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Abstract

Pricing a Basket option for Foreign Exchange (FX) both with Monte Carlo
(MC) techniques and built on different approximation techniques matching the
moments of the Basket option. The thesis is built on the assumption that each
underlying FX spot can be represented by a geometric Brownian motion
(GBM) and thus have log normally distributed FX returns. The values derived
from MC and approximation are thereafter priced in a such a way that the FX
smile effect is taken into account and thus creating consistent prices. The smile
effect is incorporated in MC by assuming that the risk neutral probability and
the Local Volatility can be derived from market data, according to Dupire
(1994). The approximations are corrected by creating a replicated portfolio in
such a way that this replicated portfolio captures the FX smile effect.




Sammanfattning (Swedish)

Prissättning av en Korgoption för valutamarknaden (FX) med hjälp av både
Monte Carlo-teknik (MC) och approximationer genom att ta hänsyn till
Korgoptionens moment. Vi antar att varje underliggande FX-tillgång kan
realiseras med hjälp av en geometrisk Brownsk rörelse (GBM) och därmed har
lognormalfördelade FX-avkastningar. Värden beräknade mha. MC och
approximationerna är därefter korrigerade på ett sådant sätt att
volatilitetsleendet för FX-marknaden beaktas och därmed skapar konsistenta
optionspriser. Effekten av volatilitetsleende överförs till MC-simuleringarna
genom antagandet om att den risk neutral sannolikheten och den lokala
volatilitet kan härledas ur aktuell marknadsdata, enligt Dupire (1994).
Approximationerna korrigeras i sin tur genom att skapa en replikerande
portfölj på ett sätt så att denna fångar upp FX-leendet.
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List of Notations

cdf - Cumulative density function.

E [X] - Expected value of the stochastic variable X.

FXt - Filtration F , contains all information about the s.v. X up until time t.

FX - Foreign Exchange.

GBM - Geometric Brownian motion.

K - strike price.

L - Likelihood function.

MC - Monte Carlo.

MG - Martingale.

N (µ, σ) - Normal distribution with mean µ and standard deviation σ.

P - Historical probability measure, P : F 7→ [0, 1].

PDE - Partial Differential Equation.

pdf - Probability density function.

φ - Normal probability density function.

Φ - Payoff function.

Π (St, t)- Derivative value with underlying asset St at time point t.

qMC - quasi Monte Carlo

Q - Risk neutral martingale measure.

rd - Domestic interest rate.

rf - Foreign interest rate.

Rd - (d× 1)-dimensional real value.

σ - Volatility.



SDE - Stochastic Differential Equation.

St - Stock value at time t.

T - Time to maturity.

θ - Parameter set.

Θ - Parameter space.

W - Wiener process, N (0, 1).

(Ω,F ,P) - Probability space.

Ω - Sample space.

F - σ-algebra generated by ω = {ωt : t ∈ R}.

⊆ - Subset.

� - End of derivation/proof.

∀ - for all.
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1 Introduction

1.1 Background
A Basket option is an asset similar to the Asian option, a multidimensional
derivative whose payoff depends on the average price of the underlying assets.
But instead of taking the average of one asset, the value of the Basket option
depends on the weighted sum of a number of underlying assets. These types
of path-dependent derivatives are one of the more complicated contracts to
value and price. The Basket option protect against drops in all underlying
assets at the same time, now anyone can understand its importunateness for
risk reducing. Instead of buying plain options in the different assets as one can
do, it is intuitively cheaper to buy a Basket of options which allows an investor
to hedge its risk exposure by only using one derivative. And the fact that the
total amount paid in transaction cost is lower when a single asset is purchased
instead of several ones.

What makes it challenging when pricing averaging options is that traditional
methods as finding numerical approximations for the partial differential equation
(PDE) is not efficient since the number of underlying assets might be large. Also
the fact the assets built on several assets in some sense are correlated is another
aspect that need to be taken into account. The simple Black-Scholes model is
built on the crude assumption that assets returns are log-normally distributed,
well it can be shown that a finite summation of log normally distributed random
variables are not log normally distributed anymore, and thus that there does not
exist a closed form solution on Black-Scholes form. Then in order to be able to
price these weighted summation of underlying assets like the Basket option we
need some heavy computation, which can be done by Monte Carlo and quasi-
Monte Carlo techniques. Anyone familiar with these techniques knows that they
can be very computer intensive and time consuming in order to be able retrieve
accurate values, and traders selling these types of assets needs these calculation
to be done instantly since the foreign exchange (FX) market is very liquid and
change continuously. That is why we need to find an accurate closed form
approximation solution, several analytical approximations have been presented
the last decades and this thesis will investigate some of them and determine
their accuracy.

Another effect of being in a Black-Scholes world is the assumption on con-
stant volatility, and thus that we get inconsistent prices since options with dif-
ferent time to maturity and strikes are valued with different implied volatilities,
giving arise to the Smile effect. That is why the values derived from both Monte
Carlo and the approximations need to be priced in such a way that the Smile is
taken into account. The first fundamental strategy to overcome this problem is
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the deterministic local volatility model, and by constructing replicated portfolio
that integrate the smile effect.

1.2 Purpose
This research arise from Nordea Market’s (in Copenhagen) interest in increasing
their FX financial instruments by offering a tailor made FX Basket option. The
purpose of this thesis is to construct appropriate approximations for calculating
FX Basket options instantly that are smile consistent and that not deviates to
much compare to the values derived from Monte Carlo simulation.

1.3 Outline
In the second section will we present some fundamental mathematical and
derivative theory, the Black-Scholes market, the purpose of the Greeks, intro-
duction to the FX market, conventions and properties. Thereafter will the
important Smile and Skew effect be deduced, how to approximate it, and finally
is the Basket option introduced.

The third section is devoted to numerical method for calculating the option
prices and where both Monte Carlo and quasi-Monte Carlo techniques are pre-
sented, techniques for reducing variance in Monte Carlo, techniques transform-
ing the distribution of random variables, and some other fundamental numerical
methods for the thesis.

In section four is the approximations introduced: Geometric Average, Log-
Normal-, Reciprocal Gamma-, four moment method- and the Taylor approxi-
mation.

Section five contains different hedging strategies; strategies build on con-
sidering the Greeks and methods trying to find both upper and lower levels of
replicating portfolios.

Pricing considering the volatility smile and skew are presented in section six,
we present the Local volatility, techniques for creating replication of a portfolio
that considers the smile.

And in section seven will the numerical results be presented, different sce-
narios for testing the approximations, creating FX smile prices and hedging
values.

All calculations and simulations in this thesis are coded and performed in
Matlab, the report is written in LYX (an interface between the user and LATEX).
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2 Stochastic Calculus and Arbitrage Pricing

2.1 Mathematical Theory
We will throughout the thesis assume that there exists a probability space
(Ω,F ,P) where Ω is the sample space, F the σ-algebra generated by stochastic
process ω = {ωt : t ∈ R} and P the probability measure, P : F 7→ [0, 1]. The
stochastic process is thus defined as

Definition 2.1: (Stochastic process) A stochastic process is a collection
of randomized variables on a probability space (Ω,F ,P)

{Xt}t∈T , T ∈ [0,∞)

and for each t ∈ T we have that

ω 7→ Xt (ω) , ω ∈ Ω

or by fixing ω ∈ Ω we have the path of Xt

t 7→ Xt (ω) , t ∈ T

We use the fundamental Brownian motion Wt on the probability space
(Ω,F ,P) to represent our important stochastic engine for modeling the ran-
domness in the financial market.

Definition 2.2: (Brownian Motion) The stochastic processW = {Wt : t ∈ R}
on the probability space (Ω,F ,P) is called a Brownian motion if the following
properties holds a.s.

1. W0 = 0.

2. The increments are independent and stationary, i.e. if r < s ≤ t < u then
are Wu −Wt and Ws −Wr independent stochastic variables.

3. The increments of Wt+h −Wt are normally distributed, N
(

0,
√
h
)

10



4. Wt has continuous trajectories.

Let X (t) represent a stochastic processes, in our case a differential equation
extended with a random part, hence the name stochastic differential equation
(SDE) or the 1-dimensional Itô process given in the following definition,

Definition 2.3: (1-dimensional Itô Process) Let Wt be a Brownian mo-
tion, the Itô process (stochastic process) Xt on the probability space (Ω,F ,P)
is then given by

Xt = X0 +
ˆ t

0

µ (Xs, s) ds+
ˆ t

0

σ (Xs, s) dWs (1)

often written on a shorter form

dXt = µdt+ σdWs

such that the following conditions holds almost surely

P

[ˆ t

0

σ (Xs, s)
2
ds <∞ ,∀t ≥ 0

]
= 1

P

[ˆ t

0

|µ (Xs, s) ds| <∞ ,∀t ≥ 0
]

= 1

SDE (1) consits of two terms, the first term µdt defined as the drift term, and
the second term σdWt which specifies the random part (the noise) of the
process, named the diffusion part. For the existence and uniqueness of the
solution of SDE given by (1) we need the following condition on µ and σ to be
fulfilled

Theorem 2.3: (Existence and uniqueness) Conditions that guarantees
the existence and the uniqueness of the solution of SDE (1) is the growth con-
dition, let µ and σ satisfying

|µ (x, t)|+ |σ (x, t)| ≤ C (1 + |x|) , x ∈ R, t ∈ [0, T ]

for some constant C, which guarantees global existence, and the Lipshitz
condition
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|σ (x, t)− σ (y, t)|+ |µ (x, t)− µ (y, t)| ≤ D |x− y| , x, y ∈ R, t ∈ [0, T ]

for some constant D, which guarantees local uniqueness. And where Ft is the
filtration generated by W = {Wt : t ∈ R}, then the SDE

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt

has a unique t-continuous solution X (t) given by (1).

Proof. Omitted, See Oksendal (2000).

�

The stochastic analogue to the chain rule in ordinary calculus, the Itô for-
mula that transforms the Brownian motion given the function Yt = g (t,Xt),
where Xt is defined by (1). The dynamics of Yt is then given by applying the
second order Taylor expansion, are stated in the following theorem.

Theorem 2.4: (Itô formula) Let Xt be a stochastic process given by SDE
(1) and let g (t, x) ∈ C1,2 ([0,∞)× R)1 Then

Yt = g (t,Xt)

is an Itô process and

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1
2
∂2g

∂x2
(t,Xt) (dXt)

2

and where the following rules has been used

× dt dWt

dt 0 0
dWt 0 dt

Proof. Omitted

�

We will throughout this thesis assume that the returns of each underlying
asset will follow a log-normal distribution and can thereby be realized by the
geometric Brownian motion (GBM) SDE.

1i.e. g is twice continuously differentiable on [0,∞)× R.
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Definition 2.5: (Geometric Brownian Motion) A geometric Brownian
motion is defined as

dSt = µStdt+ σStdWt (2)

which is a short form of the following equation.

St = S0 +
ˆ t

0

µSzdz +
ˆ t

0

σSzdWz

Let us assume that the daily asset returns follows a log normal distribution
and this by introducing

Yt = ln
(
St
S0

)
By applying Itô’s formula we receive the following expression

dYt =
(
µ− 1

2
σ2

)
dt+ σdWt

finding the primitive function

Yt =
(
µ− σ2

2

)
t+ σWt

and finally ending up with

St = S0 exp
{(

µ− 1
2
σ2

)
t+ σWt

}
(3)

�

St is log normally distributed and there by does the following holds

ln
(
St
S0

)
∼ N

(
lnS0 +

(
µ− σ2

2

)
t, σ2t

)
The expected value of process (3) is given by
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E [St] = S0e
rt

Let us demonstrate how (2) can be used to simulate a stock, assuming an
initial spot price S0 = 10, stock volatility σ = 0.3, return µ = 0.05 and a year2.
Stock will after 4 simulations have the following appearance

Figure 1: Simulated stock with 4 paths, and the mean S0e
rT .

Further assumptions in this thesis are that

1. There does not exists any arbitrage possibilities

2. There does not exists any transaction costs, hence the market is frictionless

3. We can enter any type of position at any time: short, long, arbitrary
fraction and no constraints on liquidity.

The Normal Distributed Random Variable

We assume the each individual asset return will follow a log normal distributed
and that it can be realized by GBM (3).

Definition 2.6: (The Normal Distributed r.v.) A standard normal (Gaus-
sian) random variable (r.v.) X ∈ N (0, 1) defined on the real axis, has the
probability density function (pdf) fX (x)

fX (x) =
1√
2π
e−

x2
2

2A year is assumed to have around 252 trading days
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and the cumulative density function (cdf) FX (x)

FX (x) =
ˆ x

−∞

1√
2π
e−

t2
2 dt

Definition 2.7: (The log normal variable) Assume X ∈ N (µ, σ), if Y =
exp {X}, then is Y called a log normal variable and thus defined as

fY (y) = φ

(
ln y − µ

σ

)

where φ is the normal pdf.

Later on in the thesis will we use the k-th moment of the log normally r.v.,
which is defined as

Definition 2.8: (Moments of the log normal r.v.)

The k:th non centered moment Mk of a log normally distributed r.v. X is
defined as (Lipton 2007: 32)

Mk = E
[
Xk
]

= eµk+k2σ2/2

Proof.

Mk =
ˆ ∞

0

yk
e−(ln y−µ)2/2σ2

√
2πσ2

dy

y

=
ˆ ∞
−∞

e−(x−µ)2/2σ2+kx

√
2πσ2

dx

= eµk+k2σ2/2

ˆ ∞
−∞

e−((x−µ)/σ+kσ)2/2

√
2πσ2

dx

= eµk+k2σ2/2

The last equality holds since the third integral is one.

�
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Let Mk define the centered moment, of a random variable X, with expected
value E [X], variance V [Y ], skewness η [Y ] and kurtosis κ [Y ] defined according
to

E [X] = M1 (X)

V [X] = M2 (X)

η [X] = M3 (X) /M2 (X)
3
2

κ [X] = M4 (X) /M2 (X)2 − 3

The first four moments of the log normally distributed r.v. Y with expected
value µ and standard deviation σ are

E [Y ] = eµ+σ2/2

σ [Y ] =
√
V [Y ] = eµ+σ2/2

√
eσ2 − 1

η [Y ] =
(
eσ

2
+ 2
)√

eσ2 − 1

κ [Y ] = e4σ2
+ 2e3σ2

+ 3e2σ2
− 6

Definition 2.9: (The Gamma Distribution)

The pdf gΓ of a gamma distributed variable X is given by

gΓ (x, α, β) =
e−x/β (x/β)α−1

βΓ (α)
, x ≥ 0, α, β ≥ 0

the corresponding cdf GΓ is defined as

GΓ (x, α, β) =
ˆ x

0

gΓ (u, α, β) du =

´ x
0
uα−1eudu

Γ (α)
=
γ
(
α, xβ

)
Γ (α)

and where Γ is defined as the gamma function

Γ (z) =
ˆ ∞

0

tz−1e−tdt

The i:th moment of the gamma distribution is given by

E
[
Y i
]

=
βiΓ (i+ α)

Γ (α)
The i-th moment of the inverse gamma distribution can be obtained for

−α < i ≤ 0 using the same formula. For i ≤ −α the moments are ∞.
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2.2 Derivatives
Derivatives can be seen as insurance and hedging contracts on the financial mar-
ket in order to remove and avoid potential downside risk. A derivative derives
its value from some underlying asset, hence the name derivative. Today deriva-
tives can be derived by among different number of underlying assets: Stocks,
Indexes, Interest rates, Commodities, Electricity etc. As one can see derivatives
can be applied to almost any type of asset, and one of the simplest derivatives
is the forward contract.

Definition 2.10: (The Forward Contract) The holder of a forward con-
tract gives the obligation to buy/sell the underlying asset at some prespecified
date for a prespecified price. The payers position on a asset St, at a specified
time T and with strike price K have the following payoff function

ΦPayer (ST ) = ST −K

the contract for the seller position is defined in the analogue way

ΦSeller (ST ) = K − ST
Just like forwards and futures are options derivatives contracts, but instead

be forced to buy/sell the underlying asset at a specified date in the future,
the option gives the holder an opportunity to buy/sell the underlying asset.
The holder is thereby not forced to do something, and is only left with the
positive outcome. The derivative market today is very big and can be build one
a huge amount of different assets, in some cases have the derivatives market
been dominating in size the market for the underlying asset. In the last 40
years there has been a huge development of the derivative market. (Byström,
2007). One of the reasons was the increased volatility and uncertainty after the
OPEC oil crisis in the 1973, where the oil prices increased drastically and made
a great impact on the global economy. This created a big demand to be able
to insure and hedge not only commodities but all type of assets. The technical
development is another aspect of the increased use in derivatives, by using the
technique it have made it possible quicker price derivatives, trade and settle
transactions than in earlier periods, but this area will lead to another crises in
the late 80s. The third aspect which is the famous Black-Scholes model, this
phenomenal model totally changed the world of pricing derivatives.

Before stating Black-Scholes we state some fundamental options fundamental
for further studies regarding the subject of the thesis.

Definition 2.11: (The European Call/Put Option) The holder of a call
option have the option to exercise the option and thereby be able to buy the
underlying asset St to specified price at the time to maturity T . The put option
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is defined in the analogue opposite way, where the holder of a put option have
the option the sell the underlying asset S at a specified price at T . The payoff
ΦCall (ST ) for the European call option is given by

ΦC (ST ) = (ST −K)+ =

{
ST −K, ST ≥ K
0, ST < K

and for the European call option in the analogous way

ΦPut (ST ) = (K − ST )+ =

{
K − ST , K ≥ ST
0, K < ST

The payoff of this both contracts are demonstrated in the following figure

Figure 2: Upper: Payoff European call option, lower: European put option

Definition 2.12: (The Straddle) A Straddle is a derivative consisting of
a long call and put positions, with the same strike K and with the following
payoff function

ΦS (ST ) =

{
ST −K, if 0 ≤ ST ≤ K
K − ST , if K ≤ ST

18



Definition 2.13: (Risk-Reversal) The Risk-Reversal (RR) is a derivative
consisting of a long call with strike K2 and a short put with strike K1

ΦRR (ST ) =


− (K1 − ST ) , if 0 ≤ ST ≤ K1

0, K1 ≤ ST ≤ K2

ST −K2, if K2 ≤ ST

such as the following condition holds K1 ≤ K2.

Definition 2.14: (Butterfly) The Butterfly is a derivative consisting of a
long call with strike K1, two short call with strike K and finally a long call with
strike K2

ΦB (ST ) =


0, if ST ≤ K1

ST −K1, K1 ≤ ST ≤ K
K −K1 − ST , if K ≤ ST ≤ K2

0 K2 ≤ ST

such as the following condition holds K1 ≤ K ≤ K2. It is also possible to
construct a Butterfly consisting with the same setup as above but by just
changing from calls to puts.

The three defined options payoff are realized in figure 3, the lowest plot the
Butterfly demonstrates the residual constructed from the three positions in call
options.
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Figure 3: Upper: Straddle, Middle: Risk Reversal, Lower: Butterfly

A straddle can be seen as a simple volatility strategy since the delta for this
type of assets are zero. These type of contracts are very commonly used in the
industry for determining the ATM implied volatility.

2.3 The Arbitrage Free Price
Before we state the Black-Scholes formula we need to introduce a fundamental
formula which also will be used during the simulation later on. The formula
named the risk neutral valuation formula, RNVF is stated next (Björk 2004).
The risk neutral valuation formula states that any asset risky and non risky
will all have the same expected return as the risk-free rate of interest r (Hull
2008), this means that in a risk neutral world all assets will all have the same
expected return. One can familiar with financial mathematics can observe the
connection between the risk neutral valuation formula and the solution proposed
by the Feynman-Kač theorem.

Theorem 2.15: (The Risk Neutral Valuation Formula) Given the pay-
off function Φ (St) for a European type option, the arbitrage free price Π (t,Φ)
of this claim is given by

20



Π (t,Φ) = e−rTEQ [Φ (St) | FSt
]

where Q denotes the risk-neutral martingale measure using the money market
account, MMA as a numeraire and FSt the filtration which contains all the
information about S up until time t.

One fundamental property of a martingale (MG) is that the mean of a random
variable X always is constant. The following condition must hold with respect
to the filtration FXs for a r.v. to be a MG (Rasmus, 2008)

Definition 2.16: (Martingale) A stochastic process {Mt}t≥0 on (Ω,F ,P) is
a martingale w.r.t. the filtration {Mt}t≥0 on (Ω,F ,P) if the following properties
holds

1. Mt isMt-measurable, or Mt isMt adapted3 for all t,

2. E [|Xt|] <∞, ∀t

3. E
[
Xt | FXs

]
= Xs, ∀ 0 ≤ s < t <∞

A martingale has no systematic drift and the notion above tells us that each
asset in an arbitrage free world will be a martingale, thus that each assets
discounted future expected value must be equal the present value, i.e. a fair
game. In order to price process (2) correctly and thus that it does not cause
any arbitrage possibilities we need perform a transformation of the Wiener
process. We will only introduce the Girsanov theorem and the transformation
of process (2) in the following theorem (Rasmus 2008: 136). In order to
change from the historical measure P into the risk neutral measure Q we use
the following theorem

Theorem 2.17: (Girsanov theorem)

Assume that W P
t is a standard P-BM, The relationship between the historical

measure P and the risk neutral measure Q is defined as

WQ
t = W P

t +
ˆ t

0

g
(
s,W P

t

)
ds

where g
(
s,W P

t

)
is the unique Girsanov kernel letting a process defined by a Q-

measure to be arbitrage free.
3This means that the value of Mt is known given the information in Mt.
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There are some fundamental properties that are ignored above. By applying
the Girsanov theorem to process (2) one can determine the unique pricing kernel
and thus that in a arbitrage free world any type of asset will evolve with the
interest free rate r and thus that we the drift will be replace by r

dSt = rStdt+ σStdWt (4)

We will throughout this thesis assume that the price process of the risk free
asset, with the interest rate denoted r ≥ 0 is defined according to the following
process

dB (t) = rB (t) dt

for some constant r.

2.4 Black-Scholes
Black and Scholes (1973) proposed a closed form solution for options written on
stock of the following form.

Theorem 2.18: (Black-Scholes formula, on a dividend paying asset)
The value of a European call option, given the initial stock price S0, strike price
K, volatility σ, interest rate r and dividend q the arbitrage free price ΠC

T is
given by

ΠC
T = S0e

−qTN [d]−Ke−rTN
[
d− σ

√
T
]

and where

d =
ln S0

K +
(
r − q + σ2

2

)
T

σ
√
T

(5)

The analogue European put option can be determined by applying the
Put-Call parity, PCP

Proof. See Rasmus (2008)

�
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Theorem 2.19: (Put-Call Parity) In an arbitrage free world the following
relationship must hold,

ΠC
T −ΠP

T = S0e
−qT −Ke−rT

where ΠC
T determines the call option, ΠP

T the put option, S0 the spot price and
K the strike price.

The following figure demonstrates how the Black-Scholes price changes when
strike price K, volatility σ, and interest rate r and dividend yield q are kept
constant while time to maturity T and the initial stock price S0 varies. One can
observe that the option price increases as the stock price and time to maturity
increases

Figure 4: Black-Scholes price when varying T and stock spot price S and keeping
all other parameters fixed.

The Black-Scholes formula is built on a few assumptions (Hull 2008: 286),
some of them are very crude which limits the model

1. The stock follows a geometric Brownian motion.

2. Short selling is allowed.

3. No market frictions, hence no transactions costs or taxes.

4. There does not exist any arbitrage possibilities.

5. Constants volatility σ, and constant interest r.
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2.5 The FX Greeks
The Greeks defines the risk exposure and how the option value Π changes when
some parameter of the model changes. We will only present those FX Greeks
that are importance for this thesis, anyone curious and want further information
are recommend dig into relevant chapters in Hull (2008) or Wilmott (2006).

2.5.1 Delta

The delta ∆ is defined as the partial derivative of the option value Π w.r.t the
underlying asset S

∆ =
∂Π
∂S

∆call =
∂c

∂S
= e−rf (T−t)N (d) > 0

∆put =
∂p

∂S
= −e−rf (T−t)N (−d) < 0

Figure 5: The spot Delta ∆call of an European call option with S0 ∈ [1, 20] ,
T ∈ [0.1, 2], K = 10, rd = 0.05, rf = 0 and σ = 0.3.

For FX traders are delta one of the most important weapons in sense of
hedging and minimize their risk exposure. As one can observe from Figure 5 is
that the spot delta converges to one as we are deep-in-the-money, since N (d)
approaches one of the fact that the strike level K dominates the current spot
S0 level. The ∆ value determines how many fractions of the underlying asset
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that we have to buy/sell in order to create a portfolio where the risk exposure
in terms of change in the underlying asset will be eliminated.

The financial market consists of two different parties, the speculators and
the hedgers. The speculators, the one that does not want to hedge at all, they
believe on their implemented strategy hopefully generating them some form of
profit. Hedgers on the other side is divided into two parts, the one holding a
positions and who wants to eliminate some form of risk, and the one who is
selling (buying) options that they believe have better values and hopefully can
make some profit of by hedging away their risk exposure.

Say for instance that a bank is selling an option at t = 0 based on a underly-
ing with a current ∆t=0. This mean that in order to eliminate the risk, we have
to create a delta neutral hedge where we buy ∆t=0 amounts of the underlying
asset. For all t ∈ [0, T ] we have to calculate a new ∆t and rebalance or rehedge
our portfolio. But we will face a set of problems, for instance since we in the
theory need to rebalance our hedge continuously but in real life it is impossible,
due to the existence of transaction costs.

2.5.2 Vega

Vega ν is defined in the analogous way but w.r.t changes in the underlying
volatility σ

υ =
∂Π
∂σ

= Se−rfTφ (d)
√
T = Ke−rdTφ

(
d− σ

√
T
)

One can hedge its portfolio to decrease sensitivities to change of the volatility
in the option, and the fact that we actually do not know the volatility (very
precisely) can it be that useful4?

4This question is left to the reader
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Figure 6: The spot Vega υ of an European call/put option with S0 ∈ [1, 20] ,
T ∈ [0.1, 2], K = 10, rd = 0.05, rf = 0 and σ = 0.3

2.5.3 Vanna

Vanna or also known as DdeltaDvol demonstrates how the change of delta ∆
for small changes in volatility σ. The problem with Vanna is that in the Black-
Scholes world, Vanna is not a function of a variable, but instead of a parameter.
Vanna is very useful in the way that if it demonstrates high values it indicates
that the volatility for calculating deltas becomes more significant. Vanna is
defined as the partial derivate of the delta w.r.t. the underlying volatility σ

Vanna =
∂∆
∂σ

=
∂2Π
∂S∂σ

= e−rfTφ (d)

(
d− σ

√
T
)

σ
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Figure 7: The spot Vanna of an European call/put option with S0 ∈ [1, 20] ,
T ∈ [0.1, 2], K = 10, rd = 0.05, rf = 0 and σ = 0.3

2.5.4 Volga/Vomma

Volga also known as Vomma is the partial derivative of Vega with respect to
the underlying volatility, i.e. the second partial derivative of the option value Π
w.r.t. the underlying volatility σ

Volga =
∂υ

∂σ
=
∂2Π
∂σ2

= Se−rfTφ (d)
√
T
d
(
d− σ

√
T
)

σ
= υ

d
(
d− σ

√
T
)

σ
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Figure 8: The spot Volga of an European call/put option with S0 ∈ [1, 20] ,
T ∈ [0.1, 2], K = 10, rd = 0.05, rf = 0 and σ = 0.3

2.6 The Foreign Exchange Market
The FX market is today one of the biggest and most liquid (up to about ma-
turity of 2 years) markets, the bank for International Settlements reported in
their finally year report of 2007 that the daily turnover on the FX market was
approximately $3.2 trillion5. The major of these transaction are done from the
financial metropolises New York (∼ 33%) and London (∼ 20%).

The spot exchange rate, is the exchange between two currencies, i.e. the
amount that ones have to pay in one currency to receive units in another cur-
rency. All these exchanges are accomplished through market makers, that is
why we have the bid-ask spread, the difference between the rate at which the
currency is purchased from and the rate that it is sold to these market makers.
The FX market can be seen as a market that never sleeps, its open 24 hours
from UTC 22:00 on Sunday and until 22:00 UTC Friday, and this compared to
for instance the stock market, which closes for the day when the time hits the
closing hour.

If we start with the assumption that we have a domestic currency (US dollars,
$) with the domestic interest rate rd and a foreign currency (Euro, €) with
interest rate rf , and these interest rates will be assumed to be deterministic.
The quotation or the exchange rate is defined how much one need to pay on
the domestic currency to buy on unit of the foreign currency, and is according
to the market convention quotation on the following form FOR-DOM (foreign-
domestic) i.e. EUR/USD which means that one unit of EURO cost EUR/USD
units of USD. Let St define the current spot exchange rate at time t, St is then

51 trillion = 1012
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defined as

St =
units of the domestic currency
units of the foreign curreny

On the 23 of April, 2009 the mid price of the EUR/USD was 1.3063, this
means that one will have to pay $1.3063 to receive 1€. The meaning of domestic
and foreign should not be taken literally, instead it is only related to that the
domestic currency is the currency that one will use as a numeraire or base
currency.

There is a typically FX trading floor language and conventions, FX rates
are usually quoted up to the first five relevant figures, e.g. the 23 April, 2009
is the EUR/JPY spot quoted as 128.66 and EUR/USD 1.2290. The last digit
is called a ’pip’ and the middle digit ’big’, since on trading floors the third
often is displayed in a much bigger size compared to the other since it contains
the most relevant information about the currency pair. A million is referred
as a buck, and one billion as a yard. Some of the popular currency pairs have
been given specific nicknames, for instance GBP/USD is named cable, since the
FX information is sent between USA and Great Brittan through a cable in the
Atlantic Ocean. EUR/JPY is called the cross since it is defined as the cross
rate between the more traded USD/JPY and EUR/USD.

There exists typically 6 different ways of quoting vanilla options, often like
in the Black-Scholes formula case are vanilla options quoted as d pips, and the
other five ways are determined by the following relationship

d pips
× 1
S0→ %f

×S0
K→ %d

× 1
S0→ f pips ×S0K→ d pips

These 6 different standard quotation ways are listed the following example in
Table 1 collected from Wystrup (2006)

Name Symbol Value in units of Example
domestic cash d DOM 29,148 USD
foreign cash f FOR 24,290 EUR
% domestic %d DOM/DOM 2.3318% USD
% foreign %f FOR/FOR 2.4290% EUR

domestic pips d pips DOM/FOR 291.48 USD pips/EUR
foreign pips f pips FOR/DOM 194.32 EUR pips/USD

Table 1: Example: Quotation of option prices. FOR = EUR, DOM = USD, S0
= 1.2000, rd = 3%, rd = 2.5%, σ = 0.10, K = 1.2500,T = 1.

The payment date and expiry in FX are usually defined by 4 different dates:
trade date, spot date, expiry date and delivery date (Lauritsen 2008b). The
period between the trade date and the expiry date is the expiry term for options
and the period between spot date and delivery date is the forward outright
expiry term (deposit), illustrated in the following figure.
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Figure 9: The Option Expiry term and Forward Outright expiry term.

The Forward Outright contract allows anyone to buy/sell a currency at a
specified date for a specified rate in the future, the expiry date for this type of
contracts will be referred as the delivery date. The Spot date for a currency
cross is the first common day that is the second good business day6. For options
with over the night and week expiries the expiry term is found as the first open
day7 after the trade date. For options with month and year expires the expiry
date are determined from the Forward Outright contract by identifying the spot
date, and the expiry date from the Forward Outright contract and finally by
step back the length of the spot lag to determine the option expiry date for this
contract. And the option expiry day is the first open day which is the second
previous open day from the delivery date.

2.6.1 Black Scholes in FX

We will build our assumption that the spot exchange rate St follows a GBM.

Theorem 2.20: (The FX dynamics) Let St define the current spot FX
rate, rd and rf the domestic and foreign interest rate and Bd and Bf the ana-
logue MMA, we have the following FX dynamics

dSt = µStdt+ σStdWt

dBd = rdBddt

dBf = rfBfdt

where µ, σ, rd and rf are deterministic constants and Wt ∈ N (0, 1).

We will also build all our models on the assumption that the market is
frictionless and liquid. From a domestic point of view we can see rf as being
the same thing as the dividend for stocks, this since the holder of the foreign
currency have the possibility to invest in the foreign MMA. If we return to the
assumption on the FX dynamics and the view of a domestic investor which
faces two types of market assets: the domestic MMA Bd and the value of the
FX MMA given by BfSt, apply Itô’s formula here the following relationship
holds

6A day that not is a holiday of the two currencies, a US holiday or a weekend.
7A day that is not part of the weekend or 1st of January.
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d (BfSt) = (rf + µ)BfStdt+ σBfStdWt

using the domestic MMA as a numeraire and by introducing
(BfSt)

′
= BfSt/Bd we have the following process

d (BfSt)
′

= (rf − rd + µ) (BfSt)
′
dt+ σ (BfSt)

′
dWt

By applying Girsanov’s theorem with the unique Girsanov kernel
g = − (rf − rd + µ) will then give us the unique equivalent martingale measure
Qd and thus making the process (BfSt)

′
a martingale and will we finally end

up with the famous extended Black-Scholes formula known as the Garman and
Kohlhagen formula (1983).

�

Theorem 2.21: (Garman and Kohlhagen FX Formula)

Given the risk neutral domestic measure Qd, using the domestic MMA Bd as
numeraire the arbitrage free price Π (t,Φ) for the payoff Φ (St) and by
Π (t,Φ) = F (t, St), where

F (t, s) = e−rd(T−t)EQd [Φ (St) |FSt
]

(6)

our FX exchange rate Q dynamics will evolve according to

dSt = (rd − rf )Stdt+ σStdW
Qd
t (7)

F (t, St) can also be determined as the solution of the PDE by applying
Feynman-Kač representation

∂F

∂t
+ s (rd − rf )

∂F

∂s
+

1
2
s2σ2 ∂

2F

∂s2
− rdF = 0

F (T, s) = Φ (s)

or as a closed form solution on a modified Black-Scholes formula

Π = S0e
−rf (T−t)N [d]−Ke−rd(T−t)N

[
d− σ

√
T − t

]
where
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d =
ln S0

K +
(
rd − rf + 1

2σ
2
)

(T − t)
σ
√
T − t

Proof. Omitted, See Garman and Kohlhagen (1983)

The situation when rd > rf is called contango, and backwardation when the
opposite situation rd < rf is true.

2.6.2 FX Correlations

To determine the FX correlation coefficients between each corresponding cur-
rency pair is not an easy process, it can either be done by observing historical
data or by implied calibration. But since we in FX are trading currency pairs
we can easily determine the correlation from these contracts. Let us illustrate
a small FX market with only 3 currencies and thus 3 currency pairs.

Figure 10: The traingle determines the relationship between the volatilities σ
(edges) and the correlations ρ (cosinus of the angles) in a small FX market
with only 3 currencies and 3 currency pairs, the arrows determines the standard
quotation.

We will find an explicit formula for the correlation coefficient between the
currency pairs, as usual let σi be the volatility of Si, σij the volatility of the
spot FX rate between the currencies i and j, and ρij the correlation between
the currency pairs and we have the following relationship

Cov [lnSi (t) , lnSj (t)] = Corr [lnSi (t) , lnSj (t)]
√

Var [lnSi (t)]
√

Var [lnSj (t)]

Var [lnSi (t)] = σ2
i t

ρij =
Cov [lnSi (t) , lnSj (t)]√

Var [lnSi (t)]
√

Var [lnSj (t)]
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the second equality follows from the fact that we have a GBM. Consider figure
10 and let Euro € be the base currency and USD $ and Yen ¥ be the two
currencies in the basket. As usual let S$/€ determine the spot exchange rate
between Euro and USD, which also can be expressed as

S$/€ = S$/¥ · S¥/€

then

1
S$/€

=
1

S$/¥
· 1
S¥/€

⇒

S€/$ = S¥/$ · S€/¥ ⇒

S¥/$ =
S€/$

S€/¥
⇒

lnS¥/$ = lnS€/$ − lnS€/¥ ⇒
Var

[
lnS¥/$

]
= V ar

[
lnS€/$

]
+ V ar

[
lnS€/¥

]
− 2Cov

[
lnS€/$, lnS€/¥

]
⇒

σ¥/$t = σ€/$t+ σ€/¥t− 2Corr
[
lnS€/$, lnS€/¥

]
σ€/$σ€/¥t⇒

Corr
[
lnS€/$, lnS€/¥

]
=

σ€/$t+ σ€/¥t− σ¥/$t

2σ€/$σ€/¥t
=
σ€/$ + σ€/¥ − σ¥/$

2σ€/$σ€/¥

�

we summarize the result in the following theorem

Theorem 2.22: (Correlation in FX) Assume a market with 3 spot ex-
change rates, the correlation coefficient between two currencies are determined
by

ρij =
σ2
i + σ2

j − σ2
ij

2σiσj

for i 6= j, where σi and σj determines the volatility and σ2
ij the covariance

between two currency pairs. And the following properties must hold

|σi − σj | < σij < σi + σj with σ2
ij = σ2

i + σ2
j − 2σiσj ⇒

ρij ∈ [0, 1]

and when ρij = 1, we have that σi = σj .
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Figure 11: The Risk reversal and butterfly (or strangles) in terms of implied
volatility for a FX option smile.

2.7 Volatility Smile
In the foreign exchange (FX) are options with strikes and maturity that dif-
fers from each other are priced with different implied volatilities, known as the
smile/skew effect and these FX options are price according to their delta ∆8.
This means that each time the underlying asset St at time t changes, changing
the delta a new implied volatility need to be considered. Figure 11 demonstrates
how the Risk reversal and the Butterfly (or strangles) is used to determine the
skewness from implied volatility in FX assets, which will used later on trying to
recreate the Smile.

The assumption on constant volatility in the Black-Scholes model is one
of the drawbacks resulting in the phenomenon called the volatility smile. To
demonstrate the volatility smile the implied volatility is introduced where we
calculates the volatility of an option given the option price, stock price, strike
price etc. The implied volatility is defined by finding the inverse of the Black-
Scholes formula, the following function for the call option

σimp = C−1
BS (Πt, S0,K, r, T )

But the problem is thus that there does not directly exists an inverse of the
Black-Scholes formula, but it can be solved a numerical procedure. Solving the
following relationship

CM − CBS (σimp) = 0
8E.g. a 35∆ call is a call whose Delta is 0.35. Analogously, a 354 put is one whose Delta

is -0.35.
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which can be solved by using the Bisection Method described in the section for
numerical analysis.

1W 1M 2M 3M 6M 9M 1Y
10∆C 15.47 17.01 17.56 18.04 18.69 18.87 19.12
15∆C 15.30 16.69 17.11 17.45 17.90 18.02 18.19
20∆C 15.15 16.43 16.74 16.96 17.25 17.34 17.45
25∆C 15.03 16.23 16.45 16.59 16.76 16.83 16.90
35∆C 14.85 15.98 16.11 16.16 16.22 16.27 16.31
ATM 14.75 15.90 16.00 16.05 16.10 16.15 16.2
35∆P 14.77 16.03 16.19 16.28 16.37 16.43 16.47
25∆P 14.88 16.33 16.60 16.81 17.04 17.13 17.20
20∆P 14.97 16.56 16.93 17.25 17.60 17.72 17.83
15∆P 15.08 16.85 17.35 17.80 18.33 18.49 18.66
10∆P 15.23 17.19 17.84 18.46 19.20 19.42 19.67

Table 2: Implied volatility for EURUSD at the 10 March, 2009.

The following picture demonstrates the smile effect by using a linear interpo-
lating technique for plotting data collected for the currency mid pair EURUSD
quoted at 1.2714 the 10 March 2009. Strikes lower than the ATM strike are
strikes of Put options and strikes higher are strikes of Call options, this method
is more or less a standard way of describing the volatility in the FX market.

35



Figure 12: The implied volatility for the mid price of the currency pair EURUSD
at the 10 March, 2009. Values has been converted from delta space inte strike
space.

2.8 Strike From Delta
We will later on deduce how to determine the strike price from delta. There are
two different scenarios, the first on when the option is quoted in the domestic
currency (the right delta) and the second approach when the option is quoted
in the foreign currency (the left delta) which makes the calculation a little bit
heavier since we require some form of transformation.

2.8.1 Options Quoted in the Domestic Currency (Right Delta)

The spot delta will be defined as the absolute value of the partial derivative of
the option value Π w.r.t. the underlying asset S

∆s =
∣∣∣∣∂Π (S,K)

∂S

∣∣∣∣
we know that the modified Black-Scholes spot delta is including the foreign
interest rate rf is defined as

∆s = e−rfTN (αd (K))

and we know that

d =
ln S0

K +
(
rd − rf + σ2

2

)
T

σ
√
T
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solving for K we have that

K = F exp
{
−αN−1

(
∆se

rfT
)
σ
√
T +

1
2
σ2T

}
α = 1 for call and α = −1 for put, and where N−1 is the inverse of a standard
normal cdf, and where the forward value is defined in the usual way

F = Se(rd−rf )T

If the strike is quoted on the forward delta ∆f is defined in the following
way

∆f = ∆se
rfT

= erfT e−rfTN (αd (K))
= N (αd (K))

solving for K one receives

K = F exp
{
−αN−1 (∆f )σ

√
T +

1
2
σ2T

}
�

The relationships are summarized below

K =


F exp

{
−αN−1

(
∆se

rfT
)
σ
√
T + 1

2σ
2T
}
, spot− delta

F exp
{
−αN−1 (∆f )σ

√
T + 1

2σ
2T
}
, forward− delta

2.8.2 Options Quoted in the Foreign Currency (Left Delta)

If the option is quoted in the foreign currency we need to find the delta in the
foreign currency and thereafter transform the delta into the domestic currency,
the right delta. The spot delta in the foreign currency is defined as

∆s =
1
S

∣∣∣∣∣∂
Π(S,K)

S

∂
(

1
S

) ∣∣∣∣∣
we have thus the following relationship between the spot delta ∆s, and the
forward delta ∆f
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∆s =
K

S
exp (−rdT )N

(
α
(
d (K)− σ

√
T
))

∆f =
K

S
exp ((rf − rd)T )N

(
α
(
d (K)− σ

√
T
))

�

the systems of equations above can be solved by a numerical procedure.

To be able to solve the ATM strike, we can use several techniques as pre-
sented in Lauritsen (2008), UBS retrieves the ATM strike for the strike K that
solves the 0-delta straddle9

2.8.3 The ATM Strike for options quoted om the domestic currency
with spot delta

As mentioned above, UBS determines the ATM strike solving the 0-delta strad-
dle

∂

∂S
(C (S,K) + P (S,K)) = 0

d (K) = 0

receiving that K is defined as

KATM = Fe
1
2σ

2T

�

2.8.4 The ATM strike for options quoted in the foreign currency
with spot delta

When the option is quoted in the foreign currency instead we need once again
transform the delta into the domestic currency

9An option that consists of both a Call and a Put with some strike K, defined as C (S,K)+
P (S,K).
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0 =
1
S

∂

∂
(

1
S

) (C (S,K) + P (S,K)
S

)
⇔

0 =
1
S

∂

∂
(

1
S

) (C (S,K)
S

)
+

1
S

∂

∂
(

1
S

) (P (S,K)
S

)
⇔

0 = −K
S

exp (−rdT )N
(
α
(
d (K)− σ

√
T
))

+
K

S
exp (−rdT )N

(
α
(
d (K)− σ

√
T
))

⇔

0 = d (K)− σ
√
T

solving for one receives the following relationship

KATM = Fe−
1
2σ

2T

�

The relationships are summarized below

KATM =


KATM = Fe

1
2σ

2T , foreign currency

KATM = Fe−
1
2σ

2T , domestic currency

2.9 Approximating the Smile
Castagna and Marcurio (2006) demonstrated two simple approximations per-
forming some great results, the approximation is built on three different implied
volatilities, σATM , σ25∆C and σ25∆P . The ATM volatility are easy determined
from the 0∆ straddle, the σ25∆C and σ25∆P are thus deduced from the risk
reversal (RR) and the vega-weighted butterfly (VWB). The volatility of RR is
typically quoted as the difference between the σ25∆C and σ25∆P

σRR = σ25∆C − σ25∆P

The VWB volatility are defined as

σVWB =
σ25∆C +−σ25∆P

2
− σATM

We need to retrieve σ25∆C and σ25∆P from the two system of equations
above, which are easily solved and one receives
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σ25∆C =σATM + σVWB +
1
2
σRR

σ25∆P =σATM + σVWB −
1
2
σRR

The different strikes are thereafter easily determined and the following con-
dition holds

K25∆P ≤ KATM ≤ K25∆C

Castagna and Marcurio (2006) proposed the following second order approx-
imation

Theorem 2.16: (Volatility Smile Approximation) Knowing the follow-
ing level of strikes K25∆P , KATM and K25∆C the volatility smile can by approx-
imated by the following formula for a given level of strike K and the volatility
parameter σ10

σ (K) = σ +
−σ +

√
σ2 + d1 (K) d2 (K) (2σD1 (K) +D2 (K))

d1 (K) d2 (K)

where

D1 (K) =
ln KATM

K ln K25∆C
K

ln KATM
K25∆P

ln K25∆C
K25∆P

σ25∆P +
ln K

K25∆P
ln K25∆C

K

ln KATM
K25∆P

ln K25∆C
KATM

σATM

+
ln K

K25∆P
ln K

KATM

ln K
K25∆P

ln K25∆C
KATM

σ25∆C − σ

D2 (K) =
ln KATM

K ln K25∆C
K

ln KATM
K25∆P

ln K25∆C
K25∆P

d1 (K25∆P ) d2 (K25∆P ) (σ25∆P − σ)2

+
ln K

K25∆P
ln K25∆C

K

ln KATM
K25∆P

ln K25∆C
KATM

d1 (KATM ) d2 (KATM ) (σATM − σ)2

+
ln K

K25∆P
ln K

KATM

ln K
K25∆P

ln K25∆C
KATM

d1 (K25∆C) d2 (K25∆C) (σ25∆C − σ)2

and

d1 (K) =
ln
S0
K +(rd−rf+ 1

2σ
2)T

σ
√
T

, d2 (K) = d1 (K)− σ
√
T

10Often chosen as σATM
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Proof. See Castagna and Marcurio (2006)

These approximations are illustrated in the following figure, the crosses de-
termines the observed implied volatilities and the lines are our approximations.
We can conclude that our approximations fit the implied volatility really well.

Figure 13: Implied Volatility approximation.

2.10 Basket Option
Throughout this thesis we will assume that the underlying assets of a Basket
option follows a log-normal process and thus build our assumption by simulating
each underlying asset by a GBM, where we have N correlated assets in our
Basket, and thus each assets can be written as:

dSi (t) = µiSi (t) dt+ Si (t)
N∑
j=1

ΩijdWj (t) (8)

Cov [dWi (t) dWj (t)] = pijdt, i 6= j

Since this thesis will mainly be concentrated on the FX market, µi will here
denote the drift of the i-th currency pair, or the difference between the
domestic and the foreign currency rate. The Ωij can be decomposed by
applying the Cholesky decomposition, deduced later on which can be seen as a
straight forward LU factorization of the covariance matrix
Cij =

(
ΩΩT

)
ij

= ρijσiσj ,
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C =

 σ1

. . .
σN


 ρ11 · · · ρ1N

...
. . .

...
ρN1 · · · ρNN


 σ1

. . .
σN


where σi represents the volatility of asset i and ρij the correlation between
asset i and j. Wi and Wj are just correlated standard Brownian motions.
Process (8) can also be applied to for instance a basket of only stocks, but µi
will then under the Q measure be defined as the difference between the
interest rate r and the dividend yield of the individual stock qi, µi = r − qi.

The solution to the geometric Brownian motion is now given by

Si (t) = Si (0) exp


(
µi −

1
2
σ2
i

)
t+

N∑
j=1

ΩijWj (t)


The payoff of the exotic European Basket call option is defined in the fol-

lowing way

Φ (B (t)) = (B (t)−K)+ =

(
N∑
i=1

wiSi (t)−K

)+

(9)

Thus can the value of the Basket option be determined by using the risk-
neutral valuation formula and under the risk neutral measure Q, the value is
given by the stated expression below

ΠB (t) = e−rTEQ
[
(B (tT )−K)+ |Ft

]
= e−rT

[ˆ ∞
0

(B (x)−K)+
p (B (T ) /B (0)) dx

]
where Ft denotes the information about the underlying assets up until time t,
p (x) the state-price density, SPD or the risk neutral pdf and P (x) is the
cumulative distribution function. Let N be denoting the number of assets, wi
the fraction of asset i satisfying

∑
i wi = 1 for i = 1, . . . , N , and K the strike

price. The analogue European basket put can be derived by applying the
put-call parity for Basket options as in Laurence and Wang (2003)

(
K −

N∑
i=1

wiSi (t)

)+

=

(
N∑
i=1

wiSi (t)−K

)+

+

(
K −

N∑
i=1

wiSi (t)

)

The moments of a Basket option can be derived by matching the moments to
a log-normal distribution. In a risk neutral world we are assuming that all
assets are growing by the interest rate r, and in our case µi = rd − rfi , let us
define Fi as the individual forward value
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Fi = Si (0) eµiT

and the Basket forward value F as

F =
N∑
i=1

wiFi

2.10.1 The Basket Moments

The non-normalized moments of the Basket option are defined in the following
way.

M1 =
∑
i

wiFi

M2 =
∑
i,j

wiwjFiFje
ρi,jσiσjT

M3 =
∑
i,j,k

wiwjwkFiFjFke
ρi,jσiσjT+ρi,kσiσkT+ρj,kσjσkT

M4 =
∑
i,j,k,l

wiwjwkwlFiFjFkFle
ρi,jσiσjT+ρi,kσiσkT+ρi,lσiσlT+ρj,kσjσkT+ρj,lσjσlT+ρk,lσkσlT

(10)

2.10.2 Upper and Lower bound

For the Basket option the following condition holds, where the lower is the
Geometric average.

(
N∏
i=1

Swii −K

)+

≤

(
N∑
i=1

wiSi (t)−K

)+

≤
N∑
i=1

wi (Si (t)− ki)+

where

N∑
i=1

wiki = K

Proof. Omitted

�
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3 Numerical Methods

3.1 Monte Carlo
To verify the stated approximations later on we are matching them against
Monte Carlo (MC) simulations. By simulating the Basket process a large num-
ber of times its value will eventually converge towards the real value. Anyone
familiar with Monte Carlo simulations knows that it is very time consuming
and/or computer intensive.

The Basic idea of MC is to approximate an integral by taking the average
of some sequence of simulated paths. Say for instance that we want to evaluate
the following integral

I = E [φ (x)] =
ˆ
φ (x) f (x) dx

where X ∈ Rd, φ : Rd → R and where f is the pdf. of X. I = E [φ (x)] can
then be approximated in the following way

1. Draw N values x1, . . . , xN i.i.d from f .

2. The integral can then be evaluated as

I ≈ 1
N

N∑
i=1

φ (xi) (11)

�

Monte Carlo simulation is built on two famous theorems: the Law of Large
Numbers and the Central Limit Theorem (Sköld 2006:28).

Theorem 3.1: (A Law of Large Numbers)

Assume X1, . . . , Xn is a sequence of independent random variables with

common means E [Xi] = τ and variance V ar [Xi] = σ2. If Tn = 1
n

n∑
i=1

Xi, and

such as the following condition holds almost surely

P (Tn → τ) = 1 as n→∞

This means that our approximation will converge towards the real value as
number of simulations tends to infinity. More precise information on the
Monte-Carlo error (Tn − τ) is given by the Central Limit Theorem (CLT):
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Theorem 3.2: (Central Limit Theorem)

Assume X1, . . . , Xn is a sequence of i.i.d. random variables with common

means E [Xi] = τ and variance V ar [Xi] = σ2. If Tn = 1
n

n∑
i=1

Xi, we have:

P

(√
n (Tn − τ)

σ
≤ x

)
→ Φ (x) as n→∞

where Φ (x) is the distribution function of the N (0, 1) distribution.

Slightly less formally, the CLT tells us that the difference (Tn − τ) has, at
least for large n, approximately an N

(
0, σ

2

n

)
distribution. With this informa-

tion we can approximate probabilities like P (|Tn − τ | < ε), and perhaps more
importantly find ε such that P (|Tn − τ | < ε) = 1 − α for some specified confi-
dence level α, and we have that the MC approximation converges with a rate
of O

(
n−1/2

)
.

3.1.1 Antithetic Variates

There exists a couple of Monte Carlo simulation techniques, we will extend the
crude MC technique by simulation using the variance reduction technique Anti-
thetic Variates by introducing a negative dependence between each replication.
The Antithetic Variates is defined in the following way (Rasmus 2008:160)

1. Sample n replicates of zi ∈ N (0, 1)

2. Set si = S0 exp
{(
r − σ2

2

)
T + σ

√
Tzi

}
3. Set ci = S0 exp

{(
r − σ2

2

)
T − σ

√
Tzi

}
4. The Antithetic Variate estimator is

π̂av =

n∑
i=1

(Φ (si) + Φ (ci))

2n

The main idea with Antithetic Variates is that the outcome calculated by the
first path will be balanced by the value calculated from the second path, or the
Antithetic path, and thus that the variance is reduced. Let have a look why this
work. Assume a random variable X and its antithetic variable X̃, the variance
can be written as

Var

[
X + X̃

2

]
=

Var [X]
4

+
Var

[
X̃
]

4
+

2Cov
[
X, X̃

]
4

=
Var [X]

2

(
1 + Corr

[
X, X̃

])
≤ Var [X]
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if Corr
[
X, X̃

]
< 0 the following relationship holds instead.

Var

[
X + X̃

2

]
<

Var [X]
2

�

we know that X and X̃ have the same variance, in order to reduce the
variance we need that the covariance between the both variables are negative
Cov

[
X, X̃

]
< 0 and that is why we try to produce negative correlated pairs.

As this technique can reduce the variance it can also increase it.

3.2 Quasi-Monte Carlo
Quasi-Monte Carlo (qMC) is an alternative to MC based on low-discrepancy
sequences, instead of randomness as for ordinary MC. The mainly motivation
for qMC is that it hopefully will have faster convergence compared to MC from
O
(
n−1/2

)
to O

(
n−1

)
. This mean that increasing the number of simulated paths

by a number of 100 will only increase the Monte Carlo accuracy by a factor of
10. Instead of be built on probability and pseudo random numbers, qMC is built
on number theory and abstract algebra. As for the case of ordinary MC we are
able to combine qMC with variance reduction techniques, but this must be done
with a little bit of carefulness. The main goal with low-discrepancy methods is
create draws xi in (11) creating a small error as possible for a large number of
draws. We will begin form the case of first construct uniformly low-discrepancy
sequences (LDS) and since this is a thesis devoted to the financial area we need
to transform those uniformly sequences into a Gaussian distributed sequence.
We are using a LDS generated by Sobol which has been proved to be a very
accurate method for generating LDS, compared to other methods. For further
studies and introduction to LDS generator one can take a look at Glasserman
(2003) who devotes a whole chapter on just qMC.

Discrepancy is defines how a d-dimensional vectors {xi} are distributed w.r.t.
some subsets. Instead as for the random case where each point is chosen ran-
domly we are now choosing next point in such a way that empty areas are
filled up. This phenomenon by overcoming clustering can be observed from the
following plot, where the first 512 (29) and 1024 (210) 2-dimensional Sobol num-
bers have been generated. The plot to the right are r.v. generated from the
uniformed distribution Un [0, 1] and for a relative small numbers of draws the
empty areas are more and the points are not evenly distributed in R2.
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Figure 14: Left: the projection of the first 512 and 1024 points of the 2 dimen-
sional Sobol numbers. Right: r.v. generated fromUn [0, 1].

Definition 3.3: (Discrepancy) Let A be a set of points in [0, 1]d, the dis-
crepancy of set of points {x1, . . . , xn} relative A is

D (x1, . . . , xn;A) = sup
A∈A

∣∣∣∣# {xi ∈ A}n
− vol (A)

∣∣∣∣
where # {xi ∈ A} is the number of xiin subset A and vol (A) is the measure of
A. And the discrepancy D (x1, . . . , xn;A) is thus the least upper bound or the
supremum of error by integrating A using the vector {xi}.

As n → ∞ we will fill out our space totally and making the function
D (x1, . . . , xn;A) converges towards 0.

lim
n→∞

D (x1, . . . , xn;A) = 0

3.3 Transforming Sequences
When we have generated the d-dimensional LDS with Sobol’s sequence genera-
tor that are uniformly distributed on [0, 1]d we need to transform them into a
sequence that can be seen as a sequence generated from the normal distribution.
A very simple transformation routine is the inverse method. Assume that we
have a sequence u1, ..., un from U(0, 1), then can the sequence x1, ..., xn be seen
as a draw from F , if the inverse F−1 exists. We summerize the algorithm below
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1. Generate u1, ..., un from U(0, 1)

2. Let xi = F−1 (ui) for i = 1, ..., n

Proof. If U is U(0, 1) and F is an arbitrary d.f. on R then X = F−1(U) has
distribution function F . This follows by:

P (X ≤ x) = P (F−1(U) ≤ x)
= P (U ≤ F (x))
= F (x)

�

3.4 Bisection Method
To be able to solve equations numerically we will later on use the Bisection
Method. The Bisection Method is an iterative method for finding root in some
interval is described in the following pseudo code.

Algorithm 1 Bisection Method
Given an initial interval [a, b] and a tolerance level TOL

while (b-a)/2 > TOL

c = (a + b)/2
if f(c) == 0 stop, end
else if f(a)f(c) < 0

b = c

else

a = c

end

end

The final interval [a, b] will contain the root and the approximate root is given
by (a+ b) /2

3.5 Root Mean Square Error
To be able to measure the accuracy of each approximation V Approxi stated later
on we will compare them against the values obtained by MC VMC

i , one way of
measuring the error is by Root Mean Square Error, RMSE defined as

RMSE =

√√√√ 1
N

N∑
i=1

(
VMC
i − V Approxi

VMC
i

)2
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3.6 Cholesky Decomposition
In process (8) we need to factorize C = ΩΩT and where Ω is the lower triangular
Cholesky factorization of the d×d covariance matrix C. C can only be Cholesky
factorization if it is positive definite.

C =


Ω11

Ω21 Ω22

...
...

. . .
Ωd1 Ωd2 · · · Ωdd




Ω11 Ω21 · · · Ωd1

Ω22 · · · Ωd2

. . .
...

Ωdd


This thesis follows the algorithm presented in Glasserman (2003), each element
is visited in the covariance matrix Cij by looping for j = 1, . . . , d and then
i = j, . . . , d and producing the following equations

Ω11 = C11

Ω21Ω11 = C21

...
Ωd1Ω11 = Cd1

Ω2
21 + Ω2

22 = C22

...
Ω2
d1 + · · ·+ Ω2

dd = Cdd

We have that each Aij is defined as

Aij =

(
Cij −

j−1∑
k=1

ΩikΩjk

)
Aj

, j < i

and

Aii =

√√√√Cii −
i−1∑
k=1

Ω2
ik

�

The Cholesky factorization is presented in the following pseudo algorithm
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Algorithm 2 Cholesky Factorization
Given the correlation matrix C as input, the Cholesky factorization is given

A = zeros of d× d dimension
for j=1,...,d

for i=,...,d

v(i) = C(i,j)
for k=1,...,j-1

v(i) = v(i) - Ω(j,k)Ω(i,k)

end
Ω(i,j)= v(i)/sqrt(v(j))

end

end
return Ω
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4 Basket Option Approximations

4.1 Geometric Average
The geometric average of a basket option can be calculated in the following way.

BGA (t) =
n∏
i=1

Si (t)w
i

=
n∏
i=1

Si (0)w
i

e
wi

(
ri−

σ2
i
2

)
T+wiσiWi(T )

= B (0) e
n∑
i=1

wi

(
ri−

σ2
i
2

)
T+

n∑
i=1

wiσiWi(T )

= B (0) e

n∑
i=1

wi

(
ri−

σ2
i
2

)
T+

(
n∑

i,j=1
wiwjρijσiσj

)
W (T )

�

A product of log-normally distributed variables are still log-normally
distributed and a geometric average option can therefore be solved by a
Black-Scholes type equation.

4.2 Log-Normal Approximation
Levy (1992) approximated the Basket option by assuming that the summation
of correlated assets still is log-normally distributed. The approximation is done
by matching the first two normalized moments, this means that the first moment
equals 1 and the second moment M2 is

M2 =
1
F 2

∑
i,j

wiwjFiFje
ρi,jσiσjT

and thus can the variance be matched according to

σ2 = ln (M2)

BlogNCall (T ) = e−rdT

[
F ·N

(
ln
(
F
K

)
+ 1

2σ
2

σ

)
−K ·N

(
ln
(
F
K

)
− 1

2σ
2

σ

)]
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where N (·) is the cumulative distribution of a standard normal random
variable. This is a very simple model, its simplicity has made that it is well
used in the industry.

4.3 Reciprocal Gamma Approximation
Milevsky and Posner (1998a) showed that a summation of correlated log-normally
distributed stochastic variables will converges in distribution towards a recipro-
cal gamma distributions when N →∞. We will therefore approximate our finite
summation log-normally distributed variables as a Reciprocal Gamma distribu-
tion. A random variable is reciprocal gamma distributed if the inverse is gamma
distributed. The valuing of a Basket options with correlated underlying assets
is done by moment matching technique, and in our case by just considering the
first two moments as input to the closed form solution approximation.

If we let M1be and M2 be the first two normalized moments, which mean that
M1 = 1 and

M2 =
1
F2

∑
i,j

wiwjFiFje
ρi,jσiσjT

where

Fi = Si (0) exp {(rd − rfi)T}

and

F =
∑
i

wiFi

By matchingM1 andM2 with the moments given by the gamma distribution
as presented above one receives the following system of equations

β =
1

α− 1
(12)

M2 =
1

β2 (α− 1) (α− 2)

solving the systems above the following result holds

α =
2M2 − 1
M2 − 1

β =1− 1
M2
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Let B (t) define the arithmetic sum of the N underlying assets Si (t) with
corresponding weights wi

B (t) =
n∑
i=1

wiSi (t)

Let gR be denoting the reciprocal gamma pdf, gΓ the corresponding gamma
pdf. The goal is to solve the following integral

BRGCall (T ) = e−rT
ˆ ∞

0

(B (T )−K)+
dP (B (T ) /B (0))

= e−rT
ˆ ∞
K/F

(
B (T )
F
− K

F

)
gR

(
B (T )
F

, α, β

)
dB

(
B (T )
F ·B (0)

)
= e−rT

[ˆ ∞
K/F

xgR (x, α, β) dx−K
ˆ ∞
K/F

gR (x, α, β) dx

]

= e−rT

[ˆ ∞
K/F

gΓ (1/x, α, β)
x

dx−K
ˆ ∞
K/F

gΓ (1/x, α, β)
x2

dx

]

= e−rT

[ˆ F/K

0

gΓ (u, α, β)
u

du−K
ˆ F/K

0

gΓ (u, α, β) du

]

= e−rT

[ˆ F/K

0

gΓ (u, α− 1, β) du−K
ˆ F/K

0

gΓ (u, α, β) du

]

= e−rT
[
F ·GΓ

(
F

K
,α− 1, β

)
−K ·GΓ

(
F

K
,α, β

)]
Where P is the risk neutral probability density function, GΓ the gamma cdf.
The fourth equality follows for the following relationship for the gamma pdf

gR (x, α, β) =
gΓ (1/x, α, β)

x2
, x ≥ 0, α, β > 0

and the second last equality holds since for the gamma distribution the
following condition holds
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gΓ (x, α, β)
x

=
e−x/β (x/β)α−1

xβΓ (α)

=
e−x/β (x/β)α−2

β2Γ (α)

=
e−x/β (x/β)α−2

βΓ (α) / (α− 1)

=
e−x/β (x/β)α−2

βΓ (α− 1)
= g (x, α− 1, β)

�

Second last equality holds from (12). The analogue put basket price be derived
by apply Put-Call-parity for basket for basket options.

4.4 4M Method Approximation
Milevsky and Posner (1998b) extends the approximation by taken the first four
moments into account. The four moment (4M) approximation goal is to ap-
proximate the risk neutral pdf p (x) with the Johnson family for matching the
initial distribution with higher moments giving better accuracy. The Johnson
(1949) family consists of four variables which transforms a standard normal
distribution, Z in the following way by some general function ϕ

X = c+ dϕ−1

(
Z − a
b

)
⇔ Z = a+ bϕ

(
X − c
d

)
,

and where the first four moments match the Johnson transformation in a
perfect way. Milevsky and Posner (1998b) derived the arbitrage free value
Π4M
t as
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Π4M
t = e−rdTEQ

[
(B (T )−K)+ |Ft

]
= e−rdT

ˆ ∞
K

(x−K) p (x) dx

= e−rdT

(ˆ ∞
0

xp (x) dx−K
ˆ ∞

0

p (x) dx−
ˆ K

0

(x−K) p (x) dx

)

= e−rdT

(
M1 −K −

ˆ K

0

(x−K) p (x) dx

)

= e−rdT

(
M1 −K −

[
(x−K)

ˆ x

0

p (z) dz
]K

0

+
ˆ K

0

[ˆ x

0

p (z) dz
]
dx

)

= e−rdT

(
M1 −K +

ˆ K

0

P (x) dx

)

�

where p(x) is the risk neutral pdf under the Q measure. We will mainly focus
on two types of transformations, the logarithmic case called Type I, and the
hyperbolic sinus case, Type II for unbounded systems. The parameters a, b, c
and d are chosen such that the four moments M1, M2, M3 and M4 are
matched according to 10.

Type I: The log normal system, SL

X = c+ d exp
(
Z − a
b

)
⇔ Z = a+ b ln

(
X − c
d

)

knowing the skewness η and the kurtosis κ, Hill, Hill and Holder (1976) used
the following moment matching technique. They defined a new variable ω
according to

(ω − 1) (ω + 2)2 = η2 ⇔

ω =
1
2

3
√

8 + 4η2 + 4
√

4η2 + η4 +
2

1
2

3

√
8 + 4η2 + 4

√
4η2 + η4

− 1

if then κ = ω4 + 2ω3 + 3ω2 − 3 are approximately the same we know that the
skewness forces the kurtosis, and the fact that we will apply Type I as our
transformation, otherwise we apply transformation Type II. For the Type I,
the parameters can be chosen according the following way
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b = (lnω)−
1
2

a = 0.5 ln
(
ω (ω − 1) /ξ2

)
d = sign (η)
c = dM1 − e((

1
2b−a)/b)

where ξ is the variance.

Type II: The unbounded system, SU

X = c+ d sinh
(
Z − a
b

)
⇔ Z = a+ b sinh−1

(
X − c
d

)
For Type II, the parameters can be retrieved by numerically solving the following
nonlinear equation system according to the determined first four moments.

M1 = c− de
1

2b2 sinh a
b

M2 = c2 − d2

2

(
e

2
b2 cosh 2a

b − 1
)
− 2cde

1
2b2 sinh a

b

M3 = c3 − 3c2de
1

2b2 sinh a
b + 3

2cd
2
(
e

2
b2 cosh 2a

b − 1
)

+d3

4

(
3e

1
2b2 sinh a

b − e
9

2b2 sinh 3a
b

)
M4 = c4 − 4c3de

1
2b2 sinh a

b + 3c2d2
(
e

2
b2 cosh 2a

b − 1
)

+cd3
(

3e
1

2b2 sinh a
b − e

9
2b2 sinh 3a

b

)
+d4

8

(
e

8
b2 cosh 4a

b − 4e
2
b2 cosh 2a

b + 3
)

But this is very inefficient and since it is a system of 4 non-linear equations
it might contains several false solutions. Tuenter (2001) proposed an algorithm
to determine the SU parameters by moment matching. Equation system (10)
determines the four first non-centered moments. In order to be able to solve the
parameters let us consider the following transformation instead

z = γ + δ sinh−1 y

And a simplification is done by a simple variable substitution ω = exp
(
δ−2
)

and Ω = γ/δ. Thus can the mean and variance be described by the following
relationship

µ =− ω 1
2 sinh Ω

σ =
1
2

(ω − 1) (ω cosh 2Ω + 1)
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LetM i determine the i:th centered moment, then one can calculate the skewness
and kurtosis denoted β1 = M

2

3/M
3

2 and β2 = M4/M
2

2 , then the following
relationship holds

β1 =ω (ω − 1)
(ω (ω + 2) sinh 3Ω + 3 sinh Ω)2

2 (ω cosh 2Ω + 1)3

β2 =
ω2
(
ω4 + 2ω3 + 3ω2 − 3

)
cosh 4Ω + 4ω2 (ω + 2) cosh 2Ω + 3 (2ω + 1)

2 (ω cosh 2Ω + 1)2

The hyperbolic cosinus and sinus can be eliminated by some substitution
according to following, t = sinh Ω, cosh 2Ω = 1 + 2t2, sinh 3Ω = 4t3 + 3t and
cosh 4Ω = 8t4 + 8t2 + 1, and after some modifications one receives

β1 =ωt2 (ω − 1)

(
4ω (ω + 2) t2 + 3 (ω + 1)2

)2

2 (ω + 2ωt2 + 1)3

β2 =

(
ω4 + 2ω2 + 3

)
(ω + 1)2 + 8ω2 (w + 1)

(
ω3 + ω2 + 2ω − 1

)
t2 + 8ω2

(
ω4 + 2ω3 + 3ω3 − 3

)
t4

2 (ω + 2ωt2 + 1)2

Tuenter (2001) stated that the following conditions must hold ω > 1, 0 ≤
β1 ≤ (ω − 1) (w + 2)2 and 1

2

(
w4 + 2ω2 + 3

)
≤ β2 < w4 + 2ω3 + 3ω2 − 3. The

parameter ω will first be defined by some upper and lower boundary in order
to be able to solve it

max {ω0, ω1} < ω < ω2 =
√
−1 +

√
2 (β2 − 1)

where ω0 is determined by the positive root of β1 = (ω − 1) (ω + 2)2
, and ω1

the positive root of β2 =
(
ω4 + 2ω2 + 3

)
/2. Tuenter (2001) follows Ferrari’s

method to be able to solve ω1. When the upper and lower bound now are
identified one need to solve the following equation f (ω) = β1, to receive ω

f (w) =

(
w + 1−

√
4 + 2

(
w2 − β2 + 3

ω2 + 2ω + 3

))(
w + 1 +

1
2

√
4 + 2

(
w2 − β2 + 3

ω2 + 2ω + 3

))2

we are using a the Bisection Method to find the value of ω. The performance
of the algorithm can be enhanced by introducing better numerical solvers.

Having solved for ω we are more over only faced with straight forward cal-
culations.

m = −2 +

√
4 + 2

(
ω2 − β2 + 3

ω2 + 2ω + 3

)
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Ω = −signM3 sinh−1

√
ω + 1

2ω

(
ω − 1
m
− 1
)

the parameters for the shape value are thereafter calculated as

δ =
1√
lnω

, γ =
Ω

lnω

and

λ =

√
M2

ω − 1

√
2m
ω + 1

, ξ = M1 − signM3

√
M2

ω − 1
√
ω − 1−m

�

Once the parameters above are determined one can calculate the arbitrage
free prices by the following formulas:

Type I:

B4M−I
Call (T ) = e−rdT

(
M1 −K +

ˆ K

0

P (x) dx

)

= e−rT
(
M1 −K + (K − c)N (Q1)− d exp

{
1− 2ab

2b2

}
N

(
Q1 −

1
b

))
where Q1 = a+ b ln

(
K−c
d

)
.

Type II:

B4M−II
Call (T ) = e−rdT

(
M1 −K + (K − c)N (Q2) + 1

2de
1

2b2
[
e
a
bN

(
Q2 + 1

b

)
− e− abN

(
Q2 − 1

b

)])

where Q2 = a+ b sinh−1
(
K−c
d

)
and N (·) is the standard normal cumulative

distribution function.

4.5 Taylor Approximation
Ju (2002) derived the Basket value by a Taylor approximation. This by an
expansion around zeros volatilities in order to be able to approximate the ratio
of the characteristic function of the Basket value to the approximated log-normal
random variable.

As usual let us consider that each underlying assets Si follows the standard
process

Si (t) = Si (0) exp
{(

µi −
1
2
σ2

)
t+ σiWi (t)

}
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If we study the process it does not seem reasonable to perform a Taylor
expansion around zero volatility since the volatility is different for each
underlying asset, we can overcome this by introducing a scale parameter z,
giving the process above the following look

Si (z, t) = Si (0) exp
{(

µi −
1
2
σ2

)
t+ zσiWi (t)

}
with z = 1 we are back to the standard process. Let the Basket value be
defined as in (9) by updating it and introduce the parameter z we have

B (z) =
N∑
i=1

wiSi (z, t)

Let M1 and M2

(
z2
)
represent the first two moments of B (z), let Y (z) be a

random variable with mean m
(
z2
)
and variance v

(
z2
)
, and then match

exp {Y (z)} to M1 and M2 in the following way

m
(
z2
)

= 2 logM1 − 0.5 logM2

(
z2
)

v
(
z2
)

= logM2

(
z2
)
− 2 logM1

Let the random variable X (z) be defined as X (z) = logB (z) and the goal is
to find the probability density function of this new introduced random variable.
We consider the characteristic function given by

E
[
eiφX(z)

]
= E

[
eiφY (z)

] E [eiφX(z)
]

E
[
eiφY (z)

] = E
[
eiφY (z)

]
f (z)

the characteristic function of the normal stochastic variable is

E
[
eiφY (z)

]
= exp

{
iφm

(
z2
)
− φ2v

(
z2
)
/2
}

and where the ratio function is defined as

f (z) =
E
[
eiφX(z)

]
E
[
eiφY (z)

] = E
[
eiφX(z)

]
exp

{
−iφm

(
z2
)

+ φ2v
(
z2
)
/2
}

(13)

We are thereafter expanding the f (z) around zero volatility and z = 0 up
to the third derivative. The expansion is done in two parts. Expression (13) is di-
vided into two components, the first consisting of exp

{
−iφm

(
z2
)

+ φ2v
(
z2
)
/2
}
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and the second one of E
[
eiφX(z)

]
. Let us have a look at the expansion of the

first component

exp
{
−iφm

(
z2
)

+ φ2v
(
z2
)
/2
}
≈

eiφm(0)+φ2v(0)/2−(iφ+φ2)m′(0)z2−(iφ+φ2)m′′(0)z4/2−(iφ+φ2)m(3)(0)z6/6 ≈
e−iφm(0)+φ2v(0)/2

(
1−

(
iφ+ φ2

)
a1 +

((
iφ+ φ2

)2
a2

1 −
(
iφ+ φ2

)
a2

)
/2+(

3
(
iφ+ φ2

)2
a1a2 −

(
iφ+ φ2

)
a3 −

(
iφ+ φ2

)3
a3

1

)
/6
)

(14)

where ai is given by

a1 (z) = −
z2

N∑
i,j

wiwjFiFj (ρijσiσjT )

2
N∑
i,j

wiwjFiFj

a2 (z) = 2a2
1 −

z4
N∑
i,j

wiwjFiFj (ρijσiσjT )2

2
N∑
i,j

wiwjFiFj

a3 (z) = 6a1a2 − 4a3
1 −

z6
N∑
i,j

wiwjFiFj (ρijσiσjT )3

2
N∑
i,j

wiwjFiFj

Thereafter is g (z) = E
[
eiφX(z)

]
expanded as

g (z) ≈ g (0) +
z2

2
g′′ (0) +

z4

24
g(4) (0) +

z6

720
g(6) (0) (15)

Let us identify the terms in the expression. By differentiating g (z) twice, four
and six times Ju (2002) showed that the following conditions holds

z2

2 g
(2) (0) = eiφX(0)

(
iφ+ φ2

)
a1 (z)

z4

24g
(4) (z) = eiφX(z)

(
− (iφ− 3) (iφ− 2)

(
iφ+ φ2

)
a2

1 (z) /2
− (iφ− 2)

(
iφ+ φ2

)
b1 (z)−

(
iφ+ φ2

)
b2 (z)

)
z6

720g
(6) (z) = eiφX(z)

(
− (iφ− 5) (iφ− 4) (iφ− 3) (iφ− 2)

(
iφ+ φ2

) (
−a

3
1(z)
6

)
− (iφ− 4) (iφ− 3) (iφ− 2)

(
iφ+ φ2

)
c1 (z)

− (iφ− 3) (iφ− 2)
(
iφ+ φ2

)
c2 (z)

− (iφ− 2)
(
iφ+ φ2

)
c3 (z)−

(
iφ+ φ2

)
c4 (z)

)
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where bi (z) and ci (z) are defined according to the following expression

b1 (z) = z4

4B3(0)2
N∑
ijk

wiwjwkFiFjFk (ρikσiσkT ) (ρjkσjσkT )

b2 (z) = a2
1 (z)− 1

2a2 (z)

c1 (z) = −a1 (z) b1 (z)

c2 (z) = z6

144B4(0)

(
9 · 8

N∑
ijkl

wiwjwkwlFiFjFkFl (ρilσiσlT ) (ρjkσjσkT ) (ρklσkσlT )

+2
N∑
ij

wiwjFiFj (ρijσiσjT ) ·
N∑
ij

wiwjFiFj (ρijσiσjT )2

+ 4
N∑
i,j

wiwjFiFj (ρijσiσjT )
N∑
i,j

wiwjFiFj (ρijσiσjT )2

)

c3 (z) = z6

48B6(0)

(
4 · 6

N∑
ijk

wiwjwkFiFjFk (ρikσiσkT ) (ρjkσjσkT )2

+
N

8
∑
ijk

wiwjwkFiFjFk (ρijσiσjT ) (ρikσiσkT ) (ρjkσjσkT )

c4 (z) = a1 (z) a2 (z)− 2
3a

3
1 (z)− 1

6a3 (z)

f (z) is expressed as the product between g (z) and E
[
eiφX(z)

]
, if we multiply

(10) with (15) the following expression holds

f (z) ≈ 1− iφd1 (z)− φ2d2 (z) + iφ3d3 (z) + iφ4d4 (z)

and where di is given by

d1 (z) = 1
2

(
6a2

1 (z) + a2 (z)− 4b1 (z) + 2b2 (z)
)
− 1

6

(
1206a3

1 (z)− a3 (z)
+6 (24c1 (z)− 6c2 (z) + 2c3 (z)− c4 (z)))

d2 (z) = 1
2

(
10a2

1 (z) + a2 (z)− 6b1 (z) + 2b2 (z)
)
−
(
128a3

1 (z) /3− a3 (z) /6
+2a1 (z) b1 (z)− a1 (z) b2 (z) + 50c1 (z)− 11c2 (z) + 3c3 (z)− c4 (z))

d3 (z) =
(
2a2

1 (z)− b1 (z)
)
− 1

3

(
88a3

1 (z) + 3a1 (z) (5b1 (z)− 2b2 (z))
+3 (25c1 (z)− 6c2 (z) + c3 (z)))

d4 (z) =
(
−20a3

1 (z) /3 + a1 (z) (−4b1 (z)) + b2 (z)− 10c1 (z) + c2 (z)
)

E
[
eiφX(1)

]
is then approximated by
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E
[
eiφX(z)

]
≈ e−iφm(1)+φ2v(1)/2

(
1− iφd1 (1)− φ2d2 (1) + φ3d3 (1) + φ4d4 (1)

)
and thus are the pdf h (x) of X (1) given by

h (x) = 1
2π

ˆ ∞
−∞

e−iφxe−iφm(1)+φ2v(1)/2
(
1− iφd1 (1)− φ2d2 (1) + φ3d3 (1) + φ4d4 (1)

)
dφ

= p (x) +
(
d1 (1)

d

dx
+ d2 (1)

d2

dx2
+ d3 (1)

d4

dx4
+ d4 (1)

d4

dx4

)
p (x)

where p (x) is the standard normal pdf with mean m (1) and variance v (1)

p (x) =
1

2π

ˆ ∞
−∞

e−iφx+iφ(1)+φ2v(1)/2dφ

=
1√

2πv (1)
e−

(x−m(1))2

2v(1)

The Basket call price on Black-Scholes style is then given by

BTaylorCall (T ) = e−rtE

[(
eX(1) −K

)+
]

=

e−rT
[
B (0)N (y1)−KN (y2) +K

(
z1p (y) + z2

d

dy
p (y) + z3

d2

dy2
p (y)

)]
where

y = logK, y1 =
m (1)− y√

v (1)
+
√
v (1), y2 = y1 −

√
v (1)

and

z1 = d2 (1)− d3 (1) + d4 (1) , z2 = d3 (1)− d4 (1) , z3 = d4 (1)

If we remove the last term in the Basket price we get exactly the same price as
for the Levy log-normal approximation.
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5 Hedging Strategies

5.1 Approximating the Greeks
For some of the approximations there does not exist an approximately closed
form solution for calculating the Greeks, that is why we will use the derivative
definition via difference quotients. In introduction to calculus one get familiar
with the derivative ∂f (x0) /∂x definition via difference quotients at a point x0

as the limit function as h tends to zero

∂f (x0)
∂x

= lim
h→0

f (x0 + h)− f (x0 − h)
2h

which is an accurate approximation of the first derivative with an error of
O
(
h2
)
(Wilmott 2006: 2174)

Assume the basket option value Πt = B (S, T,K, r, q, σ) with underlying
assets Si, let us define the delta ∆i and vega νi by using the definition of the
derivative

∆i =
∂Π
∂Si
≈ lim
hi→0

B (S + hi, T,K, r, q, σ)−B (S − hi, T,K, r, q, σ)
2hi

and for vega

νi =
∂Π
∂σi
≈ lim
hi→0

B (S, T,K, r, q, σ + hi)−B (S, T,K, r, q, σ − hi)
2hi

In our case can h not be to small, h at a level of 10−6 will give a great
precision when calculating the two Greeks above. To be able to calculate the
real Greeks using MC techniques we are using a technique called Common
Random Numbers with goal to avoid Monte Carlo error and this by using the
same sequence of random number each time we evaluate our function.

5.2 Hedging of the Reciprocal Gamma Approximation
Milevsky and Posner (1998) showed that a Basket option priced by assuming a
summation of the underlying distribution converges towards a gamma distribu-
tion can be hedged by ∆RG

C in the following way

∆RG
C =


e−rf (T−t)−e−rd(T−t)

(r−q)T G
(

T−t
TK−tB(0) , α− 1, β

)
, B (0) < T

t K

e−rf (T−t)−e−rd(T−t)

(rd−rf )T , B (0) ≥ T
t K
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5.3 Hedging of the Taylor Approximation
Ju (2002) simply showed that the hedging ratio of the Basket call BC approxi-
mated priced by the Taylor approximation w.r.t the underlying asset S simply
is

∆Taylor
C =

∂BC
∂S

=
e−rdTU1

T
N (y1)−e

−rdTK

S

(
z1
dp (y)
dx

+ z2
d2p (y)
dx2

+ z3
d3p (y)
dx3

)
The analogous delta for the put option ∆Taylor

P is defined as

∆Taylor
P =

∂BP
∂S

= ∆Taylor
C − e−rT U1

T

5.4 A Static Super-Hedging Strategy
Su (2006) proposed a hedging strategy for the basket option by replacing the
basket with a number of individual plain vanilla options. As showed above this
technique will give an upper boundary for the basket option according to

B (T ) =

(
N∑
i=1

wiSi (T )−K

)+

=

(
N∑
i=1

wi (Si (T )− ki)

)+

≤
N∑
i=1

wi (Si (T )− ki)+

and such that
∑N
i=1 wiki = K. The last inequality follows from Jensen’s

inequality and the fact that N plain vanilla options never can be cheaper than
the corresponding Basket options. The goal with the static super-hedging
strategy is to optimize the optimal strike for each plain vanilla asset an
according to

min
ki

e−rdT
N∑
i=1

wiE
Q
[
(Si (T )− ki)+

]

s.t.
N∑
i=1

wiki = K

and where ki ∈ [0,K].

Su (2006) proposed that each optimal ki could be solved by the following
theorem
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Theorem 5.1: (Optimal ki) The optimal ki for the inequality satisfying

B (T ) ≤ e−rdT
N∑
i=1

wiE
Q
[
(Si (T )− ki)+

]

is determined by solving the following sequence of equations

ki = Si

(
k1

S1

) σi
σ1

e
T
[(

1− σi
σ1

)
(r+ 1

2σiσ1)+
(
σi
σ1
q1−qi

)]

and
N∑
i=1

wiki = K

Proof. Omitted, see appendix of Su (2006).

5.5 A Static Sub-Replicating Strategy
It can be proved that a lower bound of the Basket options can be determined
by the forward contract with strike K denoted in the following theorem

Theorem 5.2: (A Lower Bound of the Basket Option) A lower bound
of the Basket Option with N assets with strike K, weights wi, interest rate r is
given by

L =
N∑
i=1

wie
−rifTSi (t)− e−rdTK
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6 Pricing with the Smile & Skew

6.1 Industry Model
We will here show how the volatility smile can be taken into account when basket
options will be priced. The following procedure is as for the log-normal approx-
imation a method that is well used the industry. The goal with this method is
to find a replicated portfolio with plain vanilla options of the Basket option and
where the volatility smile is taken into account. Let the approximated price Πt

of the basket option be defined by

Bt = B
(
F, T, σATM ,K

)
where F denoted the forwards rates, T time to maturity, σATM the
at-the-money volatility and K the strike price. And the i:th vega νi defined in
the traditional way

νi =
∂B
(
F, T, σATM ,K

)
∂σi

As mentioned above, the goal is to create a portfolio of n plain vanilla options
with a new strike K ′ such that the value of the replicated portfolio equals the
Basket value. The new weights µi are constructed such that the exposure of
the i:th vega νi will be zero. In order to get the new parameters the following
systems of equations must be solved with a numerical procedure

n∑
i=1

µiC
(
K ′, T, ri, qi, σ

ATM
i

)
= B

(
F, T, σATM ,K

)
νi = µi

∂C
(
K ′, T, r, q, σATM

)
∂σi

The basket option price where the volatility smile is taking into account is
then determined by

Bsmilet =
n∑
i=1

µiC
(
K ′, T, ri, qi, σ

smile
i

)
and where σsmilei is the volatility determined from the smile.
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6.2 Replicated Portfolio
The goal is to find a replicated portfolio which eliminates the volatility risk
satisfying the partial derivatives up to the second order. We want to find three
time dependent weights x1 (t,K), x2 (t,K) and x3 (t,K)11 in such a way that
the replicated portfolio of three European calls with maturity T and strikes
K25∆P , KATM and K25∆C hedges up to the second order in the underlying
assets volatility. Lets assume that our basket contains j = 1, 2, . . . , N currency
pairs, to receive xji (t,K) we need to solve the following system of equations

∂B

∂σ
(t,K) =

3∑
i=1

xji (t,K)
∂CjBS
∂σ

(t,Ki)

∂2B

∂σ2
(t,K) =

3∑
i=1

xji (t,K)
∂2CjBS
∂σ2

(t,Ki)

∂2B

∂σ∂St
(t,K) =

3∑
i=1

xji (t,K)
∂2CjBS
∂σ∂St

(t,Ki)

The smile consistent price is now determined by

BSmile (K) = B (K) +
N∑
j=1

[
3∑
i=1

xji (K)
(
CjMKT (Ki)− Cji,BS (Ki)

)]

6.3 Local Volatility
As motivation above that the implied volatility as solved by finding the inverse
of Black-Scholes for a certain level and volatility, demonstrates a dependencies
of both strike level K or underlying asset value St and time to maturity t
instead of being constant, i.e. σ = σ (St, t). The idea with Local Volatility as
introduced by Dupire (1994) is to find a process that is consistent with the smile
and skew12 and still keeps the model complete and thus arbitrage free. We want
the underlying volatility in eq (4) be dependent of the current asset value and
time to maturity and thus letting it be on the following form

dSt = rStdt+ σ (St, t)StdWt (16)

Dupire (1994) showed how we can choose σ (St, t) such that our requirements
above are fulfilled and this by assuming that the risk neutral probability
function p (K,T ;S0) can be derived from the set of option prices C (K,T : S0)
for different level of strike K and time to maturity T . Dupire’s derivation of

11To simplify our notation let i = 1, 2, 3 determine 25∆P , ATM and 25∆C respectively.
12From now on will we only use the term smile for representing the both the smile and skew

effect.
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local volatility is done by assuming that both domestic rd and foreign rf
interest rates are equal to zero, but the can be easily be transformed into the
common case. If we start from the ordinary relationship defining the option
value C (K,T : S0), assuming that rd = rf = 0 and where p (K,T ;S0)
represents the risk neutral density.

C (K,T : S0) = EQ
[
(S −K)+ | FSt

]
=
ˆ ∞

0

(ST −K)+
p (K,T ;S0) dST

=
ˆ ∞
K

(ST −K) p (K,T ;S0) dST (17)

and where the risk neutral density p (K,T ;S0) must satisfy the Fokker-Planck
equation also known as Kolmogorov’s forward formula.

Definition 6.1: (Fokker-Planck equation) The Fokker-Planck equation
describes the time evolution and the probability density function of a particle
which evolves as

1
2
∂2

∂S2
T

(
σ2S2

T p
)
− S ∂

∂ST
(rST p) =

∂p

∂T

with boundary condition p = δ (S −K), where δ (x) is the Dirac delta function
and defined as

Definition 6.2: (Dirac delta function) The Dirac delta function is a gen-
eralized function such that

ˆ ∞
−∞

f (x) δ (x) dx = f (0)

for all continuous and bounded f .

Taking the first and second partial derivative of (17) with respect to K
following holds

∂C

∂K
= −

ˆ ∞
K

p (K,T ;S0) dST

∂2C

∂K2
= p (K,T ;S0)
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This as introduced by Breeden and Litzenberger (1978) and this indicates that
the risk neutral transition density of ST can be recovered directly from market
option prices.

Differentiating with respect to T one receives

∂C

∂T
=
ˆ ∞
K

(ST −K)
∂

∂T
p (K,T ;S0) dST

=
ˆ ∞
K

[
1
2
∂2

∂S2
T

(
σ2S2

T p
)
− ∂

∂ST
(rST p)

]
(ST −K) dST

solving the integral by integrating twice and by using the assumption that p
and the first ST derivative goes towards zero as ST tends to infinity, and by
assuming rd = rf = 0 one finally receives

∂C

∂T
=
σ2K2

2
∂2C

∂K2

and by rearranging we end up with Dupire’s equation.

�

Theorem 6.3: (Dupire’s equation) The local volatility σ (K,T ) as intro-
duced by Dupire (1994) assuming r = 0 is defined as

σ2 (K,T ) =
∂C
∂T

1
2K

2 ∂2C
∂K2

By voilating Dupire’s assumption on non interest rate, and considering for-
eign and domestic interest rate one recives the local volatiliy function that is
consistent in the FX market with the underlying asset S

Theorem 6.4: (Dupire’s equation on FX options) The local volatility
σ (K,T ) in terms of FX option prices C and where rd and rf determines the
domestic and foreign interest rate is

σ2 (K,T ) =
∂C
∂T + rfC +K (rd − rf ) ∂C∂K

1
2K

2 ∂2C
∂K2

(18)

or in terms of implied volatility σI

σ2 (K,T ) =
2∂σI∂T + σI

T + 2K (rd − rf ) ∂σI∂K

K2

[
∂2σI
∂K2 − d

√
T
(
∂σI
∂K

)2
+ 1

σI

(
1

K
√
T

+ d∂σI∂K

)2
]
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where d is defined in (5).

Proof. Omitted, see Andersen (1997)

�

6.4 Discretization of Local Volatiliy
In order to create a nice local volatility surface of PDE (18) we need to discreti-
size it. First we need to divide the plane (K,T ) into a grid with N + 2×M + 2
equal sized nodes. At node (Ki, Ti) for i = 1, 2, . . . , N and j = 1, 2, . . . ,M we
have the following value

∂C

∂T
≈ C (Ki, Tj+1)− C (Ki, Tj)

∆T

∂C

∂K
≈ (1−Θ)

C (Ki+1, Tj)− C (Ki−1, Tj)
2∆K

+Θ
C (Ki+1, Tj+1)− C (Ki−1, Tj+1)

2∆K

∂2C

∂K2
≈ (1−Θ)

C (Ki+1, Tj)− 2C (Ki, Tj) + C (Ki−1, Tj)
2∆2

K

+Θ
C (Ki+1, Tj+1)− 2C (Ki, Tj+1) + C (Ki−1, Tj+1)

2∆2
K

where the parameter Θ ∈ [0, 1] determines at which time the partial derivative
with respect to K are evaluated. The fully implicit finite difference method is
when Θ = 0, which mean that the K derivatives is evaluated at tj . The case
when Θ = 1 the K derivatives are evaluated at tj+1, also known as the explicit
finite difference method. When Θ = 1/2 giving rise to an average of the
implicit and explicit method, named Crank-Nicholson scheme.

By continuing on the values used when calculating and interpolating the
volatility smile we will use the Crank-Nicholson scheme discretization technique.
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Figure 15: Upper: Implied Volatility. Lower: Local Volatility.

Or the lower plot from figure 16 as seen from above which we will use in
our MC simulation, both figures generated from equation (18). We begin each
simulated path at the spot value S0 and will for each simulation step into the
corresponding grid (square) and collect the current volatility (Local volatility)
determined by the actual time t and current underlying asset value St13 at the

13Note that we changed the Local volatility as function of K and t to be a function of St

and t in order to get the correct current volatility, hence the name local volatility.
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current t.

Figure 16: The Local volatility surface as a function St and t of seen from above.
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7 Results

7.1 Basket Values
For our numerical test of the Basket option approximations are we using the
following Basket setup were we are letting the number of FX assets to be N = 4,
on a term structure of one year T = 1. For simplicity are both the domestic and
foreign interest rate zero, rd = rd = 0. The initial FX spot values are equally
sett to 100,

S0 =
[

100 100 100 100
]

We price the Basket at the money with strike K = 100, and the volatility σi to

σ =
[

0.2 0.2 0.2 0.2
]

the correlation ρij where i 6= j are arbitrary chosen to by equally weighted

ρ =


1 0.5 0.5 0.5

0.5 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1


But it must be kept into mind that this is not possible for the FX market,
since the relationship as presented in the section of FX correlation must fulfill
a certain condition or else does there exists arbitrage possibilities, but this is
ignored for now. We are letting the weight of each underlying asset in the
Basket to equally weighted

w =
[

0.25 0.25 0.25 0.25
]

The number of elements in our Sobol LDS sequence used for our qMC
simulation is chosen to be 224 − 1 = 16777216, which keeps the standard
deviation low, and we know that the mean from qMC is accurate to the last
present digit. Valuing the Basket option without incorporating the smile effect
is done by using different scenarios. The first one varying the moneyness (MN)
at the spot, the ratio between the strike price K and the initial basket value
B (0). This case is done by letting MN vary in a range of 50% and 150%, but
it should be kept into mind that the Basket option will at most scenarios be
priced at-the-money.
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The second case: varying the time-to-maturity, T in a range of 0.5 and 3 year.
In the third case are the intial correlations ρij where i 6= j in the range [0, 1]. In
the last case are the initial volatilities σi varied between 0.05 and 0.55. For each
different scenario are we presenting the qMC value, the normalized standard
deviation. As mentioned above about the bid-ask spread, if the approximated
values (error subtracted and added) are within the bid-ask spread, we can also
draw the conclusion that we have calculated accurate values.

7.1.1 Varying Moneyness

Let us begin our test by varying the Moneyness, MN = K/B (0) in a range of
[0.5, 1.5]. We can see that 4M, LogN and the LogN produces the best overall
RMSE value, but a closer look at the 4M values are that these are priced correct
to the last ’pip’ for all different scenarios. It is only the RG approximation that
does not produce so accurate values, and this due to that the summation of a log
normal converges towards RG as the number of summations tends to infinity,
and in our case are we only using 4 underlying assets. RG produces the worst
values when pricing the Basket option around ATM.
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MN qMC 4M LogN RG Taylor UB
(std) (error) (error) (error) (error)

0.5 50.0000 50.0000 50.0000 50.0000 50.0000 50.0003
(0.0027) (9.11 · 10−6) (9.12 · 10−6) (4.12 · 10−6) (9.10 · 10−6)

0.6 40.0020 40.0020 40.0020 40.0005 40.0020 40.0263
(0.0027) (9.29 · 10−6) (1.05 · 10−5) (1.50 · 10−3) (9.05 · 10−6)

0.7 30.0552 30.0552 30.0553 30.0322 30.0553 30.2475
(0.0027) (9.39 · 10−6) (2.45 · 10−5) (2.30 · 10−2) (8.20 · 10−6)

0.8 20.5062 20.5062 20.5063 20.4185 20.5063 21.1840
(0.0026) (1.27 · 10−5) (6.60 · 10−5) (8.77 · 10−2) (1.19 · 10−5)

0.9 12.2675 12.2675 12.2676 12.1504 12.2676 13.5899
(0.0023) (1.13 · 10−5) (8.17 · 10−5) (1.17 · 10−1) (1.36 · 10−5)

1.0 6.3059 6.3059 6.3060 6.2604 6.3060 7.9668
(0.0018) (9.52 · 10−6) (3.63 · 10−5) (4.56 · 10−2) (1.27 · 10−5)

1.1 2.7839 2.7839 2.7839 2.8306 2.7839 4.2929
(0.0012) (8.04 · 10−6) (2.27 · 10−5) (4.67 · 10−2) (9.02 · 10−6)

1.2 1.0694 1.0694 1.0694 1.1517 1.0694 2.1475
(0.0007) (4.63 · 10−6) (4.77 · 10−5) (8.22 · 10−2) (3.57 · 10−6)

1.3 0.3643 0.3643 0.3643 0.4329 0.3643 1.0083
(0.0004) (9.90 · 10−6) (3.22 · 10−5) (6.86 · 10−2) (8.43 · 10−6)

1.4 0.1123 0.1123 0.1123 0.1539 0.1123 0.4494
(0.0002) (6.87 · 10−6) (1.73 · 10−5) (4.16 · 10−2) (5.88 · 10−6)

1.5 0.0319 0.0319 0.0319 0.0527 0.0319 0.1925
(0.0001) (9.86 · 10−6) (1.23 · 10−6) (2.08 · 10−2) (9.37 · 10−6)

RMSE 9.55 · 10−5 5.65 · 10−5 2.35 · 10−1 9.04 · 10−5

Table 3: Varying MN∈ [0.5, 1.5]
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Figure 17: Varying the MN. Right: Basket option values derived from the
different methods. Left: The absolute error of each approximation compared to
values derived from qMC.

7.1.2 Varying Time-to-Maturity

For this scenario are we varying the time-to-maturity in the range [0.5, 3]. We
have the same outcome as in the previous case, the 4M method is priced correct
down to the last ’pip’. The Taylor approximation is priced correct for values
below T = 1.75 and after that just deviates by 1 ’pip’ . The absolute error of
the log normal approximation increases as T increases and the values produced
by RG can be neglected.
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T qMC 4M LogN RG Taylor UB
(std) (error) (error) (error) (error) (diff)

0.50 4.4596 4.4597 4.4597 4.4435 4.4597 5.6382
(0.0012) (5.93 · 10−6) (1.06 · 10−5) (1.62 · 10−2) (6.42 · 10−6)

0.75 5.4615 5.4615 5.4615 5.4318 5.4615 6.9005
(0.0015) (7.36 · 10−6) (2.03 · 10−5) (2.97 · 10−2) (8.82 · 10−6)

1.00 6.3059 6.30560 6.30560 6.2604 6.30560 7.9642
(0.0018) (9.51 · 10−6) (3.63 · 10−5) (4.56 · 10−2) (1.27 · 10−5)

1.25 7.0497 7.0498 7.0498 6.9861 7.0498 8.9034
(0.0020) (1.10 · 10−5) (5.81 · 10−5) (6.36 · 10−2) (1.70 · 10−5)

1.50 7.7220 7.7220 7.7221 7.6386 7.7221 9.7535
(0.0022) (1.26 · 10−5) (8.75 · 10−5) (8.34 · 10−2) (2.27 · 10−5)

1.75 8.3401 8.3401 8.3402 8.2352 8.3401 10.5235
(0.0024) (1.33 · 10−5) (1.24 · 10−4) (1.05 · 10−1) (2.90 · 10−5)

2.00 8.9153 8.9153 8.9154 8.7873 8.9153 11.2415
(0.0026) (1.26 · 10−5) (1.69 · 10−4) (1.28 · 10−1) (3.58 · 10−5)

2.25 9.4555 9.4554 9.4556 9.3030 9.4554 11.9241
(0.0028) (1.25 · 10−5) (2.23 · 10−4) (1.52 · 10−1) (4.53 · 10−5)

2.50 9.9660 9.9661 9.9663 9.7880 9.9661 12.5669
(0.0029) (1.08 · 10−5) (2.87 · 10−4) (1.78 · 10−1) (5.56 · 10−5)

2.75 10.4516 10.4517 10.4520 10.2467 10.4517 13.1696
(0.0031) (7.44 · 10−6) (3.61 · 10−4) (2.05 · 10−1) (6.71 · 10−5)

3.00 10.9155 10.9156 10.9160 10.6824 10.9156 13.7473
(0.0033) (1.88 · 10−6) (4.44 · 10−4) (2.33 · 10−1) (7.94 · 10−5)

RMSE 1.31 · 10−6 2.14 · 10−5 1.37 · 10−2 4.26 · 10−6

Table 4: Varying T in the range [0.5, 3].
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Figure 18: Varying the time-to-maturity, T . Right: Basket option values derived
from the different methods. Left: The absolute error of each approximation
compared to values derived from qMC.

7.1.3 Varying the correlation

Here are we varying the correlation coefficient ρij in the rang [0, 1]14, and where
i 6= j. Four Moment method increases its absolute error significant when ρ = 1,
but this is a scenario that could be neglected and the total RMSE of Taylor is
the lowest.

14For ρ = 1 have we used the value ρ = 0.999 . . . 9, in order to keep the covariance matrix
positive definite.
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ρij qMC 4M LogN RG Taylor UB
(std) (error) (error) (error) (error) (diff)

0 4.0173 4.0173 4.0177 4.0059 4.0174 7.9668
(0.0011) (1.57 · 10−5) (4.49 · 10−4) (1.14 · 10−2) (1.53 · 10−4)

0.1 4.5672 4.5672 4.5675 4.5501 4.5673 7.9656
(0.0012) (3.51 · 10−6) (2.64 · 10−4) (1.71 · 10−2) (7.35 · 10−5)

0.2 5.0579 5.0579 5.0581 5.0345 5.0579 7.9647
(0.0014) (7.60 · 10−6) (1.64 · 10−4) (2.34 · 10−2) (4.39 · 10−5)

0.3 5.5052 5.5052 5.5053 5.4749 5.5053 7.9658
(0.0015) (1.15 · 10−5) (1.08 · 10−4) (3.03 · 10−2) (2.86 · 10−5)

0.4 5.9191 5.9191 5.9191 5.8813 5.9191 7.9663
(0.0016) (4.68 · 10−6) (5.58 · 10−5) (3.77 · 10−2) (1.24 · 10−5)

0.5 6.3059 6.3060 6.3060 6.2604 6.3060 7.9658
(0.0018) (9.52 · 10−6) (3.63 · 10−5) (4.56 · 10−2) (1.27 · 10−5)

0.6 6.6706 6.6706 6.6707 6.6167 6.6706 7.9648
(0.0019) (1.69 · 10−5) (2.95 · 10−5) (5.40 · 10−2) (1.81 · 10−5)

0.7 7.0165 7.0166 7.0166 6.9538 7.0166 7.9637
(0.0020) (1.60 · 10−5) (2.09 · 10−5) (6.28 · 10−2) (1.64 · 10−5)

0.8 7.3464 7.3464 7.3464 7.2744 7.3464 7.9643
(0.0021) (9.36 · 10−6) (1.07 · 10−5) (7.20 · 10−2) (9.44 · 10−6)

0.9 7.6621 7.6621 7.6621 7.5805 7.6621 7.9688
(0.0022) (1.02 · 10−5) (1.03 · 10−5) (8.16 · 10−2) (1.02 · 10−5)

1 7.9656 7.9671 7.9656 7.8739 7.9656 7.9635
(0.0023) (9.84 · 10−2) (5.54 · 10−6) (9.16 · 10−2) (5.54 · 10−6)

RMSE 3.73 · 10−3 3.98 · 10−5 7.71 · 10−3 1.29 · 10−5

Table 5: Varying the correlation ρij for i 6= j between the underlying assets in
the range of [0, 1]
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Figure 19: Varying the correlation between the underlying assets. Right: Basket
option values derived from the different methods. Left: The absolute error of
each approximation compared to values derived from qMC.

7.1.4 Varying the volatility

For the last numerical test are we varying the initial volatility σi of each un-
derlying asset i in the range [0.05, 0.55]. Here is the 4M method the one that
produces the best overall values, remarkable is that the Taylor approximation
produces accurate values for large volatilities even thought the approximation
is built on a Taylor approximation around just zero volatility. The absolute
error of the values calculated by the RG approximation increases significant for
increasing volatility.
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σi qMC 4M LogN RG Taylor UB
(std) (error) (error) (error) (error) (diff)

0.05 1.5769 1.5769 1.5769 1.5762 1.5769 1.9949
(0.0004) (1.51 · 10−6) (1.53 · 10−6) (7.17 · 10−4) (1.51 · 10−6)

0.10 3.1537 3.1537 3.1537 3.1479 3.1537 3.9873
(0.0008) (3.57 · 10−6) (4.39 · 10−6) (5.73 · 10−3) (3.65 · 10−6)

0.15 4.7301 4.7301 4.7301 4.7108 4.7301 5.9779
(0.0013) (6.54 · 10−6) (1.28 · 10−5) (1.93 · 10−2) (7.22 · 10−6)

0.20 6.3059 6.3060 6.3060 6.2604 6.3060 7.9650
(0.0018) (9.52 · 10−6) (3.63 · 10−5) (4.56 · 10−2) (1.27 · 10−5)

0.25 7.8811 7.8811 7.8812 7.7925 7.8811 9.9483
(0.0022) (1.31 · 10−5) (9.61 · 10−5) (8.87 · 10−1) (2.44 · 10−5)

0.30 9.4553 9.4554 9.4556 9.3030 9.4554 11.9220
(0.0028) (1.25 · 10−5) (2.23 · 10−4) (1.52 · 10−1) (4.53 · 10−5)

0.35 11.0284 11.0285 11.0289 10.7881 11.0285 13.8929
(0.0033) (1.17 · 10−7) (4.66 · 10−4) (2.40 · 10−1) (8.24 · 10−5)

0.40 12.6002 12.6002 12.6011 12.2442 12.6004 15.8506
(0.0039) (5.40 · 10−5) (8.79 · 10−4) (3.56 · 10−1) (1.33 · 10−4)

0.45 14.1704 14.1702 14.1720 13.6679 14.1706 17.7977
(0.0047) (1.63 · 10−4) (1.57 · 10−3) (5.03 · 10−1) (2.29 · 10−4)

0.50 15.7387 15.7383 15.7413 15.0560 15.7391 19.7341
(0.0051) (4.02 · 10−4) (2.61 · 10−3) (6.84 · 10−1) (3.65 · 10−4)

0.55 17.3048 17.3040 17.3090 16.4057 17.3054 21.6681
(0.0058) (8.39 · 10−4) (4.19 · 10−3) (8.99 · 10−1) (5.7 · 10−4)

RMSE 1.70 · 10−5 9.81 · 10−5 2.62 · 10−2 1.39 · 10−5

Table 6: Varying σi
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Figure 20: Varying the the intial variance σi between the underlying assets.
Right: Basket option values derived from the different methods. Left: The
absolute error of each approximation compared to values derived from qMC.

7.1.5 Real Market Data

Since the input data used when pricing the Basket option where chosen arbitrary
and might be value that are “nice” to the approximations, we continue by using
real market data collected the 24 March, 2009. The data used can be found in
Appendix a. Each corresponding weights wi in the Basket are one, wi = 1. The
Basket is valued at the money, K = B (0), with a the time-to-maturity of one
year, T = 1 and with number of simulation to 223 − 1 = 8388607.

qMC 4M LogN RG Taylor UB
(std) (error) (error) (error) (error)

T = 0.5 0.0572 0.0572 0.0572 0.0571 0.0572 0.57886(
2.21 · 10−5

) (
1.53 · 10−8

) (
4.41 · 10−6

) (
7.43 · 10−5

) (
1.53 · 10−7

)
T = 1.0 0.0786 0.0786 0.0786 0.0969 0.0786 0.1667(

3.16 · 10−5
) (

3.33 · 10−7
) (

1.29 · 10−5
) (

2.08 · 10−4
) (

5.48 · 10−7
)

T = 2.0 0.1064 0.1064 0.1064 0.1058 0.1064 0.5064(
1.03 · 10−4

) (
2.63 · 10−6

) (
3.89 · 10−5

) (
5.776 · 10−4

) (
2.61 · 10−6

)
Table 7: Values for each method when using real market data.

Even here does the 4M and Taylor show great accuracy.
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7.1.6 Computation time

One interesting aspect and one of the purposes of this thesis is the saving in
computational time when using approximation compared to valued from MC.
To just get in idea of the saving we are timing each approximation for some
arbitrary input data and letting the number of Basket option to be 4, these are
compared to values derived from MC that are correct to the last ’pip’.

qMC 4M LogN RG Taylor
Time (seconds) 88.639753 0.025989 0.009163 0.008426 0.042754

Table 8: The corresponding methods computational time.

Worth mentioning is that the current code for calculation both the MC
value and the approximation are not optimized, for instance does the Taylor
approximation are including some O

(
N4
)
algorithms. Moving the code into

higher level of programming language as C++ is one possibility for speeding up
calculations.

7.2 FX Smile Prices
To value the FX Basket option consistent with the FX smile is done by using
real market data, the implied volatility from each currency pair in delta space,
the correlations between each currency pair. Each currency’s deposit rate, each
corresponding weight in the basket and finally each FX spot rate.

The numerical test is done by valuing a basket consisting of four currency
pairs: EURUSD, EURGBP, EURJPY and EURSEK with euro as base currency,
and letting all other currencies to represent the foreign currency. Data used for
pricing the Basket with the smile can be found in appendix A.

For constructing approximation that are consistent with the FX smile, we are
using the technique for construction a replicated portfolio as presented in section
6.2. We are using the same four currency pair EURUSD, EURGBP, EURJPY
and EURSEK and summarize the relevant and used data for constructing the
smile, all other data can be found in appendix A.

EURUSD EURGBP EURJPY EURSEK
S0 1.3556 0.9238 133.17 10.9286

σ1M
25∆P 17.690 15.830 22.770 16.630
σ1M
ATM 17.750 15.675 21.125 17.200
σ1M

25∆C 18.840 16.530 20.620 18.830

Table 9: Spot and implied volatility used when construction FX Basket smile
prices.

In our case are we interesting of valueing the following expression function
Φ
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Volume× Φ
(
w1 ·

USD
EUR

+ w2 ·
GBP
EUR

+ w3 ·
JPY
EUR

+ w4 ·
SEK
EUR

)
The values derived from both the Local volatility model and derived from

the replicated portfolio is compared to each other. Each corresponding weights
wi in the Basket are set to one, wi = 1. The strike value is set to that the
moneyness is 0.8. The time-to-maturity is chosen to one month, T = 30/365.
Number of grids used in the local volatility is set to 40× 40, and the number of
simulations are selected to 106 so that the value is correct to the last presented
digit. The smile prices are compared to values calculated from the no smile
consistent Taylor Approximation.

Basket Value
Local Volatility 0.3846

(std)
(
6.6804 · 10−5

)
Replication 0.3838

Taylor 0.3835

Table 10: FX Smile prices

As one can observe from the results above is that differs a bit. Even though
the Local volatility model incorporated in the MC simulation and the replication
technique tries to correct the for the same problem one should remember that
apples and pears are not the same, the two models should not be compared
with each other. But it seems reasonable that the smile prices should be higher
compared to the non smile prices. The Local Volatility in the example above
want a greater adjustment compared to the replicated portfolio.

7.3 Hedging Values
We are using the same setup as in the first numerical test. These test are
just demonstrating the calculated Greeks for the different approximations. All
the calculation is done by using the definition of derivative. To be able to
calculate qMC values we are using a common random numbers with the purpose
of avoiding incorrect values due to Monte Carlo errors. Here is the 4M, LogN
and the Taylor approximations the one that produces best delta and vega values.
The delta values deviates by a few ’pips’, but when calculating the vega values
we have a deviation of a ’big’.
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Asset i qMC 4M LogN RG Taylor
∆1 0.1412 0.1407 0.1408 0.1352 0.1408
∆2 0.1416 0.1407 0.1408 0.1351 0.1408
∆3 0.1405 0.1407 0.1408 0.1352 0.1408
∆4 0.1416 0.1408 0.1408 0.1351 0.1408

Table 11: Delta values

Asset i qMC 4M LogN RG Taylor
ν1 7.8618 7.8546 7.8577 7.2019 7.8554
ν2 7.8709 7.8546 7.8577 7.2019 7.8554
ν3 7.8505 7.8546 7.8577 7.2021 7.8554
ν4 7.8526 7.8547 7.8577 7.2021 7.8554

Table 12: Vega values
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8 Epilouge

8.1 Conclusion
This thesis has presented four closed form solution for pricing the multi currency
Basket option. As observed from the numerical tests are that both the fourth
moment method and the Taylor approximation produced the most accurate val-
ues which are acceptable and a computational time below a few hundred of a
second. FX traders at Nordea Markets approved values that do not deviation
from MC by more than a few ’pips’. If we are about to choose a model, which
of the four models should we then choose? If simplicity is of priority, we choose
the Log Normal approximation. But if I were about to choose the method that
produces the most accurate values, the Taylor approximation and 4M are the
one to be chosen. This since the both approximations produces really accurate
values, but this with a lead of the Taylor approximation due the fact that we
have the opportunity to increase the accuracy by introducing higher orders in
our Taylor approximation. The values calculated by the RG approximation are
really bad, and this due to the fact that we only are using a small number of as-
sets, and the summation of log-normally distributed random variables converges
to a RG distribution when N →∞.

The second part was devoted for pricing the Basket option in such a way so
that the FX smile is taken into account. Pricing method that we build on Local
Volatility models and by creating a replicated portfolio in such a way that the
smile is taken into account. The problem is thus when we are about to draw any
conclusion about the derived prices since Basket options are not a very common
traded and thus making it complicated trying to find out if the price is accurate
or not. But since both Local Volatility model and the replicated portfolio in
some since demonstrates the same significant trend, as long the derived price is
within a traders bid-ask spread, and if we believe in the prices we can finally
conclude that the new smile prices are correct.

8.2 Future Work
This thesis has opened the door for further research in very interesting and huge
areas. The second part of this thesis covers just a very small part of a huge and
a very importing area in risk management, pricing with the smile/skew. Fur-
ther development and research could focus on just this subject, by introducing:
volatility term structure, stochastic volatility models (as the Heston model) by
violating the Black-Scholes assumption on constant volatility and with goal to
capture the smile, also stochastic volatility models combined with Local volatil-
ity models. The market does often display more than one volatility and that
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is by further research could be done by introducing also multi-scale volatility
processes (e.g. volatility of volatility) as the double-Heston Model, these mod-
els should be calibrated to market data in a clever way, and thus making us to
construct even better Basket option prices. Further introduction and interest-
ing reading on how to solve the smile problem can be found in Ayache et. al.
(2004). Further research can also be done by introducing stochastic correlation
models.

Hedging the models is a very important subject in risk management; no one
is interesting in using an approximation that is not easy to hedge in the correct
way. This thesis just cover the hedging in a not to deep way and something
that have to be extended and finally determining which of the approximation
that produces the best overall value. Hedging when using the Local volatility is
nothing that has been considered and is not an easy task to solve.

Speeding up the calculation even further could be done by optimization the
code and moving into higher level programming languages.

“...only models that take into account local, jump and stochastic features of the
volatility dynamics and mix them in the right proportion are adequate for

pricing and risk management of forex options”.

Lipton (2002)
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A Market Data

The following data are collected from the market on the 24 March, 2009, the
implied volatility are collected from right delta.

1W 1M 2M 3M 6M 9M 1Y 2Y
5∆P 17.18 17.38 17.69 18.08 18.97 19.58 19.95 18.69
10∆P 16.42 16.59 16.75 16.94 17.37 17.68 17.80 16.82
15∆P 16.05 16.22 16.32 16.44 16.68 16.88 16.90 16.03
20∆P 15.81 15.99 16.05 16.13 16.26 16.40 16.37 15.57
25∆P 15.65 15.83 15.88 15.92 15.99 16.09 16.03 15.27
30∆P 15.53 15.70 15.75 15.77 15.80 15.88 15.81 15.08
ATM 15.50 15.67 15.72 15.72 15.70 15.75 15.70 15.02
30∆C 16.08 16.25 16.37 16.40 16.43 16.50 16.51 15.82
25∆C 16.35 16.53 16.68 16.72 16.79 16.89 16.93 16.22
20∆C 16.64 16.83 17.03 17.10 17.24 17.37 17.46 16.72
15∆C 17.01 17.23 17.49 17.61 17.86 18.05 18.21 15.41
10∆C 17.56 17.83 18.19 18.40 18.84 19.14 19.43 18.53
5∆C 18.66 19.03 19.65 20.08 21.02 21.64 22.23 21.07

Table 13: The EURGBP implied volatiliy in delta space.

1W 1M 2M 3M 6M 9M 1Y 2Y
5∆P 25.23 26.41 27.10 27.99 29.80 30.80 31.29 30.95
10∆P 23.95 24.73 25.14 25.65 26.76 27.46 27.89 28.09
15∆P 23.29 23.86 24.13 24.41 25.10 25.58 25.90 26.24
20∆P 22.84 23.25 24.42 23.55 23.96 24.28 24.50 24.86
25∆P 22.48 22.77 22.87 22.87 23.07 23.26 23.39 23.73
30∆P 22.15 22.31 22.33 22.27 22.32 22.40 22.44 22.67
ATM 21.37 21.12 20.92 20.65 20.32 20.15 20.02 19.95
30∆C 21.21 20.63 20.26 19.81 19.19 18.85 18.61 18.29
25∆C 21.28 20.62 20.22 19.72 19.02 18.66 18.39 18.03
20∆C 21.41 20.70 20.27 19.71 18.94 18.55 18.25 17.83
15∆C 21.61 20.85 20.42 19.78 18.96 18.55 18.20 17.68
10∆C 21.95 21.15 20.72 19.99 19.14 18.71 18.30 17.62
5∆C 22.67 21.82 21.43 20.56 19.74 19.33 18.82 17.82

Table 14: The EURJPY implied volatiliy in delta space.
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1W 1M 2M 3M 6M 9M 1Y 2Y
5∆P 18.50 17.30 16.72 16.31 15.81 15.41 15.59 14.71
10∆P 17.98 16.89 16.19 15.59 14.87 14.42 14.36 13.74
15∆P 17.74 16.73 15.97 15.30 14.48 14.01 13.85 13.33
20∆P 17.60 16.65 15.87 15.15 14.28 13.81 13.59 13.13
25∆P 17.52 16.63 15.83 15.09 14.19 13.73 13.47 13.03
30∆P 17.51 16.66 15.85 15.09 14.18 13.74 13.46 13.03
ATM 17.85 17.20 16.3750 15.60 14.70 14.30 14.00 13.50
30∆C 18.80 18.38 17.61 16.88 16.02 15.64 15.35 14.66
25∆C 19.17 18.83 18.08 17.39 16.54 16.18 15.92 15.13
20∆C 19.55 19.32 18.61 17.96 17.15 16.80 16.57 15.67
15∆C 20.01 19.93 19.28 18.70 17.96 17.63 17.44 16.39
10∆C 20.67 20.80 20.27 19.80 19.20 18.91 18.80 17.51
5∆C 21.92 22.43 22.16 21.98 21.69 21.48 21.60 19.79

Table 15: The EURSEK implied volatiliy in delta space.

1W 1M 2M 3M 6M 9M 1Y 2Y
5∆P 18.77 18.98 19.75 20.37 21.40 22.23 22.70 20.82
10∆P 18.33 18.31 18.72 19.02 19.51 19.91 20.11 18.67
15∆P 18.12 18.00 18.25 18.42 18.69 18.92 19.01 17.74
20∆P 17.99 17.81 17.96 18.05 18.20 18.33 18.36 17.19
25∆P 17.92 17.69 17.77 17.80 17.86 17.93 17.92 16.81
30∆P 17.89 17.61 17.64 17.62 17.63 17.65 17.62 16.54
ATM 18.10 17.75 17.65 17.55 17.42 17.35 17.27 16.20
30∆C 18.79 18.51 18.42 18.33 18.18 18.08 18.01 16.82
25∆C 19.07 18.84 18.77 18.70 18.56 18.48 18.42 17.16
20∆C 19.35 19.20 19.18 19.14 19.05 19.00 18.96 17.61
15∆C 19.70 19.67 19.72 19.74 19.72 19.73 19.73 18.24
10∆C 20.20 20.34 20.52 20.66 20.79 20.91 21. 00 19.29
5∆C 21.12 21.67 22.19 22.63 23.19 23.63 23.96 21.68

Table 16: The EURUSD implied volatiliy in delta space.

1W 1M 2M 3M 6M 9M 1Y 2Y
rEURO 0.914 0.596 1.034 1.239 1.759 2.084 3.396 1.330
rGBP 0.550 0.497 0.973 1.172 1.668 1.997 2.329 1.423
rUSD 0.525 0.475 0.975 1.225 1.825 2.179 2.525 1.493
rSEK 1.067 0.768 0.861 0.889 1.290 1.629 1.960 1.164
rJPY 0.08 -0.026 0.38 0.564 1.008 1.297 1.579 0.171

Table 17: The deposit rates.
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EURUSD EURGBP EURJPY EURSEK
1.3559 0.92391 133.27 10.9187

Table 18: Spot prices

EURUSD EURSEK EURJPY EURGBP
EURUSD 1 0.07 0.59 0.4
EURSEK 0.07 1 0.12 0.24
EURJPY 0.59 0.12 1 0.11
EURGBP 0.4 0.24 0.11 1

Table 19: Correlation between EURUSD, EURSEK, EURJPY and EURGBP.
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