
• The stereo correspondence problem is hard to solve due to 
ambiguous matches between similar image features
• Disparity selective cells in V2 respond less to false matches than 
cells in V1 [1]: 
- hierarchical processing might have a role in resolving ambiguities
- existing models do not exploit this hierarchy [2,3]

• We propose a two-layer graphical model for disparity inference
- upper layer nodes act as priors that disambiguate false from correct matches
- model parameters learned from natural disparities
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• Tsukuba and Venus datasets (not in the training set)

• Initialization: integer disparity values that give minimal 
stereo matching term

• Contributions:
- a new hierarchical model for disparity inference based on natural 
disparity statistics
- learned representation of disparity consistent with electrophysiology

• Future work:
- competition between disparity detectors in the first layer
- learning from human data: stereo views dependent on fixation
- learning joint statistics of disparity and natural images
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Tsukuba experiment: Gabor parameters: envelope 1, wavelength 1, eight orientations

ground truth

layer 1 only 
(22.8% false matches)

layers 1 and 2
(14.6% false matches)

left image (128x128)

The percentage of false matches 
decreases with iterations 

(up to 35%-42% less false matches)

ground truth layer 1 only 
(22.9% false matches)

layers 1 and 2
(18.4% false matches)

left image (128x128)

Venus experiment: Gabor parameters: envelope 2, wavelength 8, eight orientations

•Disparity estimation: iterative inference on a two-layer graph

•Disparity sparse generative model with uncertainty
- disparity estimation/measurement is erroneous: uncertainty in the model

• Stereo matching likelihood

- where:

• Inference of disparity: MAP formulation
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• Inference on the proposed graph with the 
following priors:
- Jeffreys prior for uncertainty:

- Laplace prior for coefficients:

• Iterative algorithm
1. Initialize disparity     at each pixel
2. Infer sparse coefficients    and     ‘s with non-stationary 
sparse coding [4]

3. Inference of disparity using gradient descent 

4. Back to 2 or end if convergence

di
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• For disparity inference, we learn a dictionary

• Learning: non-stationary sparse coding  [4]
- on the disparity maps from the Middlebury database
- unwhitened data
- patches 16x16 pixels

Ψ

examples of disparity maps
used for learning

• Learned dictionary:
- mostly edges (consistent with disparity RF’s in V2 [5])
- some slanted surfaces

Learned dictionary for disparity
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