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Inference of disparity

® The stereo correspondence problem is hard to solve due to ® Inference on the proposed graph with the ® Tsukuba and Venus datasets (not in the training set)

following priors:

ambiguous matches between similar image features e Initialization: integer disparity values that give minimal

e Disparity selective cells in V2 respond less to false matches than - Jeffreys prior for uncertainty: P(2) = [[,_, 1/|oy stereo matching term

. . - : .. . “A, |ak]
cellsin V1 [1] Laplace pTiot for coetficients: P(a) x e Tsukuba experiment: Gabor parameters: envelope |, wavelength |, eight orientations

- hierarchical processing might have a role in resolving ambiguities

- existing models do not exploit this hierarchy [2,3] ® Iterative algorithm

percentage of false matches, accuracy | pixel
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| | — all pixels
22PN\ | — non-occluded pixels |

® We propose a two-layer graphical model for disparity inference 1. Initialize disparity d; at each pixel
2. Infer sparse coefficients a and ¢;’s with non-stationary

sparse coding [4]
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Model B '
3. Inference of disparity using gradient descent

® Disparity estimation: iterative inference on a two-layer graph

- upper layer nodes act as priors that disambiguate false from correct matches

- model parameters learned from natural disparities

iterations
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aL as ... Qg 20°% ‘ The percentage of false matches
QOOOQ  layer2 —  gparse representation 4. Back to 2 or end if convergence layer | only layers | and 2 decroeaseso with iterations
of disparity (22.8% false matches)  (14.6% false matches) (U O 357%-427% less false matches)
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b e For disparity inference, we learn a dictionary W

\ L i R | s ® Learning: non-stationary sparse coding [4]

Venus experiment: Gabor parameters: envelope 2, wavelength 8, eight orientations

left image right image - on the disparity maps from the Middlebury database | - S e | s
® Disparity Sparse generative model with uncertainty - unwhitened data Ieft image (|28x|28) ground truth layer | only layers | and 2
: , , , , , : : 22.9% false matches) (18.4% false matches
- disparity estimation/ measurement is erroneous: uncertainty in the model - patches 16x16 pixels : ) { )
d = ¥a _|_ € + n examples of disparity maps Learned dictionary for disparity COIlClUSlOIlS
used for learning - _ - o C b . .
sparse representation non- statlonary uncertainty  approximation error -. = | : ; - ontributions:
e~ N, 2)2 ) n ~ N (0, 5) - a new hierarchical model for disparity inference based on natural
> = diag(c%,03,...,0%)

disparity statistics
- learned representation of disparity consistent with electrophysiology

® Stereo matching likelihood

® Future work:
- competition between disparity detectors in the first layer
- learning from human data: stereo views dependent on fixation

[P(L, R|d,X) oc e™ 2 P(div"i)J

Po(Ti, Yi) - Gabor atom at position (4, /i), with orientation 6 v uitd, - learning joint statistics of disparity and natural images
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