
Word Activation Forces Map Word Networks 

Jun Guo1, Hanliang Guo2, Zhanyi Wang1 

1School of Information and Communication Engineering, Beijing University of Posts and Telecommunications 

No.10 Xitucheng Road, Haidian District, Beijing, China 

2 Aerospace and Mechanical Department, Viterbi School of Engineering, University of Southern California 

University Park Campus, USC, Los Angeles, CA 90089 USA 

Words associate with each other in a manner of intricate clusters1-3. Yet the brain capably encodes 

the complex relations into workable networks4-7 such that the onset of a word in the brain 

automatically and selectively activates its associates facilitating the language understanding and 

generation8-10. One believes that the activation strength from one word to another forges and 

accounts for the latent structures of the word networks. This implies that mapping the word 

networks from brains to computers11,12, which is necessary for various purposes1,2,13-15, may be 

achieved through modeling the activation strengths. However, although a lot of investigations on 

word activation effects have been carried out8-10,16-20, modeling the activation strengths remains 

open. Consequently, huge labor is required to do the mappings11,12. Here we show that our found 

word activation forces, statistically defined by a formula in the same form of the universal 

gravitation, capture essential information on the word networks, leading to a superior approach to 

the mappings. The approach compatibly encodes syntactical and semantic information into sparse 

coding directed networks, comprehensively highlights the features of individual words. We find 

that based on the directed networks sensible word clusters and hierarchies can be efficiently 

discovered. Our striking results strongly suggest that the word activation forces might reveal the 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/289891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


encoding of word networks in the brain. 

 Mapping word associations, which constitute complex networks, from brains to computers has been 

highly labor-consuming. A practically useful word network may cost thousands of people’s labor to 

perform free association11 or hundreds of man-months of labeling the complex word clusters12. Can such 

kind of tasks be automatically accomplished? To answer this question here we show an approach based 

on modeling the strengths of word activation in the brain.  

Previous research suggests that the effects of word activation in the brain are trained by the 

language experience of the target human21,22. For a given word pair, their respective occurrence 

probabilities and co-occurrence probability are the key factors in the training10,22,23. By using 

well-designed large text corpora including the British National Corpus (BNC)24 and the American 

National Corpus (ANC)25 to approximate human language experiences, we studied the relations between 

the word activation effects and the statistics of word occurrence and co-occurrence, found a sort of 

statistics that reliably predict the word activation effects (see Supplementary Information, Section 3, for 

the details of the prediction).  

Specifically, given the frequencies fi and fj and co-occurrence frequency fij of a pair of words i and j 

in the corpus used to simulate the language experience of the target human, we predict the strength of the 

activation that word i exerts on word j through the statistic (fij / fi) (fij / fj )/dij
2, where dij is the average 

distance by which word i precedes word j in their co-occurrences. Seeing the ratios of fij to fi and fij to fj 

as masses, we identify that the statistic is defined in the same form of the universal gravitation. 

Therefore we name it as word activation force from i to j, shortly wafij. According to the definition, the 

magnitude of wafs is unitarily quantified among [0,1]. Taking wafij for example, zero means that word i 



is never followed by word j closer than L words in the language experience, while one means that words 

i and j are always immediately adjacent like a compound (fij = fi = fj, dij = 1). Readily, given a vocabulary, 

the wafs of every pair of the words constitute a squared but asymmetrical matrix WAF = {wafij}, i.e. a 

directed word network, where nonzero elements in the ith row give the out-links of the ith node (from 

word i to others), while nonzero elements in the ith column the in-links of it (from others to word i). 

 Now we demonstrate that a WAF mapped word network can be highly sensible and valuable 

through an example in which the WAF is created with the statistics of a vocabulary of 10,000 frequent 

English words in the BNC (see Supplementary Information Section 2.1 for details). In the WAF, the 

distribution of either in- or out-link strengths of the node (word) is heavy tailed, i.e. the words 

high-selectively distribute their link strength. For a particular word, the major fraction of the link 

strengths is only related to a few words, which are usually its partners in the relations of compound, 

phrase, head-modifier, subject-verb, verb-object, synonym, antonym etc. It is shown that the wafs 

highlight the key features of individual words while the WAF captures the overall associations between 

words. Meanwhile the heavy tailed distributions allow a sparse coding on the WAF, i.e. cutting off the 

meaninglessly weak links at a threshold T. In our experiment, with a T = 1.0E-6, we cut off 96.36% of 

the links (from 21,244,909 to 773,468) remaining 96.67% of the total strength of all links (from 39.94 to 

38.61). Fig. 1 shows three ordinary nodes in the WAF after the sparse coding (see Supplementary Data1 

for detailed data). The complete network of the sparse WAF is acquired by a program in Supplementary 

Programs, and its statistical features, which are completely consistent with the well-known natures of 

word networks, are provided in Supplementary Information Section 2.1. 

 To identify word clusters based on the distinctive directed word network WAF, we introduce a 



word affinity measure Awaf from a unique perspective that deviates from the currently popular ones of 

semantic space models26,27 (perspectives of vector space). Awaf is defined as the geometric average of the 

mean overlap rates of the in-links and out-links of the inquired two words (see Methods Summary for 

the formula). In advance, we validated that Awaf produced affinities and the human judged synonymies 

on a set of benchmark word pairs28 are significantly correlated through an auxiliary experiment [0.52(p = 

1.13E-5), see Supplementary Information Section 3.2 for details].  

In our main experiment, we applied Awaf to every pair of words in the vocabulary to generate a 

symmetric affinity matrix, i.e. an undirected word network. By sorting the words according to their 

affinities to each word, we found that the word network is incredibly consistent with human knowledge: 

Almost every node (word) keeps strong links to its relatives but no link or weak ones to the irrelatives. 

Especially, across parts of speech, granularity of the concepts and popularity of the words, a large 

amount of the words possess the strongest links to their best partners, such as a~the, abbey~monastery, 

aberdeen~dundee, ability~capacity, above~below, abroad~elsewhere, abruptly~swiftly, 

absence~presence, abundance~diversity, abuse~violence, academic~scientific, academy~institution, 

accept~recognise, acceptable~reasonable, accommodate~adapt, etc. Reasonably, nouns and verbs 

usually keep strong links to their siblings in changed forms, e.g. arm~arms, arrive~arrives, and 

arriving~arrive. In addition, the absolute values of the affinities make sense on the closeness between 

words. It means that the strengths of links (affinities) of different nodes are mutually comparable, and 

that a uniform threshold can be adopted to remove the weak links when necessary. 

To present the significant structure of the word network in a visualised way, we group every word 

and its top 5 neighbors forming diverse 6-word-clusters based sub-networks, and provide the complete 



results in Supplementary Data2. Here through a few examples we show that the 6-word-clusters and the 

sub-networks are striking. Fig. 2 shows the 6-word-clusters with different parts of speech. In a wider 

scope, Fig. 3 shows a complex sub-network including various hierarchies in the domain of science and 

art. Such a sub-network presents an inherent complex structure of word networks that includes intricate 

semantic relations. Additional instances of the complex sub-networks are provided in Supplementary 

Information Section 2.2. Note that, for showing the essences of the word network, we adopted an 

intuitive clustering method. Obviously, by combining the top N clustering with a reasonable threshold of 

affinity, or by using the specialised clustering algorisms for complex networks1,2,29,30 instead, better 

clusters and hierarchies can be found. 

 Comparing the neighboring words in our networks and the associated words in manual free 

association makes more sense. To this end, targeting 3,269 words in our vocabulary which are 

overlapped by the words used in the free association of ref. 11, we compare their top 3 neighbors in our 

network and top 3 associates in the free association. The comparison shows that our results are mostly 

comparable to the ones of the free association. Table 1 presents a small part of the comparison for the 

target words of common used nouns and verbs in daily life (see Supplementary Data3 for the complete 

comparison). From Table 1, a big proportion of the target words our network and the free association 

give common answers, such as for beer, wine, walk, talk etc. In total this proportion is some 1/4 

(798:3,269). For the rest, although both the neighbors and the associates are sensible, they present 

respective characters. In contrast to the freedom of the associates in categories, the neighbors are exerted 

more syntactic constraints, leading to that they are much more consistent in parts of speech while they 

are occasionally loose in semantics (e.g. for eat). Notably, our results are merely based on the BNC, a 



100 million word corpus, thereby they are naturally characterised by its specific contexts for each words 

which are unnecessarily consistent with common sense. For example, in our network, apple’s top three 

neighbors are microsoft, novell and ibm, it suggests that the word is mainly in the contexts of computer 

industry rather than daily life in the corpus. 

 Remarkably, our approach is highly efficient. Thanks to the sharply skew distributions of the wafs, 

the encoding of the WAF is very sparse. It makes the computation of 108 affinities between every pair of 

words tractable under general conditions. Our computation was accomplished within 16 hours on a 

platform of PC (4*2.66GHz Quad CPU) + Matlab. Besides the practical benefit, the high efficiency also 

suggests that the principles underlying the WAF are plausible. 

 From a broader angle of view, our approach might reveal the learning mechanism of linguistic 

neural networks. The hypotheses that statistical information underlies linguistic neural networks have 

long been proposed21,23. However, what statistics are crucial for the development of the neural networks 

remains unclear. Our found statistics word activation forces efficiently capture the substantial 

associations between words, automatically leading to human knowledge consistent word networks. This 

suggests that it is likely to turn to a promising direction of understanding the learning mechanism with 

the hint of the newly found statistics. Practically, with the high effectiveness and efficiency, our 

approach has the immediate future of application in various tasks such as word clustering, thesaurus 

establishment, word sense discrimination, and query extension in information retrieval and so on. 

METHODS SUMMARY  

Counting occurrences and co-occurrences of words. Word frequencies are counted under the 

condition without stemming verbs or changing nouns between plural and singular forms but with 



changing all upper cases into lower cases. For example, change, changed, changing, term, terms were 

treated as 5 different words, but CAT, Cat and cat the same word cat. To count the co-occurrence 

frequency fij, the limit of the farthest position (indicated by word number) where word j appears behind 

word i, referred to as L, should be predetermined. Referring to previous work, L is tested around 5 in this 

study. We found that values of wafs are not sensitive to L ranging from 4 to 5 and 6. Therefore we only 

give the results of L = 5 in the main text. To ensure the ratios of fij to fi and fij to fj are less than or equal 

to 1, we only count the co-occurrences of word i and word j where neither word i nor word j appears in 

the intervening words.  

The affinity measure between the words in the WAF. For a pair of words i and j in the directed word 

network WAF, we define their affinity as: 
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Readily, Kij and Lij are the sets of the labels of the words connected by the in-links and the out-links of 

word i or word j, respectively. And OR(x,y) is an overlap rate function of x and y. That is, we 

define Awaf
ij as the geometric average of the mean overlap rates of the in-links and out-links of the words 

i and j in the WAF. Obviously, Awaf
ij = Awaf

ji . Therefore, using this measure we can acquire an 

undirected word network whose links represent word affinities from the directed one WAF. Notably, 

since WAF is sparse, the computation of Awaf
ij is efficient. 
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Table 1. Top 3 neighbors and associates with target words from our network and free association 

Targets Neighbors of our network Associates of free association 

bread meat cheese toast butter dough loaf 

butter  cream cheese flour bread margarine milk 

milk meat cream wine cow drink honey 

drink drinking coffee sleep water beer thirst 

beer wine whisky champagne drink wine drunk 

wine coffee beer champagne beer drink dine 

drunk asleep alone guilty alcohol beer drive 

drive driving walk push car fast way 

walk walking move run run talk stroll 

run running play move walk jog fast 

sleep talk drink bed dream rest awake 

talk speak talking leave speak listen chatter 

leave stay talk stop come go arrive 

live lived stay play die life dead 

play playing played move fun ball game 

move turn moved talk leave away stay 

ball shot match straight bat round throw 

throw pull pick push ball catch toss 

catch pick throw pull fish throw ball 

fish  animals birds species water swim sea 

water food light air drink cool wet 

food material water land eat drink hunger 

eat talk pick lose food drink fat 

fat sugar butter diet skinny thin cat 

Except the first one, the targets are iteratively chosen from the previous associates or neighbors. 



Figure 1 | Three ordinary nodes and their in- and out-links in the sparse WAF.  For every node 

(word), the strongest 6 and the weakest 1 in- and out-links are presented, showing the sharply 

descending strengths and the most forceful restraints to the meanings of the nodes. a, ‘hands’ (noun, 164 

in-links and 141 out-links in total) is characterised by the forceful links of modifiers (his, her, your), 

corresponding verbs (shook, shake, shaking), associates (pockets, knees, hips), etc. b, ‘live’ (verb, 129, 

153) by the links of subjects (who, people, we, they), syntactic restraints (to, in, with, here, alone, happily, 

where) and associates (births). c, ‘scientific’ (adjective, 70, 185) by the links of the words composing 

phrases (research, knowledge, method, interest, journals), near-synonyms (technological, mathematical), 

and syntactic restraints (of, the, a). The unbalanced link strengths can be seen, for example, the strong 

in-links of ‘hands’ and the weak in-links of ‘scientific’ are in contrast. Note that the coloured strengths 

are at exponential scales. 

 

Figure 2 | 6-word clusters and their local connections identified by our found wafs and affinity 

measure.  Centre nodes in the clusters are in the bigger size for the eye. The nodes and links belonging 

to the same cluster are in the same colour except those that are shared by more than one cluster, whose 

colours are mixed. The thickness of a link represents the affinity between its nodes, ranging from 0.07 

(novel-poetry) to 0.21 (have-had) in this figure. The length of a link means nothing. a, Local connections 

of noun clusters (related to literature). b, Adjective-noun clusters (colour). c, Verb clusters (talking). d, 

Function word clusters. Besides the plausibility of the clusters and their connections, the strong links 

between function words are notable. 

 



Figure 3 | A complex sub-network composed by 6-word clusters in the domain of science and art. 

The sub-network shows that the affinities between the words are highly sensible, while the hierarchies in 

the word networks are intricate. In the sub-network, various types of hierarchies are included, for 

example the vertical hierarchies (science, sciences, mathematics; art, culture, tradition), the flat 

hierarchies (history, culture, literature; mathematics, geography, economics), and the hybrid hierarchies 

(art, history, music; art, literature, politics). The affinities range from 0.06 (medicine-psychology) to 

0.13 (mathematics-maths). 
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