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Abstract

The crude assumption on log normal stock returns and constant volatility in
the Black-Scholes model is a big constraint which constructs smile and skew
inconsistent prices. The Heston model and its suggested approximation built
on stochastic volatility are introduced and faced against the Black-Scholes
model in hope of producing option prices where the smile and skew are taken
into account.. As one will observe later on is that numerical calculation and
approximation of the Heston model will provide us with more accurate
calculations.
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List of notation

cdf - Normal cumulative density function.

E [X] - Expected value of s.v. X.

f (·) - Normal pdf.

F (·) - Normal cdf.

FXt - Filtration, all information about X until time t.

GBM - Geometric Brownian motion.

K - Strike price.

L - Likelihood function.

MC - Monte Carlo.

N (0, 1) - Normal distribution with mean 0 and variance 1.

P - Historical measure.

PDE - Partial differential equation.

pdf - Probability density function.

φ (·) - Normal pdf.

Φ - Payoff.

Π (S, t) - Derivative value, with underlying asset S at time t.

Q - Risk neutral martingale measure.

Rd - (d× 1)−dimensional real value.

rt - Interest rate at time t.

σ - Volatility.

SDE - Stochastic differential equation.

s.v. - Stochastic variable
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St - Stock Value at time t.

T - Time to maturity.

θ- Parameter set.

Θ - Parameter space.

W - Wiener process, standard N (0, 1).

⊆ - Subset.

� - End of proof or derivation.
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1 Introduction

1.1 Background
It was in the 1970s when Fischer Black, Myron Scholes and Robert Merton
derived the Black-Scholes (sometimes Black-Scholes-Merton) which changed the
way and impact the world of pricing derivatives using stocks as the underlying
asset (Hull 2008: 277). Myron Scholes and Robert Merton where awarded the
price of the Nobel Prize in economics in 1997 (Fischer Black died in the 1995)
then one can understand the impact that this formula cased.

It was now possible to price derivatives by a very simple closed form solution.
But with the crude assumption on constant volatility and in log normal returns
really limits the model, and this is why the model only is used as a benchmark
today. This thesis will study the first assumption of constant volatility and
present a better proposal that can be used for pricing derivatives. One very
simple model that is built on a stochastic volatility is the Heston model which
is an extended version of the stochastic process which the Black-Scholes model
is built on. The problem with this model is thus that there does not exist a
closed for solution, but some approximations have been proposed. We will study
one of these approximations of the closed form and compare this whit Monte
Carlo simulation of the Heston stochastic process and with the Black-Scholes
formula.

1.2 Purpose
The purpose of this thesis is to construct appropriate values for calculating
options that are smile consistent by introducing stochastic volatility. The sug-
gested closed form solution for the Heston model is faced against the Heston
stochastic differential equation (SDE), and finally the Black-Scholes formula.

1.3 Outline
In section two are some basic fundamental mathematical and derivative theory
introduced, the stochastic differential equation, Brownian motion, the geometric
Brownian motion, Itô formula and then Black-Scholes model. Section three de-
duces Black-Scholes model, an arbitrage relationship and the Smile/Skew effect.
The Heston stochastic differential equation and the suggested approximation
presented are introduced in section four. In section five are some fundamen-
tal numerical methods presented, technique for approximating the stochastic
differential equation, Monte Carlo techniques, a technique for solving equations
numerically and at last a method for estimating parameters. Section six consists
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of numerical implementation of the presented model. And in section seven are
some empirical studies done, and finally will an European call option receive its
arbitrage free price.
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2 Stochastic Calculus and Derivatives

2.1 Mathematical Theory
We will throughout the thesis assume that there exists a probability space
(Ω,F ,P) where Ω is the sample space, F the σ-algebra generated by stochastic
process ω = {ωt : t ∈ R} and P the probability measure, P : F 7→ [0, 1]. We
use the fundamental Brownian motion Wt on the probability space (Ω,F ,P) to
represent our important stochastic engine for modeling the randomness in the
financial market.

Definition 2.1: (Brownian Motion)

The stochastic process W = {Wt : t ∈ R} on the probability space (Ω,F ,P) is
called a Brownian motion if the following properties holds a.s.

1. W0 = 0.

2. The increments are independent and stationary, i.e. if r < s ≤ t < u then
are Wu −Wt and Ws −Wr independent stochastic variables.

3. The increments of Wt+h −Wt are normally distributed, N
(

0,
√
h
)

4. Wt has continuous trajectories.

A simple Matlab routine demonstrates the a simple simulation of the Brownian
Motion with a step size ∆t = 1/100, the simulation is done by using the built
in Matlab function randn for representing a N (0, 1) stochastic variable:

Algorithm 1 Simulating a Brownian Motion in Matlab
k = 100; w = zeros(100,1); w(1) = 0;
for i=1:k-1

w(i+1) = w(i) + sqrt(1/100)*randn;
end

The result by running is demonstrated in the following plot:
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Figure 1: The Wiener process

Worth mentioning is that the process above is nowhere differentiable, i.e. the
derivative of the process does not exist.

In introduction courses of mathematics one gets familiar with the determin-
istic ordinary differential equation, which consists of a unique solution. But in
many cases for instance in financial economics this is not longer possible since
these models seems to be random, a noise term is therefore added to the dif-
ferential equation, hence the name Stochastic different equation denoted SDE.
Most of the models used to simulate financial instruments can be described by
these non deterministic models. Let X (t) represent a stochastic processes, in
our case a differential equation extended with a random part, hence the name
stochastic differential equation (SDE) or the 1-dimensional Itô process given in
the following definition,

Definition 2.2: (1-dimensional Itô Process) Let Wt be a Brownian mo-
tion, the Itô process (stochastic process) Xt on the probability space (Ω,F ,P)
is then given by

Xt = X0 +
ˆ t

0

µ (Xs, s) ds+
ˆ t

0

σ (Xs, s) dWs (1)

often written on a shorter form
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dXt = µdt+ σdWs

such that the following conditions holds almost surely

P

[ˆ t

0

σ (Xs, s)
2
ds <∞ ,∀t ≥ 0

]
= 1

P

[ˆ t

0

|µ (Xs, s) ds| <∞ ,∀t ≥ 0
]

= 1

SDE (1) consits of two terms, the first term µdt defined as the drift term, and
the second term σdWt which specifies the random part (the noise) of the
process, named the diffusion part. For the existence and uniqueness of the
solution of SDE given by (1) we need the following condition on µ and σ to be
fulfilled

Theorem 2.3: (Existence and uniqueness) Conditions that guarantees
the existence and the uniqueness of the solution of SDE (1) is the growth con-
dition, let µ and σ satisfying

|µ (x, t)|+ |σ (x, t)| ≤ C (1 + |x|) , x ∈ R, t ∈ [0, T ]

for some constant C, which guarantees global existence, and the Lipshitz
condition

|σ (x, t)− σ (y, t)|+ |µ (x, t)− µ (y, t)| ≤ D |x− y| , x, y ∈ R, t ∈ [0, T ]

for some constant D, which guarantees local uniqueness. And where Ft is the
filtration generated by W = {Wt : t ∈ R}, then the SDE

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt

has a unique t-continuous solution X (t) given by (1).

Proof. Omitted, See Oksendal (2000).

�

One fundamental result to able to use and solve SDE:s is by applying the Itô
formula. The formula is the stochastic analogue to the chain rule in ordinary
mathematical analysis. The Itô formula transforms the Brownian motion given a
function Y (t) = f (t,X (t)), where X (t) is defined by equation 1, the dynamics
of Y (t) is then given by applying the second order Taylor expansion.
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Theorem 2.4: (Itô formula) Let Xt be a stochastic process given by SDE
(1) and let g (t, x) ∈ C1,2 ([0,∞)× R)1 Then

Yt = g (t,Xt)

is an Itô process and

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1
2
∂2g

∂x2
(t,Xt) (dXt)

2

and where the following rules has been used

× dt dWt

dt 0 0
dWt 0 dt

Proof. Omitted

�

We will throughout this thesis assume that the returns of each underlying
asset will follow a log-normal distribution and can thereby be realized by the
geometric Brownian motion (GBM) SDE.

Definition 2.5: (Geometric Brownian Motion) A geometric Brownian
motion is defined as

dSt = µStdt+ σStdWt (2)

which is a short form of the following equation.

St = S0 +
ˆ t

0

µSzdz +
ˆ t

0

σSzdWz

Let us assume that the daily asset returns follows a log normal distribution
and this by introducing

Yt = ln
(
St
S0

)
By applying Itô’s formula we receive the following expression

1i.e. g is twice continuously differentiable on [0,∞)× R.
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dYt =
(
µ− 1

2
σ2

)
dt+ σdWt

finding the primitive function

Yt =
(
µ− σ2

2

)
t+ σWt

and finally ending up with

St = S0 exp
{(

µ− 1
2
σ2

)
t+ σWt

}
(3)

�

St is log normally distributed and there by does the following holds

ln
(
St
S0

)
∼ N

(
lnS0 +

(
µ− σ2

2

)
t, σ2t

)
The expected value of process (3) is given by

E [St] = S0e
rt

Let us demonstrate how (3) can be used to simulate a stock, assuming an
initial spot price s0 = 10, stock volatility σ = 0.3, return µ = 0.05 and a year2.
Stock will after 4 simulations have the following appearance

2.2 Derivatives
Derivatives can be seen as insurance and hedging contracts on the financial mar-
ket in order to remove and avoid potential downside risk. A derivative derives
its value from some underlying asset, hence the name derivative. Today deriva-
tives can be derived by among different number of underlying assets: Stocks,
Indexes, Interest rates, Commodities, Electricity etc. As one can see derivatives
can be applied to almost any type of asset, and one of the simplest derivatives
is the forward contract.

2A year is assumed to have around 252 trading days
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Figure 2: Simulated stock with 4 paths, and the mean S0e
rT .

Definition 2.6: (The Forward Contract) The holder of a forward contract
gives the obligation to buy/sell the underlying asset at some prespecified date
for a prespecified price. The payers position on a asset St, at a specified time
T and with strike price K have the following payoff function

ΦPayer (ST ) = ST −K

the contract for the seller position is defined in the analogue way

ΦSeller (ST ) = K − ST
Just like forwards and futures are options derivatives contracts, but instead

be forced to buy/sell the underlying asset at a specified date in the future,
the option gives the holder an opportunity to buy/sell the underlying asset.
The holder is thereby not forced to do something, and is only left with the
positive outcome. The derivative market today is very big and can be build one
a huge amount of different assets, in some cases have the derivatives market
been dominating in size the market for the underlying asset. In the last 40
years there has been a huge development of the derivative market. (Byström,
2007). One of the reasons was the increased volatility and uncertainty after the
OPEC oil crisis in the 1973, where the oil prices increased drastically and made
a great impact on the global economy. This created a big demand to be able
to insure and hedge not only commodities but all type of assets. The technical
development is another aspect of the increased use in derivatives, by using the
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technique it have made it possible quicker price derivatives, trade and settle
transactions than in earlier periods, but this area will lead to another crises in
the late 80s. The third aspect which is the famous Black-Scholes model, this
phenomenal model totally changed the world of pricing derivatives.

Before stating Black-Scholes we state some fundamental options fundamental
for further studies regarding the subject of the thesis.

Definition 2.7: (The European Call/Put Option) The holder of a call
option have the option to exercise the option and thereby be able to buy the
underlying asset St to specified price at the time to maturity T . The put option
is defined in the analogue opposite way, where the holder of a put option have
the option the sell the underlying asset S at a specified price at T . The payoff
ΦCall (ST ) for the European call option is given by

ΦC (ST ) = (ST −K)+ =

{
ST −K, ST ≥ K
0, ST < K

and for the European call option in the analogous way

ΦPut (ST ) = (K − ST )+ =

{
K − ST , K ≥ ST
0, K < ST

The payoff of this both contracts are demonstrated in the following figure
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Figure 3: Upper: payoff for a Call option, Lower: payoff for a Put option, Both
with K = 50.
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3 The Black-Scholes Model

3.1 The Arbitrage Free Price
Before we state the Black-Scholes formula we need to introduce a fundamental
formula which also will be used during the simulation later on. The formula
named the risk neutral valuation formula, RNVF is stated next (Björk 2004:
99). The risk neutral valuation formula states that any asset risky and non
risky will all have the same expected return as the risk-free rate of interest
r (Hull 2008: 290), this means that in a risk neutral world all assets will all
have the same expected return. One can familiar with financial mathematics
can observe the connection between the risk neutral valuation formula and the
solution proposed by the Feynman-Kač theorem.

Theorem 3.1: (The Risk Neutral Valuation Formula) Given the payoff
function Φ (St) for a European type option, the arbitrage free price Π (t,Φ) of
this claim is given by

Π (t,Φ) = e−rTEQ [Φ (St) | FSt
]

where Q denoted the risk-neutral martingale measure using the money market
account (MMA) as a numeraire and FSt the filtration which contains all the
information about S until time t.

One fundamental property of a martingale is that the expected value of a
random variable X is always constant hence that the following condition holds
with respect to the filtration FXs (Rasmusson, 2008:71)

Definition 3.2: (Martingale) A stochastic process {Mt}t≥0 on (Ω,F ,P) is a
martingale w.r.t. the filtration {Mt}t≥0 on (Ω,F ,P) if the following properties
holds

1. Mt isMt-measurable, or Mt isMt adapted3 for all t,

2. E [|Xt|] <∞, ∀t

3. E
[
Xt | FXs

]
= Xs, ∀ 0 ≤ s < t <∞

3This means that the value of Mt is known given the information in Mt.
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A martingale has no systematic drift and the notion above tells us that each
asset in an arbitrage free world will be a martingale, thus that each asset
discounted future expected value must be equal the present value, i.e. a fair
game. In order to price process (2) correctly and thus that it does not cause
any arbitrage possibilities we need perform a transformation of the Wiener
process. We will only introduce the Girsanov theorem and the transformation
of process (2) in the following theorem (Rasmusson 2008: 136). In order to
change from the historical measure P into the risk neutral measure Q we use
the following theorem

Theorem 3.3: (Girsanov theorem)

Assume that W P
t is a standard P-BM, The relationship between the historical

measure P and the risk neutral measure Q is defined as

WQ
t = W P

t +
ˆ t

0

g
(
s,W P

t

)
ds

where g
(
s,W P

t

)
is the unique Girsanov kernel letting a process defined by a Q-

measure to be arbitrage free.

The are some fundamental properties that are ignored above. By applying
the Girsanov theorem to process (3) one can determine the unique pricing kernel
and thus that in a arbitrage free world any type of asset will evolve with the
interest free rate r and thus that we the drift will be replace by r

dSt = rStdt+ σStdWt (4)

We will throughout this thesis assume that the price process of the risk free
asset, with the interest rate denoted r ≥ 0 is defined according to the following
process

dB (t) = rB (t) dt

3.2 Black-Scholes PDE
The relationship representing the arbitrage free price of the geometric Brownian
motion will be derived in this section. This relationship on the form of a partial
differential equation will be used later on when the option will be priced by
using Black-Scholes formula. To determine the arbitrage free price we will find
a replicating portfolio consisting of an option and the stock. One requirement
for the portfolio is that it is self financing,

Definition 3.4: a portfolio h is self-financed if the following conditions holds
(Björk 2004: 92):
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V h (0) = 0
P
(
V h (T ) ≥ 0

)
= 1

P
(
V h (T ) > 0

)
> 0

Our portfolio will be composed by θc (t) fractions of call options and θs (t)
fractions of stocks. The value Vt of our replicated portfolio can thereby be
determined by

Vt = θc (t)F (t, S (t)) + θs (t)S (t)

and thus is the dynamics given as

dVt = θc (t) dF (t, S (t)) + θs (t) dS (t)

Let ωF (t) and ωS (t) denote the relative proportions invested in each asset:

ωF (t) =
θc (t)F (t, S (t))

Vt
; ωS (t) =

θS (t)S (t)
Vt

the dynamics of the portfolio value can thus be written on the form

dVt = V ωF (t)
dF (t, S (t))
F (t, S (t))

+ V ωS (t)
dS (t)
S (t)

(5)

We know that the dynamics of the stock is given by equation 2, the dynamics
of the option value is given by Πt = F (t, S (t))

dFt =
(
∂F

∂t
+
∂F

∂S
µS +

1
2
∂2F

∂t2
σ2S2

)
dt+

∂F

∂S
σSdW

By inserting the option and stock dynamics into equation 4 we have

dVt =
V ωF
F

[(
∂F

∂t
+
∂F

∂S
µS +

1
2
∂2F

∂t2
σ2S2

)
dt+

∂F

∂S
σSdW

]
+

+
V ωS
S

[µSdt+ σSdW ] =

= V

[
ωF
F

(
∂F

∂t
+
∂F

∂S
µS +

1
2
∂2F

∂t2
σ2S2

)
+
ωS
S
µ

]
dt+ V σ

[
ωF
F

∂F

∂S
S + ωS

]
dW
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The portfolio weights ωS and ωF are chosen such that

{
ωF

F
∂F
∂S S + ωS = 0
ωS + ωF = 1

which makes the diffusion part vanish which make our system look like

dV = V

[
ωF
F

(
∂F

∂t
+
∂F

∂S
µS +

1
2
∂2F

∂t2
σ2S2

)
+
ωS
S
µ

]
dt

Knowing the fact that in a risk neutral world will all assets grow with the
same rate, the interest free rate. The weights are thus given by

ωF = −F
S ∂F

∂S−F

ωS = S ∂F
∂S

S ∂F
∂S−F

the following deterministic partial differential equations holds for the arbitrage
free price of the option

∂F

∂t
(t, S (t)) + r (t, S (t))

∂F

∂S
+

1
2
σ2 (t, S (t))

∂2F

∂S2
(t, S (t))− rF (t, S (t)) = 0

�

The relationship above is more famous under the name Black-Scholes
Equation (should not be confused with Black-Scholes formula, which is stated
in next section).

The Black-Scholes equation stated above can be solved by using the
Feynman-Kač theorem (Björk 2004: 70)

Theorem 3.5: (Feynman-Kač) The solution the following PDE is given by
F

∂F
∂t (t, x) + r (t, x) ∂F∂x + 1

2σ
2 (t, x) ∂

2F
∂x2 (t, x)− rF (t, x) = 0

F (T, x) = Φ (x)

where X defined by equation 2, the solution to F is given by

F (t, x) = e−r(T−t)E [Φ (XT )]
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3.3 Black-Scholes formula
By using formula 3 but replace the constant µ with the risk free rate of interest
r will make our model risk neutral with a solution that is given by:

St = s0 exp
((

r − 1
2
σ2

)
t+ σWt

)
The derivation is done by using the payoff for the European Call option

ΦC (St) = (St −K)+ = (St −K) · 1{St>K}

but this will also work by using the analogue European put option payoff. The
price for the European put option can also be determined by using the put call
parity which will be described later on. By using the RNVF we are receiving
the following arbitrage free price.

ΠC
t = e−rtEQ

[
Φ (XT ) |FXt

]
= e−rtEQ

[
(St −K)+ |FXt

]
= e−rtEQ

[
St · 1{St>K}|F

X
t

]︸ ︷︷ ︸
E1

− e−rtKEQ
[
1{St>K}|F

X
t

]︸ ︷︷ ︸
E2

= e−rtE1 − e−rtKE2

The hard part is to calculate E1, the calculation is done by assuming
normality. Anyone with an introduction course in probability is familiar with
the normal distribution N (0, 1) (Blom 2005: 143). The definition of the
probability density function, pdf fX (x) is given by

fX (x) =
1

2π
e−

x2
2

thus the cumulative density function, cdf FX (x) is given by finding the
primitive function of the pdf, and it is done by integration over the interval
−∞ ≤ t ≤ x

FX (x) =
ˆ x

−∞

1
2π
e−

t2
2 dt
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Figure 4: Upper: density function fX , Lower: Cumulative function FX

E1 = EQ
[
St · 1{St>K}|F

X
t

]
=

1
2π

ˆ ∞
−∞

s0 exp
{(

r − 1
2
σ2

)
t+ σ

√
tz

}
exp

{
−z2

2

}
d

=
1

2π

ˆ ∞
−∞

s0 exp
{(

r − 1
2
σ2

)
t+ σ

√
tz − z2

2

}
dz

=
1

2π
s0e

rt

ˆ ∞
−∞

exp
{(
−1

2
σ2

)
t+ σ

√
tz − z2

2

}
dz

= s0e
rtN

[
−z0 + σ

√
t
]

since we require that the call option must be in-the-money, i.e. that the
following condition is fulfilled St > K, the parameter d is the one that solves
this

s0 exp
{(

r − 1
2
σ2

)
t+ σ

√
tz0

}
= K ⇔

z0 =
lnKs0 −

(
r − 1

2σ
2
)
t

σ
√
t

⇒
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E1 = s0e
rtN

[
−z0 + σ

√
t
]

= s0e
rtN

[
−
lnKs0 −

(
r − 1

2σ
2
)
t

σ
√
t

+ σ
√
t

]

= s0e
rtN

[
ln s0K +

(
r − 1

2σ
2
)
t

σ
√
t

]
= s0e

rtN [d]

and for E2

E2 = EQ
[
1{St>K}|F

X
t

]
=

1
2π

ˆ ∞
−∞

exp

{
−z2

2

}
dz

= N
[
d− σ

√
t
]

�

Theorem 3.6: (Black-Scholes formula for European Call Options)

ΠC
t = s0N [d]− e−rtN

[
d− σ

√
t
]

where d is given by

d =
ln s0K +

(
r − 1

2σ
2
)
t

σ
√
t

The price of a European call option depends on

1. Time to maturity T

2. The current value of the underlying stock s

3. The strike price K

4. The interest rate r

5. The volatility σ
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The following figure demonstrates how the Black-Scholes price changes when
strike price K, volatility σ, and interest rate r is kept constant while time to
maturity T and the stock price S varies. One can observe that the option price
increases as the stock price and time to maturity increases

Figure 5: The Black-Scholes price for an European Call option with K = 100,
σ = 0.3, r = 0.05.

The Black-Scholes formula is built on a few assumptions (Hull 2008: 286),
some of them are very crude which limits the model

1. The stock follows geometric Brownian motion

2. Short selling is allowed

3. No market frictions, hence no transactions costs or taxes.

4. No dividend is paid out during the assets holding period.

5. There does not exist any arbitrage possibilities.

6. Constants volatilityσ, and constant interest r.

3.4 The Put-Call Parity
The put-call parity describes the important relationship between European call
ΠC
t and put ΠP

t option in a arbitrage free world where both have the same strike
price K, and time to maturity T .

ΠP
t = Ke−r(T−t) + ΠC

t − St
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If the relationship does not hold this means that there exists arbitrage
opportunities and thus that we can make money from nothing, also known as
“free lunches”. The relationship above states that an European put option can
be replicated by long position in the bank with amount Ke−r(T−t), a long
position in a European call option and a short position i the stock.

Figure 6: Put-Call parity

If you add the payoff of the assets in the upper plot it will result in the payoff
given in the lower plot.

3.5 Volatility Smile
Assumption 6 with constant volatility in the Black-Scholes model is one of the
drawbacks resulting in the phenomenon called the volatility smile. To demon-
strate the volatility smile the implied volatility is introduced where we calculates
the volatility of an option given the option price, stock price, strike price etc.
The implied volatility is defined by finding the inverse of the Black-Scholes for-
mula, the following function for the call option

σimp = C−1
BS (Πt, S0,K, r, T )

But the problem is thus that there does not directly exists an inverse of the
Black-Scholes formula, but it can be solved a numerical procedure. Solving the
following relationship

CM − CBS (σimp) = 0

which can be solved by using the Bisection Method deduced in the section
containing numerical methods.
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The following picture demonstrates the smile effect by using a linear interpo-
lating technique for plotting data collected for the currency mid pair EURUSD4

quoted at 1.2714 the 10 March 2009. Strikes lower than the ATM strike are
strikes of Put options and strikes higher are strikes of Call options, this method
is more or less a standard way of describing the volatility in the FX market.

Figure 7: Volatility Smile in the FX market

4One pay in USD and receive EUROs
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4 The Heston model

4.1 Heston Stochastic Volatility Model
The crude assumption of constant volatility in the Black-Scholes formula causes
problem. One model where the volatility is a stochastic process is the Heston
Stochastic Volatility Model (Heston 1993: 328) which is an extended version
of the Black-Scholes SDE with a volatility that follows a so called CIR-process
(Rasmusson 2008: 115). The Heston Model takes the non-log normal distribu-
tion of the assets returns and the leverage effect into account, the correlation
between the two Wiener processes.

Theorem 4.1: The Heston Model defined by following stochastic processes:

dSt = µStdt+
√
VtStdW

(S)
t (6)

dVt = κ (θ − Vt) dt+ σV
√
VtdW

(V )
t (7)

and where W (S)
t and W (V )

t are correlated Wiener processes with ρ, i.e.

dW
(S)
t dW

(V )
t = ρdt (8)

parameters extended from the initial Black-Scholes model:

κ Mean reversion rate
θ Long run variance
V0 Initial variance.
σV Volatility of variance
ρ Correlation parameter.

Steven L. Heston derived a closed form solution for the price of a European
call option on an asset with stochastic volatility. By applying the Itô formula
and some standard Black-Scholes arbitrage arguments one receives the
Garman’s partial differential equation (Heston 1993: 334) stated as:

∂C
∂t + S2V

2
∂2C
∂S2 + rS ∂C∂S − rC

+ [κ (θ − V )− λV ] ∂C∂V + σ2V
2

∂2C
∂V 2 + ρσSV ∂2C

∂S∂V = 0
(9)

and λ is the market price of volatility risk.
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4.2 The Heston Closed form approximation
The Heston approximation is build on Garman’s PDE (9) stated in the
previous part. Heston suggested a pricing function analogy to the
Black-Scholes formula of the following form:

C (St, Vt, t, T ) = StP1 −Ke−r(T−t)P2

P1 and P2 are defined by the inverse Fourier transformation

Pj (x, Vt, T,K) =
1
2

+
1
π

ˆ ∞
0

Re
(
e−iφ ln(K)fj (x, Vt, T, φ)

iφ

)
dφ, j = 1, 2

and where

x = ln (St)

fj (x, Vt, T, φ) = eC(T−t,φ)+D(T−t,φ)Vt+iφx

C (T − t, φ) = rφir +
a

σ2

[
(bj − ρσφi+ d) τ − 2 ln

(
1− gedr

1− g

)]

D (T − t, φ) =
bj − ρσφi+ d

σ2

(
1− edr

1− gedr

)
g =

bj − ρσφi+ d

bj − ρσφi− d

d =
√

(ρσφi− bj)2 − σ2 (2ujφi− φ2)

for j = 1, 2, and where

u1 =
1
2
, u1 = −1

2
, a = κθ b1 = κ+ λ− ρσ, b2 = κ+ λ

4.3 The Heston Smile and Skew
The motivation for using the Heston model is that as mentioned above the
model creates consistent smile and skews. In this part will we simulate option
prices from the suggested approximation and thereafter calculating the Black-
Scholes implied volatility and this for different levels of the leverage effect ρ,
where ρ =

[
−0.9 0 0.9

]
and studying the outcome.
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Figure 8: Implied volatility, Upper: ρ = −0.9, Middle: ρ = 0, Lower: ρ = 0.9
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5 Numerical Methods

5.1 SDE Approximation
To be able to approximate the SDE’s solution the process needs to be
discretizised. To be able to do that the process is divided into small grids
between an interval [a, b]

a = t0 < t1 < · · · < tn = b

The solution for the processes above can be approximated by using the
Euler-Maruyama Method (Sauer 2005: 460), which is a Taylor approximation.
The Euler-Maruyama Method is demonstrated on the following stochastic
differential equation:

dY = µY dt+ σY dWt

the Euler-Maruyama Method is defined as:

w0 = y0

wi+1 = wi + µwi (∆ti) + σwi (∆Wt)

and ∆Wt is calculated as:

∆Wt = Zi
√

∆ti

and Ziis a standard Gaussian random variable N (0, 1)

Applying the Euler-Maruyama Method to the Heston Model above gives the
following discrete relationship

St = St−1 + µSt−1dt+
√
Vt−1St−1

√
dtZ

(S)
t

Vt = Vt−1 + κ (ξ − Vt−1) dt+ σV
√
Vt−1dtZ

(V )
t

Z
(S)
t = G

(S)
t

Z
(V )
t = ρG

(S)
t +

√
1− ρ2G

(V )
t
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where G(S)
t and G(V )

t is chosen from N (0, 1) and are independent identically
distributed.

�

5.2 Monte Carlo
Our goal is to find a solution to the Heston process, by using the technique
presented above together with Monte Carlo simulation the solution of the SDE
will hopefully converge towards the real value. By simulating the process a
large number of times its value will eventually converge towards the real value.
Anyone familiar with Monte Carlo simulations knows that it is very time and
computer consuming.

The Basic idea of MC is to approximate an integral by taking the average
of some sequence of simulated paths. Say for instance that we want to evaluate
the following integral

I = E [φ (x)] =
ˆ
φ (x) f (x) dx

where X ∈ Rd, φ : Rd → R and where f is the pdf. of X. I = E [φ (x)] can
then be approximated in the following way

1. Draw N values x1, . . . , xN i.i.d from f .

2. The integral can then be evaluated as

I ≈ 1
N

N∑
i=1

φ (xi) (10)

�

Monte Carlo simulation is built on two famous theorems: the Law of Large
Numbers and the Central Limit Theorem (Sköld 2006:28).

Theorem 5.1: (A Law of Large Numbers)

Assume X1, . . . , Xn is a sequence of independent random variables with

common means E [Xi] = τ and variance V ar [Xi] = σ2. If Tn = 1
n

n∑
i=1

Xi, and

such as the following condition holds almost surely

P (Tn → τ) = 1 as n→∞

This means that our approximation will converge towards the real value as
number of simulations tends to infinity. More precise information on the
Monte-Carlo error (Tn − τ) is given by the Central Limit Theorem (CLT):
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Theorem 5.2: (Central Limit Theorem)

Assume X1, . . . , Xn is a sequence of i.i.d. random variables with common

means E [Xi] = τ and variance V ar [Xi] = σ2. If Tn = 1
n

n∑
i=1

Xi, we have:

P

(√
n (Tn − τ)

σ
≤ x

)
→ Φ (x) as n→∞

where Φ (x) is the distribution function of the N (0, 1) distribution.

Slightly less formally, the CLT tells us that the difference (Tn − τ) has, at
least for large n, approximately an N

(
0, σ

2

n

)
distribution. With this informa-

tion we can approximate probabilities like P (|Tn − τ | < ε), and perhaps more
importantly find ε such that P (|Tn − τ | < ε) = 1 − α for some specified confi-
dence level α, and we have that the MC approximation converges with a rate
of O

(
n−1/2

)
.

5.2.1 Antithetic Variates

There exists a couple of Monte Carlo simulation techniques, we will extend the
crude MC technique by simulation using the variance reduction technique Anti-
thetic Variates by introducing a negative dependence between each replication.
The Antithetic Variates is defined in the following way (Rasmus 2008:160)

1. Sample n replicates of zi ∈ N (0, 1)

2. Set si = S0 exp
{(
r − σ2

2

)
T + σ

√
Tzi

}
3. Set ci = S0 exp

{(
r − σ2

2

)
T − σ

√
Tzi

}
4. The Antithetic Variate estimator is

π̂av =

n∑
i=1

(Φ (si) + Φ (ci))

2n

The main idea with Antithetic Variates is that the outcome calculated by the
first path will be balanced by the value calculated from the second path, or the
Antithetic path, and thus that the variance is reduced. Let have a look why this
work. Assume a random variable X and its antithetic variable X̃, the variance
can be written as

Var

[
X + X̃

2

]
=

Var [X]
4

+
Var

[
X̃
]

4
+

2Cov
[
X, X̃

]
4

=
Var [X]

2

(
1 + Corr

[
X, X̃

])
≤ Var [X]
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if Corr
[
X, X̃

]
< 0 the following relationship holds instead.

Var

[
X + X̃

2

]
<

Var [X]
2

�

we know that X and X̃ have the same variance, in order to reduce the
variance we need that the covariance between the both variables are negative
Cov

[
X, X̃

]
< 0 and that is why we try to produce negative correlated pairs.

As this technique can reduce the variance it can also increase it.

5.3 Bisection Method
To be able to solve equations numerically we will later on use the Bisection
Method. The Bisection Method is an iterative method for finding root in some
interval and is here described in the following pseudo code.

Algorithm 2 Bisection Method
Given an initial interval [a, b] and a tolerance level TOL

while (b-a)/2 > TOL

c = (a + b)/2
if f(c) == 0 stop, end
else if f(a)f(c) < 0

b = c

else

a = c

end

end

The final interval [a, b] will contain the root and the approximate root is given
by (a+ b) /2

5.4 Estimating the parameters
Maximum-likelihood is a common technique for estimating unknown parameters
from a specific distribution. Let X1, . . . , Xn be a sequence of random variables
from a distribution with unknown parameter θ from some parameter space Θ,
often denoted as θ ⊆ Θ. We often assume that a sequence as the one given above
is independent and that all random variables are from the same distribution.

Definition 5.3: (Maximum Likelihood)
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L (θ) = fX1,X2,...,Xn (x1, x2, ..., xn; θ)

since the sequence of random variables is assumed to be independent the
likelihood function L (θ) above can be simplified by

L (θ) = fX1 (x1; θ) fX2 (x2; θ) · · · fXn
(xn; θ) =

n∏
i=1

fXi
(xi; θ)

It is often more convenient to maximize lnL (θ) since they reach maximum in
the same point, and the fact that by using the law of logarithmic function we
receive a easier function to work with

l (θ) = lnL (θ) = ln

(
n∏
i=1

fXi (xi; θ)

)
=

n∑
i=1

fXi (xi; θ)

The value θ∗ which the function L (θ) receive the largest value in the
parameter Θ is called the ML estimate of θ. (Blom (2005): page 255)

An extended version of the Maximum Likelihood is called the Simulated
Maximum Likelihood, SMLE (Lindström 2008), which is a technique for esti-
mating the parameters in stochastic processes.

Since the SMLE is built on the standard Maximum likelihood where the main
goal is to find the following likelihood function:

L (θ) =
N∏
n=1

p (yi|yi−1, θ)

The model is not available in closed form and to be able to solve the likelihood
function we need to approximation it which is done by the following equation:

L (θ) =
N∏
n=1

p (yi|yi+1, θ) ≈
N∏
n=1

(
1
K

K∑
k=1

φ
(
yn+1, µn,k|θ, σn,k|θ

))
where φ (y, µ, σ) is the Normal distributed density function, the log likelihood
is then given by:

l (θ) = logL (θ) ≈
N∑
n=1

(
log

(
1
K

K∑
k=1

φ
(
yn+1, µn,k|θ, σn,k|θ

)))
�
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6 Numerical Implementation

There are mainly three different techniques for approximating the prices
stated by the Heston Stochastic Volatility model

• Numerical approximation of the stated pricing PDE.

• Monte Carlo methods, MCM.

• Different Fourier transformation techniques.

This thesis will use the Antithetic Variates Monte-Carlo method stated above
for approximating the price of the contingent claim. The reason for it is that
MCM is a more general method and very simple to use. The main drawback is
that it is very computer intensive for higher price precisions. As stated above the
Heston Stochastic Volatility model is discretizised by using the Euler-Maruyama
Method, and are thereafter simulated by using MCM and compared with the
closed form solution. The following values are used as initial parameter values:

r 0.05
κ 10
θ 0.16
V0 0.16
σV 0.10
ρ -0.80

Table 1: Parameters used when simulating the Heston model, approximate the
Heston and calculating the BS value

The standard European call option price is calculated by Monte Carlo
simulation, the Heston approximation and Black-Scholes formula. The price is
calculated for different time to maturity T , moneyness MN defined in our case
as the ratio between the strike price and the spot price of the underlying asset.
The analogous European put option can be derived by applying the
put-call-parity.
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T MN MC HA (Error) BS (Error)
0.5 0.8 11.8364 12.014 (0.178) 11.987 (0.151)

1.0 5.868 5.954 (0.086) 5.961 (0.093)
1.2 2.533 2.572 (0.039) 2.615 (0.082)

1.0 0.8 13.998 13.989 (0.009) 13.968 (0.030)
1.0 8.566 8.560 (0.006) 8.569 (0.003)
1.2 5.028 5.027 (0.001) 5.069 (0.041)

1.5 0.8 15.892 15.647 (0.245) 15.631 (0.261)
1.0 10.751 10.590 (0.161) 10.601 (0.150)
1.2 7.175 7.064 (0.111) 7.104 (0.071)

2.0 0.8 17.615 17.095 (0.520) 17.083 (0.532)
1.0 12.696 12.312 (0.384) 12.325 (0.371)
1.2 9.109 8.836 (0.273) 8.875 (0.234)

Table 2: The Heston Approximation is compared to the Heston stochastic pro-
cess which is simulated with a crude Monte Carlo technique with 107 trajec-
tories. These values are compared to the Black-Scholes price. This is done for
different levels of time to maturity and moneyness, moneyness defined as the
strike price divided by the spot price of the underlying asset K/S (0).

As one can observe from the table above is that the Heston approximation
price European calls with time to maturity equally to one really close to the
true value, and outperformance the Black-Scholes formula. The Heston loses
the accuracy as the time to maturity increases, but this is the same for
Black-Scholes. The Heston model faces biggest problem of pricing options with
moneyness below 1. The overall view is that the Heston model beats the
Black-Scholes since the assumption of log normal returns is ignored.
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Figure 9: Results, comparing values derived with MC to those calculated by the
Heston approximation and Black-Scholes formula.
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7 Empirical Studies

The empirical studies are done by calibrating, in other words estimate the
parameters for the Heston model and for the Black-Scholes formula. Thereafter
are an European Call option priced by these two models. The used data are
computer simulated. To be able to work with this data the prices the data
needs to converted to asset returns and volatility. The problem for us is that
the Black-Scholes formula assumes constant variance. So from our given data a
constant variance is then calculated, to do so we use historical data of a period
which has the same length as our time to maturity (Franke et. al 2008: 91)
and hopefully resulting in an accurate value for the volatility. We are first
calculating the returns for historical stock prices with the same horizon as our
time to maturity:

Rt = logSt − logSt−1

The variance of the returns is then calculated by (Franke et. al 2008: 90):

v̂ =
1

n− 1

n∑
t=1

(
Rt − R̄n

)2
where R̄n =

n∑
t=1

Rt, and an estimator for the volatility σ is then

σ̂ =

√
v̂

∆t

A year is assumed to have 252 trading days resulting in ∆t = 1
252 . Our

volatility is then calculated to 0.0011. Inserting all the given data, r = 0.03,
S0 = 120.6870, K = 108.1629, T = 0.667 and σ = 0.0011 the price for the call
options is then:

CBS = 14.6668

The parameter estimation of the Heston model is done in the following way,
we are first picking (done once) a large number of random number, referred as
Common Random Numbers with goal to avoid Monte Carlo error and this by
using the same sequence of random number each time we evaluate the likelihood
function. We are thereafter estimating the parameters for the volatility process
including the correlation term ρ. Then together with the estimated parameters
for the volatility process the parameters for stock dynamics is estimated. The
simulation gives us the following Heston parameters:
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µ = 0.0336, κ = 9.9636, θ = 0.0406, σV = 0.1372, ρ = −0.9746

The correlations term ρ is negative and close to -1, perfect negative
correlation. And why our estimated ρ is because of the leverage effect, the
market is much more affected by “bad” news compared to “good” news. To see
if the parameters makes any sense we are using them in the Heston Model
with real volatility and stock values resulting in the following figure:

Figure 10: Upper left: The market volatility compared with simulated Heston
volatility, upper right: the stock price compared with the simulated stock price.
Lower left: The distribution of the returns compared with the normal distribu-
tion. Lower right: the daily returns.

The volatility from the Heston Model almost fit the real volatility; the
simulated stock values are fairly the same as the real values but are over
estimated at the peaks and this as a result from the Monte Carlo simulation.
The third plot shows that the residuals is not normal distributed but have
excess kurtosis and follows a student-t or a general error distribution. The
forth plot is just the log-returns of the stock and we can see that the stock is
more volatile where the returns are bigger (plus and minus).

With the estimated parameters we are now able to price the call option
using the Risk-Neutral Valuation Formula and Monte Carlo simulation. Using
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the time to maturity as the step size and simulate a large number of stock
price trajectories with Heston model the generated stock price is then used in
the pricing formula. There is improvement compared to Black-Scholes with
the Heston model as the volatility is not assumed to be constant and more
parameters to be calibrated better fit the option prices.

The crude Monte Carlo gives us the following value for the call option price

CHeston = 14.7274
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8 Epilouge

8.1 Conclusion
The study made in this thesis demonstrated a technique for constructing smile
and skew consistent prices by violating one of the crude assumptions in the
Black-Scholes model, constant volatility. The result shows that the Heston
approximation works really well and only face big problems when options with
high time to maturity are be priced. Another problem is that the approximation
gives us incorrect prices when the moneyness is below one. To reduce this
problem further studies of the volatility smile could be done and were the skew
of options that are not in the money could be compare to options that are in the
money and trying to repair this. As one could observe from the results above
is that the Heston approximation loses its accuracy as the time to maturity
increases, but Black-Scholes is also facing the same type of problem. Since the
Heston model not is build on the assumption on non constant volatility showed
an improvement of modeling stocks and receiving smile consistent option prices.
Taking the leverage effect into account is another advantage why the model
is and enhancement compared to Black-Scholes. The cons are thus that the
integral (10) might not always converge.

8.2 Future Work
Further improvements in further studies could been done by introducing better
variance reduction techniques for the Monte Carlo simulation resulting in even
better option prices.

Introducing Local volatility models as introduced by Dupire (1994), a deter-
ministic technique for determining the volatility σL from implied volatility σI as
function of both term structure and current asset price σL (S, t) is a technique
that could be combined with these stochastic volatility models. Introducing
Multi-Scale volatility processes since the market in some sense shows an ef-
fect of more than one volatility, e.g. volatility of volatility and thus being able
to capture the market features even better. Additional improvement could be
achieved by introducing so called jumps that are represented by Poisson pro-
cesses.

“...only models that take into account local, jump and stochastic features of the
volatility dynamics and mix them in the right proportion are adequate for

pricing and risk management of forex options”.

Lipton (2002)
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