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Abstract In the last decade, there has been important progress in understanding the origins and 

evolution of receptors for adrenal steroids (aldosterone, cortisol) and sex steroids (estradiol, 

progesterone, testosterone) due to the sequencing of genomes from animals that are at key sites 

in vertebrate evolution.  Although the estrogen receptor [ER] appears to be the ancestral 

vertebrate steroid receptor and estradiol [E2] is the physiological ligand for vertebrate ERs, the 

identity of the ancestral ligand(s) for the ER remains unknown.  Here, using an analysis of 

crystal structures of human ER  with E2 and other chemicals and 3D models of human ER  

with 27-hydroxycholesterol and 5-androsten-3 ,17 -diol, we propose that one or more 5 

steroids were the ancestral ligands for the ER, with E2 evolving later as the canonical estrogen.  

The evidence that chemicals with a -hydroxy at C3 in a saturated A ring can act as estrogens 

and the conformational flexibility of the vertebrate ER can explain the diversity of synthetic 

chemicals that disrupt estrogen responses by binding to vertebrate ERs. 

 

1. Introduction 

The adrenal steroids, aldosterone and cortisol, and sex steroids, estradiol (E2), 

progesterone and testosterone, regulate a wide range of physiological processes including 

reproduction, development and homeostasis [Figure 1].  The physiological actions of these 

vertebrate steroids are mediated by nuclear receptors, a large and diverse group of transcription 

factors that arose in multicellular animals [1-4].  Nuclear receptors with transcriptional 
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responses to adrenal and sex steroids appear to have evolved in deuterostomes [5-7]; the estrogen 

receptor [ER] is the ancestral vertebrate steroid receptor [6-11]. 

 

Figure 1. Structures of adrenal and sex steroids. The A ring of Estradiol has a C3 phenolic 

group.  The A ring in the other steroids has a C3-ketone. 

 

In addition to an ER, the chordate amphioxus contains a steroid receptor [SR], which 

diversified in vertebrates into the androgen receptor [AR], glucocorticoid receptor [GR], 

mineralocorticoid receptor [MR] and progesterone receptor [PR] [8-9, 12-14].  Although 

mollusks and annelids contain receptors with sequence similarity to the human ER [15-17], there 

is disagreement as to whether these protostome receptors diverged from a common ancestor of 

chordate ER [17], or if the similarity between protostome proteins and the chordate ER is an 

example of convergent evolution [18-20].  The pros and cons of this controversy are discussed 

in [17-20] and are not the focus of this paper. 

 

1.1 What was the ancestral ligand for the ER? 

Here, we investigate another unresolved question about the ER: the identity of the 

ligand(s) for the ancestral ER [3, 7, 18, 21].  Phylogenetic analyses of lamprey and other 
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vertebrate steroid receptors established that the ER was the ancestral steroid receptor [7].  

Duplication of this ER followed by sequence divergence led to the ancestral 3-keto-steroid 

receptor, which through further duplications and divergence led to the AR, GR, MR and PR [1, 

6-7].  A problem with having the ER as the ancestral receptor is that estradiol [E2], the 

physiological ligand for vertebrate ERs, is at the end of the pathway for the synthesis of steroids 

from cholesterol [7, 22] [Figure 2]. 

 

 

Figure 2. Enzymes involved in the synthesis of vertebrate steroids from cholesterol 

CYP450s, 3 /
5-4

-HSD and 17 -HSD-type 2 catalyze the formation of vertebrate steroids from 

cholesterol [18, 51-52]. 

 

E2 is synthesized from either testosterone, or from estrone [E1], which is synthesized 

from androstenedione.  Thus, the AR would have been expected to have evolved before the ER.  

Moreover, 3 /
5-4

-hydroxysteroid dehydrogenase [3 /
5-4

-HSD], which catalyzes the synthesis 
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of androstenedione from DHEA, also catalyzes the synthesis of progesterone from pregnenolone.  

Thus, the PR also would have been expected to have evolved before the ER.  To solve this 

conundrum, Thornton [7] proposed the ligand exploitation model, in which vertebrate steroids 

that are upstream of E2, were present before their receptors evolved.  In this model, 

progesterone and testosterone were present before the evolution of the PR and AR respectively.  

Progesterone and testosterone assumed novel signaling functions after the evolution of the PR 

and AR. 

In an alternative model, 5-androsten-3 ,17 -diol [
5
-androstenediol], which is upstream 

of E2, has been proposed as a ligand for the ancestral ER [22-23] [Figure 3]. 

 

Figure 3. Synthesis of 
5
-androstenediol and 3 -Adiol.  Synthesis of 

5
-androstenediol and 

3 -Adiol does not require aromatase [CYP19].  Moreover, synthesis of 
5
-androstenediol does 

not require 3 /
5-4

-HSD.  
5
-androstenediol and 3 -Adiol have high affinity for the ER [30]. 
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Here, we provide support for this latter hypothesis, using data from crystal structures of 

human ER  with E2 and other steroids and 3D models of human ER  with 5 steroids.  As 

discussed later, our analysis of crystal structures of human ER with novel steroids and 3D 

models of human ER with oxy-sterols also has implications for the binding to the ER of diverse 

synthetic chemicals, which can disrupt estrogen physiology in vertebrates [24-28]. 

 

2. Methods 

The Insight II software and the Biopolymer and Discover 3 options were used to 

construct 3D models of human ER  [PDB:1G50] with 
5
-androstenediol, 3 -Adiol, 27-OH-C 

and 24-OH-C, as described previously for constructing 3D models of 15 -hydroxy-estradiol 

complexed with human ER  and lamprey ER [29].  The crystal structure of human ER  with 

E2 was opened with Insight II.  Then the Biopolymer option in Insight II was used to modify 

E2 to 
5
-androstenediol, 3 -Adiol, 24-OH-C and 27-OH-C.  Then the 3D model of ER  with 

each of these ligands was refined through energy minimization with Discover 3 for 10,000 

iterations using the CVFF force field, with a distant dependent dielectric constant of 2.  The 

final 3D models of ER  with 
5
-androstenediol, 3 -Adiol, 24-OH-C and 27-OH-C are shown in 

Figures 6A, 6B, 8 and 9, respectively. 

The crystal structure of human ER  with trifluoromethyl-phenylvinyl-E2 [PDB: 2P15] 

was downloaded for analysis with Insight II. 

 

3. Structural Determinants for Binding of Estradiol to the ER 

Estrogens such as E2 and diethylstilbestrol [DES], which activate ER  and ER  [30], 

contain a C3-phenolic group [Figure 4], which also is required for high affinity binding to the ER 

by anti-estrogens, such as 4-hydroxy-tamoxifen, because tamoxifen is inactive [30] [Figure 4].  

The crystal structures of human ER  with E2 [31-32], DES [33] and 4-hydroxy-tamoxifen [33] 

provide a structural explanation for importance of the C3-phenolic group on E2 and other 

estrogens. 
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Figure 4. Structures of estrogens and an anti-estrogen  E2 and DES, two estrogens, and 

4-hydroxy-tamoxifen, an anti-estrogen have a phenolic A ring, which is important in their high 

affinity for the human ER. 

 

As shown in Figure 5, the C3 phenolic group has a hydrogen bond with the -carboxylate 

of Glu-353 in human ER .   
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Figure 5. Key amino acids in human ER  that bind E2.  The crystal structure of human 

ER  with E2 reveals that the A ring of E2 has hydrogen bond with -carboxylate of Glu-353 [4, 

31-32].  This interaction is characteristic of the ER  and ER .  In receptors for 3-keto-steroids, 

Glu is replaced by Gln, in which the amido NH2 group donates a hydrogen bond to the 3-keto 

group. 

 

The specificity of this interaction for the ER is seen in the replacement of Glu-353 by a 

corresponding Gln in the PR [32, 34] and AR, MR and GR [4], which are activated by steroids 

with 3-keto-groups [Figure 1].  The amido NH2 group on this Gln donates a hydrogen bond to 

the 3-keto-group on progesterone, testosterone, cortisol and aldosterone [4]. 

3.1 Human ERa binds 
5
-androstenediol and 5 -androstane-3 ,17 -diol with high affinity 

The evidence that the major physiological estrogens, E2 and E1, and anti-estrogens, such 

as 4-hydroxy-tamoxifen and raloxifene [31], have an aromatic A ring supports the notion that 

aromatase [CYP19] was necessary for the evolution of the steroid that activated the ancestral ER 

[17].  However, steroids that lack an aromatic A ring and contain a 3 -hydroxyl group, such as 

5
-androstenediol and 5 -androstane-3 ,17 -diol [3 -Adiol] also have high affinity for the 

mammalian ER [30] and could have served as ligands for the ancestral ER [22-23].  Indeed, 

3 -Adiol is an active estrogen in the prostate [35], as well as in the brain, under conditions in 
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which E2 is not present [36].  As shown in Figure 3, synthesis of 
5
-androstenediol and 

3 -Adiol does not require aromatase [CYP19].  Thus, either steroid could have been an active 

estrogen before the evolution of CYP19.  Moreover, 
5
-androstenediol could have been an 

active estrogen before the evolution of 3 /
5-4

-HSD [22-23]. 

Our 3D models of human ER  with 
5
-androstenediol and 3 -Adiol reveal that 

stabilizing contacts are retained between the 3 -hydroxyl and Glu-353 and Arg-394 and between 

the 17 -hydroxyl and His-524 [Figure 6], which is consistent with the evidence that both steroids 

have nM affinity for ER  and ER  [30] . This expands the ligands that can bind to the ER to 

include steroids with a 3 -hydroxyl on a saturated A ring. 
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Figure 6. Interaction of human ER  with 
5
-androstenediol and 3 -Adiol 

A. 3D model of human ER  with 
5
-androstenediol  

B. 3D model of human ER  with 3 -Adiol. 

In both 3D models, the 3 -hydroxyl group on 
5
-androstenediol and 3 -Adiol has favorable 

contacts with Glu-353 and Arg-394.  The 17 -hydroxyl on 
5
-androstenediol and 3 -Adiol has 

a favorable contact with His-524. 

 

3.2 Human ER  can accommodate steroids with large substituents in the D ring 

E2 has the smallest van der Waals volume of the vertebrate steroids [37] and the ER has 

the smallest ligand-binding cavity of vertebrate steroid receptors [38].  Crystal structures of the 

ER place the estrogen-binding site in a hydrophobic cavity, with select polar residues stabilizing 

the A and D rings.  These polar residues are Glu-353 and Arg-394, which stabilize the A ring, 

and His-524, which caps the D ring with a hydrogen bond to the 17 -hydroxyl that is 

characteristic of the ER [Figure 5].  Conversion of the 17 -hydroxyl to a ketone, as found in E1, 

reduces the affinity for the ER [30].  The lack of a C17 side chain in E2, in contrast to 

aldosterone, cortisol and progesterone [Figure 1], and the compact ligand-binding cavity in the 

ER indicated that compact ligands bind to the ER. 

However, in the last decade it has become clear that there is substantial conformational 

flexibility in the ER, which allows high affinity binding of E2 analogs with large substituents at 
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C17 to E2.  An important example is trifluoromethyl-phenylvinyl-E2 (TFMPV-E2), which has 

a bulky 17 -substituent and a Kd of about 50 pM for human ER  [39].  TFMPV-E2 is an 

agonist for human ER .  To understand the molecular interaction of TFMPV-E2 with human 

ER , they were cocrystallized (PDB 2P15) by Nettles et al.  Analysis of this crystal structure 

[Figure 7] revealed that despite the bulky substituent at C17 on TFMPV-E2, it has favorable 

contacts with key residues in the ligand-binding pocket [39]. 

 

 

Figure 7. Human ER  complexed with TFMPV-E2  The crystal structure of human ER  

with TFMPV-E2 [PDB: 2P15] [39] was downloaded for analysis with Insight II.  Despite the 

large 17 -substituent, TFMPV-E2 has favorable contacts with His-524 and no steric clashes with 

ER .  In fact, TFMPV-E2 is a potent estrogen with a Kd of about 50 pM for human ER  [39]. 

 

4. Was the ancestral estrogen a cholesterol analog? 

The finding that transcription by the ER can be activated by an estradiol analog with a 

bulky substituent at C17 indicates that a steroid with a large substituent at C17 could have been 

the ligand that activated the ancestral ER, which would be expected to have a different sequence 

from mammalian ERs, as well as a different cellular milleu.  Recently, Umetani et al [40] 

reported that several hydroxylated cholesterols including 27-hydroxycholesterol [27-OH-C], 

22R-OH-C, 24S-OH-C and 25-OH-C bound human ER  and human ER .  27-OH-C was the 
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most potent, and in some mammalian cells 27-OH-C functions as a partial agonist for human 

ER  and ER  [40-43].  The Kd of 27-OH-C for ER  and ER  is about 1.3 M and 0.4 M, 

respectively [40-42], which is over 10
3
 times higher than the Kd of E2 for human ER  and ER  

[30, 40].  Nevertheless, a Kd of 1 M is physiologically relevant because the circulating 

concentration of 27-OH-C is from 0.15 to 0.73 M, [40-42]. 

To understand the molecular interaction of 27-OH-C with human ER , we constructed a 

3D model of human ER  with 27-OH-C [Figure 8].  The 3D model reveals that binding of the 

A ring to Glu-353 and Arg-394 on human ER  is favorable, but His-524 does not have a 

stabilizing hydrogen bond with 27-OH-C [Figure 8], which may explain the low affinity of 

human ER for 27-OH-C. 

 

 

Figure 8. 3D model of human ER  with 27-hydroxycholesterol  The 3D model of human 

ER  with 27-OH-C shows that Glu-353 and Arg-394 are 2.6A and 3.1A, respectively, from the 

C3-hydroxyl.  His-524 on ER  does not contact the 27-hydroxyl, which may explain the 

substantially the lower affinity of 27-OH-C for ER  and ER  [40-42]. 
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The 3D model in Figure 8 indicates that a C24-hydroxyl on cholesterol could have a 

stabilizing contact with His-524.  In Figure 9, we show a 3D model of human ER  complexed 

with 24-OH-C, which shows that the C24 hydroxyl is 3.3A from His-524.  Bioassays are 

needed to determine if 24-OH-C has estrogen agonist or antagonist activity. 

 

 

 

Figure 9. 3D model of human ER  with 24-hydroxycholesterol  The 3D model of human 

ER  with 24-OH-C shows that Glu-353 and Arg-394 are 2.6A and 3.0A, respectively, from the 

C3-hydroxyl.  His-524 on ER  is 3.3A from the 24-hydroxyl.  There are no steric clashes 

between 24-OH-C and amino acids in the 3D model of human ER . 

 

The partial agonist activity of 27-OH-C for human ER  is relevant for the identity of 

ligand that activated transcription by ancestral ER.  The 
5
-ligand that regulated estrogen 

physiology through binding to the ancestral ER may have been 27-OH-C, 24-OH-C or another 

hydroxy-cholesterol derivative.  Regarding the ancestral ligand, an important consideration is 

that the ancestral ER would be expected to have a different sequence from mammalian ERs, and, 
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thus, may have a higher affinity for a cholesterol analog or another ligand than has a mammalian 

ER.  Also, the cellular milleu for the ancestral ER is likely to differ from that in mammalian 

cells.  For example, the ancestral ER-ligand complex may have had increased transcriptional 

activity due to binding to ancestral co-activators, which differ from their mammalian orthologs.  

If a cholesterol analog is the ancestral estrogen then it would support the model of Markov and 

Laudet that the estrogen response evolved before the cholesterol side-chain cleavage enzyme 

CYP11A [20].  It also means that a cholesterol analog preceded 
5
-androstenediol or another 

5
-derivative of DHEA as the physiological estrogen for the ancestral ER. 

The different physiological concentrations of steroids and cholesterol may have been 

important in the evolution of steroids as ligands for vertebrate nuclear receptors.  In contrast to 

the high concentration of cholesterol in blood, vertebrate steroid concentrations are at nM or 

lower levels, consistent with the nM affinities of vertebrate steroids for their cognate receptors.  

Thus, the evolution of CYP11A and CYP17 would provide a transition to C21 or C19 ligands 

that would function at nM concentrations to regulate transcription by the ER and other vertebrate 

steroid receptors. 

 

5. Implications for disruption of estrogen physiology by xenobiotics 

An unexpected outcome in preparing this commentary was the discovery that the ER can 

accommodate ligands such as TFMPV-E2 and 27-OH-C, which have larger substituents at C17 

than does E2.  The conformational elasticity in the ligand-binding site of the ER and the 

evidence that the ER can be activated by ligands with a 3 -hydroxyl instead of a C3-phenolic 

group substantially expands the suite of chemicals that need to be considered as possible 

disruptors of normal functioning of the ER in vertebrate physiology.  Indeed, although there is 

evidence that the ER binds environmental chemicals with diverse structures [Figure 10] [25, 

27-28], synthetic chemicals and phyotchemicals that lack key features of E2 should not be 

assumed to be inert towards the ER as either agonists or antagonists. 
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Figure 10. Chemicals with diverse structures bind to the ER.  Bisphenol A and genistein 

contain hydroxyls that can mimic some of the properties of the C3 and C17 hydorxyls on 

estradiol.  Coumestrol has only one hydroxyl.  Methoxychlor, o,p’-DDT, 

2’,3’,4’,5’-Tetrachloro-4-biphenyl and 2,3,7,8-Tetrachloro-dibenzodioxin (2,3,7,8-TCDD) lack 

hydroxyl substituents. 

 

Before one assumes that these chemicals do not disrupt estrogen physiology, they should 

to be screened in silico for binding to vertebrate ER  and ER  using various docking algorithms 

[44-45].  Chemicals with high docking scores can be tested for agonist or antagonist activity 

with high throughput screening of cells containing an ER and a reporter gene. 
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Interestingly, conformational flexibility in the ligand-binding pocket has been found in 

other nuclear receptors.  The ligand binding pocket on the GR can accommodate steroid 

analogs that are substantially larger than cortisol.  In particular, deacylcortivazol, which has a 

large substituent at the A ring and thus lacks a C3 ketone, has a 10-fold higher affinity for the 

GR than does dexamethasone [46].  The crystal structure of the GR-deacylcortivazol complex 

[PDB:3BQD] shows that the ligand binding pocket doubles in size.  Crystal structures of LXR 

[PDB:1PQ6, 1PQ9, 1PQC] [47], the ecdysone receptor [PDB 1R20, 1R1K] [48] and thyroid 

hormone receptor [PDB:1X7X, 1Y0X] [49-50] indicate that these receptors have a flexible 

ligand-binding pocket.  Thus, these receptors also may bind chemicals that are larger than their 

cognate ligands, with important implications for disruption of their physiological activity. 

Lastly, conformational flexibility of the ligand-binding pocket in the ER and other 

nuclear receptors may have been important in the evolution of their response to oxysterols and 

vertebrate hormones from ancestral signals [3, 18, 20]. 
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