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      Abstract  

 

Mean-Risk portfolio optimization method proposes an efficient frontier that consists of 

portfolios not dominated by any portfolio. Consequently, this method reduces the choice 

set by excluding inefficient portfolios. Different risk measures offer different efficient 

frontiers, which can be interpreted as different optimal choice sets. The question is 

whether these different risk measures lead to significantly different efficient frontiers for 

the investors, and which risk measure should be used.  

 

My purpose is to present a method to assess the effect of the choice set reduction from 

different Return-Risk models and to answer the question presented earlier. The most 

important contribution of the paper is the creation of a two-dimensional space “Risk-

Aversion – Certainty Equivalence (CE)” as a platform for comparisons. The curves, 

representing different risk-averse investors and different models, on this space are called 

“Certainty Equivalence Curves (CEC)”. The empirical analysis shows that the Mean-

Variance method is very effective in ranking portfolios for exponential utility investors. 

Therefore, it is not recommended to use more complicated methods such as Mean-CVaR.  

    

Key words: Portfolio Optimization Return Risk Direct Utility Maximization Certainty 

Equivalence CE CEC 
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I. INTRODUCTION 

 
1. Background  

 

Return-Risk portfolio optimization methods have been used and discussed extensively by 

financial practitioners and scholars. One clear advantage of these methods is a reduction 

in the choice set that facilitates the portfolio selection and evaluation processes. Instead 

of choosing among all possible portfolios, investors just choose portfolios on the efficient 

frontier. This implies that the reduction of the choice set loses some portfolios that are 

optimal from the perspective of investors who follow exponential utility.  

 

There is abundance of risk measures available to assess portfolio allocation. Some of 

them concern the whole return distribution, whereas others focus on only a half or a 

specific range of the return distribution. Different moments are also used, such as 1st 

moment for Mean Absolute Deviation and 2nd moment for Variance. It may therefore be 

confusing and difficult for practitioners and researchers in evaluating assets portfolios 

such as hedge funds. For example, if the return is normally distributed or investors have 

mean-variance preference, Mean-Variance portfolio optimization method is perfectly 

applicable. However, if the investors are supposed to follow exponential utility and the 

distribution is not normally distributed, then the Mean-Variance method is obviously not 

exactly correct.  

 

Obviously we must analyze the appropriateness of these risk measure toward investors, 

since investors are the ones who value the portfolios. If the investors really care about 

downward movement but are minimally concerned with upward movements, then one-

sided risk measures may be employed. However, common sense shows that people care 

much about upside as well; although, it may be less important than downside. Therefore, 

both one-sided and two-sided risk measures are not perfectly appropriate for all investors 

in every situation.  
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2. Problem and Purpose 

 

Each risk measure determines one efficient frontier, but these frontiers are obviously not 

identical. Therefore, it raises a problem concerning whether these risk measures lead to 

similar or significantly different efficient frontiers. Investors would also be concerned 

with which risk measure they should use to assess portfolios. This paper has the purpose 

of analyzing and assessing the efficient frontiers gained from Return-Risk methods. 

Throughout the analysis, for a particular investor, one portfolio is only considered better 

than another portfolio when it has higher utility for this investor. There are only two risk 

measures under investigation: standard deviation and Conditional Value at Risk (CVaR). 

A specific question follows from this purpose: is standard deviation or CVaR 

recommended for assessing portfolios?   

 

There are several reasons for choosing standard deviation and Conditional Value at Risk 

as our risk measures. Firstly, both risk measures are very well-known, and covered in 

thousands of papers. Secondly, standard deviation is the most representative for two-

sided risk measures; while CVaR is the best candidate in the one-sided risk-measure 

class. Although it is not as popular as Value at Risk but it has proven to be more effective 

in terms of coherence. Thirdly, standard deviation takes into account the whole return 

distribution, whereas CVaR only focuses on the worst possible situations. In other words, 

standard deviation measures dispersion of returns around the mean, and CVaR measures 

how bad the return could be if the worst cases happen. We may expect differences that 

make it interesting to compare the efficient frontiers. However, we can not say whether 

these differences are significant or not.    

 

3. Methodology Introduction    

 

Exhibit 1 illustrates that an investor with risk-aversion   chooses a portfolio on the M-V 

and M-CVaR efficient frontiers, which is the tangent point to the highest indifference 

curve. We can compare these two portfolios (1) and (2) by comparing certainty 
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equivalences of these two portfolios with respect to the investor with risk-aversion  . In 

order to compare the whole range of risk-aversion , which is equivalent to study effects 

of choice set reduction to utility maximization problem, we need to create a platform 

where these methods are comparable. This paper proposes a two-dimensional space 

“Risk-Aversion – Certainty Equivalence (RA-CE)” as a platform for comparison. For a 

specific investor with risk-aversion  , we can find the most preferred portfolio by direct 

portfolio optimization method; this portfolio will be represented by one point on the RA-

CE space. Two portfolios on the two efficient frontiers chosen by this investor are 

represented by other two points on the RA-CE space.     There are the following benefits 

of using this space: (1) we can see how investors perceive optimal portfolios, which are 

generated by different portfolio optimization methods, in the language of ‘Certainty 

Equivalence’; (2) we can have an overall view on investors with different risk-aversion.  

 

 
The benchmark for the comparison is the expected utility, which is analogous to certainty 

equivalence. The curve representing the most preferred portfolios obtained from direct 

utility maximization method for different risk-aversion  is called “Utility Certainty 

Equivalence Curve (UCEC)”. To deal with a Return-Risk portfolio optimization method, 

we go through 2 steps. The first step is finding a set of optimal portfolios from that 

Efficient 
frontier 

Indifference  
Curves of    

M V 


 
Portfolio’s 
Standard 
deviation 

Portfolio’s 
Return 

M V


 

       (1) 
         (2) 

Efficient 
frontier 

Indifference  
Curves of    

M CVaR 


 
Portfolio’s 
CVaR 

Portfolio’s 
Return 

M CVaR


 

Exhibit 1: Efficient frontiers 
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Return-Risk method, which is usually called “Efficient Frontier”. Investors with different 

risk-aversion will choose different portfolios on the efficient frontier. Each of these 

portfolios is correspondent to certainty equivalence to the investor who chose the 

portfolio. The second step is sketching an UCEC on the “risk-aversion – CE” space.  

 

By sketching these graphs, we visualize the efficiency of the funds and risk-measure 

methods relatively to direct utility-maximization method. Furthermore, the CE values 

allow numerical comparison among portfolios. The guidance to draw “Utility Certainty 

Equivalence Curve (UCEC)” and “Efficient Certainty Equivalence Curve (ECEC)” is 

described latter in the paper. 

 

 
Exhibit 2 shows UCEC and two ECEC respected to the two risk measures. When risk-

aversion is low, investors tend to take more risk, which bring them higher certainty 

equivalence. In opposition, highly risk-averse investors prefer safer portfolios, which 

usually have lower returns. Therefore, certainty equivalences of highly risk-averse 

investors are lower than those of lowly risk-averse investors. UCEC should lie above the 

two ECEC since the initial choice set is a superset of the two efficient frontiers.  

 

Risk-aversion (  ) 

CE 

  

UCEC 
 

ECEC 1 ECEC 2 

CE(Uti.) 
CE(M-R1) 
CE(M-R2) 

Exhibit 2: Certainty Equivalence Curves 
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Under the constraint of time, the paper examines the most common portfolios, which are 

portfolios of stocks and portfolios of indices. Besides, the paper also studies compound 

portfolios of options and stocks.     

 

II. LITERATURE REVIEW 

 

In this part, we study utility maximizing method and return-risk methods. The scenarios 

generation techniques available for generating inputs for these methods are also 

introduced. Although scenarios generation techniques are not directly related to the 

methodology, inaccurate scenarios generation techniques may lead to inaccurate 

conclusions. Therefore, it is worthy to review this part of materials for further research 

purpose.        

      

1. Utility maximizing method 

 

Utility is intensively researched over hundreds of years as the fundamental measure of 

psychological preferences. This concept has been applied to many areas of economics; 

one of which is portfolio optimization problem. By maximizing the expected average 

utility of possible outcomes in a bundle of choices, the most favorite one would be 

selected. The biggest problem relating to this approach is the uncertainty in the utility 

function. In other words, a universal utility function, which can be applied for every one, 

does not exist. To deal with this problem, people use different utility functions such as 

exponential utility and power utility alternatively to observe different classes of investors. 

This paper uses exponential utility function as the benchmark. The second problem is that 

the utility of a person is considered in a whole, which means that a portfolio held by an 

investor should be assessed together with his remaining assets. However, this paper takes 

into consideration the separate portfolio with all other assets.  
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2. Return – Risk method 

 

Under the assumption of risk-averse, Von Neumann-Morgenstern investors prefer 

certainty to uncertainty with the same expected return. Another research direction of 

portfolio optimization problem is based on the trade-off between expected return and 

risk, which was firstly proposed by Nobel Prize holder Markowitz. After over a half of a 

century, the optimization methods have been broadly expanded. However, these methods 

still keep the shape of the origin – return-risk compromising. There are many risk 

measures suggested as criteria for the optimization problem in this approach. Numerous 

papers such as Angelelli et al. (2008) and Adam et al (2008) focus on comparing these 

risk measures   

 

The most popular four models which use moment-based risk measure are: mean – 

variance model (MV) (Markowitz 1952), mean – lower semi-variance model (MLSV) 

(Markowitz 1959), and mean – absolute-deviation model (MAD) (Konno and Yamazaki 

1991). These models are consistent with second stochastic dominance (SDD) (Porter 

1974; Konno and Yamazaki 1991), which are representing risk-averse investors. The first 

two models are two-sided, which present symmetric behavior towards profits and losses. 

Under Normal distribution, there is no difference between one-sided and two-sided 

methods. However Fama (1965) found that return distributions of financial instruments 

are more leptokurtic than normal distribution and “fat-tails”. This statement was also 

tested by Lo and MacKinlay (1999). Many non-normal distributions were suggested for 

return distribution such as Varian-Gamma (VG) process introduced Madan and Seneta 

(1990). However, for either normally or non-normally distributed return, MAD is 

equivalent to downside mean semi-deviation model (Kenyon et al. 1999). Hence, MAD is 

excluded in the comparison. Fischer (2003) discussed the general form of one-sided 

moment-based risk measures.  

 

Value-at-Risk model (VaR) (Morgan J.P., Inc. 1996) is a very popular risk measure, 

which can be found in thousands of documents. Despite its popularity, its shortcomings 

were pointed out by Artzner et al. (1997, 1999). Worst Conditional Expectation model 
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(WCE) (Mansini et al. 2003) and its similar models – Conditional Concentration model 

(Shalit and Yitzhaki 1994), Expected Shortfall (ES) (Embrechts et al. 1997) and 

Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev 2000) – have improved the 

downsides of VaR model. Dhaene et al. (2004) showed that ES dominated VaR. Chen 

and Wang (2006) presented a generalized model representing these models.  

 

To assess risk measures, Artzner et al. (1999) proposed four criteria for a coherent risk 

measure. They are positive homogeneity, translation-invariance, monotonicity and sub-

additivity. Standard deviation and VaR are not coherent measures since standard 

deviation violates translation-invariance and monotonicity, VaR fails sub-additivity. 

One-sided moment-based risk measures were proved to be coherent by Fischer (2003). 

Expected shortfall and CVaR are also coherent risk measures (Acerbi and Tasche 2002, 

Rockafellar and Uryasev 2002).  

 

MAD and CVaR are implicitly compared with real features in Angelelli et al. (2008). 

However, the paper reveals a drawback when a minimum return of 0% is used to 

compare these two risk measures. With this assumption, the paper just focuses on 

investors who have the requirement of non-negative returns; it does not mean that these 

investors have the same risk-aversion represented by Arrow-Pratt measure (Arrow 1964, 

Pratt 1964). By using Certainty Equivalence Graph, we can overview the effect of choice 

set reduction from selecting portfolios on Efficient Frontier instead of the whole choice 

set.  

 

3. Scenarios generation techniques 

 

In order to obtain future scenarios, non-parametric scenario generation techniques or 

parametric scenario generation techniques could be utilized. In the category of Non-

parametric techniques, historical data technique, bootstrapping technique and block 

bootstrapping technique are currently widely used. Historical data technique is the most 

simple scenarios generation technique, which is based on the assumption that historical 

data represents the future possibilities. The correlations between variable are implicitly 
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considered in the data series. The trade-offs for its simplicity are the limitation in data 

and possible miss-representation of the pass data. Bootstrapping technique is another 

non-parametric scenarios generation technique suggested by Kouwenberg and Zenios 

(2006). This technique is the combination of historical data and bootstrapping technique 

discovered by Efron and Tibshirani (1993).  Although this method can generate large 

samples of scenarios, it destroys the autocorrelation information of the series. It also may 

misrepresent the data by using historical data to interpret the future. To correct the 

drawback of breaking autocorrelation information, Buhlmann (2002) offered block 

bootstrapping technique. However, it does not eliminate the historical data problem.  

 

Besides non-parametric techniques, parametric scenarios generation techniques play a 

very important role over a long history. On the one hand, Monte Carlo simulation 

techniques focus on simulating the distributions. Due to the complication of the advanced 

distribution functions, portfolio optimization area usually adopts Normal distribution. 

However, it does not capture the skewness and fat-tails effects (Mandelbrot 1993). The t-

Student distribution, log-normal distribution and other distributions have taken this 

drawback into consideration. Furthermore, taking covariance between assets into account, 

scenarios generation from a multivariate Normal distribution with known mean and 

covariance matrix was proposed by Levy (2004). On the other hand, multivariate 

generalized ARCH process technique central attention to volatility cluster effect – 

heteroskedasticity of a time series (Bollerslev et al. 1992). CC-MGARCH is one valuable 

example. Guastaroba et al. (2009) referred to further details of these scenarios generation 

techniques.  

 

This paper focuses on the analyzing portfolio optimization by directly maximizing 

expected utility method and mean-risk trade-off methods. Therefore, the most simple 

scenarios generation technique is utilized, which is historical data technique. However, 

other techniques can also be applied without difference in the later steps.  
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III. METHODOLOGY 

 

Methodology part starts with the guidance to draw the Utility Certainty Equivalence 

Curves and Efficient Certainty Equivalence Curves in the Certainty Equivalence Graph. 

 

UCEC: Optimal portfolios for different levels of risk-averse investors are found by direct 

utility-maximization method. In this paper, exponential utility function is used to 

represent different investors with different risk-aversion; changing in   represents 

changing in risk-aversion. For a specific value of  , we can find an optimal portfolio 

with maximal expected utility, which is equivalent to a specific value of CE. By 

changing  , we can sketch a graph of UCEC ( CE  ).  

 

ECECs: For one risk measure, we draw an ECEC through two steps. The first step is 

finding the subsets corresponding to different risk measures, which are very well-known 

under the concept of “Efficient Frontiers” with traditional way: minimizing risk measure 

corresponding to a specified return. Different risk returns result in different optimal 

portfolios, which are called “Efficiency Frontier”. Among portfolios in the EFS, we 

choose the best portfolio corresponding to a risk-aversion (equivalent to  ). This step has 

one advantage over previous works, which is the consideration of utility maximization 

after we have Efficient Frontier. This advantage facilitates investigation over different 

risk-averse levels. Different investors with different risk-aversion will choose different 

portfolios on the Efficient Frontier. These portfolios are easily being translated to 

Certainty Equivalence through the inverse function of the utility function.   

 

To combine these curves for computational purpose, we go through three steps. Firstly, 

we find efficient frontiers for risk measures, which are subsets of initial choice set. 

Secondly, expected utility maximization method is applied for the initial choice set and 

subsets from different Return-Risk methods. The final step is to convert Certainty 

Equivalence from expected utility. These steps are the backbone of the Matlab code.   
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After that we get in detail statistical and mathematical theories and applications to the 

problem in this paper. The portfolio is assumed to contain N assets j for  1,j N .  Asset 

j has T historical returns jtR for  1,t T . With the assumption of historical data 

technique, we have T scenarios for the target future return. We also assume that the 

possibilities of scenarios are 1
tp T  for  1,j N . We denote jw ,  1,j N  as weights 

of N assets in the portfolio. To deal with the risk-free asset, we simply 

use  ,  for t= 1,Tt r fR const  . We assume the initial total weight equivalent to 

one  1
1N

jj
w


 , and there is no short-selling ( 0jw  ). Then, we have return of 

portfolio in scenario t is:  

1

N
t jt jj

R R w


 for  1,t T ; 

Average return on asset j is:  

1

T
j t jt t jtt

R E R p R


     ; 

Return of portfolio with assets weights w in the scenario t is denoted as: 

   1
 for t= 1,TN

t jt jj
w R w


 ; 

The portfolio’s average return is: 

     1

T
t t tt

w E w p w  


      

 

1. Return – Risk Portfolio Optimization 

 

The optimization method is simply the minimization of risk measures, or maximization 

of safe measures with a given return. The methods were discussed intensively in the 

references mentioned in section I. We directly present the optimization problems 

corresponding to different risk measures. 
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Mean – Variance Model (M-V)  

 

This is the most well-known model in the financial industry, which is usually 

accompanied with normal distribution assumption. The reason is that the normal 

distribution has only two parameters: mean and variance, which allows the parametrical 

analysis with ease. Variance measures the dispersion of possible values around the mean. 

For a given expected return of the portfolio, the optimization problem is:         

    1
min min T

t tt
V w p V


   

    2
t. . V ts t w w   ;    1

T
t tt

w p w 


 ;    1
 for t= 1,TN

t jt jj
w R w


 ; 

1
1N

jj
w


 ; And 0jw  for  1,j N    

 

Mean – Conditional Value at Risk Model (M-CVaR)  

 

This paper investigates the tail of 5%, which is most commonly used. To estimate 

CVaR(95%), we need to measure  VaR at a 95% confidence level. For each weight w of 

N assets in the portfolio, we can find VaR(95%) of the portfolio as ( )w . Then CVaR is 

Linear Programming computable as following  

 95% 1

1max ( )
5%

T
t tt

CVaR w w p d


   
 

  

   t. . d max 0, ( )  for t= 1,Tts t w    

By choosing different  kw  for 1,k K , we have K optimal portfolios lying on the 

efficient frontier. K is taken large enough for latter utility maximization purpose.   

 

2. Expected Utility Maximization 

 

With the assumption of no friction such as transactional costs, final wealth is 
tR

tW e under the assumption of unit initial wealth. Expected utility of the final wealth is: 
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       1
1 1T

t t t tt
U w E u W E u R p u R


             

This formula is applied to different utility functions, and is the target for optimization. 

Arrow-Pratt measure (Arrow 1964, Pratt 1964) is used to assess the degree of risk-

aversion of investors.  

 

This paper examines exponential utility (EU):    xu x e   with 0  , u(x) presents 

non-satiation and risk-averse since the utility function is increasing and concave. In other 

words, the first derivative is positive and second derivative is negative.     

    2' 0 and '' <0 for 0x xu x e u x e          

We can easily derive Arrow-Pratt’s measure of absolute risk-aversion   ARA x : 

   
 

2''
'

x

x

u x eARA x
u x e





 







      

Investors are more risk-averse when   increase. In other words, we can expect the 

portfolio chosen by higher  investors having lower expected return. For each level of 

risk-aversion , the maximization problem of expected average utility is: 

  1
max

RtT e
w tt

p e 


  

s.t. 
1

N
t jt jj

R R w


 for  1,t T ; 
1

1N
jj

w


 ; and 0jw  for  1,j N  

 

We apply the framework of expected utility maximization above into three sets of 

choices: initial choice set, the Efficient Frontier from Mean-Variance method (a subset of 

the initial choice set), and the Efficient Frontier from Mean-Variance method (another 

subset of the initial choice set). For direct utility maximization, an optimal weight w, 

which is corresponding to each , is  Uw  . For the subset of Efficient Frontier from 

Mean-Variance and Mean-CVaR methods, the weights for each   are  M Vw   and 

 M CVaRw   respectively.      
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3. Converting to Risk-Aversion – CE Space 

 

Certainty Equivalence is a risk-free amount which brings the same utility to an investor 

as a risky asset. The formula for Certainty Equivalence is:   

 1

R CEtT e e
tt

p e e  


    

It is equivalent to:                

  1
ln

ln

RtT e
tt

p e
CE








      
  


 

For each , we have corresponding  Uw  ,  M Vw   and  M CVaRw  . Therefore, we 

have corresponding  UCE  ,  M VCE   and  M CVaRCE  . Although this step is not 

crucial for the analysis, it clearly shows how much investors perceive investments in 

terms of return rates.   

 

IV. DATA DESCRIPTION AND OUTPUT PRESENTATION 

 

1. Data Description  

 

This paper focuses on three types of data: single companies, indexes, and European 

options. For individual companies, we select 3 portfolios including different number of 

American companies. The companies are picked randomly over industries. To satisfy 

sufficient number of data points, we choose the companies listed in 1973. We have 435 

monthly returns from Feb1973 to Apr2009, which are used to calculate possible next 

month return scenarios. We also take into account negative correlation, which would 

reduce variance of the portfolio. However, there are only a few stocks that have negative 

correlation with the majority, and these stocks usually have negative average returns. We 

take three portfolios of 6 stocks, 29 stocks and 61 stocks randomly from a list of 232 

stocks with these issues taken into account.  



Lund, June 2009                                                                                                                           
 

Hien Vu | 17  
 

 

 

To assess portfolios of indexes, we choose portfolios of industry indexes. One advantage 

of industry indexes is that industries have different natural characteristics deciding 

different risks and returns. Another advantage is that these indexes are mutually 

exclusive, which eliminates the duplication of some stocks in the indexes. Monthly 

returns of 10 and 30 industries are taken from the website of Kenneth R. French, which 

last from Jul 1926 to Dec 2008 with a total of 990 data points for each industry.  

 

Due to the difficulty in collecting market data of options, we use theoretical Black-

Scholes European calls and puts to estimate theoretical options prices and their returns. 

We assume to use current price as the strike price; the option expire in 1 year  1  ; 

volatility is simply standard deviation of past data; and risk-free is 2%  0.02fr  . The 

current prices of call and put options on asset j   1,j N by Black-Scholes are: 

   0 0 1 2
fr

j j j j jc S N d K e N d  ; and    0 0 1 2
fr

j j j j jp S N d K e N d      

s.t.  

   2
0

0 1 2 1

ln 2
; ( ); ;j t f j

j j j jt j j j j
j

K S r
K S stdev S d d d

 
  

 

 
       

 

We can apply any scenarios generation techniques mentioned above to generate possible 

scenarios of stock returns in one month. We utilize the simplest method, which is basic 

historical method. We have T possible monthly returns tR  for  1,t T , which is 

equivalent to T possible stock prices 0
jtR

jt jS S e  for  1,t T . 

Value of these options at time 1/12 (after 1 month) at scenario t   1,t T  is: 

   1 2
fr

jt jt j j jc S N d K e N d   ; and    1 2
fr

jt jt j j jp S N d K e N d       

s.t. 
   2

1 2 1

ln 211 ; ;12
j jt f j

j j j j

j

K S r
d d d

 
  

 


 



 
      

                                                
 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  
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Monthly returns of these options at the state t are:  

,
0

ln jt
c jt

j

cR c
   
 

 and ,
0

ln jt
p jt

j

pR p
   
 

 

 

The main issue of options returns is that time value of the options will decrease over 

time. For that reason, we should expect most of options to have negative expected 

returns. We checked both calls and put options returns over 232 stocks; the result is that 

all options returns are negative. Besides options have very high volatilities, which would 

distract investors from these securities. The intuition of investor’s decision making is that 

they would accept high risk with adequate compensation of high return. Therefore, it is 

not reasonable to construct only portfolios of options. We examine portfolios of stocks 

and options on these assets, which investors may benefit from the correlations of these 

securities. Since put options have negative correlation with the underlying stocks, we are 

interested in portfolios of stocks and their corresponding put options. Two portfolios of 6 

pairs and 30 pairs of stocks and their put options are randomly chosen and inspected. We 

also consider portfolios with and without risk-free asset at the same time.      

 

2. Output Presentation  

 

This paper visualizes the differences of direct utility maximization, Mean-Variance and 

Mean-CVaR methods through four graphs for each portfolio with and without the risk-

free asset. The first one is Efficient Frontiers Graph (denoted (-a) in each appendix), the 

second one is Certainty Equivalence Graph (denoted (-b) in each appendix), the third one 

is Portfolio Returns Graphs (denoted (-c) in each appendix), and the last one is Weight 

Differences Graph (denoted (-d) in each appendix). These graphs are repeated over for 

three portfolios of stocks, two portfolios of indexes, and two portfolios of stocks and 

puts.  

 

The Efficient Frontiers Graphs bring a visual view over the subsets after applying Return-

Risk optimizations methods on risk-return space. For each minimum return requirement, 

there is one corresponding minimal risk which could be standard deviation or CVaR. The 
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Certainty Equivalence Graphs take into account utility maximization issue. With the 

assumption of exponential utility, we can solve the problem of utility maximization over 

a choice set. For direct utility maximization, the choice set covers all possible weight 

allocations under non-short-selling constrain. The choice sets for return-risk methods are 

efficient frontiers. Since efficient frontiers are subsets of the initial choice set, the 

maximized utility from direct utility maximization should be higher than utilities from 

return-risk methods for any level of risk-aversion. Consequently, Certainty Equivalence 

of direct utility maximization should be higher than utilities from return-risk methods for 

any level of risk-aversion. The third and the forth graphs get in detail of portfolio weight 

allocations. The thirds graph compares returns of optimal portfolios constructed by direct 

utility maximization method and return-risk methods for each level of risk-aversion. The 

forth graph visualizes the differences in weights of individual items inside the portfolio.  

 

For the purposes of reference, we put all the graphs in the appendices. The first three 

appendices are for stock portfolios: appendix 1 shows graphs for portfolio of six stocks, 

appendix 2 is for portfolio of 29 stocks, appendix 3 is for portfolio of 61 stocks. The next 

two appendices are for index portfolios: appendix 4 presents 10 industries portfolio, and 

appendix 5 displays 30 industries portfolio. The last two appendices put on view 

portfolios of stocks and their put options: appendix 6 exhibits portfolios of 6 stocks and 6 

theoretical B-S put options, and appendix 7 extends to 30 stocks and 30 put options.       

 

V. DATA ANALYSIS 

 

The analysis observes three types of portfolios: portfolios of stocks, portfolios of indices, 

and portfolios of stocks and corresponding put options. Although there are only three 

stock portfolios, two index portfolios and two combination portfolios considered; it is 

possible to draw conclusions to some extent. Within each type of portfolio, we study their 

Efficient Frontiers Graphs, Certainty Equivalence Graphs, Portfolio Returns Graphs and 

Weight Differences Graphs. The analysis places special attention on: effects of risk-free 

asset in the portfolios, differences between two risk measures, consequences of choice set 

reduction to CE, and differences in portfolios returns and weight allocations.    
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1. Stock Portfolios 

 

Efficient frontier graphs  

 

Although the Efficient Frontier Graphs do not show comparability between two risk 

measures, these graphs clearly illustrate the difference of the portfolios when a risk-free 

asset is included. Graphs 1-a, 2-a, and 3-a show that: for each return, optimal portfolio 

risks are significantly reduced when the portfolio contains risk-free assets. For example, 

in graph 1-a, standard deviation of 0.8% return is about 0.065 for portfolio without risk-

free asset; while it is only 0.045 when risk-free asset is included. It is similar to the M-

CVaR frontier. Expected tail losses for a portfolio with expected return 0.8% are 0.145 

and 0.1 for portfolios without and with risk-free asset, respectively. It is also noticed that 

the effect of risk-free asset is stronger for portfolios with smaller expected returns. It is 

consistent with the intuition of highly risk-averse investors allocating more wealth to the 

risk-free asset.       

 

The Efficient Frontiers of the M-V method with a risk-free asset reminds us about Tobin 

separation theorem. The theory states that all investors with different risk-aversion can be 

satisfied with the combination of a risk-free asset and one portfolio called the “market 

portfolio”. The straight lines in M-CVaR Efficient Frontier Graphs with a risk-free asset 

show a similarity to the Tobin theorem in the M-V method. However, M-V method 

dominates M-CVaR in this aspect since the line is totally formulated in Return-Standard 

deviation space. The similar line on the M-CVaR space can only be drawn by numerical 

method.     

 

Certainty equivalence graphs  

 

The second graph of Certainty Equivalence versus risk-aversion is the most important 

issue of this paper. Certainty Equivalence Graphs 1-b, 2-b and 3-b visualize the 

maximized Certainty Equivalence gained by investors with different risk-aversion. The 

most significant point is that three methods bring very close Certainty Equivalence 
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Curves despite the differences in three methods. Although UCEC lies above the two 

ECEC, it is not significant. This finding encourages the statement that both Variance and 

CVaR are efficient to apply for stock portfolios under the judgment of exponential-utility 

investors. The choice set reductions due to the efficient frontiers minimally affect the 

initial choice set.   

 

The second point in these three Certainty Equivalence Graphs is that the Certainty 

Equivalence of the portfolios with risk-free asset is above the one without the risk-free 

assets; this point is not very clear when they are drawn on separated graphs. It is clearly 

true since the investors will be better off when they have more choices, which extends the 

choice set.  In addition, the difference becomes obvious with high risk-aversion. The 

graphs strengthen the statement that more risk-averse investors are better off when 

including a risk free asset. The third point worth noticing is that the equally weighted 

portfolios bring much worse Certainty Equivalence Curve than UCEC and ECEC. 

Therefore, we can conclude that equal weighting is not a good portfolio management 

strategy.  

 

Returns Graphs and Weight Differences Graphs  

 

The third and forth graphs examine further differences in returns and weight allocations 

of portfolios (graphs 1-c, 1-d, 2-c, 2-d, 3-c, and 3-d). In the three portfolios, the returns of 

these portfolios using all three methods are very close, even though there are some small 

discrepancies between graphs 1-b, 2-b, and 3-b. In all the cases, portfolios with the risk-

free asset have smaller differences than the portfolios without the risk-free asset, 

especially in graph 1-c. One noticeable point, which is consistent to the theory, is that 

higher risk-averse investors choose lower expected returns. In addition, it seems that 

returns from M-CVaR are less smooth than the return curves from the other two methods 

when the portfolios do not include the risk-free asset.  

 

The Weight Differences Graphs 1-d, 2-d, and 3-d clearly show the differences in weight 

allocations. It is obvious that the weight allocations obtained by these three methods are 
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different. There are some remarkable points obtained from these graphs. Firstly, the usual 

differences are less than 10%. Sometimes the weight differences exceed 10%, for 

example in the case of portfolio of 6 stocks without the risk free asset (top left of graph 1-

d). It could be interpreted as some significant distinctions among these three methods. 

Secondly, the differences in weights tend to be smaller as risk-aversion increases for the 

portfolios with the risk-free asset. However, it is not correct for portfolios without the 

risk-free asset. For portfolios without the risk-free asset, the differences between M-

CVaR method and the other two methods seem to be not affected by risk-aversion of 

investors. The differences in weight allocations between M-V method and direct utility 

method seem to be increasing for risk-aversion, which is opposite to the case of portfolios 

with the risk-free asset.  

 

In general, both risk measures are efficient to stock portfolios from the view of 

exponential-utility investors. Although the weight allocations among securities are 

different, the maximized utilities obtained from those methods are very close. Due to the 

simplicity of M-V method, we confidently recommend this method to assess the 

efficiency of a portfolio.  

 

2. Index Portfolios 

 

Due to the normality character of indices, we expect M-V method to be even more 

suitable to the index portfolios than stock portfolios. There is nothing special in the 

Efficient Frontier Graphs. The most noticeable thing in the Certainty Equivalence Graphs 

(graphs 4-b and 5-b) is that the almost identical Certainty Equivalence Curves, except 

two strange points at lowest betas in graph 4-b. At these risk-averse levels, the efficient 

frontiers destroy some values from the choice set reduction. However, it also could be 

caused by a mistake from Matlab; it is not necessary to get in detail. It is also noticed that 

the equal weighting strategy is not terribly worse than the optimization methods. To some 

extent, this strategy is acceptable in the case of index portfolios. Graphs 4-c and 5-c show 

that the weight allocation differences are more serious in the case of index portfolios than 

stock portfolios. Within differences exceeding 10%, there are some of them exceeding 
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20%. Generally, the conclusion for index portfolios is similar to the conclusion for stock 

portfolios. M-V is recommended to use with assurance.  

 

3. Stock and Put Options Portfolios      

 

In the case of put options included in the stock portfolios, people may expect there to be a 

significant difference between the M-V method and the M-CVaR method. However, the 

result from the examination is opposite. The differences are as small as in the stock 

portfolios case. Graphs 6-b and 7-b show that the Certainty Equivalence Curves from 

three methods are nearly identical. The weight allocation differences are similar to the 

case of stock portfolios. Therefore, we can conclude that the M-V can even be applied to 

portfolios containing non-normally distributed securities, like put options.  
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VI. CONCLUSION 

 

The paper has compared two risk measures variance and CVaR based mainly on 

Certainty Equivalence Graphs. The question “whether these different risk measures lead 

to significantly different efficient frontiers for the investors, and which risk measure 

should be used?” is answered based on empirical tests with stock portfolios, indices 

portfolios, and stock-put compound portfolios. Both return-risk methods provide very 

good efficient frontiers. This means that the utility is not reduced very much after the 

return-risk optimization step. The traditional Mean-Variance method outperforms the 

Mean-CVaR in terms of simplicity and guarantee against losing utility due to choice set 

reduction, even in the case of non-normally distributed portfolios with options. Although 

the utilities of these methods are nearly the same, the weight allocations are different 

among these methods. In conclusion, M-V method is recommended for assessing 

common portfolio types such as stock portfolios, index portfolios, and even portfolios 

with options.   

 

It is too early to state that the M-V method outperforms the Mean-CVaR for any portfolio 

and for any investors. However, we can say that application of Certainty Equivalence 

Curves has a high potential. They can be used to compare different risk measures, and 

applied to different portfolio types for the benefit of investors with different utility 

functions. The Certainty Equivalence Graphs are also very useful for visual presentation 

of the efficiency of a security selections strategy for toward different risk-averse 

investors.    
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 Appendix 

Appendix 1: 6 companies 
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Graph 1-b 

                                                
 Thick solid line: for utility maximization method 
   Solid line with dots: for M-V method 
   Solid line with x: for M-CVaR method 
Notice: these legends are applied for all CEG and Returns Graphs 
   The far below lines are representing equally weighted portfolios 
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Appendix 2: 29 companies 
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Graph 2-a 

0 2 4 6 8 10 12 14 16 18 20
-0.01

-0.005

0

0.005

0.01

0.015

0.02

Beta (Risk aversion)

C
er

ta
in

ty
 E

qu
iv

al
en

ce
 (C

E)

CE Graphs

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

Beta (Risk aversion)

C
er

ta
in

ty
 E

qu
iv

al
en

ce
 (C

E
)

CE Graphs with Rf

 
Graph 2-b 



Lund, June 2009                                                                                                                           
 

Hien Vu | 28  
 

 

0 2 4 6 8 10 12 14 16 18 20
0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Beta (Risk aversion)

R
et

ur
n

Returns comparison

0 2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16
x 10-3

Beta (Risk aversion)

R
et

ur
n

Returns comparison with Rf

 
    Graph 2-c 

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

beta

w
ei

gh
ts

Weights(MV)-Weights(MCVaR)

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

beta

w
ei

gh
ts

Weights(MV)-Weights(Util Max)

0 2 4 6 8 10 12 14 16 18 20
-0.15

-0.1

-0.05

0

0.05

0.1

beta

we
ig

ht
s

Weights(MCVaR)-Weights(Util Max)

0 2 4 6 8 10 12 14 16 18 20
-0.15

-0.1

-0.05

0

0.05

0.1

beta

w
ei

gh
ts

Weights(MV)-Weights(MCVaR) with Rf

0 2 4 6 8 10 12 14 16 18 20
-0.02

-0.01

0

0.01

0.02

beta

w
ei

gh
ts

Weights(MV)-Weights(Util Max) with Rf

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

beta

we
ig

ht
s

Weights(MCVaR)-Weights(Util Max) with Rf

 
Graph 2-d 



Lund, June 2009                                                                                                                           
 

Hien Vu | 29  
 

 

Appendix 3: 61 companies 
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Appendix 4: 10 industries 
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Graph 4-c 
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Appendix 5: 30 industries 
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Appendix 6: 8 theoretical Black-Scholes puts and 8 stocks 
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Appendix 7: 30 theoretical Black-Scholes puts and 30 stocks 
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MATLAB Code 
 

clear all 
%I.Without Risk-free Asset 
%I.1. Inputs 
 
NumPorts=100; beta=[0.2,0.5,1,2:2:20]; alpha=0.95;  
data='C:\Users\Hien Vu\Desktop\text1.txt'; 
     
    nRt=load(data); %the raw material in percentage 
    [J, nAssets]=size(nRt); 
    w0=[(1/nAssets)*ones(1,nAssets)]; 
    options=optimset('LargeScale','off'); 
    options=optimset(options,'TolFun',1e-40); 
    options=optimset(options,'MaxFunEvals',1000000000000); 
    options=optimset(options,'MaxIter',1000); 
    %options=optimset(options,'TolX',1e-10); 
 
%I.2. Utility function 
% function f=exputilfun(w,nRt,bt) 
% [J, nAssets]=size(nRt); 
% Ut=0; 
% for i=1:J 
%     Ut=Ut+(-exp(-(exp(nRt(i,:)*w')*bt)))/exp(-(4/5)*bt); 
% end 
% f=(-Ut/J); 
 
 
%I.3. Mean-Variance Criteria 
ExpCovariance=cov(nRt); ExpReturn=mean(nRt); 
[stdev, PortReturn, PortWtsMV] = frontcon(ExpReturn,...  
ExpCovariance, NumPorts);%Matlab frontior toolbox 
 
%I.4. Mean-CVaR Criteria  
i=1:nAssets;UB=1;LB=0; R0=transpose(PortReturn); Risk=zeros(length(R0),2); 
    A=[-mean(nRt) 0]; A=[A;  -eye(nAssets) zeros(nAssets,1)]; 
    A=[A; eye(nAssets) zeros(nAssets,1)]; 
    Aeq=[ ones(1,nAssets) 0]; beq=[1]; 
objfun=@(w) -w(nAssets+1)+(1/J)*(1/(1-alpha))... 
    *sum(max(-w(i)*nRt(:,i)'+w(nAssets+1),0)); 
    w0=[(1/nAssets)*ones(1,nAssets)];%initial guess-equally weighted 
    VaR0=quantile(nRt*w0',1-alpha); % the initial guess for VaR is the 
    w0=[w0 VaR0]; 
for k=1:length(R0) 
b=[-R0(1,k) -LB*ones(1,nAssets) UB*ones(1,nAssets)]; b=b'; 
[w,fval,exitflag,output]=fmincon(objfun,w0,A,b,Aeq,beq,LB,UB,[],options); 
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    for i=1:nAssets 
    PortWtsCVaR(k,i)=w(i); 
    end 
Risk(k,1)=w(nAssets+1); Risk(k,2)=fval; %w(31)= portfolio VaR 
clear w 
end 
CVaR=transpose(Risk(:,2)); 
 
%I.5. Utility Maximisation  
w0=[(1/nAssets)*ones(1,nAssets)]; 
ub=ones(1,nAssets); lb=zeros(1,nAssets); %constrain condition 
Aeq=[ones(1,nAssets)]; beq=[1]; %portfolio has unit value 
for k=1:length(beta); 
    bt=beta(k); 
%Equally weighted 
    y=exputilfun(w0,nRt,bt); [C,I]=min(y); 
    CEu=max(log(-log(C*exp(-(4/5)*bt))/bt),0); CEeqwt(1,k)=CEu; 
%Mean Variance 
    for m=1:length(PortReturn) 
    yMV(m)=exputilfun(PortWtsMV(m,:),nRt,bt); 
    end 
    [CMV,IMV]=min(yMV); PortWtsMVbeta(k,:)=PortWtsMV(IMV,:); 
    CEMVk=log(-log(CMV*exp(-(4/5)*bt))/bt); CEMV(1,k)=CEMVk; 
    RMVbeta(k)=R0(IMV); 
%Mean-CVaR 
    for m=1:length(Risk(:,2)) 
    yCVaR(m)=exputilfun(PortWtsCVaR(m,:),nRt,bt); 
    end     
    [CCVaR,ICVaR]=min(yCVaR); PortWtsCVaRbeta(k,:)=PortWtsCVaR(ICVaR,:); 
    CECVaRk=log(-log(CCVaR*exp(-(4/5)*bt))/bt); CECVaR(1,k)=CECVaRk; 
    RCVaRbeta(k)=R0(ICVaR); 
%Direct Utility Maximization 
    [w,fval,exitflag,output]=fmincon(@(w) exputilfun(w,nRt,bt),... 
        w0,[],[],Aeq,beq,lb,ub,[],options);    
    CEk=log((-log(fval*exp(-(4/5)*bt)))/bt); CEUtil(1,k)=CEk;  PortWtsUtil(k,:)=w(:);  
    RUtilbeta(k)=ExpReturn*transpose(w); 
end  
 
%II. With risk-free asset 
data='C:\Users\Hien Vu\Desktop\text2.txt'; 
nRt=load(data); [J, nAssets]=size(nRt); %the raw material in percentage 
 
%II.1. Mean-Variance Criteria 
ExpCovariance=cov(nRt); ExpReturn=mean(nRt); 
[stdevRf, PortReturn, PortWtsMV] = frontcon(ExpReturn,...  
ExpCovariance, NumPorts);%Matlab frontior toolbox 
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%II.2. Mean-CVaR Criteria  
i=1:nAssets;UB=1;LB=0; 
R0=transpose(PortReturn); 
Risk=zeros(length(R0),2); 
    A=[-mean(nRt) 0]; A=[A;  -eye(nAssets) zeros(nAssets,1)]; 
    A=[A; eye(nAssets) zeros(nAssets,1)]; Aeq=[ ones(1,nAssets) 0]; beq=[1]; 
objfun=@(w) -w(nAssets+1)+(1/J)*(1/(1-alpha))... 
    *sum(max(-w(i)*nRt(:,i)'+w(nAssets+1),0)); 
    w0=[(1/nAssets)*ones(1,nAssets)];%initial guess-equally weighted 
    VaR0=quantile(nRt*w0',1-alpha); w0=[w0 VaR0];% the initial guess for VaR is the 
for k=1:length(R0) 
b=[-R0(1,k) -LB*ones(1,nAssets) UB*ones(1,nAssets)]; b=b'; 
[w,fval,exitflag,output]=fmincon(objfun,w0,A,b,Aeq,beq,LB,UB,[],options); 
    for i=1:nAssets 
    PortWtsCVaR(k,i)=w(i); 
    end 
Risk(k,1)=w(nAssets+1); Risk(k,2)=fval; %w(31)= portfolio VaR 
clear w 
end 
CVaRRf=transpose(Risk(:,2)); 
 
%II.3. Utility Maximization 
w0=[(1/nAssets)*ones(1,nAssets)]; 
ub=ones(1,nAssets); lb=zeros(1,nAssets); %constrain condition 
Aeq=[ones(1,nAssets)]; beq=[1]; %portfolio has unit value 
for k=1:length(beta); 
    bt=beta(k); 
%Equally weighted 
    y=exputilfun(w0,nRt,bt); [C,I]=min(y); 
    CEu=max(log(-log(C*exp(-(4/5)*bt))/bt),0); CEeqwtRf(1,k)=CEu; 
%Mean Variance 
    for m=1:length(PortReturn) 
    yMV(m)=exputilfun(PortWtsMV(m,:),nRt,bt); 
    end 
    [CMV,IMV]=min(yMV); PortWtsMVbetaRf(k,:)=PortWtsMV(IMV,:); 
    CEMVk=log(-log(CMV*exp(-(4/5)*bt))/bt); CEMVRf(1,k)=CEMVk; 
    RMVbetaRf(k)=R0(IMV); 
%Mean-CVaR 
    for m=1:length(Risk(:,2)) 
    yCVaR(m)=exputilfun(PortWtsCVaR(m,:),nRt,bt); 
    end     
    [CCVaR,ICVaR]=min(yCVaR); PortWtsCVaRbetaRf(k,:)=PortWtsCVaR(ICVaR,:); 
    CECVaRk=log(-log(CCVaR*exp(-(4/5)*bt))/bt); CECVaRRf(1,k)=CECVaRk; 
    RCVaRbetaRf(k)=R0(ICVaR); 
%Direct Utility Maximization 
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    [w,fval,exitflag,output]=fmincon(@(w) exputilfun(w,nRt,bt),... 
        w0,[],[],Aeq,beq,lb,ub,[],options);    
    CEk=log((-log(fval*exp(-(4/5)*bt)))/bt); CEUtilRf(1,k)=CEk; 
PortWtsUtilRf(k,:)=w(:); RUtilbetaRf(k)=ExpReturn*transpose(w); 
end  
 
%III. Plots 
% %III.1. Plot Efficience Frontiers 
figure 
subplot(2,2,1) 
plot(stdev,R0,'k-')% M-V frontier 
xlabel('StDev') 
ylabel('Portfolio Return') 
title('Efficient frontier M-V') 
 

subplot(2,2,2) 
plot(stdevRf,R0,'k-')% M-V frontier 
xlabel('StDev') 
ylabel('Portfolio Return') 
title('Efficient frontier M-V with Rf') 
 

subplot(2,2,3) 
plot(CVaR,R0,'k-')% M-CVaR frontier 
xlabel('CVaR') 
ylabel('Portfolio Return') 
title('Efficient frontier M-CVaR') 
 

subplot(2,2,4) 
plot(CVaRRf,R0,'k-')% M-CVaR frontier 
xlabel('CVaR') 
ylabel('Portfolio Return') 
title('Efficient frontier M-CVaR with Rf') 
 

 
%%III.2. Plot Certainty Equivalance Graphs 
%  
Figure 
 
    subplot(2,1,1) 
plot(beta,zeros(length(beta)),'k-') 
hold on 
plot(beta,CEeqwt,'k-')  
% plot CE with different level of risk 
averse 
xlabel('Beta (Risk aversion)') 
ylabel('Certainty Equivalence (CE)') 
title('CE Graphs') 
    subplot(2,1,1) 
plot(beta,CEMV,'k.-') 
    subplot(2,1,1) 
plot(beta,CECVaR,'k-x') 
    subplot(2,1,1) 
plot(beta,CEUtil,'k-','linewidth',1.5) 
% plot CE with different 

    subplot(2,1,2) 
plot(beta,zeros(length(beta)),'k-') 
hold on 
plot(beta,CEeqwtRf,'k-')  
% plot CE with different level of risk 
averse 
xlabel('Beta (Risk aversion)') 
ylabel('Certainty Equivalence (CE)') 
title('CE Graphs with Rf') 
    subplot(2,1,2) 
plot(beta,CEMVRf,'k.-') 
    subplot(2,1,2) 
plot(beta,CECVaRRf,'k-x') 
    subplot(2,1,2) 
plot(beta,CEUtilRf,'k-','linewidth',1.5)% 
plot CE with different 

 
% %III.3. Plot Comparing Returns of Optimal portfolio obtained from three methods 
 
Figure 
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subplot(2,1,1) 
plot(beta,RMVbeta,'k.-') 
hold on 
xlabel('Beta (Risk aversion)') 
ylabel('Return') 
title('Returns comparison') 
    subplot(2,1,1) 
plot(beta,RCVaRbeta,'k-x') 
    subplot(2,1,1) 
plot(beta,RUtilbeta,'k-','linewidth',1.5) 
% plot Return with different 

subplot(2,1,2) 
plot(beta,RMVbetaRf,'k.-') 
hold on 
xlabel('Beta (Risk aversion)') 
ylabel('Return') 
title('Returns comparison with Rf') 
    subplot(2,1,2) 
plot(beta,RCVaRbetaRf,'k-x') 
    subplot(2,1,2) 
plot(beta,RUtilbetaRf,'k-','linewidth',1.5) 
% plot Return with different 

 
% %III.4. Plot Comparing Weights of Optimal portfolio obtained from three methods 
figure 

    subplot(3,2,1) 
plot(beta,PortWtsMVbeta-
PortWtsCVaRbeta) 
hold on 
plot(beta,0.01) 
plot(beta,-0.01) 
xlabel('beta') 
ylabel('weights') 
title('Weights(MV)-Weights(MCVaR)') 
 

    subplot(3,2,2) 
plot(beta,PortWtsMVbetaRf-
PortWtsCVaRbetaRf) 
hold on 
plot(beta,0.01) 
plot(beta,-0.01) 
xlabel('beta') 
ylabel('weights') 
title('Weights(MV)-Weights(MCVaR) with 
Rf') 
 

    subplot(3,2,3) 
plot(beta,PortWtsMVbeta-PortWtsUtil) 
hold on 
plot(beta,0.01) 
plot(beta,-0.01) 
xlabel('beta') 
ylabel('weights') 
title('Weights(MV)-Weights(Util Max)')     
 

    subplot(3,2,4) 
plot(beta,PortWtsMVbetaRf-PortWtsUtilRf) 
hold on 
plot(beta,0.01) 
plot(beta,-0.01) 
xlabel('beta') 
ylabel('weights') 
title('Weights(MV)-Weights(Util Max) with 
Rf')  
    

    subplot(3,2,5) 
plot(beta,PortWtsCVaRbeta-PortWtsUtil) 
hold on 
plot(beta,0.01) 
plot(beta,-0.01) 
xlabel('beta') 
ylabel('weights') 
title('Weights(MCVaR)-Weights(Util 
Max)') 
 

    subplot(3,2,6) 
plot(beta,PortWtsCVaRbetaRf-
PortWtsUtilRf) 
hold on 
plot(beta,0.01) 
plot(beta,-0.01) 
xlabel('beta') 
ylabel('weights') 
title('Weights(MCVaR)-Weights(Util Max) 
with Rf') 
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