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Abstract 
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Purpose: The purpose of this thesis is to evaluate volatility forecasts by 

testing the predictive power of implied volatility vis-à-vis model 
based forecasts. Furthermore we test if implied volatility contains 
any additional information beyond that captured by the model 
based forecasts. 

Methodology: A number of time series models are fitted to historical data. The 
fitted models are then used to forecast volatility. The procedure is 
repeated to produce a series of forecasts. The forecast are 
evaluated against out-of-sample realized volatility through 
regression analysis. Finally we test for additional information in 
implied volatility through GMM and OLS estimation. 

Results: We find that volatility can be predicted to some extent. Tests 
indicate that implied volatility is the superior forecast of future 
realized volatility when compared bilaterally against time series 
models. Implied volatility does not contain any additional 
information about future realized volatility in levels when 
orthogonalized to all model based forecasts. There is however 
some incremental information regarding changes in future realized 
volatility. 
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“If you have to forecast, forecast often” 
- Edgar R. Fiedler 
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Definitions 
 
Volatility Volatility can be defined as the amount of uncertainty about the 

size of changes in an asset’s value. In this thesis we refer to 
volatility on a daily basis rather than annual. 

 
True volatility Given that the price of an asset follows some unknown process 

then the true volatility is the volatility of that price process. The 
true volatility is not observable and therefore has to be proxied. 

 
Realized volatility Realized volatility is the volatility actually observed in the market. 

The observation is just a proxy for the true underlying volatility. In 
this thesis we use a log range estimator to proxy true volatility. 

 
Implied volatility  Volatility of an asset derived from the value of a derivative written 

on that asset. The value of the derivative implies a volatility of the 
underlying asset. 

 
Volatility index An index that is designed to capture the volatility of e.g. a stock 

index. The volatility index is derived from several traded index 
options written on the stock index.  

 
Forecasted volatility  Forecasted volatility is the prediction of an unknown future 

volatility. It can be evaluated against realized volatility. 
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1 Background 
 
 
In this section we intend to give a background to the topic of this thesis. We will also specify 

the purpose and the questions we intend to answer. In addition we will describe the outline 

and limitations of the thesis. 

 

A derivative is a financial instrument that is linked to another (financial) asset. The value of 

the derivative is derived from the value of that other asset.1 During the past 30 years the 

derivative market has exploded. Today there exist an almost infinite amount of derivatives 

covering a variety of underlying assets. Investors acting in the financial markets are provided 

with all thinkable and unthinkable ways to hedge against, or expose themselves to, different 

risks. The option is one of the most well known classes of derivatives. In short, an option 

offers the holder the right to sell, or buy, an underlying asset at a certain date in time at a pre-

specified price.2  Option pricing was revolutionized in the 1970s by an article published in the 

Journal of Political Economy written by Fischer Black and Myron Scholes. The well known 

Black-Scholes formula provided investors with a simple way to value European call options. 

All inputs needed to value option with the model are readily available in the market, all but 

one, the volatility of the underlying asset. Volatility is therefore a key element in the pricing 

of option contracts. The difficulty with volatility is that it is not directly observable and 

therefore has to be forecasted. The research on volatility has attracted a lot of attention within 

finance, both from academics and practitioners. The amount of literature on the topic is 

overwhelming to say the least, typing in volatility on Google Scholar yields almost a million 

hits. Volatility estimates are not only used as input in option pricing but is also an important 

factor in other financial applications such as Value-At-Risk and portfolio optimization. 

 

The Black-Scholes formula provided investors a relationship between volatility and option 

value. Investors thereby could derive volatility implied from options traded in the market, this 

is what is known as implied volatility. Implied volatility is derived from contracts that are 

traded based on the market participants expectations about the future. It is therefore widely 

believed that implied volatility might hold some information about future realized volatility 

that cannot be captured by time series models fitted to historical data. For decades market 

                                                 
1 Hull (2006) p.1 
2 Ibid p.6 
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participants and academic researchers have tried to build forecasts models in an attempt to 

gain more information about the future volatility. It is easy to understand the big interest 

among academics to find an accurate forecast of volatility to use as input in option pricing. 

The gain from a good model would not only be great in monetary terms but also in terms of 

knowledge about the option markets and its dynamics.  

 

Taking a starting point in the above discussion we present the purpose of this thesis. The 

purpose of this thesis is to investigate the information content of model based volatility 

forecasts and the volatility index VSTOXX and their ability to predict the volatility of Dow 

Jones EURO STOXX 50. 

1.1 Problem Specification 

The thesis will focus on volatility and volatility forecasting. We start by examining how well 

volatility can be predicted. In order to determine the predictability of volatility we evaluate 

the accuracy of different forecast methods. We investigate which model that produces the 

most accurate forecast of future volatility. Finally we address the issue whether implied 

volatility contains any additional information beyond that of several model based forecasts. 

 

Most academic research concludes that implied volatility is the best estimator of future 

volatility. However since the result is not entirely consistent it is important to initially 

investigate whether or not implied volatility actually outperforms all other models in our 

sample.3 Most studies find that implied volatility dominates model based forecast. This result 

is usually derived by benchmarking each model based forecast against implied volatility. 

What is seldom done is to test the combined forecasting ability of model based forecasts. 

Becker et. al. addresses this issue and tests if implied volatility contains any additional 

information about future realized volatility beyond that forecasted by the models. Becker et. 

al. (2007) investigates the predictive power of the Standard & Poor 500 volatility index 

(VIX). In this thesis we intend to test the predictive power of the Dow Jones EURO STOXX 

50 Volatility Index (VSTOXX) on the future realized volatility of Dow Jones EURO STOXX 

50 (DJE50). More specifically we intend to test if there is any additional information in 

VSTOXX beyond that produced by a number of model based forecasts. 

 

                                                 
3 see for example Granger and Poon (2003) 
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The general problem specification above can be summarized in four explicit questions: 

 

i. How well can volatility be predicted? 

ii. How does model based forecast perform relative implied volatility when it comes to 

predicting future realized volatility? 

iii. Is implied volatility an unbiased forecast of future realized volatility? 

iv. Does implied volatility contain any incremental information about future realized 

volatility beyond that supplied by combined model based forecasts? 

1.2 Target Audience 

The target audience of this thesis is people with an interest in volatility and volatility 

forecasting. To fully appreciate this thesis it is recommended that the reader has some basic 

knowledge about option pricing theory and econometrical methods. The authors of the thesis 

hope that academics and other people with interest in volatility forecasting will find the thesis 

interesting and meaningful. Furthermore we aim to give other finance students a better 

understanding of the concept of volatility. 

1.3 Outline and Delimitations 

Here we give a brief presentation of the outline of this thesis. In chapter 2 we start by 

presenting some of the existing research in the field of implied volatility and model based 

forecasts. In chapter 3 we continue with a more thorough presentation of relevant theories and 

empirical observations regarding volatility. We present the concept of implied volatility and 

problems associated with deriving it. For this purpose we describe the Black-Scholes model 

and its limitations when it comes to deriving implied volatility. We also outline the theoretical 

framework for deriving model free implied volatility. In chapter 4 we present the 

methodology used in this thesis. Here we present the time series models used for forecasting. 

We also describe how we will test the information content, predictive power and forecast 

errors of the different models. Furthermore we present how to test for any additional 

information in implied volatility beyond that supplied by the time series models. In chapter 5 

we present the empirical results. Chapter 6 is devoted to conclusions and a discussion of the 

empirical results.  
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Working on this thesis we have been forced to make some delimitations. There are for 

example literally thousand of different time series models that could be tested in terms of 

predictive power. Most of these models are of course redundant and does not add much. We 

have tried to choose models that have been proven useful in the field of volatility forecasting 

and that capture as much of the empirical properties of volatility as possible. 

 

We have also chosen to investigate only one stock index with its corresponding volatility 

index rather than several indices. While it could be argued that investigating more indices 

would add to the reliability of the results we believe it is of greater interest to pursue a more 

thorough investigation of one particular index. The investigated period is limited in duration 

due to the fact that VSTOXX has only existed since the start of 1999. The concerned reader 

should however not be alarmed since we have more than ten years of daily observations 

which is more than sufficient for the purpose at hand. 
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2 Previous Research 
 
 
In this section we present previous research on the subject of volatility forecasting. 

 
Researchers have struggled for over 20 years to determine which forecasting model that gives 

the most accurate prediction of future volatility. Granger and Poon (2003) examines over 90 

studies on the subject of volatility forecasting. Based on their survey one can conclude that 

implied volatility in most cases outperforms other forecasting models. This result is not 

surprising since implied volatility potentially contains information about the market 

participants’ expectations about the future that is not captured by models based on historical 

data. The implied volatility has been tested as predictor of future volatility for different asset 

classes. Lamoureux and Lastrapes (1993) find that implied volatility from stock options 

outperforms model based forecasts when forecasting the volatility of individual stocks. Blair 

et. al. (2001) reach the same conclusion when investigating the stock index S&P 100 with 

corresponding volatility index (old VIX4). In the foreign exchange market the implied 

volatility is also found to be the best predictor when investigated by Pong et. al. in 2004. 

Some of the earlier research reaches deviating conclusions about the predictive power of 

implied volatility. Canina and Figlewski (1993) conclude that implied volatility has little 

explanatory power of the realized volatility on S&P 100 index options. They find that implied 

volatility is even dominated by historical volatility. Jorion (1995) questions this result and 

argues that the conclusion that implied volatility is a poor forecast is driven by measuring 

errors rather than poor forecasting ability. 

 

Even if most studies find that implied volatility provides the best forecast it has also often 

been found to be biased. Lamoureux and Lastrapes (1993) find implied volatility to be 

downward biased i.e. implied volatility consistently underestimates future realized volatility. 

The downward bias is confirmed by Blair et. al. (2001). Moreover Jorion (1995) finds implied 

volatility to be a biased forecast when investigating the foreign exchange market. Granger and 

Poon (2003) concluded in their survey that the overall result is that implied volatility is the 

best forecast vis-à-vis model based forecasts although a biased one. 

 

                                                 
4 The methodology used to calculate VIX changed in 2003 after the article by Blair et. al. was published. Today 
VIX is calculated on S&P 500 using the same methodology used to calculate VSTOXX. 
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Many different models have been tested in an attempt to find a more accurate forecast method 

than implied volatility. The first class of models is the historical volatility models. This class 

of models include, but is not limited to: random walk models, historical averages, moving 

averages, autoregressive models and different exponential weighting schemes.5 The 

Autoregressive Moving Average (ARMA) model is commonly used for forecasting. 

Theoretically the ARMA model should capture the persistent nature of volatility observed in 

the financial markets. Research conducted by Pong et. al. (2004) on the foreign exchange 

market show that the ARMA(2,1) model is a good forecast model for realized volatility on 

short time horizons. 

 

The second class of models that is considered is the GARCH family models. GARCH models 

are based on conditional variance given some mean model rather than being fitted to historical 

realized volatility. GARCH models are motivated by their ability to capture some of the 

properties empirically observed in realized volatility. In the academic literature various types 

of GARCH models have been examined. The GJR or Threshold GARCH (TGARCH) 

developed by Glosten et. al. (1993) has been found to capture the asymmetric behaviour of 

volatility since this property is not captured in the ordinary GARCH model. The GJR model 

has been used by Taylor (2001) on different stock indices and has been found to outperform 

the ordinary GARCH(1,1) model. Another model to capture the asymmetry of volatility is the 

Exponential GARCH (EGARCH) model as suggested by Nelson (1991). Granger and Poon 

(2003) conclude that GARCH-type models dominate historical models in about half of the 

surveyed studies.6  

 

The previous research on volatility forecasting suggests that volatility is fairly predictable and 

that the implied volatility provides the most accurate forecast. Furthermore implied volatility 

usually dominates model based forecasts in bilateral comparisons. The implied volatility has 

in most research papers been found to be biased.   

                                                 
5 Granger and Poon (2003) p. 482f 
6 Ibid p. 506 
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3 Theory 
 
 
In this section we intend to give a theoretical background of the concept of implied volatility. 

Furthermore we present some stylized facts about volatility. Finally we present some other 

theoretical frameworks underlying the rest of the thesis. 

 

3.1 Implied Volatility – an Introduction 
To understand the concept of implied volatility we take starting point in the Black-Scholes 

formula. We then present some of the issues associated with using the Black-Scholes option 

pricing formula for deriving implied volatility which motivates the methodology used to 

calculate VSTOXX. 

3.1.1 A Note on Terminology: Volatility, Standard Deviation and Risk 
There is some confusion as regarding the meaning of the word volatility, much depending on 

the lack of one clear definition of the word. In an option pricing context volatility is a measure 

of the uncertainty of the returns provided by the underlying asset. Within e.g. the Black-

Scholes framework, volatility of an asset is defined as the standard deviation of continuously 

compounded asset returns.7 In this thesis we always refer to volatility on a daily basis where 

volatility is assumed to increase with the square root of time. In other words if we were given 

the standard deviation on an annual basis then the volatility on a daily basis would be equal 

to: 

 

T
DevStd

daily
..

=σ    (1) 

Where T  is the number of trading days in a year. 

 

To further complicate the matter, the volatility of an asset is not observable and therefore has 

to be estimated somehow. In other words we not only have to produce a forecast of volatility 

but the actual (realized) volatility also has to be estimated. Below we return to the 

methodology used to estimate realized volatility in this thesis. 

 

                                                 
7 Hull (2006) p. 286 
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Finally volatility is not risk per se, Granger and Poon (2003) argue that, unless attached to a 

distribution or a pricing dynamic, volatility is useless as a risk measure. Usually when 

standard deviation is thought of as risk this is done with the implicit or explicit assumption 

that returns are normally distributed. 

3.1.2 Black- Scholes Option Pricing Model 
The rapid expansion of the option market is mainly due to the discoveries made by Black, 

Scholes and Merton. Variations of the Black-Scholes option pricing model are used when 

traders price and hedge options on all sorts of underlying asset. There are some issues 

associated with using the implied volatility backed out from the Black-Scholes model. To 

understand these issues we give a brief background of the model. 

 

The basic idea with the Black-Scholes model is that the value of the option can be replicated 

at all times using a bond and the underlying asset. Since the option can be replicated by the 

bond and the underlying asset it is possible to make a risk free arbitrage profit if any of the 

three assets is mispriced relative to the other two. If we can observe the price of the bond (the 

risk free interest rate) and the price of the underlying asset it is possible to determine the 

theoretical price of the option. Thus the Black-Scholes models is an arbitrage based model. In 

order to value the option an assumption has to be made about the distribution of prices for the 

underlying asset. In the Black-Scholes model it is assumed that asset prices are lognormally 

distributed. It then follows that continuously compounded returns are normally distributed.8 If 

the normality assumption is violated the theoretical value of the Black-Scholes model will 

deviate from actual option prices. Implications of this will be discussed below. 

 

There are five parameters needed to value an option with the Black-Scholes model. These are 

the strike price )(K , the time to maturity )(t , the price of the underlying asset today )( 0S , the 

risk free interest rate )(r  and finally the volatility )(σ . 9 All these parameters are observable, 

all parameters except volatility. To correctly estimate volatility is therefore of great 

importance in option pricing. 

                                                 
8 Figlewski (1997) p. 4 
9 Black and Scholes (1973) p. 640 
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3.1.4 The Greeks 

In option pricing theory there are a number of different measures of the option values’ 

sensitivity to the different variables affecting the value of the option. These sensitivities are 

known as the greeks10 and are calculated as the partial derivative of the option value with 

respect to the different inputs. In order to make the following sections more understandable 

we define some of the most common greeks in table 1 below.11 

 
Table 1 Definition of the greeks 
Greek Definition 

delta First partial derivative with respect to the price of the underlying asset 
gamma Second partial derivative with respect to the price of the underlying asset 
theta First partial derivative with respect to time to maturity 
vega First partial derivative with respect to volatility of the underlying asset 

rho First partial derivative with respect to the interest rate 

 

3.1.5 Implied Volatility and Its Potential Information Content 

In so far we have treated the value of the option as the unknown and listed the inputs needed 

to derive the value of the option. The Black-Scholes formula is a closed form solution into 

which we can simply plug in the inputs and derive a theoretical value of the option. Since 

options are traded in the market there are prices at which the option contracts are traded. It is 

then possible to invert the formula used to price options in order to derive the value of any of 

the inputs given that all other inputs are known. Above we concluded that all inputs except 

volatility are observable in the market, the inverted option pricing formula can therefore be 

used to derive volatility – this is what is known as implied volatility. If the Black-Scholes 

formula was inverted in order to derive the implied volatility there are however some 

implications, these implications are more thoroughly discussed below. The issues associated 

with using the inverted Black-Scholes model to derive implied volatility can be alleviated by 

using what is referred to as model free implied volatility. It is model free in the sense that it 

does not assume a specific model for how options are priced. We later return to the 

methodology used to calculate VSTOXX which is based on the concept of model free implied 

volatility. 

  

                                                 
10 Vega is in fact not a letter in the Greek alphabet but is nevertheless referred to as a greek in options pricing 
theory since vega closely resembles the Latin letter V (for volatility) 
11 For a more thorough discussion on the greeks see for example Hull (2006) chapter 15 
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Figure 1 Distributions  

Normal distribution

T-distribution 5 d.f.

As we will see there are some problems associated with deriving implied volatility. The 

question therefore arises whether it is worth the effort. As we described in the previous 

research section above, several studies have shown that implied volatility outperforms time 

series models in forecasting future volatility. The argument in support of this empirical 

observation is that implied volatility not only incorporates information about past prices but 

also takes expectations about the future into account. More precisely the implied volatility of 

an option is usually interpreted as the markets expectation about the volatility during the life 

of the option.12 The implied volatility derived from an index option written on e.g. S&P500 

that expires in one month could be interpreted as the markets expectation about the average 

volatility of S&P500 during the coming month. Time series models only capture properties of 

past volatility. It therefore seems intuitive that implied volatility could hold additional 

information about the future.  

 

3.1.6 Volatility Smiles, Skews and Surfaces 

Recall the assumption of lognormal prices in the Black-Scholes model. Given that asset prices 

are lognormal, which implies that daily asset returns are normally distributed, the implied 

volatility derived from options should be a straight line over different strikes. In other words, 

if the assumptions of Black-Scholes are not violated and traders use Black-Scholes to price 

options, the volatility implied by options with different strike prices should be the same. 

However, if the distribution of asset returns has fatter tails than the assumed normal 

distribution then the implied volatility will be overestimated. 13   

 

Think of a call option that is deep out of 

the money, i.e. the current asset price is 

far below the strike price of the call. The 

value of the option comes only from the 

probability that the asset price will rise 

above the strike price before maturity. If 

the distribution of assets returns has 

fatter tails than the assumed normal 

distribution, the probability of extreme 

                                                 
12 Granger and Poon (2003) p. 486 
13 See for example Hull (2006) p. 377f 
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outcomes (high asset prices) is higher than in the theoretical framework of the Black-Scholes 

model. In figure 1 we illustrate the normal distribution and the fat-tailed t-distribution. 

Looking at the right tail we see that there is more probability (greater area) under the tail of 

the t-distribution than under the normal distribution. If the t-distribution is the true distribution 

of returns, the model (assuming a normal distribution) will underestimate the option price. If 

the Black-Scholes model then is inverted to derive implied volatility it becomes evident that 

the implied volatility will vary with the moneyness of the option. Extreme prices (and returns) 

will result in a relatively high implied volatility vis-à-vis less extreme outcomes resulting in 

an implied volatility that varies with strike price. The same argument could be made for deep 

out of the money puts which will be in the money only if the asset price falls below its strike 

price before maturity. 14  

 

Given that the empirical distribution of returns is not normal in the way described above, a 

plot of the implied volatilities of options (with different strikes) against their strike price 

would yield a convex graph. This convex pattern is popularly referred to as the volatility 

smile.15 Evidence drawn from the currency market indicates that the distribution of exchange 

rates has fatter tails than the lognormal distribution, i.e. the probability of extreme highs and 

lows is higher in the empirical distribution as compared to the model.16 In order for asset 

prices to have a lognormal distribution the volatility of the asset has to be constant. The price 

of the asset should also change smoothly without any jumps. The effect of jumps is largely 

dependent on the maturity of the option since jumps tend to be smoothed over time and 

thereby not affecting the distribution as much for options with long maturities.17 Empirical 

evidence has shown that asset volatility is not constant over time. We develop this empirical 

observation further below. 

 

The empirical evidence from the equity market differs somewhat from the findings regarding 

currencies. Equity options typically experience what is referred to as the volatility skew rather 

than the volatility smile. The volatility skew refers to the empirical observation that implied 

volatility decreases with increased strike price. The implied distribution has more probability 

in the left tail as compared to the lognormal distribution. There are some theories as for why 

the skew exists. One of these theories is related to the leverage of firms. If the stock of a firm 
                                                 
14 See for example Hull (2006) p. 377f 
15 Ibid p.377f 
16 Hull (1998) 
17 Hull (2006) p. 379f 
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falls in value there is an increased probability of default which increases the risk of the stock. 

The implied volatility derived from a lower strike call option is thus greater than the implied 

volatility derived from a call option with the same time to maturity but a higher strike on the 

same stock. Interestingly the skew appeared first after the stock market crash of 1987 which 

suggests that the market participants after the crash started to incorporate the possibility of a 

future crashes when pricing stock options. The volatility skew is also present in options 

written on equity indices. One final empirical observation is that implied volatility varies not 

only with strike price but also with time to maturity, i.e. the term structure of implied 

volatility. When the moneyness (variation in strike price) of options is combined with the 

term structure we get what is referred to as the volatility surface.18 

 

Since implied volatility derived from the Black-Scholes model varies with strike price, it is 

problematic to use the price of a single option to derive implied volatility. To alleviate this 

problem the concept of model free implied volatility can be utilized. This is the foundation for 

VSTOXX.  

3.2 Calculation of VSTOXX 
As we have discussed there are variations in the implied volatility depending on the 

moneyness of the option used to derive the implied volatility. One solution to this problem is 

to use some kind of weighting scheme to combine the implied volatility of a portfolio of many 

different options into one implied volatility measure. 

 

We concluded above that implied volatility is positively related to the price of a call option. 

The intuition is that the asymmetry of the call option contract makes the contract more 

valuable when markets are more volatile. It then follows that volatility is positively related to 

the value of the option. Given this positive relationship between volatility and option value it 

seems reasonable to be able to track changes in volatility by tracking changes in option value. 

 

The obvious problem when deriving the implied volatility from option values is that there are 

other sources than volatility affecting the value of the option. Besides volatility the main 

factor driving the value of the option is the value of the underlying asset. Now recall that the 

option’s sensitivity to (small) price changes in the underlying asset is measured by the partial 

derivative of the option price with respect to the underlying asset’s price (delta). If a portfolio 

                                                 
18 Hull (2006) p. 381f 
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of options could be made delta neutral, i.e. the portfolio has a delta equal to zero, such a 

portfolio would not change in value even though the price of the underlying asset changed. 

Above we concluded that there are five factors driving option value. Since a delta neutral 

portfolio is insensitive to price changes of the underlying asset any change in value of the 

portfolio must originate from any of the other four factors. Now imagine if it was possible to 

make the portfolio insensitive to all but one of the other factors. Then it would be possible to 

indirectly track that factor by observing the value of the portfolio. For example if we intended 

to measure volatility of the underlying asset then it would be possible to do this by tracking 

changes in the value of the options in the portfolio. This is the basic idea behind the 

construction of volatility indices such as VIX and VSTOXX. 

 

The construction of volatility indices such as VSTOXX is closely related to the methodology 

used when valuing so called volatility swaps.19 We therefore refer to some of the volatility 

swap literature when discussing the theory behind VSTOXX below.  

 

We have concluded that a delta neutral portfolio was needed in order to eliminate the changes 

in option value attributable to price changes of the underlying asset. When constructing 

VSTOXX, delta neutrality is achieved by adding futures20 on the underlying asset to the 

portfolio.21 Since implied volatility varies with the moneyness of the options, the portfolio is 

constructed to include different options of varying moneyness. The question is how to 

determine the portfolio weights for the different options. It turns out that it is possible to 

construct a portfolio with a constant vega (sensitivity to the volatility of the underlying) 

independent of the price of the underlying asset by weighting each option by the inverse of its 

squared strike price. This is valid as long as the price of the underlying is within the range of 

available strike prices and far away from the end of the range of available strikes.22 If the 

portfolio has a constant vega across all included strikes, all price changes of the options have 

the same impact on implied volatility. It is then possible to track changes in volatility by 

observing several options. In order to control for the variation in implied volatility with term 

structure, VSTOXX has a constant time to maturity of a calendar month (approximately 21 

                                                 
19 A volatility swap is an agreement between two market participants where the long (short) position of the 
contract makes a profit (loss) if volatility rises above a pre determined level in the future and vice versa 
20 A future is an agreement to buy/sell the underlying asset at a predetermined date at a predetermined price 
21 VSTOXX methodology http://www.stoxx.com/download/indices/rulebooks/djstoxx_indexguide.pdf p. 78 
22 Demeterfi et. al. (1999) p. 7  
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trading days).23 Above we said that the implied volatility can be seen as the market’s view of 

the average volatility of the underlying asset during the remaining life of the option. It then 

would follow that the observed value of VSTOXX at time t  could be used as a forecast of the 

average volatility of the DJE50 during the subsequent 21 trading days. The methodology used 

to calculate VSTOXX alleviates some of the issues associated with using Black-Scholes to 

derive implied volatility from a single option. Since VSTOXX is a pure volatility measure it 

lends itself well to our purpose of volatility forecasting. 

3.3 Stylized Facts About Volatility 

The aim of this thesis is to model volatility and in order to choose the proper model we first 

have to identify some characteristics that are typical for volatility. In their survey of volatility 

models from 2003, Granger and Poon list a number of more or less documented properties of 

financial market volatility. These properties include, but are not limited to, fat tailed 

distributions of risky asset returns, volatility clustering and asymmetric reactions to shocks. 

3.3.1 Volatility Clustering 

Volatility clustering refers to the empirical observation that volatility in financial data appears 

to vary over time. The emerging pattern is that high (low) absolute returns are followed by 

more high (low) absolute returns. This pattern was first observed by Mandelbrot (1963) and 

has since been observed in almost all financial returns series. One possible explanation for 

this empirical observation is that information affecting returns does not come at evenly spaced 

intervals but rather comes in clusters.24 If we for example look at stock returns it seems 

intuitive that stock returns are more volatile during reporting season when a lot of new 

information about the firm and its competitors is revealed. If return series experience 

volatility clustering it would be motivated to use a model of volatility that takes this feature 

into account. We will return to such models below. 

3.3.2 Asymmetric Reactions to Shocks 

Another empirical observation from financial return data is that the volatility of returns 

increases more following negative shocks than positive shocks of equal size. This asymmetry 

was pointed out by for example Black (1976, cited in Figlewski 1997). The asymmetric 

reaction to shocks of different sign is also called the leverage effect. The leverage effect refers 

                                                 
23 VSTOXX methodology http://www.stoxx.com/download/indices/rulebooks/djstoxx_indexguide.pdf p. 75 
24 See for example Brooks (2008) p. 380 
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to one theory trying to explain the phenomena, the leverage hypothesis. According to the 

leverage hypothesis, negative shocks to returns increases the risk of the firm since the firm 

carries more debt relative to equity and thus makes it more risky when the stock price falls. 

Another theory for explaining the existence of asymmetric reactions to shocks is the volatility 

feedback effect. The volatility feedback effect is related to time varying risk premiums for 

bearing risk. If risk is priced, increased volatility would require asset prices to fall in 

equilibrium in order to compensate investors for the additional risk. The causality behind the 

feedback effect is the opposite from that of the leverage hypothesis.25 Even though the cause 

of asymmetric reactions to shocks of different signs is still an issue open to debate, we can 

conclude that they do exist empirically and that we therefore have to consider this observed 

property in order to successfully model volatility. 

3.3.3 Long Memory of Volatility 

The persistent nature of volatility is another commonly observed property. Granger et. al. 

(2000) test the statistical properties of different asset classes including stock indices, interest 

rates and commodities. They conclude that while returns are at most linearly related at the 

first lag absolute returns have a very long memory. One way to test for the long memory of 

volatility is to fit a fractional integration model. Granger et. al. find evidence for fractional 

integration in the absolute return series. Furthermore they find the level of fractional 

integration to be time varying. Some studies even find that volatility is integrated of order one 

(unit root). The long memory of volatility is a reoccurring empirical observation in most 

studies and across asset classes. These empirical findings imply that a shock to volatility will 

decay very slowly.26 

3.3.4 The Structure of Volatility Over Time 
When forecasting volatility one implicitly assumes something about the underlying structure 

of volatility. For example the choice of a GARCH-family model is accompanied with the 

implicit assumption of volatility being deterministic. Others argue that volatility is best 

modelled as a stochastic process, see for example Hull and White (1987). The true volatility 

structure is of course not known and therefore we can only evaluate different models in terms 

of their ability to forecast out-of-sample volatility. Figlewski (1997) makes some comments 

on important aspects when forecasting volatility. The first issue concerns forecast horizon and 

                                                 
25 Bekaert et. al. (2000) p. 1f 
26 Granger and Poon (2003) p. 482 
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the relation to data frequency. If the structure of volatility varies with forecasting horizon, it 

seems reasonable to choose a data frequency of the historical dataset that matches the 

structure that is going to be forecasted. When short forecast horizons are investigated daily or 

even intra-day data is used.27 When the forecast horizon is increased so is the data sampling 

frequency in order to obtain the lowest forecast error.28  

 

The second issue when forecasting volatility is related to the notion that the underlying 

volatility is not only unknown but that it also might be changing over time. Given that the 

structure of volatility is time varying it seems reasonable to recalibrate the model that is trying 

to capture it. If the underlying structure is changing but the parameters of e.g. a GARCH-

model are not re-estimated, the GARCH-model could in fact be outperformed by less 

sophisticated models that do not take time varying volatility into account. So even though the 

GARCH-model was constructed to capture time varying volatility it could fail since it 

assumes a deterministic volatility structure.29 Following this reasoning, frequent re-estimation 

of time series models is motivated. 

                                                 
27 See for example Granger and Poon (2003) for a summary of such studies 
28 Figlewski (1997) p. 42 
29 Ibid p. 16 



 23

4 Method 
 
 
In this section we describe the empirical method used in this thesis. We start by a describing 

the general forecasting principle we then continue by defining the models used for 

forecasting. Finally we describe the methodology used to evaluate the different forecasts. 

 

4.1 Forecasting with Parametric Models 

To analyze if future volatility can be predicted we estimate a number of different models to 

see which model that produces the best forecast of future volatility. We want to include 

models that capture the properties and behaviour of the volatility observed in the financial 

markets. As described in section 3.3, volatility has empirically been found to be time varying 

and subject to clustering. It is thus important that we choose models that capture these 

properties.  

4.1.1 General Forecasting Principle 

In this thesis we want to examine the ability of different models to predict the average 

volatility over the following 21 trading days. Different models use different approaches to 

facilitate this target. We use a basic principle for all forecast models where the parameters are 

estimated in the in-sample period. Parameters obtained from the in-sample period are used to 

forecast the out-of-sample period.30 The forecasted volatility is benchmarked against the 

realized volatility. The ability to forecast realized volatility is then compared for the 

competing models.  

 

Each model is used to forecast the daily volatility during the subsequent 21 trading days. The 

average of these forecasts is the forecast to be evaluated. The motivation for forecasting 21 

days ahead is that VSTOXX is constructed to reflect a constant time to maturity of one 

calendar month which equals 21 trading days. Hence it follows that the forecast constructed is 

a multi-step-ahead forecast which goes 21,...,2,1=s  steps ahead for each of the out-of-sample 

volatility estimates. The total sample period follows rolling window estimation, meaning that 

the number of observations is constant for both the in-sample period and the out-of-sample 

                                                 
30 Brooks (2008) p.245 
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period. Hence when the parameters in the in-sample period are re-estimated the oldest 

observation is dropped and replaced by a new additional observation.31   

 

Figure 2 General forecasting principle 

 

4.1.2 The Naïve Historical Model 

We include a simple historical model based on historical realized volatility, i.e. a naïve 

forecast model that does not capture the time varying properties of volatility. We use the 

naïve historical model as a benchmark model since it gives a point of reference when 

evaluating the more sophisticated models.32 The benchmark model will be used in a Theil-U 

test to evaluate the other more sophisticated models, see section 4.3 below for more details. 

From the historical daily high and low prices of the DJE50 index we compute daily volatility 

using the log range estimator. A more thorough motivation for the use of the log range 

estimator instead of daily squared returns is given below in section 4.2. Using the log range 

estimator, daily realized volatility is calculated with the following formula: 
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Where thigh  is the highest intraday price of the index and tlow is the lowest price level of the 

index during the day. For a given period T the average daily volatility can be calculated as: 
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31 For EViews code used to calculate forecasts see appendix 
32 See for example Figlewski (1997) p. 16 
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The forecast Tσ̂  from the naïve benchmark model is the average daily volatility from the 

preceding T days. 

4.1.3 ARMA Model 
Some academic literature suggests that an Autoregressive Moving Average (ARMA) model 

should be able to capture the persistent nature of volatility in the financial markets. The 

Moving Average process (MA) of the ARMA model is a linear combination of white noise 

disturbance terms33.  In general a white noise process is defined as: 
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The white noise process has constant mean μ , a constant variance 2
uσ  and zero 

autocovariance for all lags except lag zero. The MA(q) process for volatility would be defined 

as: 

 

∑
=

− ++=
q

i
titit uu

1
θμσ     (5) 

 

The dependent variable tσ  depends on q white noise processes itu − . If we assume that the 

mean μ  is equal to zero, the observed value of today is only dependent on previous error 

terms itu − . 

 

If however tσ  follows an Autoregressive (AR) process then the current value depends only 

on previous values of the dependent variable, i.e. it−σ . The AR(p) process is defined as: 
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33 Brooks (2008) p.211 
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It is important that the AR process is stationary. An AR-process is stationary if the roots of 

the characteristic equation lie within the unit circle, i.e. the process does not contain a unit 

root nor is it explosive.34 For example an AR(2) is stationary if 2|| 1 <φ  and 1|| 2 <φ . For the 

AR(2) process, coefficients close to two and one implies that the modelled process decays 

very slowly. The coefficients can thus be seen as a measure of persistence of the modelled 

process, in this case volatility. If the process is non-stationary the impact of previous values 

never decays. A non-stationary process cannot be modelled within the ARMA framework, 

instead it has to be modelled with an Autoregressive Integrated Moving Average (ARIMA). It 

is thus important to test the stationarity condition in order to choose the proper model. In this 

thesis we chose to test the stationarity condition of the data with the augmented Dickey-Fuller 

unit root test.35     

 

A combination of an AR and MA process gives the ARMA model. In the ARMA model 

today’s observed value tσ  depends on both previous values it−σ  and previous error terms 

itu − . The general ARMA(p,q) model is defined as: 
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The first model we choose from the ARMA model family is the ARMA(2,1) model. The 

observed value today tσ  depends on the previous values 1−tσ  and 2−tσ  plus the previous error 

term at 1−tu  and the mean. The use of the ARMA(2,1) model is motivated by the work made 

by Pong et. al. (2004). They show that the sum of two AR(1) processes can capture the 

persistent nature of volatility. The sum of two AR(1) processes is equivalent of an 

ARMA(2,1) process.36  Other researchers favour a long memory Autoregressive Fractional 

Integrated Moving Average (ARFIMA) model for describing volatility37.  The basic idea 

behind the ARFIMA model is that the persistence in volatility is more long lived than what an 

ARMA model can describe38. The ARFIMA model has been used by Li (2002) who 

concludes that the ARFIMA model gives a more accurate forecast of the volatility on longer 

                                                 
34 See for example Brooks (2008) p. 217  
35 Ibid p.327ff 
36 See Granger and Newbold (1976) 
37 Martens and Zein (2004) 
38 Pong et. al. (2004) p.2542-2543 
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forecasting horizons than implied volatility. Since we only look at a fairly short forecast 

horizon of 21 trading days it could be argued that the long memory property of the ARFIMA 

model adds less to the forecasting ability. For example Pong et. al. (2004) find that the 

ARMA(2,1) and ARFIMA models perform equally well when the realized volatility is 

estimated using high frequency data. Since we use the log range estimator to capture some of 

the intraday properties of realized volatility we find it motivated to follow Pong et. al. and 

choose an ARMA(2,1) model.  

 

A first look at the statistical properties of the realized volatility series in section 5.1 below 

suggest that the realized volatility suffers from unit root, i.e. is non-stationary, in several in-

sample-periods. From this empirical observation we draw the conclusion that it would be 

proper to use an ARIMA model in order to capture the non-stationary property of our time-

series. As a complement to the ARMA(2,1) model an ARIMA(1,1,1) model is estimated. The 

general ARIMA(p,d,q) is denoted: 
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Where dΔ denotes the number of times the series is differentiated. Since we differentiate our 

series once the ARIMA(p,1,q) model is defined as: 
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With the intention of deciding the predictive ability of the ARMA(2,1) model and the 

ARIMA(1,1,1) model we need to forecast the future volatility and compare the result with the 

realized volatility. We let st ,σ̂  denote the forecast made by an ARMA(p,q) at time t  for s 

days into the future.39 

                                                 
39 Brooks (2008) p. 248 
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The iα  coefficient captures the autoregressive part and jβ  captures the moving average part 

of the ARMA(p,q) model. The MA part of the process dies after lag q. Since the error term tu  

in the forecast period is equal to zero, the MA part of the forecasted ARMA(2,1) model will 

die out two steps into the future. The AR part of the process will not die out in the forecast 

period, the forecasted value 3,ˆ tσ  will be based on the forecasted values 1,ˆ tσ and 2,ˆ tσ . Since the 

error term tu  is equal to zero in the forecast period the ARMA(2,1)-model forecasts volatility 

as an AR(2) process two steps ahead into the future.  

 

The forecast with the ARIMA(1,1,1) model is not as straightforward as the ARMA(2,1) 

model. The following methodology is used to forecast with the ARIMA(1,1,1) model:  
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Where st ,σ̂  denotes the forecast made by the ARIMA(1,1,1) at time t  for s days into the 

future. The coefficient 1α  denotes the autoregressive part, 1β  denotes the moving average 

part of the ARIMA(1,1,1) model. It is important to note that we exclude the intercept μ  in the 

forecast even though it is estimated. The reason for this is that it would be counterintuitive to 

have a deterministic component of changes in volatility. As expected estimation results, 

presented in section 5.1, indicate that the intercept is zero. However we choose to include the 

intercept when estimating to assure unbiased slope coefficients.40 The MA part of the process 

dies after lag 1 since the error term becomes zero in the forecast period. The ARIMA(1,1,1) is 

estimated to model changes in volatility. Since we are interested in forecasting levels rather 

                                                 
40 The OLS estimator is guaranteed to produce unbiased parameter estimates if an intercept is included in the 
regression equation, see for example Brooks (2008) p. 131f 
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than differences we add the current level of volatility in t  to the forecast in 1+t . In the 

general case we use the forecasted value in st +  as an input to the forecasted value in 

1++ st . 

4.1.4 GARCH Forecasting Models 
In section 3.3 we summarized a number of stylized facts about volatility. One of these was the 

existence of volatility clustering, i.e. large (small) absolute returns are followed by more large 

(small) absolute returns. Engle (1982) suggests that this property should be modelled with an 

Autoregressive Conditional Heteroskedasticity (ARCH) model. The ARCH family of models 

consists of at least two equations. The first equation, referred to as the mean equation, is 

trying to model the first moment of returns. The second equation, referred to as the variance 

equation, is intended to capture the second moment of returns.41 In the original ARCH(q) 

model the variance is conditional upon q past shocks to the mean equation.  
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The ARCH-model was generalized by Bollerslev (1986) to capture the persistent nature of 

variance. In order for the above mentioned ARCH-model to capture the effect of shocks far 

back in time, a lot of regression coefficients have to be estimated. To reduce the number of 

estimated parameters Bollerslev introduced the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH)-term into the variance equation. The GARCH-term is the 

conditional variance in the previous period. A GARCH(p,q) has the following general 

specification. 
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41 See for example Champbell, Lo, Mackinley  p. 483 
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The most commonly used specification of the GARCH model is the GARCH(1,1).42 Many 

existing papers utilize a variation of the standard GARCH(1,1) proposed by Glosten et. al. 

(1993) known as GJR or Threshold GARCH (TGARCH).43 The GJR model is constructed to 

capture the asymmetric reaction to shocks described in section 3.3.2. In the model, a dummy 

variable is introduced that takes the value of one when the shock in the previous period is 

negative and the value of zero when the shock is positive. The coefficient associated with the 

dummy variable would then capture the additional contribution to variance from negative 

shocks.  When it comes to parameter estimation the GJR-model shares some issues with the 

standard GARCH(1,1)-model. If no restrictions are imposed when estimating the parameters, 

estimates could be negative which implies non-stationarity of volatility. Negative parameters 

could also result in negative variance forecasts which would be counterintuitive.44 In order to 

avoid negative variance but still capture the asymmetric behaviour of the variance we will use 

the Exponential GARCH model (EGARCH) proposed by Nelson (1991).  There are different 

ways to specify the EGARCH model but in this thesis we use the following specification:45 
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The left-hand side of the equation )ln( 2
tσ  is the log of the conditional variance. The 

EGARCH model has two important and sought after properties. First of all the variance will 

always be positive even if the coefficients are negative. Secondly the EGARCH model is able 

to capture asymmetric shocks. The asymmetry is captured by the γ  coefficient. A negative γ  

coefficient implies that there is a negative relationship between return and volatility. A 

negative γ  indicates that positive shocks lead to lower volatility than negative shocks of the 

same magnitude which gives empirical support to the existence of a leverage effect (and 

volatility feedback).46  

                                                 
42 See for example Champbell, Lo, Mackinley  p. 483 
43 See for example Becker et. al (2007),  
44 Estimation of the GJR model resulted in negative coefficients. We therefore replaced GJR with EGARCH  
45 See for example Brooks (2008) p.406 
46 Brooks (2008) p.406 f 
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4.1.5 Estimation of GARCH Using Maximum Likelihood 
The parameters of the GARCH model are estimated using Maximum Likelihood (ML) which 

is a suitable estimation technique for non-linear models such as GARCH. When estimating 

parameters using ML we have to assume a distribution for the errors and a model 

specification. Given that the assumed distribution is correct and that the model is correctly 

specified, the model estimate is found by altering the parameters so that the particular dataset 

best fits the assumed model specification. We define a vector of parameters )(θ  whose 

elements are altered. When the vector contains the true parameters the errors are IID and 

follow the assumed distribution. Given that we assume that the errors follow a normal 

distribution, the true parameters are obtained by maximizing the following function given that 

we estimate the EGARCH model above.47 
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The maximization is done numerically using the Marquardt algorithm. One problem when 

estimating GARCH-models with ML is to find the proper starting values for the optimization. 

The log-likelihood function has several local optima and the solution can therefore depend on 

the starting values. We use backcasting to derive the presample variance, i.e. the initial 

conditional variance. If the backcasting parameter is set to one the initial conditional variance 

will be equal to the unconditional variance. In this thesis we will smooth the presample 

variance since this usually results in better estimates.48 

4.1.6 Forecasting with GARCH 
Using the EGARCH model we get the following forecast of the conditional variance: 
 
 

[ ]
[ ])ln(expˆ

)ln(expˆ

||
)ln(expˆ

2
1,

2
,

2
1,

2
2,

22

22
1,

−+=

+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

stst

tt

t

t

t

t
tt

σβωσ

σβωσ

σ

ε
α

σ

ε
γσβωσ

 (16) 

 

                                                 
47 See for example Campbell et. al. (1997) p. 487f 
48 Eviews 6 User Guide II p. 193 
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The error term is zero in the forecasting period. Forecasts made more than one-step-ahead 

thus only takes the previous conditional variance as input.  

4.2 Realized Volatility Calculations 

To proper evaluate the accuracy of the forecasted volatility it is important to have a correct 

measure of the realized volatility. Since the realized volatility is a latent variable, not directly 

observable, it has to be estimated.49 We use a logarithmic range method to calculate a proxy 

for the realized volatility. This method is based on the work of Alizadeh et. al. (2002). The 

range based estimator for calculating the realized daily volatility is computed by taking the 

difference between the natural logarithm of the daily high price and the natural logarithm of 

the daily low price.  
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Where tRV  is a proxy of the realized daily volatility for day t . We then construct 21+tRV as 

the average of the 21 daily realized volatilities between t and 21+t . 

 

Another proxy for realized volatility is to use the square root of squared daily returns. 

Academic studies have criticized this approach since much information is lost about the true 

volatility when only closing prices are considered.50  This is due to that squared returns only 

incorporates one price observation per day while the intraday high and low prices contain 

additional information. According to Alizadeh et. al. (2002) the range based estimator 

produces more efficient estimates of true volatility than squared returns. For the above 

reasons the authors favour the range based estimator over squared returns. 

 

Many existing studies favour the use of higher frequency data when calculating the realized 

daily volatility based on work by Andersen and Bollerslev (1998) and Andersen et. al. (2003). 

The most common approach of calculating realized volatility with high frequency data is to 

collect observations of the underlying asset with an interval of 5 minutes during the day. The 

data points are then squared and summed for the day. The basic idea with short time intervals 

                                                 
49 Granger and Poon 2003 p. 492 
50 Granger and Poon 2003 p. 492 and Alizadeh et al (2002)  
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is that tick data incorporates more information about the true volatility. The use of high 

frequency data has been found to improve the efficiency of the realized volatility estimates as 

compared to squared daily returns.51 The use of high frequency data is not unproblematic, 

market microstructure can have a significant impact on the estimation of realized volatility. 

One effect of the market’s microstructure is that prices bounce between bid and ask.52 This 

leads to an upwardly bias of the volatility estimate when using high frequency data to estimate 

volatility. The range based estimator is also biased due to the bid-ask bounce. The problem is 

however less significant since we only have two observations per day, the high and low.53 

Less problems with market microstructure and lack of tick data observations motivates the use 

of high/low data rather than high frequency data.   

4.3 Evaluation of Forecast 

A model is not much worth if it does not work empirically thus testing the models is an 

essential part of this thesis.  

4.3.1 Forecast Performance Measures  

In the econometric literature a number of different performance measures are suggested and 

they all have their individual merits and drawbacks.  Performance measures evaluate the 

accuracy of a forecast by comparing the out-of-sample forecast with the actual value in each 

time step and aggregate over the out-of-sample period. We choose to use three performance 

measures to rank and evaluate the performance of the forecast models. Since the loss 

functions have little to say about the performance of a forecast when the statistics are 

examined individually we compare the result of the different loss functions for competing 

forecast models. 

 

One of the most common performance measures is the mean squared error (MSE). The MSE 

loss function is defined as54: 
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51 See for example Blair et. al. (2001) 
52 For more about the bid ask-spread see Campbell et. al. (1997) Chapter 3 
53 Alizadeh et al (2002) 
54 Dunis et al (2001) 
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Where n  is the number of forecasts to be evaluated, tσ̂  is the forecasted volatility at time t  

and 21+tRV  is the realized volatility. MSE is a quadratic loss function and is best suited in          

situations where large forecast errors are more serious then smaller errors.55   

 

The second performance measure we use is the mean absolute error MAE. This measure is 

more suitable than MSE when outliers are present56. The MAE loss function is defined as: 
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Where n  is the number of forecasts to be evaluated, tσ̂  is the forecasted volatility at time t  

and 21+tRV  is the realized volatility.  

 

Another common performance measure is the Theil-U statistic which is defined as57: 
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Where n is the number of forecasts to be evaluated, ftσ̂  is the forecasted volatility at time t , 

21+tRV  is the realized volatility and btσ̂  is the forecast obtained from some naïve benchmark 

model, in this case historical volatility. The idea behind the Theil-U statistic is to use a naïve 

benchmark model and see if a more complex forecasting model yields a different result.  If the 

Theil-U statistic equals one the forecasting model and the naïve model perform equally bad. If 

the Theil-U statistic is less than one the more complex forecasting model is superior to the 

benchmark model.58  

                                                 
55 Brooks (2008) p.251-253 
56 Dunis et al (2001) 
57 Brooks (2008) p.254 
58 See Brooks (2008) for further discussion 
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4.3.2 Predictive Power 

With the intention of determining the predictive power of the forecasts we perform a 

regression analysis for each forecasting method. The basic idea behind the regression analysis 

is to determine the explanatory power of the forecasted volatility. We estimate the following 

equation: 

 

tttRV εσβα ++=+ ˆ21    (22) 

 

Where tσ̂  is the forecast at time t , 21+tRV  is the realized volatility and tε  is the error term.  

We estimate the regression using ordinary least squares (OLS). The predictive power of the 

forecasted volatility is expressed by the coefficient of determination 2R . We test all our 

different models and rank them on their predictive power expressed by the 2R  coefficient.  

 

To evaluate the bias of the forecasts we test some hypotheses on the OLS estimates of α  and 

β . In order to reliably infer around the estimated parameters, the OLS estimator has to be 

efficient. OLS is an efficient estimator given uncorrelated residuals and homoskedasticity. 

The realized volatility could be heavily autocorrelated and heteroskedastic as suggested by 

Jorion (1995). In the presence of autocorrelation and heteroskedasticity the properties of the 

error term tε  does not satisfy the OLS-assumptions. In order to correct the t-statistics we use 

the correction of the standard errors proposed by Newey-West (1987) and used by 

Charoenwong et. al. (2008) in their evaluation of volatility. Poon and Granger (2003) argue 

that it is very important to examine if the forecasted volatility is biased in some way. The 

forecast is unbiased when α =0 andβ =1 and downwardly biased if 0>α  and 1=β or 0=α  

and 1>β .59 A downward bias means that the volatility is underestimated by the model. 

Downward bias can be corrected and taken into account, and is thus not a major problem. The 

most common scenario is that 0>α  and 1<β , which is a more serious problem than a 

downward bias. If the forecasting model suffers from this type of behaviour the model will 

under-forecast low volatility and over-forecast high volatility. This is problematic since it is 

impossible to determine if the subsequent period is a low or a high volatility period.  

 

                                                 
59 Granger and Poon (2003) p.503 
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There is an important difference between bias and predictive power. A biased forecast could 

yield a good prediction of the future volatility if the bias can be corrected and taken into 

account. The uncertainty of the predicting power of an unbiased model with big forecast 

errors could on the other hand be completely useless in practice.60  

4.3.3 Information Content 

Instead of evaluating the forecasting accuracy and the predictive power of the forecasting 

models, Jorion (1995) suggests that it would be useful to look at the information content of 

the forecasting models. The basic idea is to test the information content of the volatility 

forecast with respect to the realized volatility one day ahead.  

 

tttRV εσβα ++= ˆ    (23) 

 

Where tRV  denotes the realized volatility one day ahead, tσ̂  denotes the forecasted volatility 

at time t . The information content test is not designed to test if volatility forecast models give 

the best prediction about the future volatility for the entire forecast horizon. Instead the 

information content test is designed to test if the volatility forecast can say anything at all 

about the volatility one day ahead. Hence we test if the volatility forecast contains any 

information about the future and not only information about the historical volatility. The test 

is conducted by estimating equation 23 with OLS. As above we correct the standard errors 

with the Newey-West estimator to account for the assumed autocorrelation and 

heteroskedasticity. To determine the information content we check if the slope coefficient 

0>β . The information content test is performed for all forecasting models and we rank the 

models based on their performance.   

4.4 Test of Additional Information in Implied Volatility 

We follow the methodology of Becker et. al. (2007) when testing for additional information in 

implied volatility beyond that contained in the model based forecasts (MBFs). In order to 

investigate whether or not there is any additional explanatory power in VSTOXX we first 

have to decompose VSTOXX into two components. The first component is constructed to 

contain the same information as the combination of the MBFs, we call this VSTOXXMBF . 

                                                 
60 Granger and Poon (2003) p.491 
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The second component contains any additional information that may or may not be useful for 

forecasting. The second component is called ∗VSTOXX . 

4.4.1 Decomposition of Implied Volatility 

We start by calculating the model based forecast (MBF) for each time series model. In order 

to match the forecast horizon with the horizon of implied volatility the average volatility 

forecast during the following calendar month is calculated. All MBFs at time t  are stored in a 

vector ωt. The objective is to decompose VSTOXX into the components:  

 
∗+= t

MBF
tt VSTOXXVSTOXXVSTOXX   (24) 

 

Since we have the implied volatility and the MBFs we can write the above relation as 

 

tttVSTOXX εωγγ ++= 10    (25) 

 

Any additional information beyond that captured by the MBFs is now in the residual of the 

above regression model. What we have done is to construct a new time series ∗VSTOXX  

which is made orthogonal to the vector of MBFs hence:  

ttVSTOXX ε̂=∗    (26) 

4.4.2 Construction of the Realized Volatility Vector 

Since the intention is to test if there is any additional explanatory power of realized volatility 

in ∗
tVSTOXX  we, following Becker, construct a vector of realized volatility. Since VSTOXX 

is defined to capture the volatility of the underlying during the following calendar month we 

therefore construct the realized volatility vector to include the average realized volatility 

during the 21 trading days following the date of the forecast. The realized volatility is 

calculated as: 
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Where 1T is the number of days over which the average realized volatility is calculated. In 

order to test if there is any additional information in implied volatility for shorter time 

horizons we include the following forecast horizons in the realized volatility vector RV. 

 

{ }21,15,10,5,1 +++++= ttttt RVRVRVRVRVRV  (28) 

 

To test if there is any information regarding the changes in realized volatility incorporated in 

the implied volatility we create the following vector. 

 

{ }21,15,10,5,1 +++++= ttttt RVdRVdRVdRVdRVddRV  (29) 

 

Where tjtjt RVRVRVd −= ++  

4.4.3 Test of Additional Information in VSTOXX Using the F-test 

When it comes to testing the potential additional information content of the implied volatility 

Becker et. al. (2007) propose two different testing strategies. An intuitive test of additional 

information in VSTOXX would be to run the following linear regression 

 

tt uVSTOXX +=∗ RVβ    (30) 

 

Where β  is the vector of slope coefficients from the linear regression. If all slopes ofβ are 

equal to zero this would mean that there is no additional information regarding future realized 

volatility contained in ∗
tVSTOXX . The reader should be aware that the formulation of the test 

in equation 30 does not imply that realized volatility in any way causes ∗
tVSTOXX  it is just a 

way to investigate the existence of a linear relationship between ∗
tVSTOXX  and future 

realized volatility. There are however some issues when it comes to estimating the above 

regression. One of the underlying assumptions of Ordinary Least Squares (OLS) is that the 

error term tu  is not serially correlated. If this assumption is violated we can not safely use the 

standard errors to perform inference around the parameters.61 Since the forecast is made 

multiple-steps-ahead, the forecasted values are overlapping and therefore most likely 

                                                 
61 See for example Brooks (2008) p. 149 
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correlated. The joint null hypothesis of zero slope coefficients is tested by the F-test statistic. 

To account for the possible autocorrelation in the residuals, Becker et. al. (2007) make use of 

the adjusted test F-statistic suggested by Harvey and Newbold (2000). The adjusted F-statistic 

was developed to evaluate encompassing forecasts and constructed to account for overlapping 

data. In this thesis we face exactly the problem of overlapping data and we therefore find it 

motivated to implement this non standard test procedure even though it is not thoroughly 

tested. In practice Harvey and Newbold make adjustments to the variance covariance matrix 

to allow for serial correlation.62 The adjusted F-statistic is calculated as 
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Where K  is the number of estimated parameters, n  is the number of observations, β̂  is the 

vector of estimated parameters and 11 ˆˆˆˆ −−= MQMD  where XXnM '1ˆ −= . X is a Kn× matrix 

of 1−K independent variables plus a column of ones for the intercept and Q̂  is a 

KK × matrix in which each element can be calculated as: 
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Where tu is the residual at time t  from equation 30 and h  is the number of steps-ahead of the 

forecast.63 In this thesis we intend to forecast up to 21 days ahead and h is therefore set to 21. 

As usual the F-statistic is used to test the joint null hypothesis that all slopes in the vector β of 

equation 30 are equal to zero. 

4.4.4 Test of Additional Information in VSTOXX Using GMM 
 
Becker et. al. (2007) point out that the robustness of the test statistic proposed by Harvey and 

Newbolt is only tested under short forecast horizons and that the results therefore should be 

interpreted with caution, especially if the forecasting horizon is increased.64 In order to 

increase the reliability of the results we follow Becker et. al. and use Generalized Method of 

                                                 
62 Harvey and Newbold (2000) p. 473f 
63 See appendix for the Eviews code used to calculate the F-statistic 
64 Becker et. al. (2007) p. 2542 



 40

Moments (GMM) to investigate the existence of a linear relationship between realized 

volatility and ∗VSTOXX . 

 

We start by giving a brief overview of the GMM-estimation technique. The basic idea is to 

estimate a linear or non linear equation by fulfilling a number of moment conditions by 

varying the parameters to be estimated. To define the moment conditions we choose a set of 

instrument variables. The instrument variables could be identical to the independent variables 

of the regression to be estimated. Imagine if there is one independent variable (regressor) and 

we want to estimate a linear regression with an intercept. If we define the moment conditions 

that the regressor should be orthogonal to the residual and that the sum of squared residuals 

should be zero, we would have a system of 1+1=2 equations. Since there are two parameters 

to be estimated and two moment conditions, the system of equations is just identified. For 

example if we want to estimate the equation ttt xy εβα ++= 1  we get the following set of 

moment conditions. 
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Since the system of equations is just identified there exists an analytical solution to the above 

optimization problem. In fact this is exactly the same thing as estimating the equation using 

OLS. Recall that the OLS-estimator minimizes a function of squared residuals under the 

assumption that the independent variables are uncorrelated with the residual. If more 

instruments are added to the above system of equations then the system is overidentified 

which would make it impossible to find an exact analytical solution. The estimator will now 

try to minimize the objective function through a numerical procedure by varying the 

parameters in order to satisfy the conditions as closely as possible. Imagine if we expanded 

the list of instruments to include not only tx  but also the new variable tz . The restriction 

would be the same as before, tz  should be uncorrelated with the residual. This additional 

restriction would be referred to as an overidentifying restriction since there are now three 

equations but only two unknowns. We would then re-estimate the model. If tz  was entirely 

uncorrelated with the residual then the GMM estimator would find the exact same solution as 

before. Furthermore we can test the validity of the additional restriction using the so called J-
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statistic which is the value of the objective function times the number of observation. The null 

hypothesis to be tested is that the overidentifying restrictions are valid. In the above example 

we only have one overidentifying restriction. In other words if the J-statistic is small enough 

we cannot reject the null that tz  is orthogonal to the residual. To express this differently, the 

smaller the value of the objective function to minimize (which leads to a smaller J-statistic), 

the more likely it is that the assumed moment condition actually fits the dataset at hand. 

GMM has the advantage that estimation does not require any assumption about distribution of 

the residuals. Furthermore GMM also can handle heteroskedasticity of unknown form.65  

 

Recall equation 25 above where VSTOXX is regressed on the model based forecasts in order 

to construct ∗VSTOXX . ∗VSTOXX  is linearly independent or orthogonal to the MBFs and 

simply defined as the residual of equation 25. Above we described how to use OLS to 

estimate equation 25. We could however have used another estimator such as GMM since the 

OLS-estimator can be seen as a special case of GMM. If we were to estimate equation 25 

using GMM we would have the same model specification as before. 

 

tttVSTOXX εωγγ ++= 10    (34) 

 

Recall that the elements of tω are the model based forecasts. Estimating equation 34 using 

GMM also requires us to supply a set of instrument variables. As mentioned above the way 

GMM works is that it minimizes a function by varying the parameters to be estimated in order 

to satisfy a pre-defined set of conditions. More formally if we were to estimate the parameters 

),( '
10 γγγ  of equation 34 we would minimize the function HMM'=V  where 

))'((1
ttT ZM γε−=  is a 1×K  vector of moment conditions, H  is a KK ×  weighting matrix 

and tZ is a vector of instrument variables. 

 

If we estimate the above regression using GMM with the moment conditions that the residuals 

should be orthogonal to the elements of tω  we obtain the same parameter estimates as we 

would if we used OLS. Becker et. al. suggest that the vector of instruments should be 

expanded to include, not only the regressors of equation 34, but also the vector of realized 

volatility RV . If GMM is able to find parameters so that the element of tω  and RV are 
                                                 
65 For more information on GMM estimation see for example Verbeek (2004) p. 159ff  
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uncorrelated with the residuals of equation 34, this would imply that (i) ∗VSTOXX  is 

orthogonal to all MBFs and (ii) ∗VSTOXX  is orthogonal to RV, which means that VSTOXX 

contains no additional information beyond that contained in the model based forecasts. 

 

We test if the instrument variables are uncorrelated with the residual by calculating the J-

statistic HMM'TJ = , which is 2χ -distributed with )dim(γ−K  degrees of freedom under 

the null hypothesis of zero correlation between the residual and the overidentifying instrument 

variables. In this case the overidentifying instruments are equal to the elements of the realized 

volatility vector and the J-test subsequently tests if ∗VSTOXX (the residual from equation 34) 

is uncorrelated with the realized volatility series. 

 

This could also be expressed as GMM being a way to test the existence of additional 

information in ∗VSTOXX  by simultaneously estimating equation 25 and 30. More precisely 

we estimate equation 25 with the imposed restriction that all elements of the slope vector in 

equation 30 are equal to zero. The authors of this thesis argue that although somewhat 

complex, the GMM-framework is justified due to the uncertain properties of the F-test 

described above.  
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5 Result 
 
 
In this section we describe the result of the above methodology. We start by presenting the 

data material and its statistical properties. We continue by describing the forecast result from 

the used forecast methods. In the last section we present the test result of additional 

information in implied volatility. 

5.1 Data and Descriptive Statistics in the Estimation Period 

The dataset consists of the stock index Dow Jones EURO STOXX 50 (DJE50) between 1998-

02-26 and 2009-04-01 (2820 daily observations). The realized volatility is constructed from 

high/low data on DJE50 obtained from Datastream. Estimation of the GARCH-model is done 

on continuously compounded returns of DJE50. The log returns are calculated from the 

DJE50 price series obtained from Datastream. The implied volatility series (VSTOXX) is 

obtained from stoxx.com.66 We use a rolling window of 1000 observations to calculate the 

parameters for the chosen forecast models. Since the rolling window is rolled one day in each 

step we obtain 1820 in-sample periods which are based on 1000 historical observations of the 

daily realized volatility.  

 

Table 2 Descriptive statistics of realized volatility  
  Mean Std.Dev Skewness Kurtosis Jarque-Bera (JB) P-Value JB Min Max 
Mean 1,62 0,998 2,205 11,006 4617,085 0 0,333 8,286 
Min 0,978 0,453 1,576 6,563 946,617 0 0,24 4,292 

Max 2,148 1,304 4,366 32,224 38762,4 0 0,498 10,884 
Std.Dev. 0,409 0,267 0,559 5,103 5878,791 0 0,099 1,636 
 

This table summarizes the descriptive statistics of the realized volatility. We calculate the descriptive statistics from a 

window of 1000 observations, the window is rolled 1820 times for each statistical property. The descriptive statistics are 

aggregated and the mean value, min value, max value and standard deviation are shown for each statistical property. 

 

Table 2 describes the descriptive statistics of the 1820 in-sample observations between 2002-

02-05 and 2009-04-01. Both the mean and the standard deviation (Std.Dev) fluctuate through 

out the sample period which indicates that the realized volatility is not constant over time. An 

interesting observation is that the Jarque-Bera test shows that normally distributed realized 

volatility can be rejected in all sample periods. The distribution of realized volatility can be 

categorized as leptokurtic since it has fatter tails and is more peaked than the normal 
                                                 
66 http://www.stoxx.com/data/historical/historical_strategy.html 2009-04-15 
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distribution.67 This property is very common in financial time series. Non-normally 

distributed realized volatility is also found by Becker et. al. (2007) in their study of the VIX 

index. The result is thus not unexpected.  

 

Table 3 Autocorrelation of realized volatility 
Lag 1 2 3 4 5 10 20 100 252
Mean 0,597 0,581 0,569 0,545 0,533 0,471 0,374 0,147 0,113
Min 0,313 0,298 0,256 0,265 0,236 0,176 0,103 -0,122 -0,074
Max 0,757 0,759 0,771 0,748 0,756 0,72 0,707 0,814 0,833
Std.Dev 0,119 0,125 0,137 0,134 0,141 0,14 0,152 0,216 0,195
Percent Significant 100% 100% 100% 100% 100% 100% 100% 74% 54%
Total Insignificant 0 0 0 0 0 0 0 465 835
 

This table summarizes the autocorrelation structure of the realized volatility. We calculate the autocorrelation for each lag 

length from a window of 1000 observations, the window is rolled 1820 times.   
  

As we can see in table 3, the realized volatility is autocorrelated at various lag lengths. The 

autocorrelation indicates that the present volatility depends on previous values of volatility. 

The autocorrelation is positive and significant in all cases up until the 20th lag. The positive 

autocorrelation indicates that the high (low) realized volatility is followed by high (low) 

volatility. Volatility is very persistent since autocorrelation in some periods is significant up 

until the 252nd lag. Hence shocks in the realized volatility die out very slowly and impact the 

volatility for a long time into the future.  As mentioned in section 3.4.3 Granger et. al. 

investigate the statistical properties of volatility and conclude that the realized volatility has a 

long memory. The result of autocorrelated volatility is thus in line with previous research.  

 

Table 4 Augmented Dickey-Fuller Unit Root Test  H0 = Realized Volatility has a Unit Root 
  Mean Min Max Unit Roots Number of Obs Unit Root Not Rejected at 5% 

Number of Lags 5,309 1 14   1820   

T-Stats -4,854 -11,77 0,984  1820   

P-Value   0 0,997 164 1820 9,01%
 

This table summarizes the Augmented Dickey-Fuller unit root test of the realized volatility. We conduct the test from a 

window of 1000 observations, the window is rolled 1820 times.  The test indicates that the null hypothesis cannot be 

rejected in 9 percent of the cases i.e. 164 of 1820. 
 

Table 4 indicates that the null hypothesis of unit root in the realized volatility series is rejected 

in most cases. The result is however somewhat inconclusive since the null is not rejected in 

164 of 1820 cases (9 percent). On the other hand we expect the null not to be rejected in 5 

percent of the cases. A unit root indicates that the time series is non-stationary which has 

                                                 
67 See Brooks (2008) p.162 for discussion 
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implications for e.g. the OLS estimator.  If the assumption of stationarity is violated we can 

not draw any reliable conclusions from the result of the regression.68 

5.2 Model Estimation 

The parametric models used for forecasting the realized volatility over 21 days is estimated on 

an in-sample of 1000 observations. The models are re-estimated every day with a rolling 

window of 1000 observations which, means that the forecast is repeated 1820 times. Since the 

in-sample estimation window consists of 1000 observations and a forecast window of 21 

observations, the authors of the thesis makes the implicit assumption that the estimated 

parameters from the in-sample period is sufficient to explain the variation of the realized 

volatility over the next 21 days. Furthermore a deterministic structure is assumed since 

historical data is used to forecast the future. We do however believe that the structure changes 

over time and it is therefore motivated to re-estimate the parameters. Stable and significant 

coefficients from the parametric models over different forecast periods indicate that the 

realized volatility follow some kind of deterministic structure. We examine the structure and 

the coefficients from the three different parametric forecast models. The first parametric 

model estimated is the ARMA(2,1), the stability of the parameters are displayed in table 5 and 

figure 3. 

 

Table 5 ARMA(2,1) model estimation 
ARMA(2,1) C T-Stat C P-Value C AR1 T-Stat AR1 P-Value AR1 
Mean 1,61 8,44 0,00 0,97 20,90 0,00 
Min 0,95 0,11 0,00 0,81 7,59 0,00 
Max 8,44 20,05 0,91 1,23 31,02 0,00 
Std.Dev. 0,47 4,30 0,04 0,07 1,98 0,00 
Percent Significant   99,6%   100% 
        
  AR2 T-Stat AR2 P-Value AR2 MA1 T-Stat MA1 P-Value MA1 
Mean 0,00 0,05 0,37 -0,75 -22,70 0,00 
Min -0,25 -5,66 0,00 -0,91 -62,54 0,00 
Max 0,07 1,64 1,00 -0,43 -4,17 0,00 
Std.Dev. 0,08 1,66 0,27 0,04 5,04 0,00 
Percent Significant   15%   100% 
 

This table summarizes the coefficient estimates of the ARMA(2,1) model. We calculate each coefficient from a window 

of 1000 observations, the window is rolled 1820 times. The number of times each coefficient is significant is expressed 

in percent.  
 

                                                 
68 See for example Brooks (2008) p. 319 
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The estimated coefficients of the ARMA(2,1) model are relatively stable over time. The 

constant coefficient C fluctuates over time and there is a wide span between its min and max 

value. The purpose of estimating the constant coefficient is to ensure that the OLS estimator 

gives unbiased estimates of the coefficients.69 However, if we were to include the constant 

coefficient in the forecast it would lead to increasing volatility every day over the forecasting 

period. Accordingly the constant coefficient is excluded in the forecast period. The AR(1) and  

MA(1) coefficients are stable over time and are always significant. The AR(2) coefficient is 

insignificant in many estimations but its inclusion is motivated by its common use in the 

volatility forecasting literature.70 

 

Figure 3 ARMA(2,1) Parameter stability and 2R in the in-sample period 
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Figure 3 displays how the estimated parameters from the ARMA(2,1) model fluctuate over 

time. The parameters seem to be fairly stable but the constant parameter experiences drastic 

fluctuations over the last quarter of 2008 during the turbulent months of the financial crisis. 

The 2R , which describes the explanatory power in the in-sample period is also plotted in 

figure 3. The ARMA(2,1) model seems to be better at explaining the variation in the realized 

volatility than the ARIMA(1,1,1) model that is presented in figure 4. It is important to note 

                                                 
69 Brooks(2008) p.131  
70 See section on methodology in section 4 
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that high explanatory power of past volatility does not necessarily mean that the model can 

forecast the future with high accuracy. We also check the stationarity condition of the 

coefficient estimates and find that all roots lie within the unit circle which implies stationarity. 

 

Table 6 ARIMA(1,1,1) model estimation 
ARIMA(1,1,1) C T-Stat C P-Value C AR1 T-Stat AR1 P-Value AR1 
Mean 0,00 -0,06 0,78 0,03 0,81 0,39 
Min 0,00 -1,70 0,09 -0,06 -1,46 0,00 
Max 0,01 1,08 1,00 0,34 9,66 1,00 
Std.Dev 0,00 0,38 0,18 0,11 2,79 0,29 
Percent Significant   0%   17,6% 
        
  MA1 T-Stat MA1 P-Value MA1    
Mean -0,80 -34,42 0,00    
Min -0,93 -71,75 0,00    
Max -0,65 -15,48 0,00    
Std.Dev. 0,05 9,25 0,00    
Percent Significant   100%    
 

This table summarizes the coefficient estimates of the ARIMA(1,1,1) model. We calculate each coefficient from a 

window of 1000 observations, the window is rolled 1820 times. The number of times each coefficient is significant is 

expressed in percent. 
 

Figure 4 ARIMA(1,1,1) Parameter stability and R-Square  
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Table 6 and figure 4 indicate that the coefficients of the ARIMA(1,1,1) model are rather 

stable over time. There is some fluctuation in the beginning of 2008 and in the turbulent 

months in the end of 2008. The constant coefficient C is once more included to obtain 

unbiased coefficients in the OLS estimation. Since it would be a-theoretical if the volatility 

would follow a deterministic increasing trend over time, we expect the constant to be zero. 
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The result that the constant coefficient C is insignificant is therefore an expected result. The 

MA(1) coefficient is significant over the whole sample period and negative. The AR(1) 

coefficient varies between being negative and positive and is also insignificant in many cases.  

The model is also found to be stationary by an investigation of the roots of the characteristic 

equation. 

 

Table 7 EGARCH model estimation 
EGARCH C T-Stat C P-Value C Alfa T-Stat Alfa P-Value Alfa 

Mean -0,300 -4,981 0,000 0,094 3,629 0,025 

Min -0,610 -8,658 0,000 0,006 0,429 0,000 

Max -0,134 -3,430 0,001 0,198 7,112 0,668 

Std.Dev 0,109 0,886 0,000 0,043 1,211 0,074 

Percent Significant   100%   87% 

         

  Gamma T-Stat Gamma P-Value Gamma Beta T-Stat Beta P-Value Beta 

Mean -0,123 -6,765 0,000 0,975 206,967 0,000 

Min -0,209 -13,183 0,000 0,943 61,521 0,000 

Max -0,056 -3,046 0,002 0,991 413,546 0,000 

Std.Dev 0,037 2,041 0,000 0,011 97,183 0,000 

Percent Significant  100%    100% 
 

This table summarizes the coefficient estimates of the EGARCH model. We calculate each coefficient from a window of 1000 

observations, the window is rolled 1820 times. The number of times each coefficient is significant is expressed in percent. 
 

Figure 5 EGARCH Parameter stability in the in-sample period 
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We estimate the four coefficients of the EGARCH-model using maximum likelihood. The 

coefficients are significant in most of the estimations. The Alpha coefficient, which captures 

the symmetric reaction to past shocks, is positive but not always significant. Gamma, which 



 49

captures the asymmetry of shocks, is negative and significant in all estimations. This indicates 

that there a is negative relationship between return and volatility, which is in line with 

previous empirical findings. The constant coefficient C is the only parameter that is really 

unstable over time. We also test if there are any ARCH-effects left in the error term after the 

EGARCH model has been estimated. We regress five lags of the squared standardized 

residuals on itself. The joint null hypothesis of zero slope coefficients is tested both with the 
2χ and the F-distributed test-statistic. We can reject the null in only 3 percent of the cases 

which indicates that the EGARCH-model captures the variation in variance quite well. 

5.3 Data and Descriptive Statistic in the Forecast Period 

We forecast over 1820 days between 2002-02-05 and 2009-04-01. Before we evaluate the 

forecasting ability of each model the statistical properties of the forecasts are examined. The 

forecast models we use are the EGARCH model, the ARIMA(1,1,1) model, the ARMA(2,1) 

model, the implied volatility from the VSTOXX index and the benchmark model based on 

historical volatility.  In table 8, the statistical properties of the forecasts are displayed together 

with the realized volatility (RV) for different time horizons, where the column RVt21 exactly 

matches the horizon of the model based forecasts and VSTOXX. All numbers are expressed 

on a daily basis.    

 

Table 8 Statistical properties of the forecast models 
  EGARCH ARIMA(1,1,1) ARMA(2,1) VSTOXX Benchmark RVt1 RVt5 RVt10 RVt15 RVt21
Mean 0,713 1,617 1,184 1,579 1,621 1,618 1,620 1,623 1,625 1,627 
Median 0,558 1,239 0,903 1,312 1,737 1,199 1,223 1,223 1,259 1,266 
Std.Dev 0,396 1,086 0,805 0,793 0,411 1,271 1,120 1,082 1,060 1,041 
Skew 1,312 2,070 3,084 1,504 -0,299 2,478 2,138 1,931 1,827 1,741 
Kurt 1,088 5,247 14,574 1,841 -1,473 8,622 5,700 4,106 3,414 2,880 
Corr(RV21) 0,755 0,833 0,756 0,838 0,009 0,778 0,908 0,959 0,987 1,000 
Corr(VIX) 0,870 0,931 0,890 1,000 0,152 0,792 0,864 0,865 0,854 0,838 
 

This table summarizes the statistical properties of the average 21 day ahead forecast and the properties of the average 

t=1,5,10,15,21 day ahead realized volatility.  The forecast window of 21 days is rolled 1800 times.   
 

The realized volatility is positively skewed and experiences excess kurtosis, i.e. the 

distribution of the realized volatility is leptokurtic. The distribution of the model based 

forecasts experience excess kurtosis and positive skewness. The level of skewness and 

kurtosis differ between the models but all models except the benchmark model are able to 

capture the leptokurtic behaviour. As expected, the distribution of the benchmark model is 

notably different from the other models and the realized volatility.  
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The ARIMA(1,1,1) model and VSTOXX experience approximately the same mean and 

median as the realized volatility over 21 days. This is an indication that the models provide 

accurate forecasts of the realized volatility in levels. The ARMA(2,1) model and the 

EGARCH model differ in mean and median compared to realized volatility, which indicates a 

bias in the forecast. The benchmark model performs well in terms of mean and median. 

However, when the correlation with realized volatility is examined, it can be concluded that 

the benchmark model is uncorrelated with the realized volatility. This is a strong indication of 

poor ability to forecast the realized volatility. The model based forecasts are overall highly 

correlated with the realized volatility, which is an indication that the models have some 

forecast ability of future volatility.  ARIMA(1,1,1) and VSTOXX seem to be the best models 

to predict realized volatility, since they experience the highest correlation with realized 

volatility. Even though EGARCH and the ARMA(2,1) differ in mean and median, the high 

correlation with the realized volatility indicates that the model produces fairly good estimates 

of the change in volatility from one period to the next.   

 

Figure 6 Average 21 days ahead realized volatility in the forecasts period  
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Figure 6 displays the average 21 day ahead realized volatility for the entire sample period. 

Worth noticing is that the realized volatility is high in the beginning of the sample period and 

in the end of the sample period in the turbulent month of the financial crisis. As we can see 

volatility is time varying. 
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5.4 Performance Measure Analysis 

In this section the forecast models are evaluated using different performance measures. The 

performance measures evaluate the accuracy of a forecast by comparing the out-of-sample 

forecast with the realized (actual) value in each time step.  The result of the different 

performance measures are summarized in table 9.  

 

Table 9 Performance Measures Result 
  EGARCH ARIMA (1,1,1) ARMA (2,1) VSTOXX Benchmark 

MSE 1,45 0,38 0,66 0,33 1,24 

MAE 0,91 0,38 0,52 0,33 0,87 

Theil-U  0,73 0,35 0,44 0,32 1,00 
 

This table summarizes the result of different performance measures for the forecast models.  Definition of each 

measure can be found in section 4. 
 

The Mean Squared Error (MSE) is a quadratic loss function and measures the average squared 

unexplained volatility between the model estimate and the realized volatility. We can 

conclude that VSTOXX produces the least average error. The ARIMA(1,1,1) model is ranked 

second after VSTOXX. The EGARCH model is even worse off than the naïve benchmark 

model.  

 

The Mean Absolute Error (MAE) is a measure of the average absolute error between the 

forecast model and the realized volatility. The ARIMA(1,1,1) model and VSTOXX produce 

the most accurate forecasts according to the MAE measure.  

 

The Theil-U statistic measures if the more complex forecasting models yield different 

forecasting results than the naïve benchmark model. VSTOXX and ARIMA(1,1,1) yield 

almost the same result and produce fairly low Theil-U statistics. EGARCH produces a worse 

Theil-U statistic than the other parametric models although it still outperforms the benchmark 

model. The difference between MAE/MSE and Theil-U is that Theil-U describes relative 

errors, i.e. the Theil-U statistic decreases when the level of realized volatility increases. In 

table 8, where the descriptive statistics of the forecasts are presented, we can see that 

EGARCH has a lower mean and median than realized volatility. This indicates that EGARCH 

is wrong in level which leads to poor performance according to MAE and MSE. 
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Table 10 Performance Measures Ranking 
  EGARCH ARIMA(1,1,1) ARMA(2,1) VSTOXX Benchmark 

MSE 5 2 3 1 4 
MAE 5 2 3 1 4 

Theil-U 4 2 3 1 5 
 

This table summarizes the individual ranking for the forecast models based on the different performance 

measures.  
 

One conclusion that can be drawn from table 10 is that the EGARCH model produces the 

worst forecast of realized volatility compared to the other sophisticated models. The 

ARIMA(1,1,1) model and VSTOXX perform almost equally well with a minor advantage for 

VSTOXX. The ARMA(2,1) model could be described as an average achiever. The identical 

ranking by MAE and MSE indicates that the model that deviates most frequently also has the 

greatest deviations in terms of magnitude. The fact that VSTOXX produces smallest forecast 

errors is in line with our expectations formed by previous research. 

5.5 Predictive Power Analysis 

The predictive power of the forecasting models are examined in this section. The predictive 

power is determined by the coefficient of determination, 2R . The realized volatility series is 

the average volatility during the 21 trading days following the forecast. Before the predictive 

power analysis is performed, the statistical properties of the forecast period are examined. The 

augmented Dickey-Fuller test cannot reject the null hypothesis that the realized volatility is 

non-stationary, i.e. has a unit root. In order to get a stationary series of realized volatility we 

divide the sample into three parts, the first part stretches from 2002-05-05 to 2003-05-07 and 

contains 316 observations. This part of the sample is also found to be non-stationary using the 

augmented Dickey-Fuller test. The middle part of the sample stretches from 2003-05-07 to 

2007-06-18 and contains 1051 observations. This part is found to be stationary by the 

augmented Dickey-Fuller test. The third part of the sample stretches from 2007-06-18 to 

2009-03-03 and is found to be non-stationary by the augmented Dickey-Fuller test. There is 

no support in economic theory for volatility being non-stationary. Non-stationarity of 

volatility would imply that the volatility would increase in every time step and finally 

explode. The result of non-stationary realized volatility series can therefore be disregarded 

from an economic point of view. From an econometric point of view the non-stationarity has 

to be considered since some of our methods require stationary data. The use of the OLS-
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estimator on non-stationary data can lead to spurious regressions with abnormally high 2R s.71  

In order to ensure stationarity and reliable results from the predictive power test, we run it on 

two different periods. The first period consists of the entire sample and the second period of 

the middle (stationary) part of the entire sample i.e. 2003-05-07 to 2007-06-18.  

 

Table 11 Augmented  Dickey-Fuller test 
Sample Period 2002-02-05 to 2009-03-03 Sample Period 2003-05-07 to 2007-06-18 

Augmented Dickey-Fuller  T-Stat P-Value Augmented Dickey-Fuller T-Stat P-Value 
    -2,314 0,168    -3,934 0,002 
Test critical values: 1% level -3,434  Test critical values: 1% level -3,436  
   5% level -2,863     5% level -2,864  
   10% level -2,568     10% level -2,568  
H0 Realized Volatility has a unit root is not rejected H0 Realized Volatility has a unit root is rejected 
 

This table summarizes the Augmented Dickey-Fuller unit root test of the realized volatility. The test is conducted over two different 

sample periods. The number of lags to include in the auxiliary is determined by Schwartz Information Criterion. Maximum number 

of lags is set to 24. For the entire sample period 23 lags were included while 22 lags were included in the shorter sample. 
 

The result of the predictive power analysis for the two sample periods are presented in table 

12 and table 13. All regressions are estimated with OLS with the average realized volatility 

over the 21 days following the forecast as the dependent variable. The standard errors are 

adjusted to account for heteroskedasticity and autocorrelation using Newey-West. 

 

Turning the attention to table 12 and 13 we can see that all slope coefficients are significantly 

different from zero, indicating that all forecast models have explanatory power of future 

realized volatility. The 2R  coefficient, which describes the explanatory power of each model, 

is reasonably high. The 2R  coefficient is especially high in the sample period where we 

cannot rule out non-stationarity using the augmented Dickey-Fuller test. The 2R  coefficient 

decreases for all models in the stationary period (table 13). This is an indication that the non-

stationarity is leading to a spurious relationship. The explanatory power of the EGARCH 

changes the least between the two periods. The best predictor of realized future volatility 

seems to be VSTOXX since it produces the highest 2R  over the whole sample period and is 

very close to the explanatory power of EGARCH in the shorter sample period. 

 

 

 

 
                                                 
71 Brooks (2008) p.319 
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Table 12 Predictive power  
Sample Period 2002-02-05- 2009-03-03 
  C VSTOXX ARIMA(1,1,1) ARMA(2,1) EGARCH R-Square 
Coefficient -0,110 1,099**       0,702 
Std Error 0,064 0,052      
P-Value 0,085 0,000         
          
Coefficient 0,335*   0,798*     0,694 
Std Error 0,062  0,048     
P-Value 0,000   0,000       

          
Coefficient 0,468*     0,977**   0,572 
Std Error 0,093   0,087    
P-Value 0,000     0,000     

          
Coefficient 0,209*       1,986* 0,570 
Std Error 0,067    0,113   
P-Value 0,002       0,000   
          
Coefficient 0,041 0,613* 0,380*     0,723 
Std Error 0,064 0,123 0,109     
P-Value 0,521 0,000 0,001       

          
Coefficient -0,094 1,040**   0,065   0,703 
Std Error 0,058 0,078  0,094    
P-Value 0,107 0,000   0,490     

          
Coefficient -0,118 0,977**     0,282 0,705 
Std Error 0,062 0,115   0,235   
P-Value 0,058 0,000     0,231   

* Indicates that the coefficient is significantly different from zero. ** indicates that the coefficient 
is significantly different from zero and that the null of a coefficient equal to one cannot be 
rejected. All standard errors are corrected to account for heteroskedasticity and 
autocorrelation. 

 

Furthermore EGARCH is dominated by VSTOXX in the whole sample period. In the shorter 

sample period both EGARCH and VSTOXX are significant, which indicates that EGARCH 

potentially holds some additional information beyond that contained in VSTOXX. 

 

When we look at the entire sample period, presented in table 12, VSTOXX seems to be an 

unbiased estimator of future realized volatility, since the constant coefficient C is insignificant 

and the null hypothesis of a slope coefficient equal to one cannot be rejected at the 5 percent 

level. However, since we cannot ensure that the time series is stationary, the results should be 

interpreted with caution. 
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Table 13 Predictive power 
Sample Period 2003-05-07- 2007-06-18 
  C VSTOXX ARIMA(1,1,1) ARMA(2,1) EGARCH R-Square 
Coefficient 0,239* 0,683*       0,537 
Std Error 0,058 0,050      
P-Value 0,000 0,000         
          
Coefficient 0,402*   0,599*     0,496 
Std Error 0,048  0,045     
P-Value 0,000   0,000       

          
Coefficient 0,355*     0,779*   0,432 
Std Error 0,061   0,073    
P-Value 0,000     0,000     

          
Coefficient 0,489*       1,010** 0,549 
Std Error 0,037    0,064   
P-Value 0,000       0,000   
          
Coefficient 0,253* 0,461* 0,233*     0,555 
Std Error 0,056 0,102 0,099     
P-Value 0,000 0,000 0,018       

          
Coefficient 0,205* 0,532*   0,243   0,553 
Std Error 0,059 0,089  0,125    
P-Value 0,001 0,000   0,052     

          
Coefficient 0,343* 0,323*     0,585* 0,572 
Std Error 0,063 0,110   0,155   
P-Value 0,000 0,003     0,000   

* Indicates that the coefficient is significantly different from zero. ** indicates that the coefficient 
is significantly different from zero and that the null of a coefficient equal to one cannot be 
rejected. All standard errors are corrected to account for heteroskedasticity and 
autocorrelation. 

 

All other estimations have a slope coefficient significantly different from zero, thus indicating 

biased forecasts. If the constant is greater than zero and the slope coefficient smaller than one, 

the forecast overestimates the volatility in high volatility periods and underestimates it in 

periods of low volatility. Finally we can conclude that the explanatory power of the forecast 

models is fairly high even when the stationary condition of the OLS-estimator is satisfied. The 

model based forecasts perform fairly similar to VSTOXX in terms of predictive power.  

5.6 Information Content Analysis 

The information content test is designed to test if the forecast models contain any information 

about the volatility one day ahead. The information content test allows us to determine if the 



 56

forecast models contain any useful information about the future. The results are presented in 

table 14 below. 

 

Table 14 Information content test 
Sample Period 2002-02-05- 2009-03-03 

  C VSTOXX ARIMA(1,1,1) ARMA(2,1) EGARCH R-square 
Coefficient -0,383* 1,266*       0,629 
Std Error 0,077 0,061      
P-Value 0,000 0,000      
          
Coefficient 0,108*  0,933*   0,639 
Std Error 0,044  0,034     
P-Value 0,014  0,000     
          
Coefficient 0,197*   1,199*  0,582 
Std Error 0,069   0,063    
P-Value 0,005   0,000    
          
Coefficient 0,018    2,259* 0,488 
Std Error 0,075    0,141   
P-Value 0,813       0,000   
 

This table summarizes the result of the information content test. The test is conducted on 4 forecasts 

models and the dependent variable is the realized volatility the following day. * indicates significantly 

different from zero at 5 percent level. 
 

As we can see all slope coefficients are significantly different from zero. In other words we 

can conclude that there is some information about the one-step-ahead realized volatility 

contained in the forecasts.  

5.7 Analysis of Additional Information in VSTOXX 

In this section we present the result when testing if implied volatility contains any extra 

information of the realized volatility beyond what is already incorporated in the model based 

forecasts. Two different methods are used to examine the additional information content of 

VSTOXX presented in separate sections below. In this section we only analyze the period 

where the augmented Dickey-Fuller test indicates stationarity, i.e. 2003-05-07 to 2007-06-18.  

5.7.1 Test of Additional Information in VSTOXX Using the F-test 

In order to examine if VSTOXX contains any additional information compared to the model 

based forecasts, *VSTOXX  is tested using a modified F-statistic which takes overlapping 

samples into account. *VSTOXX ,as defined in equation 26, is the part of VSTOXX which is 



 57

not captured by the model based forecasts. The vector of independent variables tω has the 

following elements { }EGARCHARIMAARMAt ,)1,1,1(,)1,2(=ω . The slope coefficients for 

this regression are presented in table 15. The regression coefficients and standard errors 

presented in table 15 should be interpreted with some caution. Since the different forecasts are 

highly correlated the regression suffers from multicolinearity. A symptom of this is the 

negative coefficient in front of the ARMA forecast, which becomes positive if the ARIMA-

model is excluded from the regression. Recall that the purpose of running equation 25 is to 

produce a residual that is orthogonal to all model based forecasts and therefore the 

coefficients are of minor interest. The residuals are also heavily autocorrelated which makes 

the standard errors of the coefficient biased downward. Please note that the coefficients are 

identical to those of the GMM-estimation with zero overidentifying restrictions presented in 

panel A of table 18 below. Recall that that a GMM-estimation with zero overidentifying 

restrictions is equivalent to an OLS-estimation. 

 

Table 15 Slope coefficients of the orthogonalizing regression 
  C ARMA(2,1) ARIMA(1,1,1) EGARCH 
Coefficient 0,478 -0,860 0,958 0,778 
Std Error 0,014 0,063 0,054 0,040 
P-Value 0,000 0,000 0,000 0,000 
R-Square 0,86       
 

The table summarizes the coefficients obtained when estimating equation 25. The 

sample period for the regression is set to  2003-05-07- 2007-06-18. 
 

We now test if there is any additional information about future realized volatility in 
*VSTOXX . We construct the realized volatility vector RV which includes the elements jtRV +  

which is the j-day ahead average realized volatility. The slope coefficient for each forecast 

horizon j is presented in table 16. The joint null hypothesis of zero slope coefficients is tested 

using the adjusted F-statistic proposed by Harvey and Newbold (2000).  
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Table 16  Test of additional information using F-statistics 
RV              Harvey-Newbold Statistics 

  C j=1 j=5 j=10 J=15 j=21  F-Stat P-Value 
Coefficient -0,048 0,012 0,030 -0,016 0,027 -0,006  1,082 0,368 
T-Stat -3,625 1,211 1,030 -0,293 0,352 -0,104      
Coefficient -0,029 0,028       2,210 0,137 
T-Stat -3,554 3,944           
Coefficient -0,046  0,045      1,366 0,243 
T-Stat -4,161  4,395          

Coefficient -0,047   0,046     1,039 0,393 
T-Stat -3,922   4,107         

Coefficient -0,048    0,047    0,914 0,471 

T-Stat -3,824    3,985        

Coefficient -0,048     0,047  0,822 0,534 
T-Stat -3,640         3,779      
 

The table summarize the result of the testing if there is any additional information in VSTOXX* about the level of future realized 

volatility. The F-statistics is used to test the joint null hypothesis of zero slope coefficients for the average j=1,5,10,15,21day 

ahead  realized volatility. The test is conducted on the sample period 2003-05-07 to 2007-06-18. 
 

Inspecting table 16 we can conclude that the null hypothesis of all slope coefficients being 

equal to zero cannot be rejected for any composition of the RV-vector. This is a clear 

indication that VSTOXX does not contain any extra information content about the level of 

volatility other than what is already captured by the model based forecasts.   

 

Table 17 Test of additional information using F-statistics 
dRV        Harvey-Newbold Statistics 
  C j=1 j=5 j=10 J=15 j=21  F-Stat P-Value 

Coefficient 0,000 0,015 0,038 0,004 0,041 -0,052  35,836 0,000 
T-Stat -0,019 1,498 1,328 0,070 0,550 -1,020      
Coefficient 0,000 0,035       64,806 0,000 
T-Stat 0,011 5,397           
Coefficient 0,000  0,047      24,432 0,000 
T-Stat 0,050  5,812          
Coefficient 0,000   0,045     17,926 0,000 
T-Stat 0,081   5,387         
Coefficient 0,000    0,110    15,304 0,000 
T-Stat 0,042    5,066        
Coefficient 0,000     0,134  10,989 0,000 
T-Stat 0,039         4,725      
 

The table summarize the result of the testing if there is any additional information in VSTOXX* about the changes in future 

realized volatility. The F-statistics is used to test the joint null hypothesis of zero slope coefficients for the change in average 

j=1,5,10,15,21 day ahead  realized volatility. The test is conducted on the sample period 2003-05-07 to 2007-06-18. 
 

Table 17 displays the result of regressing *VSTOXX on changes in realized volatility. The 

joint null hypothesis of zero slope coefficients is tested with the adjusted F-statistic. The 

elements of dRV are the change in volatility between t  and the average volatility during the 
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period t  to jt + . The result of the joint null hypothesis, that the slope coefficients are equal to 

zero, can be rejected for all compositions of dRV. In other words the test of the coefficients 

indicates that VSTOXX contains useful information beyond that contained in the model based 

forecasts when it comes to predicting changes in volatility.  

5.7.1 Test of Additional Information in VSTOXX Using GMM-Estimation 

As we concluded earlier the properties of the adjusted F-statistic are uncertain during longer 

forecast horizons. We therefore follow Becker et. al. (2007) and increase the reliability of the 

results by also testing for additional information using GMM-estimation. As described above 

GMM-estimation is a simultaneous estimation of equation 34 (identical to equation 25) and 

test of the orthogonality of *VSTOXX to future realized volatility.  

 

Table 18 Test of additional information explaining RV using GMM 
Panel A C ARMA(21) ARIMA(1,1,1) EGARCH J-Test 

Coefficient 0,478 -0,860 0,958 0,778   

T-Stat 8,109 -3,758 4,472 4,332   

P-Value 0,000 0,000 0,000 0,000 NA 

Instruments C ARMA(2,1) ARIMA(1,1,1) EGARCH 

Panel B           

Coefficient 0,484 -0,933 1,079 0,658   

T-Stat 8,893 -4,080 5,156 3,897   

P-Value 0,000 0,000 0,000 0,000 0,573 

Instruments C ARMA(2,1) ARIMA(1,1,1) EGARCH RVT1 RVT5 RVT10 RVT15 RVT21 

Panel C           

Coefficient 0,507 -0,993 1,086 0,704   

T-Stat 8,862 -4,180 4,962 4,110   

P-Value 0,000 0,000 0,000 0,000 0,165 

Instruments  C ARMA(2,1) ARIMA(1,1,1) EGARCH RVT1 

Panel D           

Coefficient 0,459 -0,827 0,962 0,747   

T-Stat 8,069 -3,672 4,574 4,147   

P-Value 0,000 0,000 0,000 0,000 0,179 

Instruments C ARMA(2,1) ARIMA(1,1,1) EGARCH RVT5 

Panel E           

Coefficient 0,468 -0,843 0,979 0,727   

T-Stat 7,962 -3,651 4,592 4,075   

P-Value 0,000 0,000 0,000 0,000 0,105 

Instruments  C ARMA(2,1) ARIMA(1,1,1) EGARCH RVT21 
 

The table summarize the result of the testing if there is any additional information in VSTOXX* about the 

level of future realized volatility. The P-value of the J-Statistic is used to test the joint null hypothesis that all 

overidentifying restrictions are valid. The test is conducted on the sample period stretching from 2003-05-07- 

2007-06-18. 
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Panel A presents the results of the GMM-estimation with zero overidentifying restrictions. As 

we stated above the results are identical to those obtained from the OLS-estimation of 

equation 25.  

 

In panels B through E we then add different compositions of the RV-vector as instruments. 

Each instrument is assumed to be uncorrelated with the residual under the null hypothesis. In 

panel B through E we have more instruments than parameters to estimate. These superfluous 

instruments (the elements of RV) form what we refer to as the overidentifying restrictions. 

We assume under the null that all elements of RV are orthogonal to the residual, i.e. the 

correlation between future realized volatility and the residual is zero. This is equivalent to 

obtaining slope coefficients equal to zero when regressing RV on *VSTOXX . The p-value of 

the J-test indicates that we cannot reject the null hypothesis of the overidentifying restrictions 

being valid. In other words, we cannot reject that the correlation between *VSTOXX and the 

elements of RV is equal to zero which verifies the results obtained when using the adjusted F-

statistic. 

 

Table 19 Test of additional information explaining dRV using GMM 
Panel A C ARMA(21) ARIMA(1,1,1) EGARCH J-Test 
Coefficient 0,614 -1,073 0,740 1,268   

T-Stats 11,484 -4,930 3,629 7,614   

P-Value 0,000 0,000 0,000 0,000 0,042 

Instruments C ARMA(2,1) ARIMA(1,1,1) EGARCH dRVT1 dRVT5 dRVT10 dRVT15 dRVT21 

Panel B           

Coefficient 0,617 -1,077 0,745 1,261   

T-Stats 11,196 -4,783 3,549 7,519   

P-Value 0,000 0,000 0,000 0,000 0,001 

Instruments C ARMA(2,1) ARIMA(1,1,1) EGARCH dRVT1  

Panel C           

Coefficient 0,594 -1,049 0,868 1,033   

T-Stats 10,335 -4,471 3,841 5,658   

P-Value 0,000 0,000 0,000 0,000 0,001 

Instruments C ARMA(2,1) ARIMA(1,1,1) EGARCH dRVT5 

Panel D           

Coefficient 0,609 -1,162 1,047 0,861   

T-Stats 10,795 -4,271 3,930 4,335   

P-Value 0,000 0,000 0,000 0,000 0,009 

Instruments C ARMA(2,1) ARIMA(1,1,1) EGARCH dRVT21 
 

The table summarize the result of the testing if there is any additional information in VSTOXX* about the 

changes in the future realized volatility. The P-value of the J-Statistic is used to test the joint null hypothesis 

that all overidentifying restrictions are valid. The test is conducted on the sample period stretching from 

2003-05-07- 2007-06-18. 
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We also test the elements of the dRV using GMM. Note that we have excluded the case with 

zero overidentifying restrictions since this is identical to the results presented in panel A of 

table 18. The results are interpreted the same way as before. If the p-value of the J-test is 

significant we can reject the null hypothesis of zero correlation between the element of dRV 

and the residual. Once again we can verify the result of the adjusted F-statistic.  
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6 Conclusion 
 
 
In this section we discuss and draw conclusions from the empirical results. We first give some 

general observations about the empirical findings. We then discuss the results from the 

perspective of the research questions asked in the problem specification. 

 

The empirical investigation of the data material suggests that volatility experiences most of 

the properties that has been suggested by previous research in the field. Volatility is 

leptokurtic and very persistent. Furthermore it seems like volatility has an asymmetric 

reaction to shocks where negative news lead to greater volatility than positive news.  

6.1 Predictability of Volatility 
According to our empirical finding volatility can be predicted to some extent both by time 

series models and implied volatility (VSTOXX). The forecasts share the leptokurtic property 

of realized volatility and are highly correlated with future realized volatility. In the predictive 

power test the models produce 2R around 0.5 in the part of the sample that is shown to be 

stationary. For the entire sample period the predictive power of the models are slightly higher, 

here 2R s lie in the range 0.6 to 0.7. Even though the results from the entire sample period 

should be interpreted with some caution there are still strong indications of fairly good 

predictability. Although we do not fully succeed in modelling the underlying structure of 

volatility it seems like our deterministic models at least are able to capture and forecast some 

of the structure. The information content test also indicates that all models hold fairly much 

information about the one-day-ahead volatility. 

6.2 Relative Performance of Volatility Forecasts 
The evaluation of the different forecasts methods indicates that implied volatility (VSTOXX) 

generally outperforms the model based forecast in a bilateral comparison. In accordance with 

our expectations, VSTOXX is performing quite well in terms of the performance measures. 

Furthermore VSTOXX dominates some of the model based forecasts in the pairwise 

predictive power test. VSTOXX fails to dominate the ARIMA(1,1,1) both in the partial 

sample and in the entire sample period and EGARCH in partial sample period. This indicates 

that these time series models capture some property of future realized volatility not contained 
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in implied volatility. It is however worth mentioning that the time series models fail to 

dominate VSTOXX. EGARCH has a marginally higher explanatory power in the partial 

sample period. Even though there exists some contradictive results, we find indications that 

VSTOXX is outperforming the model based forecast in pairwise comparisons. 

6.3 The Bias of Volatility Forecasts 
The bias of the volatility forecast is investigated by inference around the intercept and slope 

parameter in the predictive power test. Recall that an unbiased forecast will result in an 

intercept of zero and unity in the slope coefficient. We do find VSTOXX to be an unbiased 

estimator although only in the entire potentially non-stationary sample period. The observed 

bias of volatility forecasts is in line with much of the previous research in the field. Granger 

and Poon (2003) argue that a bias of implied volatility as a volatility forecast could indicate a 

structural mispricing of the options used to derive it. A significant intercept in the predictive 

power test of VSTOXX could also indicate the existence of a volatility risk premium as 

suggested by e.g. Chernov (2001, cited in Granger and Poon, 2003) who analyzed the VIX. 

6.4 Additional Information 
The last leg of the analysis involved testing if implied volatility (VSTOXX) holds any 

additional information beyond that captured by the model based forecasts. The null hypothesis 

of no additional information was tested both by the adjusted F-statistic and in a GMM 

framework to ensure reliability of the results. We found no indication of additional 

information in VSTOXX once VSTOXX had been orthogonalized to the vector of model 

based forecasts. This result is in line with the findings of Becker et. al. (2007) in their study of 

S&P 500 and VIX. We do however find that VSTOXX holds some information about changes 

in future realized volatility not captured by the time series models. This result contradicts the 

findings of Becker et. al. One intuitive explanation for the results could be that VSTOXX is 

derived from the market participant’s expectations about the future and that it therefore is able 

to predict changes in future volatility.  

 

6.5 Concluding Remarks 

During the work on this thesis we have been forced to make some delimitations which might 

have affected the results. First of all, choosing other time series models could have yielded 

different results. On the other hand, the models actually chosen have been proven to produce 

high-quality forecasts in the past and were therefore highly motivated. Another issue regards 
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the length of the rolling estimation window for parameter estimation. Here we once more 

relied on previous empirical findings when deciding the length of the estimation window. 

Relatively good model fit and parameter stability indicate that the length of the estimation 

window is fairly good. Furthermore it could always be argued that the sample could have 

been expanded and chosen to include other indices or asset classes to ensure robustness of the 

results. Since our primary interest was to see if the results from VIX translated to a European 

setting we made the choice to only investigate VSTOXX. The test of additional information in 

implied volatility could favourably be investigated in e.g. the currency market.72 This and 

other improvements of our work are left to future studies. 

 

                                                 
72 Currency options are often traded over-the-counter and are therefore always traded at-the-money which 
reduces the problem induced by volatility smiles 
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8 Appendix 

A1 Eveiws Code for Forecasting with EGARCH 
 
scalar noobs=2820 
scalar nw=1000         
matrix(2820,21) garchforecast 
vector(21) forecastresult 
 
for !i=nw to noobs 

smpl !i-nw+1 !i 
equation garch_n 
garch_n.arch(egarch) stoxxr c 
garch_n.makegarch garchcondvar 
for !j=1 to 21 

‘For the forecast one-day-ahead, the conditional variance used as input 
‘is the last observation of the conditional variance series garchcondvar 
if !j=1 then           

forecastresult(1)=@EXP(garch_n.@coefs(2)+ 
garch_n.@coefs(3)*@ABS(resid(!i)/@SQRT(garchcondvar(!i)))+ 
garch_n.@coefs(4)*(resid(!i)/@SQRT(garchcondvar(!i)))+ 
garch_n.@coefs(5)*@LOG(garchcondvar(!i))) 

endif 
‘For forecasts more than one-day-ahead, the conditional variance used as input 
‘is equal to the last forecasted conditional variance 
if !j>1 then 

forecastresult(!j)=@EXP(garch_n.@coefs(2)+ 
garch_n.@coefs(3)*@ABS(@SQRT(forecastresult(!j1))/@SQRT(garchcondvar(!i)))+ 
garch_n.@coefs(4)*(@SQRT(forecastresult(!j-1))/@SQRT(forecastresult(!j-1)))+ 
garch_n.@coefs(5)*@LOG(forecastresult(!j-1))) 

endif       
next !j 
rowplace(garchforecast,@transpose(forecastresult),!i) 

next !i 
 

A2 Eviews Code for Forecasting with ARIMA(1,1,1) 
scalar noobs=2820 
scalar nw=1000         
matrix(2820,21) armaforecast 
vector(21) forecastresult 
 
for !i=nw to noobs 

smpl !i-nw+1 !i 
equation arma_n 
arma_n.ls d(rvdaily) c ar(1) ma(1) 
for !j=1 to 21 

if !j=1 then 
forecastresult(1)=rvdaily(!i)+ 
arma_n.@coefs(2)*(rvdaily(!i)-rvdaily(!i-1))+ 
arma_n.@coefs(3)*resid(!i) 

endif 
if !j=2 then 

forecastresult(!j)=forecastresult(!j-1)+ 
arma_n.@coefs(2)*(forecastresult(!j-1)-rvdaily(!i)) 

endif     
if !j>2 then 

forecastresult(!j)=forecastresult(!j-1)+ 
arma_n.@coefs(2)*(forecastresult(!j-1)-forecastresult(!j-2)) 

endif     
next !j 
rowplace(armaforecast,@transpose(forecastresult),!i) 

next !i 
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A3 Eviews Code for Forecasting with ARMA(2,1) 
scalar noobs=2820 
scalar nw=1000         
matrix(2820,21) armaforecast 
vector(21) forecastresult 
 
for !i=nw to noobs 

smpl !i-nw+1 !i 
equation arma_n 
arma_n.ls rvdaily c ar(1) ar(2) ma(1) 
for !j=1 to 21 

if !j=1 then 
forecastresult(1)=arma_n.@coefs(2)*rvdaily(!i)+ 
arma_n.@coefs(3)*rvdaily(!i-1)+ 
arma_n.@coefs(4)*resid(!i) 

endif 
if !j=2 then 

forecastresult(2)=arma_n.@coefs(2)*forecastresult(1)+arma_n.@coefs(3)*rvdaily(!i) 
endif       
if !j=3 then 

forecastresult(3)=arma_n.@coefs(2)*forecastresult(2)+arma_n.@coefs(3)*forecastresult(1) 
endif  
if !j>3 then 

forecastresult(!j)=arma_n.@coefs(2)*forecastresult(!j-1)+ 
arma_n.@coefs(3)*forecastresult(!j-2) 

endif     
next !j 
rowplace(armaforecast,@transpose(forecastresult),!i) 

next !i 

A4 Eviews Code for Calculating the Adjusted F-statistic 
 
'Declare the number of observations, number of independent variables, number of overlapping 
‘observations in the forecast and number of the first observation 
!n=1051 
!noindependent=2 
!h=21 
!startobservation=1314 
 
'Declare the vector of independent variables and the residual vector 
matrix(1051,!noindependent) independent 
vector(1051) residualvector 
 
'Declare and estimate the OLS-equation  
‘In this case with the independent variables rvt1 rvt5 rvt10 rvt15 rvt21 
equation testorto 
testorto.ls vstoxxstar c rvt1 rvt5 rvt10 rvt15 rvt21 
 
'Declare the beta vector 
vector(!noindependent) betavector 
 
'Store regression coefficients in the beta vector 
betavector(1)=testorto.@coefs(1) 
betavector(2)=testorto.@coefs(2) 
betavector(3)=testorto.@coefs(3) 
betavector(4)=testorto.@coefs(4) 
betavector(5)=testorto.@coefs(5) 
betavector(6)=testorto.@coefs(6) 
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for !i=1 to 1051 
 ‘Store the realized volatility series in the independent  variable vector 

‘ the first column is filled with ones for the intercept 
independent(!i,1)=1 
independent(!i,2)=rvt1(!i+!startobservation) 
independent(!i,2)=rvt5(!i+!startobservation) 
independent(!i,2)=rvt10(!i+!startobservation) 
independent(!i,2)=rvt15(!i+!startobservation) 
independent(!i,2)=rvt21(!i+!startobservation) 
'Store the residual from the regression in the residual vector 
residualvector(!i)=resid(!i+!startobservation) 

next !i 
 
'Declare the Q matrix 
matrix(!noindependent,!noindependent) Q 
 
for !i=1 to !noindependent 

for !j=!i to !noindependent 
'a,b and c refer to the three different summations in equation 32 
!a=0 
!b=0 
!c=0 
for !t=1 to !n 

!a=!a+independent(!t,!i)*independent(!t,!j)*residualvector(!t)^2 
next !t 
for !m=1 to !h-1 

for !t=!m+1 to !n 
!b=!b+independent(!t,!i)*independent(!t-!m,!j)*residualvector(!t)*residualvector(!t-!m) 

next !t 
next !m 
for !m=1 to !h-1 

for !t=!m+1 to !n 
!c=!c+independent(!t-!m,!i)*independent(!t,!j)*residualvector(!t)*residualvector(!t-!m) 

next !t 
next !m 
'Since the Q matrix is symmetrical, two elements are calculated in each iteration 
Q(!i,!j)=(1/!n)*(!a+!b+!c) 
Q(!j,!i)=(1/!n)*(!a+!b+!c) 

next !j 
next !i 
 
 
'Calcualte the m matrix 
matrix(!noindependent,!noindependent) m  
m=(1/!n)*@transpose(independent)*independent 
 
'Calculate the d matrix 
matrix(!noindependent,!noindependent) dmatrix 
dmatrix=@inverse(m)*Q*@inverse(m) 
 
'Calculate the f-statistic and store in the vector fresult 
vector(1) fresult 
fresult=(1/(!noindependent-1))*!n*@transpose(betavector)*@inverse(dmatrix)*betavector 
 
'Calculate the p-value for the f-statistic and store in the vector fresultpvalue 
vector(1) fresultpvalue 
fresultpvalue=1-@cfdist(fresult(1),!noindependent-1,!n-!noindependent+2) 
 


