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Abstract 

New models of combustion engines have gained a great interest within research in the last 

decade. This interest has arisen due to the possibility to achieve a higher degree of efficiency and 

lower emissions, which will impact the environment positively. A higher degree of efficiency 

implicates an economical benefit in terms of fuel.  

 

The HCCI engine has been thoroughly researched due to its combined advantages of the CI and 

SI engine. As always, there are disadvantages with this type of engine. The main problems are 

that the combustion is too quick and that the engine is difficult to control. 

 

A good way to compare combustion of fuels in different engines is to develop a fuel index. In a 

fuel index data for mixtures are accounted for in a table, with which the index of an unknown fuel 

can be determined. In this master thesis only a limited number of fuels are tested, which means 

that a fully developed fuel index is not able to be accomplished without further research. 

 

 In this master thesis a fuel index for the HCCI engine has been partly determined by executing 

experimental and simulated studies. The fuels tested were Primary Reference Fuels 0 to 100. The 

engine has been run with inlet temperatures between 293 K and 423 K, in intervals of 10 K, and 

with a compression ratio that give 50 % burn at TDC. The HCCI engine was modeled and the 

simulations were performed in DARS, which is a chemical kinetics program.  

 

The results from the simulations seem to be reasonable. The compression ratios and the ignition 

temperatures with the corresponding pressures are in the right magnitude. The results from the 

experiments, on the other hand, are not as reliable as the results from the simulations. 

 

The model created in this master thesis may be used with an engine that has the same conditions 

as the simulations, if a more accurate chemical model is used and the indicator for the inlet 

temperature is placed at the correct location. Further research concerning the reason why the 

simulations and the experiments deviated is needed in order to be able to use this base for an 

index.
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1. Introduction 

New models of combustion engines have gained a great interest within research in the last 

decade. This interest has arisen due to the possibility to achieve a higher degree of efficiency and 

lower emissions, which will impact the environment positively. A higher degree of efficiency 

implicates an economical benefit in terms of fuel.  

 

Today the most common engines are the spark ignition, SI, and the compression ignition, CI. The 

SI has a lower efficiency as well as a lower emission level than the CI engine. The Homogenous 

Charge Compression Ignition, HCCI, engine combines the advantages of these engines which 

results in a low emission level and high efficiency. Research and development of this type of 

engine is a way to decrease harmful emissions. As always, there are disadvantages also with this 

type of engine. The main problems are that the combustion is too quick and that the engine is 

difficult to control.  

 

A good way to compare combustion of fuels in different engines is to develop a fuel index. In a 

fuel index data for mixtures are accounted for in a table, with which the index of an unknown fuel 

can be determined.  

1.1 Objective 

Fuels today are classified with octane numbers for the SI engine and with cetane numbers for the 

CI engine. The objective of this master thesis is to partly develop a fuel index for the HCCI 

engine by executing experimental and simulated studies. To define an HCCI fuel index several 

different fuels must be tested. In this master thesis a limited number of fuels are studied, which is 

a start in the work of developing an HCCI index. The fuels tested are Primary Reference Fuels 0 

to 100, in intervals of 10, where the number represents the percentage of n-heptane in an n-

heptane/iso-octane mixture. The experiments, as well as the simulations, will be executed with 

inlet temperatures between 293 K and 423 K, in intervals of 10 K, and with a compression ratio 

that give 50 % burn at TDC. In this master thesis only a limited number of fuels are tested, which 

means that a fully developed fuel index is not able to be accomplished without further research. 

1.2 Method 

The experimental study is executed on a CFR engine in HCCI mode. A LabView control program 

collects data from the engine, which is then processed in a Matlab program. The simulations are 
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performed in DARS, which is a chemical kinetics program. With this program a model for the 

HCCI engine is developed in three steps, which is then used in the simulations.  

1.3 Constraints 

In this master thesis only a limited number of reference fuels are tested. In the simulation 

program the chemistry model used is reduced and consists of only 38 reactions, which will affect 

the accuracy of the results. The number of experiments is time limited, which may affect the 

reliability of the results. The amount of residual gases in the engine is unknown, which might 

affect the simulated results slightly. The residual gases usually lie around 10 to 15 percent and are 

therefore set to 10 percent in the simulations.  



2. The HCCI engine 

The HCCI engine performs almost like a combination of the SI and the CI engine. In the 

following subchapters these engines are explained to give a better understanding to the subject of 

this master thesis.  

2.1 The principle of the SI engine  

The SI engine can have either a two stroke or a four stroke cycle. A stroke is when the piston 

moves from the bottom to the top or vice versa.  

 

In a two stroke cycle, air or an air-fuel mixture fills the cylinder and the compression takes place 

when the piston moves upwards. The combustion, which leads to an increase in pressure, starts 

right before the piston reaches the top. The mixture is ignited by a spark, causing a flame to burn 

and propagate through the fuel. The expansion takes place when the piston is at the top; the piston 

is then pressed downwards. When the piston reaches the Top Dead Center, TDC, part of the 

exhaust gases are depleted, which leads to a pressure drop. The cylinder is then filled with inlet 

gases simultaneously as it is depleted of excess gases. 

 

A four stroke cycle, see figure 2.1, begins with a stroke where air or an air-fuel mixture fills the 

cylinder. During the second stroke the compression occurs and when the mixture has been ignited 

by a spark at the end of the stroke, the combustion starts. Expansion occurs throughout the third 

stroke and towards the end; part of the exhaust gases are depleted in order to lower the pressure. 

The cylinder is depleted of excess gases during the fourth stroke. 

 

Figure 2.1 The four stroke cycle [1] 
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The stoichiometric relation between air and fuel is the best relation to use in this case since all 

oxygen and fuel is consumed. Other relations between fuel and air give poorer combustion. If the 

air-fuel mixture is surplus heated before it ignites, knocking, i.e. auto-ignition may occur. When 

knocking takes place the mixture is combusted in a very short time, which may lead to damages 

on the engine. [1] 

2.2 The principle of the CI engine  

In a CI engine the cylinder is filled with merely air during the first stroke. Compression occurs at 

a high compression ratio throughout the second stroke, during which the air is heated to a large 

extent. At the end of the compression stroke the fuel is injected at high pressure and then it 

atomizes, vaporizes and mixes partially before auto-ignition takes place. The mixed part is 

combusted rapidly and during the rest of the combustion fuel is injected, atomized, mixed and 

combusted continuously in an almost constant rate.   

 

The CI engine has higher efficiency than the SI engine due to higher compression ratio. 

Disadvantages with the CI engine are the expensive injection system and emissions in the form of 

soot and NOx, which is formed at high temperatures with oxygen present. Most of the NOx 

emissions are formed in the premixed part of the combustion blend. Soot forms when there is a 

shortage of oxygen, primarily in the non-premixed parts. [1] 

2.3 The principle of the HCCI engine  

In the HCCI engine an air-fuel mixture enters the cylinder, which is identical to the procedure in 

the SI engine. As with the CI engine, the mixture auto-ignites due to the large amount of heat 

which develops during compression. The combustion however, differs from that of the two other 

engines. The combustion initiates simultaneously at several points in the cylinder. There is no 

flame propagation in the HCCI engine, as it is in the SI engine; instead the fuel burns almost at 

the same time.  

 

For the mixture to auto-ignite a high compression ratio or preheating of the mixture is needed. If 

the mixture is to be ignited at a certain crank angle degree a specific combination of inlet 

temperature, inlet pressure and compression ratio is required. 

 

The HCCI engine performs simply when the combustion starts at the right time. Too fast fuel 

consumption is a problem which may arise while running the engine. This will occur if the fuel is 
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not diluted, as it is for an SI engine. Dilution of a fuel can be achieved by using excess air or 

Exhaust Gas Recirculation, EGR. The rich limit for λ is 2.2 and if a lower value of λ is used a 

large part of the exhaust gases has to be recirculated. The engine ought to be run at homogenous 

conditions in order to decrease the amount of rich zones. The advantages with the HCCI engine 

are its low emission level and high efficiency. [1] 

2.4 Octane number  

The octane number indicates a fuel’s resistance to knocking. To obtain this number a 

standardized engine with “variable” compression is operated with two different reference fuels, 

iso-octane and n-heptane. The latter, which has low resistance to knocking, is given the number 0 

and iso-octane, which has high resistance to knocking, is given the number 100.  

 

To determine the test fuel’s octane number the data is compared to two reference fuels, which 

consist of one fuel with a higher and one with a lower octane number than the test fuel. The 

octane number is linear with the compression ratio for the reference fuels. 

 

There are two different octane numbers, RON and MON. At the determination of the octane 

number with the RON-method the engine is run at 600 rpm, the inlet air temperature is 52°C, the 

ignition angle is constant and λ is set at maximal knocking. With the MON-method the engine is 

run at 900 rpm, the inlet air temperature is 149°C and the ignition angle varies slightly with the 

compression ratio. The octane number from the RON and MON method is the same for iso-

octane and n-heptane but generally MON gives a lower value than RON. 

 

The octane number for the SI engine may be used with the HCCI engine, but it is important to 

have in mind that a small error may occur when using the octane number for the HCCI engine.  

 

For CI engines a cetane number is used instead of an octane number. The reference fuels used are 

cetane, with a cetane number of 100, and -methylnapthalene, with a cetane number of 0. Due to 

the latter fuel’s instability, heptamethylnonane, with a cetane number of 15, is used instead. The 

octane number, ON, and the cetane number, CN, are related according to equation (2.1). [1] 

 

CNON 2120           (2.1) 
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The sensitivity to knocking is not the same for all kinds of engines. Therefore an index such as 

the ON and CN is a good way to know if a fuel is suitable to a certain engine. When running an 

engine, the ON or CN interval at which a fuel may be used, as well as the kind of fuel that is 

suitable, is specific. 

2.5 Combustion  

The combustion process occurs in a chamber after the combustion has been initiated. For the 

combustion to take place oxidizer and fuel is needed. The fuel may be solid, liquid or gaseous and 

the oxidizer used is often air, which besides oxygen consist of incombustible nitrogen and traces 

of other gases.  

 

Excess oxygen is used to ensure total combustion. The fuel mixture is referred to as lean if there 

is a surplus of oxygen, but if there is not enough oxygen the mixture is referred to as rich. As 

mentioned in chapter 2.3 the fuel mixture has to be rich in order to run the engine in HCCI mode. 

 

When the combustion has occurred, the exhaust gases along with the incombustibles and any 

excess oxygen are depleted from the chamber.  

 

Equation (2.2) below is the reaction formula for ideal combustion.  

 

OHNCONOHC xx 22222 77.377.3     (2.2) 

 

In reality this process is most likely not ideal, hence hydrocarbons will be produced according to 

equation (2.3). [2] 

 

yyxx HCOHNCONOHC 22222 77.377.3    (2.3) 

2.6 Kinetics  

Kinetics is important to understand when simulating chemical reactions, therefore the basics are 

explained in this chapter. 

 

The general definition of the reaction rate is the rate at which products are formed. The reaction 

rate depends on concentration and temperature. A general formula of a reaction is shown below, 
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where ν is the symbol for the stoichiometric coefficient. The letters A and B are the reactants and 

C and D are the products. 

 

DCBA DCBA          (2.4) 

 

There are three different ways to define the rate at which the reaction occurs. These are the rate of 

formation for a specific component (rx), the consumption rate for a component and the conversion 

rate of the formula (r). The conversion rate of the formula specifies the direction of the reaction, 

which is positive for a forward reaction (from left to right). The rate of formation, as well as the 

stoichiometric coefficient, is positive for products, negative for reactants and zero for inert 

components. The relation between these two parameters is shown in equation (2.5). 

 

rr XX          (2.5) 

 

To describe the consumption of a specific component the conversion variable is used. This 

variable is defined as in equation (2.6) below and its value lies between zero and one. The 

parameter nx is the number of moles of the component X. 

 

beginningthefromXmoleconvertedXmole
n

nn
x

x

xx
x /

0

0     (2.6) 

 

The reaction rate may be of different orders. The equation for the conversion rate of the formula 

may be as shown in equation (2.7), where y is an integer and k is the reaction rate constant. 

 

y
XCkr          (2.7) 

 

The Arrhenius relation below is used to estimate the reaction rate constant, k. In the equation EA 

is the activation energy, R is the ideal gas constant and k0 is a specific constant.  

 

)/(
0

TREAekk         (2.8) 

 

The expression for the conversion rate of the formula and the reaction rate order is determined 

through experimental studies. [3] 
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3. Methods 

In this chapter the methods used in the experiments and in the simulations are explained in 

details. The model used in the simulations is being built-up in three steps and the results, in order 

of compression ratio and ignition pressure, are compared to each other.  

3.1 The CFR engine  

The CFR, The Cooperative Fuel Research, established test engine methods for rating of fuels in 

the late 1920’s. In 1931 the CFR engine, which is a standardized single cylinder engine, was 

developed and it is produced by Waukesha Motor Company. The reference fuels were n-heptane 

and iso-octane and the fuel index reaching from 0 to 100 was developed. In the same year the 

standardized test method RON, Research Octane Number, was established. Later the standardized 

test method MON, Motor Octane Number, was developed. The MON and RON method was 

explained in chapter 2.4. Today the engine is operated with either the MON or the RON method. 

[4]  

3.2 Experimental apparatus 

The engine used in the experiments for this master thesis is a CFR engine which will be run in 

HCCI mode. The engine is new but it is built after a model from the 1930’s. The engine is shown 

in figure 3.1. 
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Figure 3.1 The CFR engine 

 

A control program made in Lab View is used to collect data from the engine. The interface is 

shown in figure 3.2. 

 

In the interface the output values from the engine, as well as the pressure trace along with the heat 

release, are shown. When starting the engine the compression ratio and the injection flow are set 

to that of an SI engine. To change into HCCI mode the compression ratio is increased and the 

injection flow is decreased until the desired pressure profile and lambda are achieved. To measure 

lambda a lambda sensor is used, which can be compared to the calculated value from the control 

program.   

 

Emission equipment is used to obtain the correct lambda value and it is also used to determine the 

extent of the combustion. 
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Figure 3.2 The interface of the control program made in LabView 
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The constant data for the engine that is used in the simulation program is found in table 3.1 

below. 

 

Table 3.1 Constant data for the HCCI engine 

Parameter Value 

Stroke (m) 3103.114  

Bore (m) 3106.82  

Connecting rod length (m) 310254  

Initial crank angle degree (TDC) -180 

Final crank angle degree (TDC) 180 (0) 

Engine Speed (RPM) 

λ (experiments and simulations) 

Ap0 (chamber head area/piston area) 

Inlet pressure (experiments, bar) 

900 

3 

1.02 

1.5 

3.3 Simulations with DARS 

DARS is a chemical kinetics program. The program is used for simulation of different engines, 

e.g. the HCCI engine. Data for different components and chemical reactions may be inserted in 

the program.  

The simulations in this master thesis are executed with the help of a reduced chemistry model 

consisting of 38 reactions. [5] 

 

The model will be built-up in small steps. The ideal model will be simulated first and then the 

heat exchange will be added. Last the recirculated exhaust gas together with the residual gases 

will be added. The gases are labeled EGR in the simulation program; therefore they are labeled 

the same in this master thesis. This creates a more realistic model that will correspond to the 

real engine. To simulate the model the relations below are used.  

 

The general heat exchange equation is given in equation (3.1). 

 

ThAQ              (3.1) 

  

The heat-transfer coefficient, h, will be modeled with the Woschni equation below. [6] 
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8.055.08.02.02 )/()()()(26.3)/( smwKTkPapmBKmWhc       (3.2) 

 

)(21 m

rr

rd
p pp

Vp

TV
CSCw           (3.3) 

 

The engine speed is set to 900 rpm and the tolerance limit for the simulations is 10
-10

.  

 

From the simulations the ignition temperature and pressure is obtained, see figures 3.3 – 3.4. The 

ignition temperature is defined as the temperature at 1 Crank Angle Degree before 1 percent of 

the heat release.  

 

Figure 3.3 The pressure simulated in DARS 
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Figure 3.4 The temperature simulated in DARS 

 

The results from the ideal model simulated with PRF 0, i.e. 100 % n-heptane, are shown in table 

3.2. In the table the Crank Angle Degree, CAD, displayed is 1 CAD before 1 percent of the heat 

release. The ignition temperature and its corresponding pressure are found at a specific CAD. 

These results, along with the compression ratio, are shown in the tables.    

 

The data is plotted in Matlab, see figure 3.5. It is plotted in this way to help determine the octane 

number for fuels that are not reference fuels. In figure 3.5, the inlet temperature of 423 K is 

represented by the curve furthest to the left and the inlet temperature decreases by 10 K for each 

curve further to the right. This applies to all figures of the same type in this master thesis.  

Between PRF 0 and PRF 90 there will be a wave in the graph that is not seen in PRF 100. The 

size of the wave decreases with the amount of n-heptane in the mixture. The wave gives an 

indication of the amount of cool flame combustion present.  
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Table 3.2 Results for the ideal model with PRF 0 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar)   CAD 

293 13.67 956 46.16 -1.53 

303 12.64 963 41.60 -1.51 

313 11.73 966 37.49 -1.53 

323 10.93 968 33.91 -1.61 

333 10.23 974 30.99 -1.66 

343 9.60 976 28.28 -1.74 

353 9.04 983 26.08 -1.76 

363 8.54 990 24.12 -1.76 

373 8.10 997 22.43 -1.64 

383 7.71 997 20.79 -1.82 

393 7.36 1006 19.52 -1.81 

403 7.05 1016 18.43 -1.71 

413 6.77 1029 17.50 -1.55 

423 6.49 1016 16.16 -1.36 
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Figure 3.5 The results for the ideal model simulated with PRF 0  

 
The ideal model with added heat exchange is presented next. In order to do this the following 

facts are needed.  
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The constants C1 and C2 are set to 2.28 and 0.0 respectively. [6] The wall temperature is usually 

between 423 K and 473 K [7] and is set to 448 K in the simulations. The relation between the 

chamber head area and the piston area, Ap0, is 1.02. The simulations will be done for PRF 0 with 

an inlet temperature between 293 K and 423 K set in steps of 10 K and with a compression ratio 

adjusted to keep 50 % burn at TDC.  

 

The results for PRF 0 with heat transfer but without recirculation are shown in table 3.3. The data 

is plotted in Matlab, see figure 3.6. 

 

Table 3.3 Results for the ideal model with heat transfer with PRF 0. 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar)   CAD 

293 13.28 960 45.08 -1.50 

303 12.40 959 40.61 -1.62 

313 11.62 967 37.17 -1.61 

323 10.93 967 33.88 -1.78 

333 10.30 970 31.06 -1.82 

343 9.74 982 28.90 -1.80 

353 9.22 982 26.56 -1.82 

363 8.74 989 24.70 -1.41 

373 8.35 993 23.05 -1.54 

383 7.98 995 21.50 -1.54 

393 7.66 999 20.19 -1.57 

403 7.38 1005 19.07 -1.74 

413 7.11 1012 18.06 -1.55 

423 6.88 1015 17.11 -1.55 
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Figure 3.6 The results for the almost ideal model containing heat transfer  

simulated with PRF 0  

 

Last of all the EGR, which usually lies around 10 % to 15 %, will be added. The simulations will 

be done with 10 % and 15 % exhaust gas recirculation, for PRF 0, and the number of EGR cycles 

is set to 5. The EGR is set to 10 % in the other simulations. The heat transfer will be set as 

previously. The simulations will be done for PRF 0 with an inlet temperature between 293 K and 

423 K set in steps of 10 K and with a compression ratio adjusted to keep 50 % burn at TDC.     

The results from the model with heat transfer and 15 % EGR simulated with PRF 0 are shown in 

table 3.4. The data is plotted in Matlab, see figure 3.7.  
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Table 3.4 Results for PRF 0 with heat transfer and 15 % EGR 

Inlet gas 

temperature (K) 

Compression 

ratio 

Ignition 

temperature (K) 

Ignition 

pressure (bar) 

      CAD 

293 14.05 954 47.10 -1.98 

303 13.10 953 42.45 -1.89 

313 12.30 967 39.20 -1.81 

323 11.57 961 35.48 -2.04 

333 10.90 971 32.80 -1.85 

343 10.28 980 30.33 -1.62 

353 9.75 980 27.95 -1.66 

363 9.27 987 26.03 -1.66 

373 8.84 989 24.22 -1.64 

383 8.45 994 22.65 -1.58 

393 8.11 1002 21.37 -1.56 

403 7.79 1003 20.04 -1.55 

413 7.52 1006 18.93 -1.56 

423 7.27 1011 17.95 -1.51 
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Figure 3.7 The results for PRF 0 with 15 % EGR 

 

The results from the model with heat transfer and 10 % EGR simulated with PRF 0 are shown in 

table 3.5. The data is plotted in Matlab, see figure 3.8.  
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Table 3.5 The results for PRF 0, i.e. 10 % EGR 

Inlet gas 

temperature (K) 

Compression 

ratio 

Ignition 

temperature (K) 

Ignition 

pressure (bar) 

  CAD 

293 13.78 971 47.17 -1.53 

303 12.85 959 41.98 -1.75 

313 12.00 966 38.24 -1.56 

323 11.30 960 34.67 -1.85 

333 10.66 966 31.93 -1.83 

343 10.07 972 29.48 -1.72 

353 9.57 984 27.56 -1.72 

363 9.09 981 25.39 -1.79 

373 8.67 989 23.77 -1.70 

383 8.27 993 22.18 -1.51 

393 7.92 1002 20.90 -1.23 

403 7.65 1004 19.70 -1.63 

413 7.39 1011 18.70 -1.69 

423 7.13 1011 17.64 -1.49 
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Figure 3.8 The results for PRF 0 

 

The following simulations are done with the latter model with 10 % EGR, which is the most 

realistic of the three models used. 



 

__________________________________________________________________ 

 

 

20 

The simulated models are compared with each other in figures 3.9 – 3.10 below. The ideal model 

is represented by the magenta curve, the almost ideal model with heat transfer is represented by 

the black curve and the model with 10 % EGR is represented by the green curve.  

 

In figure 3.9 below, the magenta curve differs in shape from the other two curves, which are 

almost parallel. The ignition pressure is higher for the model with 10 % EGR, with even higher 

pressures at lower temperatures, than for the half-ideal model due to volume changes.  
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Figure 3.9 Comparison of the simulated ignition pressure of the three models 
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Figure 3.10 Comparison of the simulated compression ratio of the three models  
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In figure 3.10 above, the magenta curve differs in shape from the other two curves, which are 

almost parallel. The compression ratio is higher for the model with 10 % EGR, with a slightly 

higher compression ratio at lower temperatures, than for the half-ideal model due to volume 

changes. 

 

The simulated models with 10 % EGR and 15 % EGR are compared with each other in figures 12 

– 13 below. The model with 10 % EGR is represented by the black curve and the model with 15 

% EGR is represented by the magenta curve.  

 

For the ignition pressure, figure 3.11, the curves are parallel to a certain extent but at the highest 

and the lowest temperatures the curves narrow off. As seen in table 3.4 – 3.5 the ignition pressure 

is almost the same despite the difference in EGR. Regarding the compression ratio, there is a 

small difference in the simulated results; the compression ratio is slightly higher with 15 % EGR 

than with 10 % EGR, which can be seen in figure 3.12 below.  
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Figure 3.11 Comparison of the simulated ignition pressure between EGR 15 %  

and EGR 10 % 
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Figure 3.12 Comparison of the simulated compression ratio between EGR 15 %  

and EGR 10 % 

 

 

 



4. Results 

The results from the experiments and the simulations are presented in figures and tables in this 

chapter. The raw data from the experiments are found in appendix A. 

4.1 Experimental results 

Between two and six experiments were done per inlet temperature and PRF. The experiments 

were performed on the CFR engine with one temperature at a time, starting with PRF 0. The 

useful results obtained via the control program were the pressure trace for the whole cycle. To 

convert the pressure trace to heat release a Matlab program was used. With the new data the 

ignition pressure, i.e. the pressure at 1 CAD before 1 percent of the heat release, was obtained. 

The data was assumed to be linear; therefore interpolation of the ignition pressure and the 

compression ratio was done to get the same CAD, -1.00, for a better comparison of the data 

obtained. This was done due to the large variation in CAD in the data from the experiments.  

 

The compression ratio is calculated with equation (4.1) in the control program.  

 

1
2132

6345

DCR
CR         (4.1) 

 

This equation gives an incorrect value of the compression ratio. To determine the correct value 

the engine was run without combustion for a number of digital counter readings, DCR. The 

correct compression ratio was then determined by using equation (4.2).  

 

36.1

1

int

max

closevalveakeP

P
CR        (4.2) 

 

The compression ratios obtained were plotted and the data was interpolated, as seen in figure 4.1. 

By calculating the DCR, with equation (4.1), from the experimental compression ratios the 

correct value was obtained by using figure 4.1.  

 

In table 4.1 data from the calculations of the compression ratios is shown. 
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Table 4.1 Data from the calculations of compression ratios  

DCR Pmax (bar) Pintake valve close (bar)         CR 

0 9.2 2.87 2.35 

100 9.47 2.71 2.51 

200 9.53 2.29 2.85 

300 9.88 2.11 3.11 

400 10.27 1.90 3.46 

500 10.70 1.63 3.99 

600 11.38 1.48 4.48 
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Figure 4.1 The variation of the calculated experimental compression ratio with the 

DCR 

 

In the experiments, the lowest inlet gas temperature obtained was 303 K and therefore the inlet 

temperatures 293 K and 303 K could only be simulated in DARS. The fuel PRF 100 was not able 

to be run due to its too high compression ratio.  

 

 



 

__________________________________________________________________ 

 

 

25 

Table 4.2 Experimental results for PRF 0 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 7.47 8.56 1151 25.65 -1.00 

323 7.40 8.45 1140 22.90 -1.00 

333 7.54 8.65 1161 23.68 -1.00 

343 7.71 8.86 1186 25.38 -1.00 

353 7.33 8.35 1129 24.35 -1.00 

363 6.75 7.48 1028 28.57 -1.00 

373 6.77 7.49 1032 30.62 -1.00 

383 6.74 7.46 1026 25.80 -1.00 

393 6.24 6.62 921 22.50 -1.00 

403 6.20 6.55 912 24.38 -1.00 

413 6.34 6.80 944 23.05 -1.00 

423 5.86 5.92 826 23.07 -1.00 

 

Table 4.3 Experimental results for PRF 10 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 7.71 8.87 1186 27.62 -1.00 

323 6.50 7.10 978 21.15 -1.00 

333 6.63 7.27 1005 21.34 -1.00 

343 7.14 8.10 1098 27.15 -1.00 

353 7.34 8.37 1131 25.39 -1.00 

363 7.23 8.22 1113 24.77 -1.00 

373 6.72 7.43 1023 26.63 -1.00 

383 6.76 7.47 1030 25.48 -1.00 

393 6.47 7.02 972 23.50 -1.00 

403 6.28 6.69 930 24.00 -1.00 

413 6.21 6.58 914 24.29 -1.00 

423 6.88 7.71 1053 23.62 -1.00 
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In table 4.3 the values for the inlet gas temperatures 313 K and 343 K differs from the expected 

values. These temperatures have been run several times but with unsatisfying results. The reason 

for this behavior is unknown. 

 

Table 4.4 Experimental results for PRF 20 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 6.75 7.48 1028 21.10 -1.00 

323 6.67 7.35 1013 21.83 -1.00 

333 7.01 7.85 1076 23.64 -1.00 

343 6.61 7.25 1001 23.33 -1.00 

353 7.13 8.06 1097 23.56 -1.00 

363 6.94 7.55 1034 25.20 -1.00 

373 6.92 7.76 1060 25.02 -1.00 

383 6.72 7.43 1023 23.39 -1.00 

393 6.78 7.55 1034 25.42 -1.00 

403 6.29 6.72 932 23.53 -1.00 

413 6.32 6.77 939 25.06 -1.00 

423 6.17 6.50 905 25.12 -1.00 

 



 

__________________________________________________________________ 

 

 

27 

Table 4.5 Experimental results for PRF 30 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 7.14 7.48 1098 22.83 -1.00 

323 6.90 7.79 1056 22.23 -1.00 

333 7.13 8.10 1097 23.06 -1.00 

343 7.17 8.11 1103 25.02 -1.00 

353 7.07 7.97 1086 25.03 -1.00 

363 7.41 8.49 1142 25.26 -1.00 

373 6.96 7.81 1067 22.87 -1.00 

383 6.73 7.46 1024 25.88 -1.00 

393 6.71 7.43 1021 26.06 -1.00 

403 6.62 7.28 1003 24.59 -1.00 

413 6.61 7.27 1001 27.29 -1.00 

423 6.53 7.17 984 27.60 -1.00 

 

Table 4.6 Experimental results for PRF 40 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 7.28 7.42 1121 23.25 -1.00 

323 7.48 8.54 1153 24.14 -1.00 

333 7.17 8.11 1103 23.20 -1.00 

343 7.21 8.22 1110 22.67 -1.00 

353 7.30 8.32 1125 24.32 -1.00 

363 7.79 8.97 1197 26.25 -1.00 

373 7.33 8.35 1129 26.66 -1.00 

383 7.40 8.45 1140 28.62 -1.00 

393 7.56 8.69 1165 29.90 -1.00 

403 7.04 7.95 1081 29.70 -1.00 

413 7.18 8.15 1105 30.22 -1.00 

423 6.90 7.79 1056 28.85 -1.00 
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Table 4.7 Experimental results for PRF 50 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 7.69 8.85 1183 23.79 -1.00 

323 7.84 9.04 1204 25.00 -1.00 

333 7.79 9.00 1197 25.68 -1.00 

343 7.78 8.99 1196 27.38 -1.00 

353 7.62 8.78 1173 27.15 -1.00 

363 7.70 8.86 1185 28.52 -1.00 

373 7.75 8.92 1192 32.66 -1.00 

383 7.72 8.91 1188 31.06 -1.00 

393 7.80 9.05 1199 31.28 -1.00 

403 7.35 8.38 1133 32.90 -1.00 

413 7.43 8.50 1145 31.31 -1.00 

423 6.83 7.61 1043 27.30 -1.00 

 

Table 4.8 Experimental results for PRF 60 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 8.32 9.65 1265 28.08 -1.00 

323 8.34 9.66 1267 28.12 -1.00 

333 8.35 9.68 1269 28.69 -1.00 

343 7.96 9.22 1220 25.52 -1.00 

353 7.82 9.05 1201 29.68 -1.00 

363 7.87 9.10 1208 29.05 -1.00 

373 7.91 9.17 1214 31.56 -1.00 

383 8.01 9.29 1227 33.08 -1.00 

393 8.19 9.47 1249 33.18 -1.00 

403 7.99 9.24 1224 34.43 -1.00 

413 7.72 8.91 1188 32.31 -1.00 

423 7.76 8.95 1193 34.50 -1.00 
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Table 4.9 Experimental results for PRF 70 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 8.94 10.34 1333 29.72 -1.00 

323 8.41 9.76 1276 27.42 -1.00 

333 8.64 10.02 1301 28.50 -1.00 

343 8.63 10.01 1300 31.32 -1.00 

353 8.53 9.89 1289 31.90 -1.00 

363 8.64 10.02 1301 34.55 -1.00 

373 8.52 9.88 1288 36.58 -1.00 

383 8.62 9.95 1299 35.82 -1.00 

393 7.78 8.97 1196 32.93 -1.00 

403 7.81 9.02 1200 34.37 -1.00 

413 8.54 9.89 1290 35.91 -1.00 

423 8.59 9.95 1296 35.25 -1.00 

 

Table 4.10 Experimental results for PRF 80 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 9.44 10.83 1380 33.38 -1.00 

323 9.11 10.47 1349 30.90 -1.00 

333 9.19 10.57 1357 33.07 -1.00 

343 9.17 10.55 1355 32.97 -1.00 

353 9.11 10.47 1349 36.72 -1.00 

363 9.20 10.59 1358 37.90 -1.00 

373 9.27 10.68 1365 39.80 -1.00 

383 9.31 10.67 1368 37.86 -1.00 

393 9.58 10.93 1392 37.51 -1.00 

403 9.24 10.65 1362 37.79 -1.00 

413 9.46 10.84 1382 35.79 -1.00 

423 9.48 10.85 1384 35.27 -1.00 
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Table 4.11 Experimental results for PRF 90 

Inlet gas 

temperature 

(K) 

Compression 

ratio 

Calculated 

compression 

ratio 

Calculated 

DCR 

Pressure 

(bar) 

CAD 

313 10.31 11.55 1450 37.09 -1.00 

323 10.61 11.81 1472 39.38 -1.00 

333 10.48 11.71 1462 40.59 -1.00 

343 9.55 10.94 1390 36.38 -1.00 

353 9.53 10.91 1388 38.35 -1.00 

363 9.81 11.16 1412 40.24 -1.00 

373 9.40 10.79 1376 40.63 -1.00 

383 10.24 11.53 1445 41.16 -1.00 

393 10.36 11.64 1454 38.66 -1.00 

403 9.43 10.82 1379 41.14 -1.00 

413 10.29 11.58 1449 35.58 -1.00 

423 10.26 11.57 1447 33.96 -1.00 

 

Generally, in the experiments, the difference between the calculated compression ratio and that of 

the control program, increase with increased compression ratio due to the exponential behavior of 

the correct compression ratio.    

 

The compression ratio decreases with increased inlet temperature, which is clearly seen with the 

lower PRFs. On the other hand, with the higher PRFs there is only a very slight difference in 

compression ratio. 

 

Concerning the ignition pressure, the variation is too big for a trend to be spotted. 

4.2 Results from simulations 

With the simulation program the heat release rate, the temperature trace and the pressure trace 

were obtained. To be able to determine the ignition temperature with corresponding pressure the 

heat release rate needed to be accumulated. This was accomplished by the use of Excel, and from 

the heat release the CAD used to set the ignition temperature with corresponding pressure, was 

determined. The results from the simulations are presented below. 

The results for PRF 0 are shown in table 4.12. The data is plotted in Matlab, see figure 4.2. 
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Table 4.12 The results for PRF 0  

Inlet gas temp 

(K) 

Compression 

ratio 

Ignition temp 

(K) 

Ignition 

pressure (bar) 

        CAD 

293 13.78 971 47.17 -1.53 

303 12.85 959 41.98 -1.75 

313 12.00 966 38.24 -1.56 

323 11.30 960 34.67 -1.85 

333 10.66 966 31.93 -1.83 

343 10.07 972 29.48 -1.72 

353 9.57 984 27.56 -1.72 

363 9.09 981 25.39 -1.79 

373 8.67 989 23.77 -1.70 

383 8.27 993 22.18 -1.51 

393 7.92 1002 20.90 -1.23 

403 7.65 1004 19.70 -1.63 

413 7.39 1011 18.70 -1.69 

423 7.13 1011 17.64 -1.49 
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Figure 4.2 The results for PRF 0 

 
The results for PRF 10 are shown in table 4.13. The data is plotted in Matlab, see figure 4.3. 

 

 



 

__________________________________________________________________ 

 

 

32 

Table 4.13 The results for PRF 10 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 14.3 1003 50.68 -1.14 

303 13.43 1006 46.13 -1.39 

313 12.6 1002 42.54 -1.27 

323 11.85 1003 38.04 -1.51 

333 11.2 1013 35.57 -1.45 

343 10.6 1032 33.04 -1.43 

353 10.07 1054 31.19 -1.38 

363 9.59 1031 28.17 -1.79 

373 9.13 1020 25.82 -1.89 

383 8.75 1077 25.53 -1.50 

393 8.36 1076 23.76 -1.29 

403 8.05 1064 22.02 -1.58 

413 7.75 1058 20.57 -1.62 

423 7.5 1059 19.44 -1.79 
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Figure 4.3 The results for PRF 10 

 
The results for PRF 20 are shown in table 4.14. The data is plotted in Matlab, see figure 4.4. 
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Table 4.14 The results for PRF 20 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 14.85 999 52.35 -1.20 

303 13.96 1015 48.40 -1.26 

313 13.1 1019 44.14 -1.19 

323 12.35 1034 40.96 -1.14 

333 11.7 1036 37.71 -1.38 

343 11.05 1054 35.22 -1.12 

353 10.5 1048 32.30 -1.31 

363 9.99 1027 29.24 -1.61 

373 9.53 1034 27.33 -1.62 

383 9.12 1044 25.74 -1.62 

393 8.74 1103 25.49 -1.16 

403 8.40 1068 23.07 -1.52 

413 8.08 1097 22.28 -1.23 

423 7.807 1105 21.17 -1.27 
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Figure 4.4 The results for PRF 20 

 
The results for PRF 30 are shown in table 4.15. The data is plotted in Matlab, see figure 4.5. 
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Table 4.15 The results for PRF 30 

Inlet gas temp  

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 15.45 1002 54.62 -1.18 

303 14.51 1009 49.99 -1.20 

313 13.67 1006 45.39 -1.41 

323 12.88 1025 42.31 -1.16 

333 12.18 1040 39.43 -1.08 

343 11.57 1044 36.50 -1.26 

353 10.97 1043 33.56 -1.22 

363 10.45 1061 31.67 -1.15 

373 9.97 1077 29.88 -1.08 

383 9.53 1084 27.98 -1.06 

393 9.15 1067 25.74 -1.40 

403 8.78 1092 24.70 -1.17 

413 8.45 1084 23.01 -1.28 

423 8.15 1106 22.12 -1.11 

0 1 2 3 4 5 6 7 8 9

x 10
6

200

400

600

800

1000

1200

1400

1600

1800
PRF 30

Pressure (Pa)

T
e
m

p
e
ra

tu
re

 (
K

)

 

Figure 4.5 The results for PRF 30 

 
The results for PRF 40 are shown in table 4.16. The data is plotted in Matlab, see figure 4.6. The 

curve for the inlet temperature 403 K is marked green in the figure as it differs from its expected 

appearance. By some unknown reason the simulation program behaves in an unpredictable way in 

this particular circumstance.  
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Table 4.16 The results for PRF 40 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 16.07 1009 57.21 -1.05 

303 15.12 1016 52.42 -1.08 

313 14.24 1023 48.15 -1.02 

323 13.46 1017 43.79 -1.21 

333 12.75 1034 40.98 -1.12 

343 12.10 1042 38.08 -1.12 

353 11.51 1041 35.13 -1.24 

363 10.96 1063 33.27 -1.07 

373 10.46 1052 30.54 -1.23 

383 10.00 1056 28.53 -1.23 

393 9.59 1054 26.60 -1.37 

403 9.22 1089 25.84 -1.16 

413 8.87 1081 24.05 -1.26 

423 8.55 1105 23.18 -1.05 
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Figure 4.6 The results for PRF 40 
The results for PRF 50 are shown in table 4.17. The data is plotted in Matlab, see figure 4.7. 
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Table 4.17 The results for PRF 50 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 16.75 998 58.86 -1.16 

303 15.78 1017 54.72 -1.00 

313 14.90 1008 49.54 -1.20 

323 14.11 1016 45.83 -1.25 

333 13.38 1038 43.17 -1.08 

343 12.70 1022 39.05 -1.34 

353 12.09 1030 36.45 -1.32 

363 11.53 1031 33.80 -1.42 

373 11.02 1034 31.54 -1.49 

383 10.54 1046 29.76 -1.35 

393 10.10 1049 27.85 -1.37 

403 9.71 1085 27.08 -1.09 

413 9.35 1073 25.14 -1.29 

423 9.01 1097 24.23 -1.04 
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Figure 4.7 The results for PRF 50 

 

The results for PRF 60 are shown in table 4.18. The data is plotted in Matlab, see figure 

4.8. 
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Table 4.18 The results for PRF 60 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 17.52 1003 61.87 -1.08 

303 16.525 1014 57.12 -1.01 

313 15.63 1022 52.73 -1.03 

323 14.81 1027 48.63 -1.04 

333 14.06 1032 45.00 -1.07 

343 13.38 1027 41.33 -1.26 

353 12.75 1049 39.17 -1.06 

363 12.17 1049 36.36 -1.12 

373 11.64 1057 34.10 -1.12 

383 11.15 1072 32.29 -1.05 

393 10.70 1064 29.95 -1.19 

403 10.29 1083 28.62 -1.10 

413 9.908 1062 26.30 -1.37 

423 9.56 1088 25.45 -1.13 
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Figure 4.8 The results for PRF 60 

 
The results for PRF 70 are shown in table 4.19. The data is plotted in Matlab, see figure 4.9. 
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Table 4.19 The results for PRF 70 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 18.38 1003 64.80 -1.11 

303 17.37 1012 59.81 -1.04 

313 16.45 1019 55.27 -1.03 

323 15.62 1026 51.19 -1.04 

333 14.86 1029 47.36 -1.10 

343 14.16 1033 44.02 -1.12 

353 13.51 1049 41.48 -1.01 

363 12.92 1054 38.77 -1.04 

373 12.37 1057 36.21 -1.06 

383 11.87 1059 33.30 -1.13 

393 11.40 1067 31.98 -1.09 

403 10.98 1079 30.40 -1.10 

413 10.58 1081 28.61 -1.10 

423 10.22 1065 26.51 -1.39 

0 2 4 6 8 10 12

x 10
6

200

400

600

800

1000

1200

1400

1600

1800
PRF 70

Pressure (Pa)

T
e
m

p
e
ra

tu
re

 (
K

)

 

Figure 4.9 The results for PRF 70 

 
The results for PRF 80 are shown in table 4.20. The data is plotted in Matlab, see figure 4.10. 
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Table 4.20 The results for PRF 80 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 19.37 994 67.56 -1.14 

303 18.36 1009 62.94 -1.09 

313 17.43 1015 58.20 -1.04 

323 16.59 1022 54.08 -1.09 

333 15.82 1030 50.43 -1.07 

343 15.105 1036 47.02 -1.09 

353 14.45 1042 43.96 -1.06 

363 13.84 1049 41.26 -1.02 

373 13.28 1052 38.58 -1.12 

383 12.77 1060 36.45 -1.13 

393 12.29 1063 34.28 -1.16 

403 11.848 1072 32.51 -1.10 

413 11.44 1072 30.06 -1.12 

423 11.07 1089 29.41 -1.04 
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Figure 4.10 The results for PRF 80 

 

The results for PRF 90 are shown in table 4.21. The data is plotted in Matlab, see figure 4.11. 
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Table 4.21 The results for PRF 90 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 20.64 999 72.34 -1.07 

303 19.63 1003 66.78 -1.07 

313 18.71 1014 62.32 -1.04 

323 17.86 1022 58.14 -1.08 

333 17.09 1022 53.90 -1.12 

343 16.38 1026 50.34 -1.18 

353 15.73 1040 47.67 -1.16 

363 15.12 1043 44.67 -1.16 

373 14.56 1046 41.98 -1.18 

383 14.04 1058 39.91 -1.06 

393 13.56 1058 37.52 -1.16 

403 13.11 1069 35.76 -1.12 

413 12.695 1081 34.19 -1.01 

423 12.315 1077 32.20 -1.15 
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Figure 4.11 The results for PRF 90 

 

The results for PRF 100 are shown in table 4.22. The data is plotted in Matlab, see figure 4.12. 
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Table 4.22 Results for PRF 100 

Inlet gas temp 

(K) 

Compression 

ratio 

Temperature 

(K) 

Pressure (bar) CAD 

293 22.63 1003 79.46 -1.06 

303 21.68 1002 73.46 -1.06 

313 20.83 1009 68.87 -1.06 

323 20.06 1018 64.82 -1.06 

333 19.35 1022 60.89 -1.04 

343 18.69 1038 58.05 -1.06 

353 18.04 1036 54.25 -1.04 

363 17.39 1041 51.10 -1.02 

373 16.74 1048 48.20 -1.07 

383 16.06 1053 45.27 -1.03 

393 15.37 1061 42.57 -1.04 

403 14.68 1065 39.80 -1.00 

413 14.02 1071 37.29 -1.02 

423 13.38 1078 34.99 -1.00 
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Figure 4.12 The results for PRF 100 

 
As in the experiments, the compression ratio decreases with increased inlet temperature. The 

pressure also decreases with increasing inlet temperature, which is opposite to the behavior in the 

experiments.  
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5. Conclusions  

In this chapter the results are discussed in detail and conclusions from this master thesis are 

presented. 

5.1 Discussion 

The results from the simulations seem to be reasonable. The compression ratios and the ignition 

temperatures with the corresponding pressures are in the right magnitude. Although the model is 

homogenous the results obtained are relatively good, but the pressure tends to be a bit too high.  

 

The results from the experiments, on the other hand, are not as reliable as the results from the 

simulations. The compression ratio has the same trend as in the simulations, which is positive, but 

the value is much lower. The correct compression ratio lies probably around the value obtained 

from the simulations. The ignition pressures from the experiments are probably not correct. Most 

of the values are unreasonable; furthermore a trend in the results could not be spotted.  

 

The values from the simulations and the experiments differ a lot. To explore the possible reasons 

for this deviation simulations and experiments for PRF 50 with an inlet gas temperature of 363 K 

were compared. The blue curve is the simulated values and the red curve is the experimental 

values. 

 

The accumulated heat release in the simulations and the experiments are almost the same, 585 J 

and 539 J respectively. In figure 5.1, the heat release rate is compared to each other. As seen in 

figure 5.1, the reaction rate is not the same in the simulations as in the experiments, due to the 

homogenous model. The reaction rate and possibly the side reactions that are not included in the 

chemical model could also affect this behavior.  
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Figure 5.1 Comparison of heat release rate 

 

In figure 5.2, the pressure traces are compared to each other. The low pressure at the intake valve 

closing in the experiments is not the same as in the simulations, see figure 5.2. The deviation 

escalates with the increasing pressure, resulting in a significant error. This error can be corrected 

by calibration of the pressure in the CFR engine. 
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 Figure 5.2 Comparison of pressure trace 
 

In figure 5.3, the CAD for the intake valve closing is determined. In the graph the conditions are 

the same in the simulations and the experiments. The compression ratio is that of the experiments, 

i.e. the calculated value 8.86. The CAD for the intake valve closing was determined to -120°, i.e. 

60° ABDC, which differs a lot from the intake valve closing used in the simulations, which was  
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-180°. While comparing figure 5.2 and 5.3 a remarkable difference is seen. In figure 5.2 the blue 

curve is much higher than the red curve, but in figure 5.3 the behavior is the opposite. In the 

figures the impact of the IVC is shown; in figure 5.2 it is -180° and in figure 5.3 it is -120°.  
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Figure 5.3 Determination of the CAD for intake valve closing 

 

In order to examine the impact of the intake valve closing the simulation was executed with the 

new values. The difference in compression ratio between the experiments and the simulations has 

increased from 11.53 to 13.50.  

 

One of the reasons why the simulated values are a lot higher than the experimental ones might be 

that the simulations were not executed at the right intake valve closing. The residual gases are set 

to 10 percent in the simulations but this is only a set value that might attribute to the difference. 

Another reason might be that the temperature indicator on the CFR engine was placed incorrectly. 

5.2 Conclusions 

A good way to compare combustion of fuels in different engines is to develop a fuel index. In a 

fuel index data for mixtures are accounted for in a table, with which the index of an unknown fuel 

can be determined. . To define an HCCI fuel index several different fuels must be tested.  In order 

to start developing an HCCI index, PRF 0 – 100 was simulated with DARS and experiments with 

the CFR engine was executed.  
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In the experiments, the lowest inlet gas temperature obtained was 303 K and therefore the inlet 

temperatures 293 K and 303 K could only be simulated in DARS. The fuel PRF 100 was not able 

to be run in the CFR engine due to its too high compression ratio.  

 

The simulated data may be used in further development of an HCCI index. The model created in 

this master thesis may be used with an engine that has the same conditions as the simulations, if a 

more accurate chemical model is used and the indicator for the inlet temperature is placed at the 

correct location. This way of reasoning also implies to the relation between the accurate 

compression ratio and the digital counter reading that was established in this master thesis.  

 

In the figures presented in this thesis it is shown that the more iso-octane in the mixture the less 

cool flame combustion present. The type of tables and figures presented in this master thesis can 

be used to determine the optimal compression ratio and octane number for a fuel mixture. 

 

Further research concerning the reason why the simulations and the experiments deviated is 

needed in order to be able to use this base for an index. 
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Appendix – Raw data from the experiments 

Date: 10/12 2008 

 
Table 1.  Inlet temperature: 423 K 

Fuel Compression ratio 

PRF 0 5.79 

 5.74 

PRF 10 6.00 

 5.84 

PRF 20 6.10 

 6.06 

PRF 30 6.34 

 6.38 

PRF 40 6.82 

 6.76 

PRF 50 7.08 

 7.18 

PRF 60 7.70 

 7.62 

PRF 70 8.57 

 8.46 

PRF 80 9.55 

 9.46 

PRF 90 10.40 

 10.33 
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B 

Table 2. Inlet temperature: 413 K 

Fuel Compression ratio 

PRF 0 6.52 

 6.08 

PRF 10 6.19 

 6.02 

PRF 20 6.27 

 6.14 

PRF 30 6.53 

 6.47 

PRF 40 7.15 

 6.91 

PRF 50 7.34 

 7.23 

PRF 60 7.67 

 7.62 

PRF 70 8.54 

 8.40 

PRF 80 9.52 

 9.39 

PRF 90 10.48 

 10.32 
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C 

Date: 15/12 2008 

 
Table 3. Inlet temperature: 403 K 

Fuel Compression ratio 

PRF 0 6.29 

 6.4 

PRF 10 6.29 

 6.18 

PRF 20 6.3 

PRF 30 6.36 

 6.62 

PRF 40 6.98 

 6.91 

PRF 50 7.23 

 7.20 

PRF 60 7.58 

 7.66 

PRF 70 8.45 

 8.45 

PRF 80 9.30 

 9.36 

PRF 90 10.33 
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Table 4. Inlet temperature: 393 K 

Fuel Compression ratio 

PRF 0 6.31 

 6.27 

PRF 10 6.54 

 6.44 

PRF 20 6.73 

 6.68 

PRF 30 7.12 

 7.07 

PRF 40 7.37 

 7.51 

PRF 50 7.67 

 7.76 

PRF 60 8.11 

 8.03 

PRF 70 8.75 

 8.75 

PRF 80 9.64 

 9.45 

PRF 90 10.58 

 10.46 
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Table 5. Inlet temperature: 383 K 

Fuel Compression ratio 

PRF 0 6.54 

 6.48 

PRF 10 6.71 

 6.65 

PRF 20 6.93 

 6.85 

PRF 30 6.95 

 7.17 

PRF 40 7.14 

 7.33 

PRF 50 7.60 

 7.72 

PRF 60 7.97 

 7.92 

PRF 70 8.50 

 8.65 

PRF 80 9.29 

 9.48 

PRF 90 10.50 

 10.33 
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Date: 29/1 2009 

 
Table 6. Inlet temperature: 373 K  

Fuel Compression ratio 

PRF 0 6.72 

 6.63 

PRF 10 6.69 

 6.81 

PRF 20 6.85 

 6.95 

PRF 30 7.04 

 7.14 

PRF 40 7.33 

 7.41 

PRF 50 7.58 

 7.70 

PRF 60 7.88 

 7.99 

PRF 70 8.54 

 8.69 

PRF 80 9.27 

 9.37 

PRF 90 9.96 

 10.08 
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Table 7. Inlet temperature: 363 K 

Fuel Compression ratio 

PRF 0 6.94 

 7.01 

PRF 10 7.03 

 6.94 

PRF 20 7.01 

 7.14 

PRF 30 7.14 

 7.26 

PRF 40 7.44 

 7.55 

PRF 50 7.70 

 7.79 

PRF 60 7.95 

 8.05 

PRF 70 8.62 

 8.79 

PRF 80 9.18 

 9.37 

PRF 90 10.03 

 9.81 

 

Table 8.  Running without combustion, with an inlet temperature of  325 K 

Digital counter reading Number 

0 145232 

100 145455 

200 145647 

300 145942 

400 150148 

500 150343 

600 150546 

 

Date: 30/1 2009 
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Table 9. Inlet temperature: 353 K 

Fuel Compression ratio 

PRF 0 7.14 

 7.21 

PRF 10 7.09 

 7.15 

PRF 20 7.15 

 7.23 

PRF 30 7.33 

 7.26 

PRF 40 7.47 

 7.53 

PRF 50 7.67 

 7.79 

PRF 60 7.99 

 8.06 

PRF 70 8.65 

 8.79 

PRF 80 9.20 

 9.29 

PRF 90 9.59 

 9.79 
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Table 10. Inlet temperature: 343 K 

Fuel Compression ratio 

PRF 0 7.65 

 7.71 

PRF 10 7.54 

 7.62 

PRF 20 7.57 

 7.65 

PRF 30 7.65 

 7.71 

PRF 40 7.84 

 7.90 

PRF 50 8.00 

 8.14 

PRF 60 8.24 

 8.32 

PRF 70 8.89 

 9.02 

PRF 80 9.34 

 9.53 

PRF 90 9.78 

 9.59 

 



 

__________________________________________________________________ 
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Date: 3/2 2009 

 
Table 9. Inlet temperature: 333 K 

Fuel Compression ratio 

PRF 0 7.84 

 7.91 

PRF 10 7.71 

 7.62 

PRF 20 7.69 

 7.76 

PRF 30 7.79 

 7.93 

PRF 40 8.03 

 8.14 

PRF 50 8.35 

 8.42 

PRF 60 8.69 

 8.81 

PRF 70 8.94 

 9.02 

PRF 80 9.43 

 9.47 

PRF 90 10.73 

 10.95 
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Table 12. Inlet temperature: 323 K  

Fuel Compression ratio 

PRF 0 8.30 

 8.38 

PRF 10 8.01 

 7.82 

PRF 20 7.88 

 7.99 

PRF 30 7.99 

 8.13 

PRF 40 8.23 

 8.39 

PRF 50 8.51 

 8.63 

PRF 60 8.84 

 8.97 

PRF 70 9.11 

 9.25 

PRF 80 9.64 

 9.74 

PRF 90 10.78 

 10.91 
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Table 10. Inlet temperature: 313 K 

Fuel Compression ratio 

PRF 0 7.96 

 8.15 

PRF 10 8.02 

 8.11 

PRF 20 8.01 

 8.22 

PRF 30 8.22 

 8.41 

PRF 40 8.45 

 8.64 

PRF 50 8.80 

 8.89 

PRF 60 9.11 

 9.25 

PRF 70 9.35 

 9.39 

PRF 80 9.84 

 9.90 

PRF 90 10.69 

 10.88 
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Table 11. Rerunning of tests 

Fuel Compression ratio 

PRF 0 – 383 K 6.69 

 6.73 

PRF 0 – 413 K 6.24 

 6.30 

PRF 10 – 383 K 6.75 

 6.64 

PRF 20 – 403 K 6.35 

 6.29 

PRF 30 – 393 K 6.64 

 6.71 

PRF 50 – 423 K 6.83 

 6.89 

PRF 70 – 393 K 7.78 

 7.88 

PRF 70 – 403 K 7.64 

 7.76 

PRF 90 – 403 K 9.32 

 9.49 
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N 

Date: 17/2 2009   

 
Table 12. Rerunning of tests 

Fuel Compression ratio 

PRF 0 – 333 K                                7.33 

 7.41 

PRF 0 – 363 K 6.78 

 6.85 

PRF 0 – 413 K 5.92 

 6.03 

PRF 10 – 343 K 7.32 

 7.40 

PRF 20 – 333 K 7.53 

 7.62 

PRF 20 – 343 K 7.40 

 7.32 

PRF 20 – 353 K 7.08 

 7.16 

PRF 20 – 363 K 6.87 

 6.96 

PRF 20 – 373 K 6.69 

 6.77 

PRF 30 – 353 K 7.31 

 7.40 

PRF 30 – 373 K 6.85 

 6.70 

PRF 40 – 333 K 7.97 

 8.07 

PRF 40 – 343 K 7.71 

 7.83 

PRF 40 – 353 K 7.34 

 7.60 

Table 13. Rerunning of tests 

Fuel Compression ratio 

PRF 40 – 363 K 7.31 
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O 

 7.43 

PRF 60 – 343 K 8.29 

 8.40 

PRF 70 – 323 K 8.89 

 9.01 

PRF 80 – 323 K 9.38 

 9.48 

PRF 90 – 343 K 9.59 

 9.82 

PRF 90 – 373 K 9.34 

 9.47 

 


