The army of one (sample): the characteristics of sampling-based, probabilistic neural representations

Pietro Berkes ${ }^{1}$, Richard E. Turner ${ }^{2}$, József Fiser ${ }^{1,3}$

Volen Center for Complex Systems, Brandeis University
${ }^{2}$ CBL, Dept Engineering, University of Cambridge, UK $\quad{ }^{3}$ Dept of Psychology and Neuroscience Program, Brandeis University

Behavioral evidence:

- Classical condition
Perceptual processes (IVassie etal TlCS 2006)
Visuo-motor coordination (Kording \& Wolpene., Nautre 2004)
Cue combination (AAkins etal. Vis Res 2001: Enst \& Banks Nature 2002)
Decision making (Tommesthusere elal Ticc 2008$)$
High-level cognitive processses (Gffrith \& \& Tenenobai
Probabilistic computations in the brain
How do neurons represent and compute with probability distributions?

[^0]Berkes, Orban. Lengyel., Fiser, 2011

- compatible with human behavior in single trials: "one and done" (Vul et al. 2009

Sampling has great asymptotic properties: unbiased, represents arbitrary correlations in multi-dimensional, multi-modal distributions. The brain needs to make decision in real time in a constantly fluctuating environment. Is this proposal for neural representation of uncertainty viable in practice? Frequently asked, open questions: 1) How can neural circuits generate samples from a particular internal model? 2) How many (independent) samples are required to make accurate estimates? How long does it take to generate independent samples? 3) What happens when the input is not stationary? Is it possible to obtain accurate estimates then? How do the dynamics of the Markov chain operator interact with the temporal dynamics of the stimulus? 4) Does a limited number of samples lead to a bias in learning?

1) How can sampling be implemented in neural circuits? Sampling equations result in plausible NN architectures and dynamics. Gibbs sampling: The state of a neuron is sampl
the state of the other neurons and the current input:

$$
x_{k} \sim P\left(x_{k} \mid x_{\neg k}, \mathbf{y}\right)
$$

For example, for sparse coding model: $\quad P\left(x_{k}\right)=P_{\text {sparse }}\left(x_{k}\right) \propto \exp \left(f\left(x_{k}\right)\right)$ $P(\mathbf{y} \mid \mathbf{x})=\operatorname{Norm}\left(\mathbf{y} ; \mathbf{G} \mathbf{x}, \sigma_{y}^{2}\right)$

Hamiltonian Monte Cario: augment model variables with 'momentum variables', alogy with physical system
Langevin sampling: special case of Hamiltonian MC: forlowing dynamics for a single
tep at each teration, one can get rid of the momentum variables, which resuls in thic dynamical equation:
$\quad P(\mathbf{x})=\frac{1}{Z} \exp (-E(\mathbf{x}))$

$$
\mathbf{x}(\tau+\epsilon)=\mathbf{x}(\tau)-\frac{\epsilon^{2}}{2} \frac{\partial E}{\partial \mathbf{x}}(\mathbf{x}(\tau))+\boldsymbol{\mathbf { n } (\tau)} \Longleftarrow \begin{gathered}
\text { defines a neural } \\
\text { network dynamics }
\end{gathered}
$$

For example, for a Linear Dynamical System
$P\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)=\operatorname{Norm}\left(\mathbf{x}_{t} ; \Lambda \mathbf{x}_{t-1}, \Sigma\right)$
$P\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)=\operatorname{Norm}\left(\mathbf{x}_{t}, N \mathbf{x}_{t-1}\right.$
$P\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)=\operatorname{Norm}\left(\mathbf{y}_{t} ; \mathbf{W}_{\mathbf{x}_{t}}, \sigma_{y}^{2}\right.$

隹

Internal model: static /dynamic, Gaussian source $P(x)=\operatorname{Norm}\left(x ; \mu_{\text {prior }}, \sigma_{\text {prior }}^{2}\right)$

	$P\left(x_{t} \mid x_{t-1}\right)=\operatorname{Norm}\left(x_{t} ; \Lambda x_{t-1}, \Sigma\right\rangle$
Sensory neurons: Gaussian tuning curves	$f_{\mathrm{M}, j}(x)=g_{\mathrm{M}} \operatorname{Norm}\left(x ; \mu_{M, j}, \sigma_{\mathrm{M}}^{2}\right)$
$\mathrm{M} \in\{\mathrm{A}, \mathrm{V}\}$	$P\left(r_{M, j, j} \mid x\right)=\operatorname{Poisson}\left(r_{M, j ;} ; \mathrm{N}_{\mathrm{M}, j}(x)\right.$

Neurons are sampling from $P\left(x_{t} \mid \mathbf{r}_{v}, \mathbf{r}_{\mathrm{A}}\right)$ using a Langevin dynamic
2) How many samples for accurate estimate?

Estimation using samples is unbiased and asymptotically optimal. If Estimation using samples is unbiased and asymptotically optimal. If
extreme precision is not needed, a handful of samples can be enough How does the variabiity of an estimation computed with a small number of
samples compara to the the ootimal Maximum Likelinood estimator The samples compare to the the eptimal Maximum Likelinhood estimator? The
asympotoic behavio is 1 /sqr(T) , but there is an additional scaling factor due to the
 variance of the, the
estimate is
thit twice estimate is
theoptimal (i)
variance

Best step for Langevin gives performance very close to independents sampler.
Could be optimizize by cortex by minimizing the autocorrelation of successive samples.

3) What happens for non-stationary input A time-varying input is not a problem if the internal model capture its dynamics. Benefits: no burn-in, tighter posterior, deal with missing data (e.g., occlusion).

$$
H_{1} M / / h_{1} / w^{\prime} / h_{w}
$$

4) Is learning possible with a small number of samples? Accurate learning is possible even with a very small number of

Conclusions
Using a sampling-based model including temporal dependencies, we were able to
reprocoucce previouus results of parametric models on a cue-comblination task.

[^0]: Sampling-cased reresesentaio
 of experimenta observations:
 trial-by-trial variability

