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Summary 

Estimates of 7x105 cubic meters of crude oil were released into the Gulf of Mexico as a 

consequence of the April 20th, 2010 Deep Water Horizon drilling rig explosion, leaving 

thousands of square miles of earth’s surface covered in crude oil.  Dispersants were used 

on large slicks and injected at the well head, resulting in oil being suspended throughout 

the water column1.  Starting in June 2010, oil reached hundreds of miles of Louisiana, 

Alabama, Mississippi, and Florida shoreline disturbing the ecological balance and 

economic stability of the region.  While visible damages are evident in the wildlife 

populations and marine estuaries, the most significant affect may be on the most basic 

level of the ecosystems: the bacterial and plankton populations. 

We present results from high throughput DNA sequencing of close-to-shore water and 

beach soil samples before and during the appearance of oil in Louisiana and Mississippi.  

Sixteen samples were taken over a two month period at approximately two week intervals 

from Grand Isle, LA and Gulfport, MS and were sequenced using the Illumina GAIIx 

platform.  Significant genomic-based population fluctuations were observed in the soil 

and water samples.  These included large spikes in the human pathogen Vibrio cholera, a 

sharp increase in Rickettsiales sp., and decrease of Synechococus sp. in water samples.  

Analysis of the contiguous de-novo assembled DNAs (contigs) from the samples also 

suggested the loss of biodiversity in water samples by the time oil appeared at the shores 

in both locations.  Our observations lead us to the conclusion that oil strongly influenced 

microbial population dynamics, had a striking impact on the phytoplankton and other 

flora present prior to the appearance of oil, and that the microbial community had not 

recovered to pre-spill conditions by the end of our observational period. 
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Introduction 

Microbial communities are an essential but vulnerable part of any ecosystem. The basic 

metabolic activities of microbial communities represent the fundamental status of any 

environment2. Abrupt and severe changes in the microbial metabolism can produce long 

term effects on the entire ecosystem3.  Near-shore water and soil microbial communities 

are likely to experience significant damage from oil contamination as well as human 

intervention in response to an oil spill. 

Until recently, the major obstacles in the analysis of environmental metagenomes were 

their complexity and the need to isolate and culture individual microorganisms4.  The first 

successful estimation of microbial diversity was based on massive sequencing of highly 

conserved microbial genes such as 16S rRNA5,6.  Over the last 10 years this method has 

been successfully applied to the analysis of microbial composition of human and 

environmental metagenomes7-15.  Next Generation Sequencing (NGS) technologies such 

as 454 Sequencing Systems (Roche), SOLiD (Life Technologies), and Illumina’s 

Genome Analyzer allow deep sequencing-based analysis of the entire genomic material 

(metagenome) present in environmental8,12 or clinical samples7,13,16 and have resulted in 

the discovery of thousands of new genes and metabolic pathways4,13,16-18. 

In order to estimate effects of oil and dispersants (such as COREXIT 9500), on the near-

shore water and soil microbial communities, we collected soil (sand) and water samples 

over a two month period (at approximately two week intervals) in Grand Isle, LA and 

Gulfport, MS (Supplementary Table 1).  A total of sixteen samples were taken just before 

and after oil began appearing at the sampling locations.  Sequencing of the collected 
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DNA was performed using the Illumina GAIIx Genome Analyzer.  Over the course of the 

study, a total of 431 million 36-base length reads, were produced.  After excluding low 

quality and low complexity reads, 319 million remained for analysis.  Raw and filtered 

reads, quality statistics, and filtration summaries are available on the project’s 

supplementary website (www.bioinfo.uh.edu/Oil_Spill). 

Methods Summary 

Analysis of sequencing data was based on the combination of three complementary 

approaches (Figure 1): (Pipeline a) direct search for each of 300+ million reads in 

GenBank and two specialized databases containing bacterial and viral sequences; 

(Pipeline b) mapping (alignment) of all the reads to selected microbial genomes in order 

to estimate their relative abundance across samples; (Pipeline c) and de-novo assembly of 

the most abundant genomic sequences (contigs) using all reads followed by mapping the 

individual reads from each sample to each contig to estimate their relative abundance. 

In Pipeline a (direct search for each read in GenBank; Figure 1a), the MegaBLAST19 

suite was used to search the non-redundant nucleotide (nt) database for each sub-

sequence (read) from each sample.  Low complexity and repeated region filters were 

applied in the search, in order to increase its specificity and exclude non-conclusive reads 

from future consideration.  A total of 2,657,868 unique reads were found to have 

homologous subsequences in 228,123 different genomic sequence entries in GenBank 

with specific accession numbers.  Next, the highest e-value score, was used to build a 

taxonomical association for each selected read and then the Taxonomy Common Tree 

program from (NCBI)20,21 was employed to obtain numbers of unique reads associated 
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with each taxonomical group in each sample (available on the supplementary website 

(BLAST Hits with Taxonomy.xlsx)  

Pipeline b (mapping/alignment of all the reads to selected microbial genomes; Figure 1b) 

was designed to confirm presence and estimate abundance of known bacteria species 

based on the number and locations of the aligned (mapped) sequencing reads across 

available reference genomes.  This approach assumed each bacterium, if actually present 

in the sample with detectable abundance, would have reads mapped evenly across a large 

portion of its genome.  To make the average nucleotide coverage correctly represent the 

abundance, all the highly repetitive and/or commonly shared sequences between bacterial 

species (such as rRNA and tRNA genes) were excluded.  To identify candidate bacteria, 

we merged reads from all 16 samples and performed a MegaBLAST search against the 

database of all publically available (as of July 2010) bacterial genomic sequences (Eureka 

Genomics, Inc.).  Out of 156,774 different genomic sequence entries in the database, we 

selected 525 bacterial genomic sequences >100kb for which the total number of unique 

matching reads were at least 0.05% of the total number of nucleotides in the sequence 

where the maximum observed value was 6.83% (file BLAST Hits and Selected Candidate 

Bacterial Sequences.xlsx is available on the supplementary data website).  Reads from all 

sixteen samples were mapped to candidate genomes.  Since the average coverage across 

selected genomes was less than 1, highly repetitive and commonly shared bacterial sub-

sequences were excluded by assigning zero coverage values to locations in the genome 

where coverage values were higher than five.  To make sure selected genomes regions 

were covered evenly, each genome was subdivided into non-overlapping windows of 

constant width such that, on average, 10 reads were expected inside each window; 
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average coverage was calculated using 80% of windows (10% of the windows with the 

highest and 10% of the windows with the lowest coverage were excluded as outliers; in 

each sample the average coverage for each genome was assigned to zero if the total 

number of windows was less than 10 or the total number of windows with zero coverage 

was less than 50%.  These procedures left us with 188 genomes with non-zero coverage 

in at least one of sixteen samples and this file (Candidate Genome Sequence 

Coverages.xlsx) is available on the supplementary data website. 

Since genomic sequences for the majority of environmental microorganisms are not 

available, we chose to also employ a de-novo assembly approach (Pipeline c; Figure 1c) 

to identify the most abundant genomic sequences in the samples.  To maximize the 

coverage density, we combined reads from all four locations and used the Dwight 

assembler developed at the University of Houston Center for Biomedical and 

Environmental Genomics [www.bioinfo.uh.edu]. The assembler generated 34,765 contigs 

ranging in lengths from 100 to 9,669 nucleotides.  The BLAST algorithm was used to 

identify the possible origin of these assembled sequences and searches were carried out 

against viral and bacterial databases containing a taxonomically organized collection of 

600,000 publically available genomic sequences (Eureka Genomics, Inc.) as well as 

against the GenBank collection of non redundant nucleotide sequences using BLAST20.  

Reads from each of sixteen samples were mapped separately to each contig and average 

coverage values were calculated excluding positions with the highest 10% and the lowest 

10% coverage.  The average coverage for each contig was then normalized by the 

number of unique reads in each sample (Contigs BLAST and Coverage.xlsx is available 

on the supplementary website). 
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Results 

In the direct GenBank search results (Pipeline a), the majority (84-99%) of unique and 

conclusive reads were identified as bacterial or eukaryotic.  The most abundant between 

these two groups varied between date and location (Figure 2).  The proportion of archaea 

and virus associated reads varied from approximately 1% to 6.5% of the total number of 

unique, conclusive reads in each sample.  Out of all sixteen samples the largest number of 

conclusive search results mapped to complete genomic sequences of Marinobacter 

aquaeolei, Synechococcus sp, Propionibacterium acnes, Candidatus Pelagibacter, Vibrio 

cholera, Haliangium ochraceum, Synechococcus phage S-RSM4, Synechococcus 

cyanophage syn9, Nitrosopumilus maritimus (archaea), and Thalassiosira pseudonana 

(eukaryote, diatom).  A full list of genomes is available on the supplementary website. 

Approximately 18% of unique search results pointed to chloroplast, mitochondria, or 

ribosomal RNA (Figure 3).  Interestingly, a high correlation (r2=0.97) was observed 

between the number of reads associated with mitochondria and chloroplasts (Figure 1, 

Supplement). It is important to mention, that the presence of common genes between 

Synechococcus sp. and chloroplast22,23 such as psaA and psbA could introduce bias in the 

estimation of the abundance of both groups of organisms.  To eliminate this possibility, 

we calculated (using Pipeline b) nucleotide by nucleotide coverage density for several 

chloroplast genomes (data not shown) including Thalassiosira pseudonana, 

Phaeodactylum tricornutum, and Odontella sinensis and, since no significant coverage 

bias was observed across these genomes we concluded the data presented in Figure 3 are 

a reasonable estimation of the concentration of chloroplast genomic material in the 

sample.  
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The archaea associated reads were dominated by Nitrosopumilus maritimus, a common 

archaeon living in seawater and responsible for oxidizing ammonium to nitrite; and 

Natrialba magadii, an extremophile adapted to alkaline and hypersaline conditions (pH 

9.5 and 3.5 M NaCl) as well as high temperatures and the presence of solvents24,25.  

Before oil (and possibly dispersant) reached the shore on June 14, 2010, N. maritimus 

was dominant in beach soil, while N. magadii was the most abundant archaeon in near-

shore water.  The appearance of oil and a significant decline of N. maritimus was 

observed to occur simultaneously in water at both locations.  This was followed by a 

large increase two weeks later (Figure 3).  During the following two weeks, the relative 

amount of N. maritimus increased in Grand Isle, which was more affected by oil and 

recovery activities than Gulfport, which declined to near pre-disaster concentrations.  The 

relative abundance of N. magadii in water was found to decline immediately after oil 

reached the shore followed by sharp decreases two and four weeks later in the Gulfport 

location.  In summary, four weeks after the disaster, the proportion of reads associated 

with these two organisms was still significantly elevated in water (29 fold in Grand Isle 

and 2.5 fold in Gulfport). The ratio between reads associated with these two species 

changed 100+ fold in the heavily affected Grand Isle water, from an initial almost equal 

ratio (46/71 N. maritimus to N. magadii) before the disaster to 2,801/41 by July 29, 

2010).  These observations suggest recovery of the archaea population is not complete, 

particularly in the water at Grand Isle. 

Mammals (primarily human and rodents, such as Mus musculus) were one of the most 

abundant classes among identified Eukaryotes (Figure 2, Supplement).  In all water 

samples, the proportions of these sequences decreased after oil arrived on the shores.  In 
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soil samples, a similar decrease was observed in the heavily affected Grand Isle samples, 

which may be explained by the extensive cleaning activities in the area. These activities 

may have both disturbed animal habitats and restricted public access to the area.  In two 

groups of data: non-mammal eukaryotes and total samples when mammal-associated 

reads were excluded, we observed dinoflagellates associated reads (mostly Heterocapsa 

triquetra and Heterocapsa rotunda) were present in a significantly higher fraction in 

water but not soil samples.  The proportion of these reads increased continuously over the 

four weeks of observations (Figure 4).  A similar pattern was observed for the 

Plasmodium sp, which was dominated by reads associated with the human pathogens P. 

knowlesi and P. falciparum.  The proportion of reads associated with green plants 

(dominated by Micromonas sp.) dropped in the water when oil reached the shore and did 

not fully recover during the observation time.  In contrast, the proportion of diatom-

associated reads (primarily Thalssiosira pseudonana and Cylindrothecsa fusiformis) 

dropped sharply in all samples after oil arrived.  In the Grand Isle area, the proportion of 

diatoms and other algae grew continuously during the observation period, primarily due 

to the increase in the abundance of T. pseudonan.  During this same period, the 

proportion of C. fusiformis decreased, such that the overall balance between these two 

diatomes species changed in favor of T. pseudonana.  The proportion of fungi associated 

reads (including Candida dubliniensis and Lodderomyces elongisporus, and Penicillum 

chysogenum) increased at both locations when oil arrived (primary by increased P. 

chysogenum) and did not fully recover to pre-spill conditions during the observation time, 

especially in the soil samples. 
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Two complementary approaches: direct GenBank search (Pipeline a) and the average 

coverage of selected genomes (Pipeline b) were employed to estimate the abundance of 

bacteria species.  Pipeline b was used to select the most abundant bacteria where 

coverage was consistently distributed across the genomic sequences.  Figure 5 shows an 

example of average nucleotide coverage across constant size windows for Synechococus 

RCC307 and Vibrio cholera MJ-1236 chromosome 1.  The high coverage regions 

correspond to common bacterial sequences and repeatable genomic sequences including 

rRNA operons.  The average coverage density expressed significant correlation with the 

total numbers of unique reads pointing to the same taxa as the GenBank search (Figure 3, 

Supplement), indicating the results from both approaches are in agreement.   

Both direct GenBank search and the average coverage of selected genomes approaches 

indicate that the concentration of oxygen producing bacteria i.e. Synechococus sp. 

(dominating Cyanobactera group), decreases in water when oil reaches the sampling 

areas and by the end of the sampling period it nearly recovered to its original proportion 

(although still less at Gulfport; Figure 3).  The Proprionibacteium species (including 

human associated P. acnes) concentration dropped in the water 100+ fold and did not 

recover in the water, presumably due to limited access to the area for recreational 

purposes.  In the water samples, the Rickettsiales order was dominated by the Candidatus 

Pelagibacter ubique HTCC1062 genome.  After a slight decrease in abundance after oil 

first arrived at shore, the relative concentration of these water associated bacteria began 

increasing sharply (up to 10 fold) and did not return to their original proportion during 

the observation period.  The most striking observation, however, was a spike in the 
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Vibrio cholera associated reads, especially in Grand Isle soil and water (500+ fold), 

which was significantly more affected by oil than Gulf Port. 

The majority of reads pointing to DNA Viruses, identified by direct search (Pipeline a), 

mapped to Synechococcus phage S-RSM4, Synechococcus cyanophage syn9, and 

Prochlorococcus phage P-SSM2.  The absence of significant bias in the average coverage 

across these genomes (Pipeline b) indicates the presence of these genomes was estimated 

with reasonable accuracy.  Over the observation period, the ratio between the proportions 

of Synechococcus cyanophage syn9 and Prochlorococcus phage P-SSM2 was 

significantly changed in the more heavily contaminated Grand Isle water (Figure 3). 

Genomic sequences for the majority of environmental microorganisms are unavailable, 

hence only a small fraction of reads were found to return conclusive results in the direct 

GenBank search or mapped to selected genomes.  De-novo assembly (Pipeline c) was 

designed to identify the most abundant subsequences in the samples.  Because of 

computer hardware limitations in the assembly process, we merged reads from each 

location and performed the assembly process for each of the locations separately.  Reads 

from each sample were mapped to all contigs to estimate changes in coverage between 

samples.  In individual samples, the coverage for many of the assembled contigs was high 

(over 1000x).  Not surprisingly, many of the assembled contigs had no significant match 

to the viral and bacterial databases used, or in GenBank. 

Interestingly, the total number of contigs present (i.e. those with non-zero coverage) 

appear to be significantly different across water samples, even when the origin of many 

of the assembled contigs is unknown.  The appearance of oil correlated with a general 
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decrease in the coverage and total number of contigs present in the samples, while only a 

few specific contigs increased in coverage (Figure 6).  These observations can be 

explained by a loss of biodiversity across the most abundant organism groups in the 

samples. 

Pair-wise comparison of the contig coverage densities from the water samples (Figure 4, 

Supplement) show differences in the compositions of the most abundant genomic 

sequences among the water samples, including large changes at both locations 

corresponding to the appearance of oil.  Data from samples collected on the last day of 

observations (eight weeks after oil reached shores) showed more similarity to samples 

taken before the appearance of oil than to other samples taken in the presence of oil. This 

suggests microbial communities at both locations were “responding” to the appearance of 

oil in a similar manner. 

Discussion and Conclusions 

The debate over how much oil remains in the gulf water column, on the sea bed, and in 

sand at the beaches continues.  Federal scientists have reported seventy four percent of 

the oil may have been removed by skimming and bio-remediation efforts but oil layers 

close to the bottom and micro dispersed oil droplets skew these calculations26.  The large 

amount of dispersed oil and the resulting changes in microbial populations may still have 

effects on the ecological balance in the region.   

Presented results suggest the microbial populations in soil and water were significantly 

disturbed by the appearance of oil, and possibly dispersant, and did not return to 

normalcy during the eight weeks of observation.  The emergence of V. cholera, 
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coincident with the first appearance of oil on the shores, and changes in the concentration 

of other potential human pathogens suggest regular monitoring of the bacterial population 

in areas affected by disasters is desperately needed.  The observed loss of the biodiversity 

and possible loss of oxygenic photosynthetic bacteria such as Synechococcus sp. suggest 

the possibility of oxygen depletion due to the loss of oxygen producing microorganisms 

as well as oxygen consumption by bacteria capable of metabolizing at least a fraction of 

the oil.  The long term damage to the ecosystem including the basic food chain is 

uncertain and requires future research. 

Reference List 

1  "Deepwater Horizon unified command, US scientific teams refine estimates of oil flow 

From BP's well prior to capping. Gulf of Mexico oil spill response," 

www.deepwaterhorizonresponse.com_go_doc_2931_840475_.htm. 

2  V. Torsvik and L. Ovreas, "Microbial diversity and function in soil: From genes to 

ecosystems," Current Opinion in Microbiology 5(3),  240-245 (2002). 

3  A. J. Symstad, et al., "Long-term and large-scale perspectives on the relationship 

between biodiversity and ecosystem functioning," BioScience 53(1), 89-98 

(2003). 

4  J. C. Venter, et al., "Environmental genome shotgun sequencing of the Sargasso Sea," 

Science 304(5667), 66-74 (2004). 

5  W. T. Liu, et al., "Characterization of microbial diversity by determining terminal 

restriction fragment length polymorphisms of genes encoding 16S rRNA," 

Appl. Environ Microb. 63(11), 4516-4522 (1997). 



14 
 

6  V. Wintzingerode, U. B. Gobel, and E. Stackebrandt, "Determination of microbial 

diversity in environmental samples: pitfalls of PCR-based rRNA analysis," 

FEMS Microbiol. Rev. 21(3), 213-229 (1997). 

7  A. Suau, et al., "Direct analysis of genes encoding 16S rRNA from complex 

communities reveals many novel molecular species within the human gut," 

Appl. Environ Microb. 65(11), 4799-4807 (1999). 

8  A. B. Martin-Cuadrado, et al., "Hindsight in the relative abundance, metabolic 

potential and genome dynamics of uncultivated marine archaea from 

comparative metagenomic analyses of bathypelagic plankton of different 

oceanic regions," ISME J 2(8), 865-886 (2008). 

9  M. Kamekura, "Diversity of extremely halophilic bacteria," Extremeophiles 2(3), 289-

295 (1998) 

10  H. G. Martin, et al., "Metagenomic analysis of two enhanced biological phosphorus 

removal (EBPR) sludge communities," Nat Biotech 24(10), 1263-1269 

(2006). 

11  D. H. Parks and R. G. Beiko, "Identifying biologically relevant differences between 

metagenomic communities," Bioinformatics 26(6), 715-721 (2010). 

12  R. V. Thurber, et al., "Metagenomic analysis of stressed coral holobionts," 

Environmental Microbiology 11(8), 2148-2163 (2009). 

13  P. J. Turnbaugh, et al., "An obesity-associated gut microbiome with increased 

capacity for energy harvest," Nature 444(7122), 1027-1131 (2006). 



15 
 

14  P. J. Turnbaugh, et al., "A core gut microbiome in obese and lean twins," Nature 

457(7228), 480-484 (2009). 

15  T. C. Hazen, et al., "Deep-sea oil plume enriches indigenous oil-degrading bacteria," 

Science  330(6001), 204-208 (2010). 

16  D. Willner, et al., "Metagenomic analysis of respiratory tract DNA viral communities 

in Cystic Fibrosis and non-Cystic Fibrosis individuals," PLos One 4(10), 

e7370 (2009). 

17  B. J. Baker, et al., "Insights into the diversity of Eukaryotes in acid mine drainage 

biofilm communities," Appl. Environ Microb. 75(7), 2192-2199 (2009). 

18  R. Edwards, et al., "Using pyrosequencing to shed light on deep mine microbial 

ecology," BMC Genomics 7(1), 57 (2006). 

19  Y Zheng, C. Xu, and J. Xue, "A simple greedy algorithm for a class of shuttle 

transportation problems," Optim. Lett. 3(4), 491-497 (2009). 

20  E. W Sayers, et al., "Database resources of the National Center for Biotechnology 

Information," Nucleic Acids Res  37, D5-D15 (2009). 

21  D. A. Benson, et al., "GenBank," Nucleic Acids Res  37, D26-D31 (2009). 

22  K. Shinozaki, et al., "The complete nucleotide sequence of the tobacco chloroplast 

genome," Plant Molecular Biology Reporter 4(3), 111-148 (1986). 

32  S. Robbens, et al., "The complete chloroplast and mitochondrial DNA sequence of 

ostreococcus tauri: Organelle genomes of the smallest Eukaryote are 

examples of compaction," Molecular Biology and Evolution 24(4), 956-968 

(2007). 



16 
 

24  M. Konneke, et al., "Isolation of an autotrophic ammonia-oxidizing marine 

archaeon," Nature 437(7058), 543-546 (2005). 

25  M. Kamekura, et al., "Diversity of alkaliphilic halobacteria: Proposals for transfer of 

Natronobacterium vacuolatum, Natronobacterium magadii, and 

Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas 

Gen. Nov., respectively, as Halorubrum vacuolatum Comb. Nov., Natrialba 

magadii Comb. Nov., and Natronomonas pharaonis Comb. Nov., 

respectively," Int. J. Syst. Bacteriol 47, 853-857 (1997). 

26  R. Camilli, et al., "Tracking hydrocarbon plume transport and biodegradation at 

Deepwater Horizon," Science 330(6001), 201-204 (2010). 

 

End Notes 

The environmental samples were collected in collaboration with Midwest Research 

Institute (MRI) and the University of Houston Center for Bio-Medical and Environmental 

Genomics (CBMEG).  This work is partially funded by the Department of Homeland 

Security Science and Technology Directorate (UH-G101151), Johns Hopkins University 

Applied Physics Lab National Security Technology, and the University of Houston 

(CBMEG). 

 

 

 



17 
 

Author Contribution Statement 

W. R. Widger, G. Golovko, A. Martinez and E. Ballesteros contributed equally to the 

writing of the manuscript. W. R. Widger was responsible for analysis and interpretation 

of bacterial and viral composition using all three pipelines. G. Golovko was responsible 

for pipeline algorithm development and implementation, resulting data analysis and 

interpretation. A. Martinez, was responsible for pipeline a algorithm development and 

implementation, resulting data analysis and interpretation. E. Ballesteros, was responsible 

for pipeline c algorithm development and implementation, resulting data analysis and 

interpretation. J. Howard, was responsible for sample collection, resulting data analysis 

and interpretation. Z. Xu and U. Pandya were responsible for Sample preparation, DNA 

isolation, resulting data analysis and interpretation. V. Fofanov designed and 

implemented the viral and bacterial databases and the mapping/alignment algorithms, as 

wellas resulting data analysis and interpretation. M. Rojas was responsible for data 

storage, analysis, and interpretation. C. Bradburne aided in the analysis and interpretation 

of bacterial and viral composition using all there pipelines. T. Hadfield aided in sample 

collection, resulting data analysis and interpretation. N. A. Olson, J. L. Santarpia and Y. 

Fofanov guided algorithm design, data analysis and interpretation, and manuscript 

development.  

 

 

 

 

 



18 
 

 

Figure Captions 

Figure 1.  Three complimentary approaches to metagenomic analysis. 

Figure 2. The relative proportion of conclusive reads assigned to major divisions across 

sixteen soil and water samples.   

Figure 3.  Trends in reads associated with bacteria, archea, virus and phage, and other 

taxa at the four sample locations. 

Figure 4. Percent of unique conclusive reads in samples (mammals excluded) associated 

with dinoflagellates, fungi, algae, and green plants. 

Figure 5. The nucleotide-by-nucleotide coverage density for Synechococus (top) and 

Vibrio cholera (bottom) genomes.  High coverage regions correspond to rRNA for both 

organisms and psbA, psaAB for Synechococcus.  Low or no coverage regions 

corresponding to heavily mutated or lost regions. 

Figure 6.  The distribution of contig coverage across water samples.   
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