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The Bayesian framework for perception 
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Behavioral evidence: 
•  Classical conditioning (Courville et al. TICS 2006) 
•  Perceptual processes (Kersten et al. Ann. Rev. Psych. 2006) 
•  Visuo-motor coordination (Kording & Wolpert, Nature 2004) 
•  Cue combination (Atkins et al. Vis Res 2001; Ernst & Banks Nature 2002) 
•  Decision making (Trommershäuser et al. TICS 2008) 
•  High-level cognitive processes (Griffiths & Tenenbaum, TICS 2006) 
•  Visual statistical learning (Orban et al. PNAS 2008) 

Probabilistic computations in the brain 
How do neurons represent and compute with probability distributions? 

1) How can sampling be implemented in neural circuits? 

Sampling-based cue combination model 

Gibbs sampling: The state of a neuron is sampled conditioned on the (estimate of) 
the state of the other neurons and the current input:  

For example, for sparse coding model: 

(Berkes et al., 2009) 

with 

Gibbs sampling equations can be turned into simple neural network architecture: 

Hamiltonian Monte Carlo: augment model variables with ‘momentum variables’, in 
analogy with physical system 
Langevin sampling: special case of Hamiltonian MC; following dynamics for a single 
step at each iteration, one can get rid of the momentum variables, which results in this 
dynamical equation: 

For example, for a Linear Dynamical System 
(Kalman filter): 

Corresponding Langevin dynamics: 

Feed-forward 
weights 

Recurrent 
connections 

Adaptation 

Sampling-based representations: open questions 

2) How many samples for accurate estimate? 

Independent sampler, 
50’000 samples, 10 runs 

How does the variability of an estimation computed with a small number of 
samples compare to the the optimal Maximum Likelihood estimator? The 
asymptotic behavior is 1/sqrt(T), but there is an additional scaling factor due to the 
dynamics of the MCMC. 

Best step for Langevin gives  performance very close to independent sampler. 
Could be optimized by cortex by minimizing the autocorrelation of successive samples: 

Langevin sampler, 50’000 
samples, 5 runs, after burn-
in (300 iterations) 

epsilon indep. 0.4 0.7 1.0 1.3 1.9 

<25% 4 +/- 0 75 22 10 6 7 

<10% 10.3 +/- 
0.46 208 63 26 15 18 

<5% 20.4 +/- 
0.49 419 130 50 31 38 

r1 0 0.9 0.7 0.42 0.17 0.28 
first-order autocorrelation 

A time-varying input is not a problem if the internal model capture its 
dynamics. Benefits: no burn-in, tighter posterior, deal with missing 
data (e.g., occlusion). 

(Fiser et al., 2004) 

static 
w/ burn-in 

dynamic, no 
propagation dynamic 

<25% 6 7 6 

<10% 15 17 15 

<5% 31 40 30 

Before learning 

Learning with 5 samples per time step (T=10’000, N=200, ε=1.3) 

Learning with 1 sample per time step (T=20’000, N=200, ε=1.3) 

With 1 sample, the 
variance of the 
estimate is just twice 
the optimal (ML) 
variance 

The brain makes use of internal models of the environment in order to resolve 
ambiguities and estimate uncertainty.  

Parametric Sampling-based 
Neurons represent Parameters Value of variables 

Network dynamics Deterministic Stochastic 

Representable distribution Belongs to a parametric family Arbitrary 

Critical factor in encoding a 
distribution Number of neurons Time allowed for sampling 

Representation of uncertainty Complete at any time Partial, requires sequence of 
samples 

Number of neurons for 
multimodal distribution Exponential Linear 

Learning 

Updates are complex functions of 
parameters 

e.g., PPC: Previously unknown 
See posters II-52 (Turner et al.), 

III-44 (Beck et al.) 

Well-suited 
e.g., Helmholtz machine 

Sampling-cased representation remain unexplored, but are compatible with a number 
of experimental observations: 
•  trial-by-trial variability 
•  spontaneous activity (Berkes, Orban, Lengyel, Fiser, 2011) 
•  compatible with human behavior in single trials: “one and done” (Vul et al., 2009) 

Sampling has great asymptotic properties: unbiased, represents arbitrary correlations in 
multi-dimensional, multi-modal distributions. The brain needs to make decision in real 
time in a constantly fluctuating environment. Is this proposal for neural representation of 
uncertainty viable in practice? 

Frequently asked, open questions: 
1)  How can neural circuits generate samples from a particular internal model? 
2)  How many (independent) samples are required to make accurate estimates? 

How long does it take to generate independent samples? 
3)  What happens when the input is not stationary? Is it possible to obtain accurate 

estimates then? How do the dynamics of the Markov chain operator interact with the 
temporal dynamics of the stimulus? 

4)  Does a limited number of samples lead to a bias in learning? 

Feed-forward 
weights 

Recurrent 
weights 

Stochastic neural 
activation function 

defines a neural 
network dynamics 

Simple model, well-studied in parametric case with Probabilistic Population Codes, 
upper bound on sampling performance: 

3) What happens for non-stationary input? 

4) Is learning possible with a small number of samples? 

Conclusions 
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PPC SAMPLING 
decoding: given encoding 
scheme for input, derive 
optimal combination rule s.t. 
decoding results in posterior 

Ma et al., 2006; 
cf. poster II-52 

internal model: neurons form 
generative model of input, 
sample from posterior 

sensory input: population of 
neurons with Gaussian tuning curves 

stimulus generation: a single 
source generates a visual and an 
auditory stimulus with different 
characteristics  

Internal model: static / dynamic, Gaussian source 

using a Langevin dynamics: 

Sensory neurons: Gaussian tuning curves 
Sampling equations result in plausible NN architectures and dynamics. 

Estimation using samples is unbiased and asymptotically optimal. If 
extreme precision is not needed, a handful of samples can be enough. 

autocorrelations decay faster 
with visual development 

Accurate learning is possible even with a very small number of 
samples. 

Online learning in dynamical model, using EM: 

Some boundary 
effects due to 
under-estimating 
uncertainty  

trials / time 
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neuron 1 

neuron 2 

Static model Dynamic model 

same as in 
static case 

tighter than 

Results with 
dynamical model, 
ε=1.3, T=50’000, 
w/ and w/o 
propagating 
uncertainty 
information, no 
burn-in 

•   Using a sampling-based model including temporal dependencies, we were able to 
reproduce previous results of parametric models on a cue-combination task. 

•   Sampling is a highly plausible candidate: its performance is comparable to an optimal 
ML estimator even for a small (~ 1-30) number of samples. 

•   Learning can be done efficiently with just a few samples, and the learning equations are 
a simple function of neural activity (cf. Poster II-52). 

•   The current results represent an upper limit for sampling performance in realistic 
models. 
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