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Aw,(t) = y(/S\(t) — S(1))S(t—1) (Rescorla & Wagner, 1972)
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Experiment Objectives Toward A Neural Account
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« Further test dual priming model 1st order lag profile

Cascaded diffusion processes stimulus response
processing execution

Relative processing speed of
each stage can
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e Use EEG to tease apart stimulus and response primi ng

Priming of Priming of
alternation/repetition identities
of stimulus sequence of response sequence

 Examine long-term learning of environmental statis tics
via two conditions
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« amplify or attenuate first- and second-order effec  ts
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Error contributed by  w,(t) pushes w(t+1) in opposite
direction = inverse adaptation effect

positive autocorrelation (2/3 repetition rate)

stimulus repetition sequence

Response Time (ms)
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negative autocorrelation (1/3 repetition rate)
YYYXYXYXYXXYXXYXYYXY

Tested in second experiment in which we manipulated

» ease of stimulus processing (random dot kinetogram coherence)

e ease of response processing (one button press vs. seqguence)
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