, Standard Deviation and Sharpe Ratio.

So if we would sum all of these Sharpe Ratios during the first 616 trading
days, we would get a Sharpe Ratio for the whole portfolio of 0.622. However,
what is interesting here is our T and H values. We use these values on our
second part of the data, the last 2,5 years, and see if we can generate alpha.

The results for this is presented below in Table 3:2.

Commodity T H Mean Standard Deviation Sharpe Ratio (rf = 0)

Brent Oil 124 62 −0.0190 1.0985 −0.0173
WTI Oil 88 44 −0.0460 1.0906 −0.0422

Gold 26 13 0.1646 15.8010 0.0104
Copper 10 5 1.4020 83.6219 0.0168

Aluminium 35 17 −1.2569 21.4226 −0.0587

Table 3.2: Best T and H - all commodities last 617:1233 trading days.

The sum of all Sharpe Ratios are now down to −0.0910. Which means
that we would actually lose money using this strategy with these values of
T and H. Hence, we hope that with the aid of the copula part that we will
be able to generate alpha.
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3.4 Part Two - Copula

First of all - to start the copula part, the different log returns of the com-
modities had to be fitted to distributions. To decide which distributions
that would be fitting, QQ-plots (see Theory) were used. The best plots of
the Student’s T distribution are presented below.
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(a) QQ-Plot Brent Oil(T-distr.)
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(b) QQ-Plot WTI Oil(T-distr.)
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(c) QQ-Plot Gold(T-distr.)
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(d) QQ-Plot Copper(T-distr.)
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(e) QQ-Plot Aluminium(T-distr.)

Figure 3.3: Commodity prices 2009-2014
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So all of these QQ-plots confirms that Student’s T distribution works
fine for the commodities Brent Oil, WTI Oil, Copper and Aluminium. Gold,
however, does not fit as good in the tails. Due to that, a logistic distribution
was fitted for the Gold.
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Figure 3.4: QQ-Plot for Gold(Logistic-distribution)

The lower tail is however still a bit off but the upper tail is much better.
So we now have decided our margins for our coming multivariate distribu-
tion (these are presented in Table 3.3).

The parametric marginal distributions are estimated with Maximum-
Likelihood. This is presented below.

CommodityDistribution Location Scale Degrees of Freedom/Shape

Brent Student’s T 0.000 534 9 0.011 19 4.624
WTI Student’s T 0.000 608 6 0.012 43 4.924
Gold Student’s T 0.000 649 6 0.008 404 4.470

Copper Student’s T 0.000 206 2 0.011 46 4.263
Aluminium Student’s T 0.000 079 61 0.011 84 8.079

Gold Logistic 0.003 376 0.005 141 0.7056

Table 3.3: Parametric marginal distribution
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However, to create a multivariate distribution function, we need to es-
tablish the dependence between the commodities. Hence, we use Kendall’s
Tau for this. The Kendall’s Tau for the whole data set (5 years) is presented
below.

Kendall′s Brent WTI Gold Copper Aluminium

Brent 1 0.694 884 7 0.194 701 0.283 692 6 0.243 487 8
WTI 0.694 884 7 1 0.211 222 1 0.313 573 4 0.287 275 9
Gold 0.194 701 0.211 222 1 1 0.261 361 7 0.240 895 8
Copper 0.283 692 6 0.313 573 4 0.261 361 7 1 0.514 945 8
Aluminium 0.243 487 8 0.287 275 9 0.240 895 8 0.514 945 8 1

Table 3.4: The Kendall’s Tau for the whole five year data set.

Remark: The largest dependence is between Brent Oil and WTI Oil -
since they are both oil and fungible commodities.

To decide which copula to use, the Cramér-von Mises method (see
Theory) was used. A wide Goodness-of-Fit test was conducted and the
results are given in Table 3.5 and 3.6 below.

Dimensions Test statistic P − value H0 rejected

2 0.0281 0.005 495 Yes
3 0.0347 0.063 44 No
4 0.0605 0.003 497 Yes
5 0.0595 0.000 499 5 Yes

Table 3.5: Goodness of fit for Normal Copula

where Dimensions are the number of commodities used.
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Dimensions Test statistic P − value H0 rejected

2 0.0169 0.1304 No
3 0.0207 0.5759 No
4 0.0335 0.1543 No
5 0.0449 0.0415 Yes

Table 3.6: Goodness of fit for T-Copula

In Table 3.6 we can see that the Student’s T Copula was the best up to
dim = 4 (since p > 0.05 for dim = 2, 3, 4), after that - the p-value is too low
to accept H0.

To counter this problem, we decide to divide the commodities into two
groups where Aluminium is in an own group.

So, the first four commodities (Brent Oil, WTI Oil, Gold and Copper) are
considered into one group. The same Kendall’s Tau as in table 3:3 is used
to decide the dependence structure(but without the Aluminium part). A
Student’s T Copula is constructed with these dependences using the func-
tion tCopula (Please see Theory regarding Student’s T Copula) in R from
the package Copula. The distributions are then fitted to their respective
distribution that we found fitting (see Table 3:4). We then use the function
mvdc in R to construct our multivariate distribution function. Finally, we
calculate the probability that the return is less than or equal to 0. This
is done looking back T number of days (hence constructing a multivariate
distribution function looking back T days.) In our case, a probability plot
is constructed looking back 76 days (chosen since it is a bit larger than the
mean of all T ’s from the PCA part). So the first multivariate distribution
function uses the data from 76 days - starting on day 1, the second looks at
the 76 days - starting on day 2 and so forth. To explain, when we calculate
the probability from the first 76 days we get a value indicating how big is
the chance that all commodities used are going to have negative or zero re-
turn. This means that checking how this develops, we can see which kind of
”mood” the market is in at that time - comparing to the other days. When
can then represent this graphically - see Figure 3:5 below.

27



0 200 400 600 800 1000 1200

0.
10

0.
15

0.
20

0.
25

Propability Plot − 4 commodities

Days

P
ro

ba
bi

lit
y

Figure 3.5: Probability Plot that Brent, WTI, Gold and Copper have a
return ≤ 0 when T = 76. This can be seen as a ”indicator” on how those
markets are going where a high probability means that the markets are going
down and a low probability that the markets are supposedly going up.
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3.5 Part Three - PCA and Copula Combined

To summarize, in the PCA part we use the mean-reversion strategy and
that is then overridden by the momentum strategy. In the Copula part, we
use our results to calculate the probability that the returns for four of our
five commodities are less than or equal to zero. So what happens when we
combine these parts? Let us find out.

The main idea is that the Copula part should override the two first strategies
when the probability is large or small enough. Hence, let us try a trading
model where we buy all commodities when the probability that the returns
are less than or equal to zero is lower than 0.09 (meanoftheprobabilities−
1 standard deviation). And then sell when the probability is higher than
0.17 (meanoftheprobabilities + 1 standard deviation). The mean and 1
standard deviation is chosen to have a standard reference. This is also
acting accordingly to the model described in Part Two - Copula above and
with T = 76. With this probabilities, only 197 ∗ 2 = 394 trades were made
out of 1156 (1232− 76 = 1156) possible days. Results are as follows:

Commodity Mean Standard deviation Sharpe Ratio (rf = 0)

Brent −0.045 89 1.511 −0.030 37
WTI −0.039 64 1.511 −0.026 23
Gold 0.1320 16.17 0.008 166
Copper 5.665 122.5 0.046 23

Table 3.7: Test results for copula probability model - selling at P ≥ 0.17

Commodity Mean Standard deviation Sharpe Ratio (rf = 0)

Brent 0.1129 1.460 0.0773
WTI 0.1072 1.399 0.076 63
Gold 0.4979 15.59 0.031 92
Copper −1.655 101.2 −0.016 35

Table 3.8: Test results for copula probability model - buying at P ≤ 0.09

The Sharpe Ratios in total 0.167 which means that it could generate
alpha.
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So, let us combine this with the results that was given in Part One -
PCA. We trade all commodities with both mean reversion and momentum
with T and H as presented in Table 3:1. Then the copula part overrides
the trading days where the probability is large or small enough (mean ±
standard deviation) for Brent, WTI, Gold and Copper but not Aluminium.
Looking at the last 617:1233 trading days we get the following results.

Commodity Mean Standard deviation Sharpe Ratio (rf = 0)

Brent 0.0517 1.2044 0.042 94
WTI 0.023 95 1.1980 0.019 99
Gold 0.3274 16.05 0.020 39
Copper −0.7098 84.03 −0.008 447

Table 3.9: Test results for both PCA and Copula last 617:1233 trading days.

Which gives us a positive total Sharpe Ratio of 0.075.

However, if we include the Aluminium PCA trading part (results of this
can be found in Table 3:2), we get a total Sharpe Ratio of 0.075− 0.0587 =
0.0163.
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Chapter 4

Discussion

4.1 Summary

The purpose of this master’s thesis was to determine whether PCA and
Copula could be used to predict future commodity prices and hence generate
alpha. The PCA was used on the first 2.5 years out of 5 years of data to see
if the results could be used on the last half to generate alpha. That could not
be done with our method. Then the returns were fitted to distributions using
Maximum-Likelihood. Student’s T distribution and Logistic distribution
was found to be fitting for the different returns.

Then, the dependence between the commodities was decided using Kendall’s
Tau.

To decide which copula to use, a Goodness-of-Fit test was conducted
using the Cramér-von Mises method. This showed us that a T-copula could
be fitted well up to four dimensions.

A probability plot was then constructed based on our dim = 4 T-copula
where we saw the probability that all first four commodities have a return
less than or equal to zero.

Lastly, the PCA part and the Copula part were combined and a positive
Sharpe Ratio was given. However, the low Sharpe Ratio of 0.0163 is not a
great result. This is due to mainly two reasons,

• We have assumed that the risk-free rate rf to be 0 which means that
we barely are gaining on investing in this prediction model.

• We have not assumed any brokerage fees which must be taken into
account since every trade costs - further reducing our positive return.
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What should be noted is that we have a good result with the PCA part
the first 2.5 years, but those T and H parameters does not provide any
profit the last 2.5 years. If we had chosen a different criteria for T and H,
maybe the model results would have been much better. These values are
very important for the model.

In the description of Maximum Likelihood an assumption is that the
random variables should be i.i.d but this can pretty easily be seen in Figure
3:2 that this is not the case. Instead perhaps a GARCH-model could be
used to model the observed time series.

Moving on to comment the Copula part - the fitted distributions worked
very well as could be seen in the QQ-plots. Also, the p-values for up to
dim 4 was very good using T Copula. So why does the model not generate
more alpha? Well, perhaps the way we used our results from the Copula
part should have been used in a different way. Maybe more focus on the
Copula part could have given better results. The largest part of the trading
comes from the PCA part, it would be interesting to see what would happen
if the Copula part was the largest part.

Also, it is possible to use the copula distribution in many different ways.
Perhaps one could look at expectations or conditional distributions instead.
This could have given an even better result and a model which could generate
a better Sharpe Ratio.

4.2 Tradeable Results

This thesis does not cover the extra costs that comes with trading such
as hedging, brokerage fees, initial investments(margins) and salaries. But
with that said, the main purpose to see if we could generate a positive risk-
adjusted return with this model is proven.

One should also note that aluminium perhaps was not the best com-
modity to exclude in the Copula part. Perhaps gold would be the best
commodity to exclude since it is a more defensive asset compared to the
other commodities used in the thesis. This since investors tend to buy gold
when the economy is going down as a ”safe harbour”. The other four com-
modities used, are more connected to good times in the economy. Hence,
gold should maybe have been excluded.
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The model only covers two alternative states, in a buying mode or in a
selling mode. Perhaps a third state should have been introduced where one
simply does nothing. This could have be used in very volatile times when
it is very hard to predict where the market is going. The varying volatility
can easily be seen when the log-returns are presented in Figure 3:2.

If one looks at this in a larger scale, it is a very narrow field in which
the investigation was conducted. Nothing says that commodities is the most
preferred tradeable asset and the model could have been used on assets such
as stocks, foreign exchange or bonds. Another thing to consider is that very
few commodities were used. If more assets would have been used, maybe
the model would be more profitable.

4.3 The Future

Another thing to consider is if it in this case was the optimal solution to
optimize the parameters on the first 2.5 years. Maybe a more continual
optimization would be more fitting. That perhaps one always look back at
the latest year and optimize on that. It would be interesting to see since
especially the Copula part shows much promise (the Cramér-von Mises tests
were sound up to dim 4).

4.4 Conclusion

To conclude, we can generate a positive risk-adjusted return from this pre-
diction model but with a very low Sharpe Ratio.
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