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Abstract

The ‘self-referential’ character of evolutionary pro-
cess noted by Goldenfeld and Woese (2010) can be
restated in the context of a generalized Darwinian
theory applied to economic process through a ‘lan-
guage’ model: The underlying inherited and learned
culture of the firm, the short-time cognitive response
of the firm to patterns of threat and opportunity that
is sculpted by that culture, and the embedding so-
cioeconomic environment, are represented as inter-
acting information sources constrained by the asymp-
totic limit theorems of information theory. If unregu-
lated, the larger, compound, source that characterizes
high probability evolutionary paths of this composite
then becomes, literally, a self-dynamic language that
speaks itself. Such a structure is, for those enmeshed
in it, more akin to a primitive hunter-gatherer soci-
ety at the mercy of internal ecological dynamics than
to, say, a neolithic agricultural community in which
a highly ordered, deliberately adapted, ecosystem is
consciously farmed so as to match its productivity to
human needs.

Key Words: economics, evolution, information theory,
large deviations, Morse Function, punctuated equilibrium,
renormalization, universality class tuning

1 Introduction

Haldane and May (2011), taking the ‘econophysics’ perspec-
tive of Caccioli et al. (2009), recently explored risk in banking
ecosystems, adopting tools from network theory to study the
effects of interaction between individual subcomponents lead-
ing to the propagation of shocks within large-scale financial
structures. Other approaches to the origin and propagation
of such ‘shocks’ arise more naturally from the generalized
Darwinian perspective of Aldrich et al. (2008), based on a
necessary-conditions application of the Modern Evolutionary

∗Contact: wallace@pi.cpmc.columbia.edu. Box 47, 1051 Riverside
Drive, New York, New York, 10032.

Synthesis to economic phenomena.

Wallace (2010a) has proposed expanding the Modern Syn-
thesis itself by introducing ‘The principle of environmental
interaction,’ i.e., that individuals and groups engage in pow-
erful, often punctuated, dynamic mutual relations with their
embedding environments that may include the exchange of
heritage material between markedly different organisms. Wal-
lace (2011) applies the expanded model to the generalized
Darwinism of Aldrich et al. (2008). Escaping the intellectual
straightjacket of mathematical population genetics and anal-
ogous forms of replicator dynamics – or at least exchanging
it for a slightly larger one – the approach characterizes the
heritage system of the firm, the cognitive process by which
the firm responds to patterns of threat and opportunity, and
embedding socioeconomic environment, as interacting infor-
mation sources constrained by the asymptotic limit theorems
of information theory. This leads to an inherently coevolu-
tionary system described in terms of a formalism quite similar
to that of Onsager’s nonequilibrium thermodynamics, having
quasi-stable ‘coevolutionary’ states coupled by highly struc-
tured large deviations, all much in the sense of Champagnat et
al. (2006). The possibility arises that such structured large
deviations, rather than merely expressing the self-dynamic
processes of a language that speaks itself, can be harnessed
by an external ‘farmer’, that is, regulated to produce a di-
rected socioeconomic ecosystem akin to the primitive neolithic
agriculture that enabled the construction of richer social and
cultural milieus.

The Wallace work introduces powerful methods from the
statistical physics of phase transitions into generalized Dar-
winian evolutionary theory, much in the spirit of the recent
paper by Goldenfeld and Woese (2010), who focus on evo-
lution ‘as a problem in nonequilibrium statistical mechanics,
where the key dynamical modes are collective’. They provide
a central insight:

...[T]he genome encodes the information which
governs the response of an organism to its physics
and biological environment. At the same time, this
environment actually shapes genomes through gene
transfer processes and phenotype selection. Thus,

1

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
65

0.
1 

: P
os

te
d 

8 
F

eb
 2

01
1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/289831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


we encounter a situation where the dynamics must
be self-referential: the update rules change during
the time evolution of the system, and the way in
which they change is a function of the state and thus
the history of the system... self-referential dynam-
ics is an inherent and probably defining feature of
evolutionary dynamics and thus biological systems.

Here we explore such self-referential dynamics explicitly
from the perspectives of Wallace (2010a, 2011), recognizing
that the representation of fundamental biological and socioe-
conomic processes in terms of information sources restrains
their inherent nonequilibrium nature. That is, although the
operation of information sources is both nonequilibrium and
irreversible in the most fundamental sense (e.g., few and short
palindromes), the asymptotic limit theorems of information
theory beat back, somewhat, the mathematical thicket sur-
rounding such phenomena. The theorems permit something
of a formal regularization of inherently nonequilibrium pro-
cesses under proper circumstances that may lead to the de-
velopment of new statistical tools for the study of empirical
data beyond the narrow confines of network theory.

2 Basic formalism

The evolutionary process of generalized Darwinism, in the
sense of Aldrich et al. (2008), as envisioned by Wallace
(2011), involves dynamic interplay between (at least) three in-
formation sources representing transmission of corporate her-
itage, the cognitive response of a corporation to patterns of
threat and opportunity, and embedding environment, given
that both corporation and environment ‘remember’, produc-
ing serial correlations in time. We suppose it possible to
coarse-grain observational measures of those three processes,
representing the results in terms of some ‘alphabet’ of pos-
sible states. Our interest is in (properly characterized, and
possibly very long) temporal paths beginning at some initial
state a0, and having the form

xn ≡ {a0, a1, ..., an},

where the aj are possible elements of the coarsegrained alpha-
bet.

Given a particular tripartite starting point, a0, evolution,
being inherently path dependent, must build on what has gone
before. Thus, crudely, subsequent paths can be divided into
two classes, a vast set having vanishingly small probability,
and a much smaller high probability set that, we suppose,
follows something like the regularities of information theory
that govern the three component information sources. That
is, if N(n) is the number of high probability paths of length
n, then there exists a path independent limit H such that

H = lim
n→∞

log[N(n)]

n
.

(1)

Below we will indicate how the restriction of path indepen-
dence might be lifted, somewhat.

We assume that, associated with each path xn of length n,
there is an information source Xn producing it that is defined
in terms of the joint and conditional probabilities

P (a0, a1, ...an)

and

P (an|an−1, ..., a1, a0),

such that appropriate Shannon uncertainties may be defined
(e.g., Ash, 1990; Khinchin, 1957; Cover and Thomas, 2006),
and that the Shannon-McMillan Theorem holds:

H = lim
n→∞

log[N(n)]

n
=

lim
n→∞

H(Xn|Xn−1, ..., X0) =

lim
n→∞

H(X0, X1, ..., Xn)

n+ 1
.

(2)

We now shift perspective, defining equivalence classes of
paths, and an associated symmetry groupoid (simplest exam-
ple, a disjoint union of groups: see the Mathematical Ap-
pendix) that will be needed for the characterization of collec-
tive phenomena, much in the sense that a symmetry group is
needed for Landau’s theory of phase transition.

We call two states aj and ak equivalent if there is a high
probability path beginning with a0 that reaches them. The set
of high probability paths beginning at a0 defines the possible
evolutionary processes that start at that state, and the set of
equivalence classes defines a groupoid in a standard manner
that characterizes the information source H associated with
them.

We can now index the set of possible evolutionary informa-
tion sources by the groupoids defining the equivalence classes
of high probability paths associated with them.

Next, allow the initial state to vary, that is, allow differ-
ent starting points, a0, across the system. This produces an
even larger groupoid that will enable our analysis of certain
collective phenomena.
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3 Punctuated equilibrium: phase
transitions in evolution

As Feynman (2000) argues, based on work by Bennett (1988),
information is simply another form of free energy, and the
information in a message is quite precisely measured by the
free energy needed to erase it. Indeed, Feynman (2000) shows
how to construct an (idealized) machine that directly converts
the information in a message to work.

But there are subtleties. First, information sources are
already inherently irreversible dynamic systems. For exam-
ple, in spoken or written English, the short sequence ‘ the
’ has much higher probability than its time reversed ‘ eht ’.
There is no local reversibility, and adaptation of methods from
nonequilibrium statistical mechanics or thermodynamics will
not be graced with ‘Onsager reciprocal relations’.

Another subtlety is that, in spite of the inherently nonequi-
librium dynamic nature of an information source, the asymp-
totic limit theorems defining information source uncertainty
appear to permit ‘nonequilibrium equilibria’ in a certain
sense.

We suppose there to be some monotonic increasing measure
of available free energy M , Q(M), Q(0) = 0. We assume that
possible generalized Darwinian trajectories are constrained by
the availability of resources, so that the probability of an (in-
herently irreversible and highly dynamic) information source
associated with groupoid element Gj , at a fixed Q(M), is
given, in a first approximation, by the standard expression
for the Gibbs distribution

P [HGj
] =

exp[−HGj/Q]∑
i exp[−HGi

/Q]
.

(3)

As Goldenfeld (2010) has pointed out, the Gibbs distribu-
tion appears to be not really appropriate for systems evolving
in an open manner, and we will generalize the treatment some-
what, using an adiabatic approximation in which the dynam-
ics remain ‘close enough’ to a form in which the mathematical
theory can work, adapting standard phase transition formal-
ism for transitions between adiabatic realms. In particular,
rather than using exponential terms, one might well use any
functional form f(HGi, Q) such that the sum over i converges.

In essence, however, by adopting an information source per-
spective on evolutionary process we implicitly incorporate the
possibility of ‘nonequilibrium equilibria’ in the sense of El-
dredge and Gould (1972).

As we shall show, the ‘E-property’ that Khinchin (1957)
identifies – the division of paths into high and low probability
sets – the limiting relation

lim
n→∞

log[N(n)]

n
= H

and its variants for all high probability paths generated by
an ergodic information source, permit imposition of a pow-
erful regularity onto inherently nonequilibrium evolutionary
processes.

The partition function-analog of this strange system is, as
usual, defined as

ZG(Q) =
∑
i

exp[−HGi/Q].

(4)

We can now define a highly simplified evolutionary
‘groupoid free energy’, FG, constructed over the full set of
possible evolutionary trajectories as constrained by available
free energy, as

exp[−FG/Q] ≡
∑
i

exp[−HGi/Q],

(5)

so that

FG(Q) = −Q log[ZG(Q)].

(6)

This is to be taken as a Morse Function, in the sense of
the Mathematical Appendix. As we shall show below, other –
essentially similar – Morse Functions may perhaps be defined
on this system, having a more ‘natural’ interpretation from
information theory.

Argument is now by abduction from statistical physics
(Landau and Lifshitz, 2007; Pettini, 2007). The Morse Func-
tion FG is seen as constrained by free energy availability in a
manner that allows application of Landau’s theory of punctu-
ated phase transition in terms of groupoid, rather than group,
symmetries.

Recall, now, Landau’s perspective on phase transition (Pet-
tini, 2007). The essence of his insight was that certain physi-
cal phase transitions took place in the context of a significant
symmetry change, with one phase being more symmetric than
the other. A symmetry is lost in the transition, i.e., sponta-
neous symmetry breaking. The greatest possible set of sym-
metries being that of the Hamiltonian describing the energy
states. Usually, states accessible at lower temperatures will
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lack the symmetries available at higher temperatures, so that
the lower temperature state is less symmetric, and transitions
can be highly punctuated.

Here, we have characterized the dependence of evolutionary
process on the availability of metabolic free energy in terms of
groupoid, rather than group, symmetries, and the argument
by abduction is essentially similar: Increasing availability of
free energy – rising Q(M) – will allow richer interactions be-
tween the three basic economic information sources, and will
do so in a highly punctuated manner, as in Eldredge and
Gould (1972).

4 Extending the model

4.1 Kadanoff theory

Given FG as a free energy analog, we are interested in a math-
ematical treatment of transitions between adiabatic realms
and suppose it possible to define a characteristic ‘length’, say
r, on the system, as more fully described below. We can then
define renormalization symmetries in terms of the ‘clumping’
transformation, so that, for clumps of size R, in an external
‘field’ of strength J (that we can set to 0 in the limit), one
can write, in the usual manner (e.g., Wilson, 1971)

FG[Q(R), J(R)] = f(R)FG[Q(1), J(1)],

χ(Q(R), J(R)) =
χ(Q(1), J(1))

R
,

(7)

where χ is a characteristic correlation length.
As Wallace (2005) shows, following Wilson (1971), very

many ‘biological’ renormalizations, f(R), are possible that
lead to a number of quite different universality classes for
phase transition. Wallace (2005) and Wallace and Fullilove
(2008) describe how ‘universality class tuning’ can be used
as a tool for large-scale regulation of the system. See the
Mathematical Appendix for a summary.

In order to define the metric r, we impose a topology on
the system, so that, near a particular ‘language’ A defining
some HG there is (in an appropriate sense) an open set U of
closely similar languages Â, such that A, Â ⊂ U .

Since the information sources are ‘similar’, for all pairs of
languages A, Â in U , it is possible to:

1. Create an embedding alphabet which includes all sym-
bols allowed to both of them.

2. Define an information-theoretic distortion measure in
that extended, joint alphabet between any high probability
(grammatical and syntactical) paths in A and Â, which we
write as d(Ax, Âx) (Cover and Thomas, 2006). Note that
these languages do not interact, in this approximation.

3. Define a metric on U , for example,

r(A, Â) = | lim
∫
A,Â

d(Ax, Âx)∫
A,A

d(Ax,Ax̂)
− 1|,

(8)

using an appropriate integration limit argument over the high
probability paths. Note that the integration in the denomina-
tor is over different paths within A itself, while in the numer-
ator it is between different paths in A and Â. Consideration
suggests r is indeed a formal metric.

Clearly, other approaches to metric construction on U seem
possible, and other approaches to renormalization than out-
lined by equation (7).

4.2 Nonergodic information sources

The ergodic nature of an information source is a generaliza-
tion of the law of large numbers and implies that the long-time
averages can be closely approximated by averages across the
probability spaces of those sources. For non-ergodic informa-
tion sources, a function, J (xn), of each path xn → x, may
be defined, such that limn→∞ J (xn) = J (x), but J will not
in general be given by the simple cross-sectional laws-of-large
numbers analogs above (Khinchin, 1957).

Let s ≡ d(x, x̂) for high probability paths x and x̂, where
d is a distortion measure, as described in Cover and Thomas
(2006). For ‘nearly’ ergodic systems one might use something
of the form

J (x̂) ≈ J (x) + sdJ /ds|s=0

for s sufficiently small. The idea is to take a distortion mea-
sure as a kind of Finsler metric, imposing a resulting ‘global’
structure over an appropriate class of non-ergodic informa-
tion sources. One question obviously revolves around what
properties are metric-independent, in much the same manner
as the Rate Distortion Theorem.

These heuristics can be made more precise:
Take a set of ‘high probability’ paths xn → x.
Suppose, for all such x, there is an open set, U , containing

x, on which the following conditions hold:
1. For all paths x̂n → x̂ ∈ U , a distortion measure sn ≡

dU (xn, x̂n) exists.
2. For each path xn → x in U there exists a pathwise

invariant function J (xn) → J (x), in the sense of Khinchin
(1957, p.72). While such a function will almost always exist,
only in the case of an ergodic information source can it be
identified as an ‘entropy’ in the usual sense.

3. A function FU (sn, n) ≡ fn → f exists, for example,

fn = sn, log[sn]/n, sn/n,
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and so on.

4. The limit

lim
n→∞

J (xn)− J (x̂n)

fn
≡ ∇FJ |x

exists and is finite.

Under such conditions, standard global atlas/manifold con-
structions are possible. Again, J is not simply given by the
usual expressions for source uncertainty if the source is not
ergodic, and the phase transition development above may be
correspondingly more complicated. Restriction to high proba-
bility paths simplifies matters considerably, although precisely
characterizing them may be difficult, requiring extension of
the Shannon-McMillan Theorem and its Rate Distortion gen-
eralization.

An essential question is under what circumstances this dif-
ferential treatment for ‘almost’ ergodic information sources
permits something very much like what Khinchin (1957, p.
54) calls the ‘E property’ enabling classification of paths into
a small set of high probability and a vastly larger set of van-
ishingly small probability (Khinchin, 1957, p. 74).

4.3 Network information theory: toward
more ‘natural’ Morse Functions

As Goldenfeld (2010) has pointed out, equation (3), the Gibbs
distribution, seems, on the surface, not really appropriate for
a system evolving in an open manner, although, as we have
argued, the regularities imposed by the asymptotic limit the-
orems of information theory permit study of ‘nonequilibrium
equilibria’ in a standard way via the interpretation of equation
(6) as a Morse Function. For example, the Gibbs distribu-
tion approach has had considerable success in reframing key
results in protein folding dynamics (Wallace, 2010b). Here
we extend that treatment, adopting a perspective from net-
work information theory (e.g., Cover and Thomas, 2006; El
Gamal and Kim, 2010). The theory is, however, much a work
in progress, with many unsolved difficulties. As El Gamal
and Kim note, the simplistic model of a network consisting
of separate links and naive forwarding nodes does not cap-
ture many important aspects of real world networked systems
that involve multiple sources with various messaging require-
ments, redundancies, time and space correlations, and time
variations. As they note, the goal in many information sys-
tems is not merely to communicate source information, but
to make a decision or coordinate an action – in our context,
cognitive process. Indeed, the first paper on network infor-
mation theory was by Claude Shannon himself, who did not
solve the question of optimal rates, a matter that remains
open (Shannon, 1961), along with many others.

We suppose that a measure of available free energy is it-
self associated with an information source, Z, representing
the intents of an external ‘farmer’ who provides regulation to
the system. This source represents an identifiable subset of
the environmental dynamics and provides an embedding con-
text for evolutionary process. It defines jointly typical paths

(Cover and Thomas, 2006) for an associated set of economic
information sources.

Given three interacting information sources, Y1, Y2, Z, the
splitting criterion for tripartite jointly typical sequences, tak-
ing Z as an external context, is (Cover and Thomas, 2006, p.
524)

I(Y1;Y2|Z) = H(Z) +H(Y1|Z) +H(Y2|Z)−H(Y1, Y2, Z),

(9)

where H(...|...) and H(..., ..., ...) represent conditional and
joint uncertainties (Ash, 1990; Khinchin, 1957; Cover and
Thomas, 2006).

This presumably generalizes to something like

I(Y1; ...;Yn|Z) = H(Z) +

n∑
j=1

H(Yj |Z)−H(Y1, ..., Yn, Z).

(10)

More complicated multivariate typical sequences receive
much the same treatment (El Gamel and Kim, 2010, p.2-26).
Given a basic set of information sources (X1, ..., Xk) that one
partitions into two ordered sets X(K) and X(K′), then the
splitting criterion becomes H(X(K)|X(K′)). Generalization
to more ordered sets is straightforward.

Then the joint splitting criterion – I,H above – however it
may be expressed as a composite of the underlying informa-
tion sources and their interactions, satisfies a relation closely
analogous to the first one in equation (2), where N(n) is the
number of high probability jointly typical paths of length n.
This expression is, then, essentially the same as equations (5)
and (6) in that the joint splitting criterion is given as a func-
tional composition of the underlying information sources and
their interactions.

There are two immediate implications of this insight.
First, I in equation (10) and its generalizations can be con-

sidered as Morse Functions in the sense of the Mathematical
Appendix that can be parametrized in terms of the mono-
tonic expression involving some appropriate index of avail-
able free energy Q. The natural association of equivalence
classes of evolutionary states and trajectories with groupoid
symmetries then suggests that Landau’s spontaneous sym-
metry breaking arguments, extended to groupoids, will again
apply, producing richer and more ‘symmetric’ socioeconomic
processes and structures as Q increases, leading to analogs to
serial endosymbiosis and a sequence of ‘eukaryotic-like’ tran-
sitions to more highly structured socioeconomic systems.
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Second, since I in equation (10) and its generalizations have
the form of a free energy, we can directly invoke biological-like
renormalization relations like equation (7) (Wallace, 2005),
e.g.,

I[Q(R), J(R)] = f(R)I[Q(1), J(1)],

χ(Q(R), J(R)) =
χ(Q(1), J(1))

R
,

(11)

where we again parametrize by the scalar function Q of avail-
able metabolic free energy as above. The splitting criterion I
and its generalizations are supposed to be adiabatically piece-
wise stationary ergodic between phase transitions, so that the
asymptotic limit theorems work ‘well enough’, while the tran-
sitions themselves are associated with universality classes ac-
cording the particular form of f(R). The universality class
tuning of Wallace (2005) permits regulation of the phase tran-
sitions, and allows another layer of external control.

This reformulation is, then, a more complete answer to the
concerns of Goldenfeld (2010) regarding the appropriateness
of the Gibbs distribution under these circumstances, although
characterization of FG from equation (6) as a Morse Function
might well be a sufficient argument.

In summary, I in equation (10) and the more complicated
versions of the splitting criteria for multivariate typical se-
quences are to be taken as Morse Functions, so that Pettini’s
(2007) topological hypothesis applies, and Landau’s symme-
try breaking arguments carry through, albeit in a groupoid
context, so that ‘symmetry’, i.e. evolutionary complexity, can
increase with increase in available free energy in an inherently
punctuated manner. I and the other splitting criteria anal-
ogous to equation (10), however, have, in a sense, a more
‘natural’ interpretation than FG.

The inference is that choice of a proper Morse Function may
depend strongly on context, with a simple Gibbs distribution
sufficient for strongly ‘physics-bound’ processes such as pro-
tein folding (Wallace, 2010b), while more complex splitting
criteria are to be associated with more complex biological,
social, or economic phenomena.

4.4 Large deviations

Wallace (2010a) has taken a particularly recognizable
nonequilibrium statistical mechanics approach to evolution-
ary dynamics. In that work the interaction of genes, (cogni-
tive) gene expression, and environmental information sources
is expressed using the coevolutionary formalism of Chapag-
nat et al. (2006). The basic idea is to write each information
source as a function of those with which it interacts:

Hm = Hm(Q1, ..., Qs, ...Hj ...), j 6= m.

where the Qk represent other relevant parameters. The dy-
namics of such a system is defined by the usual recursive net-
work of stochastic differential equations, using gradients in a
‘disorder’ construct as analogs to the more usual gradients in
entropy, the thermodynamic forces:

Sm ≡ Hm −
∑
j

∂Hm/∂Kj ,

(12)

where we have expressed both the Hj and Qj as driving pa-
rameters Kj , again with the proviso that one not express Hm

directly as a function of itself.
Then, via the homology between information and free en-

ergy, the dynamics become driven by the usual Onsager set
of stochastic differential equations,

dKj
t =

∑
i

[Li,j(t, ...∂Sm/∂Ki...)dt+σi,j(t, ...∂Sm/∂Ki...)dB
i
t] =

Lj(t,K1, ...,Kn)dt+
∑
i

σi,j(t,K1, ...,Kn)dBit

(13)

where we have collected and simplified terms. Lj and the σi,j
are functions, and the terms dBjt represent different kinds of
‘noise’ constrained by particular forms of quadratic variation,
in the usual manner. Standard texts abound.

Again, since information sources are not locally time-
reversible, there are no ‘Onsager reciprocal relations’.

Several patterns are obvious.
1. Setting this system of equations to zero and solving

for stationary points gives quasi-equilibrium attractor states
since the noise terms preclude unstable equilibria. The system
then undergoes diffusive drift about the equilibrium configu-
ration.

2. The system may converge to a limit cycle or a pseudo-
random strange attractor.

3. What is converged to, however, is not a simple state or
set of such states. Rather, this system, via the constraints im-
posed by the asymptotic limit theorems of information theory,
converges to an equivalence class of of highly dynamic infor-
mation sources coupled by mutual crosstalk, and equivalence
classes define groupoids, as above. In effect, via the Shannon-
McMillan Theorem that defines the information source un-
certainty, we have driven the mathematical thicket one layer
back, expressing a dynamical system in terms of a relatively
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simple formalism abducted from nonequilibrium statistical
mechanics.

As Champagnat et al. (2006) note, however, shifts between
the quasi-equilibria of this system of equations can be ad-
dressed by the large deviations formalism. They find that the
issue of evolutionary dynamics drifting away from trajectories
predicted by the canonical equation can be investigated by
considering the asymptotic of the probability of ‘rare events’
for the sample paths of the diffusion.

By ‘rare events’ they mean diffusion paths drifting far away
from the canonical equation. The probability of such rare
events is governed by a large deviation principle: when a crit-
ical parameter (designated ε) goes to zero, the probability
that the sample path of the diffusion is close to a given rare
path φ decreases exponentially to 0 with rate I(φ), where
the ‘rate function’ I can be expressed in terms of the pa-
rameters of the diffusion. This result, in their view, can be
used to study long-time behavior of the diffusion process when
there are multiple attractive evolutionary singularities. Under
proper conditions the most likely path followed by the diffu-
sion when exiting a basin of attraction is the one minimizing
the rate function I over all the appropriate trajectories. The
time needed to exit the basin is of the order exp(V/ε) where
V is a quasi-potential representing the minimum of the rate
function I over all possible trajectories.

An essential fact of large deviations theory is that the rate
function I which Champagnat et al. invoke can almost always
be expressed as a kind of entropy, that is, having the canonical
form

I = −
∑
j

Pj log(Pj)

(14)

for some probability distribution. This result goes under a
number of names; Sanov’s Theorem, Cramer’s Theorem, the
Gartner-Ellis Theorem, the Shannon-McMillan Theorem, and
so forth (Dembo and Zeitouni, 1998; R. Wallace and R.G.
Wallace, 2008).

These considerations lead very much in the direction of
equation (13), but now seen as subject to internally-driven
large deviations that are themselves described as information
sources, providing H-parameters that can trigger punctuated
shifts between quasi-stable modes, in addition to resilience
transitions driven by ‘catastrophic’ external events or the ex-
change of heritage information between different classes of
‘organisms’, in a large sense.

Figure 1 is a schematic that links this perspective to the
Morse Theory treatment of section 4.3. I, as a Morse
Function, is subject to punctuated transitions in a driving
‘metabolic’ parameter that we call Q. As Q increases, spon-
taneous symmetry breaking permits, say, a transition to more

Figure 1: Spontaneous symmetry breaking in I as an ap-
proximation to a structured large deviation driven by rise of
a monotonic index of available free energy. Unlike a simple
physical system, such a transition can occur if Q increases
beyond Qcrit, but will not do so in the absence of a highly
structured large deviation. Rise in Q is therefore a necessary,
but not sufficient, condition. In a ‘farmed’ system the large
deviation is directed by the intent of the farmers. In a ‘cre-
ative destruction’ Schumpeterian system, the large deviation
is entirely determined by self-referential internal phenomena,
independent of the wishes or welfare of those who constitute
the individual elements of that system.

complex ‘eukaryotic’ structures via some analog to serial en-
dosymbiosis: the transition from the lower cluster to the
higher. But this is seen to take place via a highly structured
large deviation that is itself constrained as being the output of
an information source. This may be determined by internal
self-dynamic forces, or it may be imposed from without by a
culturally-specific ‘farmer’.

The spontaneous symmetry breaking argument is thereby
seen as a simplified approximation to the coevolutionary for-
malism of Champagnat et al. (2006), as adapted by Wallace
(2010a). Such transitions can occur, but, unlike simple physi-
cal systems, need not occur, in the absence of a large deviation
that is itself highly structured. To reiterate, in figure 1, in-
crease of available indices of free energy (or other resources) is
a necessary, but not sufficient, condition for punctuated evo-
lutionary change that must be driven by a ‘self-dynamic’ or
‘farmed’ large deviation having either its own grammar and
syntax or that given it by the farmer.
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5 Discussion and conclusions:
emerging from the wilderness

Clearly, something analogous to what Goldenfeld and Woese
(2010) want to do can, in fact, be done, at least in terms
of a generalized Darwinian theory of evolutionary collective
phenomena that has roots in physics. But life and socioe-
conomics are not physics: the self-referential nature of gen-
eralized Darwinian evolutionary process is truly something
different. While dependent on indices of available free energy
and constrained by physical principles, from the perspectives
of this analysis, raw evolution is a language that speaks it-
self. For example, available free energy, written as Q(M)
above, can itself be an evolutionary product, as, in biolog-
ical systems, with the aerobic transition. In socioconomic
terms, the acquisition of fire, domestication of farm animals
for plowing, development of road systems enabling transfer,
hence increased availability of existing energy and resources,
development of steam technology, use of fossil fuels, and so
on, provide examples. The formal description of such boot-
strapping will require more comprehensive methods than are
available by abduction from relatively simple physical theory,
as Goldenfeld and Woese (2010) have noted.

Again, the example of figure 1 suggests that changes of
indices representing available free energy can be a necessary,
but not sufficient, condition for eukaryotic-like transitions to
greater complexity. Evolution is indeed self referential.

Firms instantiate cognitive processes that take cues from
the embedding environment to produce behavioral responses.
Modes of such expression having adaptive value can be-
come fixed in the cultural heritage of the firm by learning
or selection. But evolution in simple Schumpeterian market
economies will remain self-dynamic, self-referential, continu-
ally bootstrapping phenomena, in effect, languages that speak
themselves, independent of the needs or wishes of those em-
bedded in them.

But a socioeconomic system, unlike possible biological
counterparts, is a cultural artifact. There is nothing ‘nat-
ural’ to any particular such construct, although the dynamics
are constrained by resource availability in the context of his-
torical trajectory and other cultural factors. Within those
riverbanks the socioeconomic stream can flow according to
its own dynamics, or it can be subject to rigorous cultural
channeling. The metaphors of hunter-gatherer vs. farmer are
not inappropriate.

Farmed ecosystems are inherently more productive, from
a human perspective, than what can be gathered from raw
nature. The transition from literal hunter-gatherer societies
to neolithic farming enabled the subsequent construction of
rich human ecosystems, including cities, city-states, and more
elaborate structures. At present, Western neoliberal ideolo-
gies of unregulated Schumpeterian ‘free markets’ have given
unfettered reign to an enormous structure with self-dynamic
‘large deviations’ that possess a grammar and syntax whose
internal logic is unaffected by human needs or concerns. Some
billions of us ride a rampant, rapidly evolving, socioeconomic
engine that has neither engineer nor conductor. We are, very

essentially, a tribe of primitive hunter-gatherers at the mercy
of an unstable ecological monstrosity that we do not have the
political will to control. Emerging from the present howl-
ing wilderness of neoliberal capitalism will require a farmed
economic ecosystem, a large-scale agricultural economics that
must be culturally tailored to local conditions. As with lan-
guage, music, art, and all the rest, there can be no one, fixed
farmed economy that will fit all needs at all times.

The universality class tuning outlined in the Mathemati-
cal Appendix provides some insight into means of regulating
otherwise disruptive phase transitions in economic systems.

There is, of course, a cautionary note to what we have
done here. Pielou (1977, p. 106) warns that mathematical
models in biology and ecology are only useful as subordinate
partners in a continuing dialog with data: models can only
recommend perspectives for subsequent empirical test that,
in turn, can be used to correct the models. Replacing the
intellectual straightjacket one set of economic theories with
another driven by the asymptotic limit theorems of informa-
tion theory will not address the essential scientific problems
now facing generalized evolutionary theory applied to eco-
nomic process. These will yield only to data-based empiri-
cal study in which mathematical models are only one among
many possible tools: the word is not the thing.

6 Mathematical appendix

6.1 Groupoids

Following Weinstein (1996), states aj , ak in a set A are related
by the groupoid morphism if and only if there exists a high-
probability grammatical path connecting them to the same
base point, and tuning across the various possible ways in
which that can happen parameterizes the set of equivalence
relations and creates the groupoid. This assertion requires
some development.

Note that not all possible pairs of states (aj , ak) can be
connected by such a morphism, that is, by a high-probability,
grammatical and syntactical path linking them with some
given base point. Those that can define the groupoid ele-
ment, a morphism g = (aj , ak) having the natural inverse
g−1 = (ak, aj). Given such a pairing, it is possible to define
‘natural’ end-point maps α(g) = aj , β(g) = ak from the set
of morphisms G into A, and a formally associative product in
the groupoid g1g2 provided α(g1g2) = α(g1), β(g1g2) = β(g2),
and β(g1) = α(g2). Then the product is defined, and associa-
tive, (g1g2)g3 = g1(g2g3).

In addition, there are natural left and right identity ele-
ments λg, ρg such that λgg = g = gρg (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. Following Cannas da
Silva and Weinstein (1999), we note that a groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
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the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. As Weinstein
(1996) explains, a groupoid G is a topological groupoid over a
base space X if G and X are topological spaces and α, β and
multiplication are continuous maps. A criticism sometimes
applied to groupoid theory is that their classification up to
isomorphism is nothing other than the classification of equiv-
alence relations via the orbit equivalence relation and groups
via the isotropy groups. The imposition of a compatible topo-
logical structure produces a nontrivial interaction between the
two structures. Below we will introduce a metric structure on
manifolds of related information sources, producing such in-
teraction.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

As Weinstein (1996) points out, the morphism (α, β) sug-
gests another way of looking at groupoids. A groupoid over A
identifies not only which elements of A are equivalent to one
another (isomorphic), but it also parameterizes the different
ways (isomorphisms) in which two elements can be equivalent,
i.e., all possible information sources dual to some cognitive
process. Given the information theoretic characterization of
cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as fol-
lows:

A groupoid should be thought of as a group with
many objects, or with many identities... A groupoid
with one object is essentially just a group. So the no-
tion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range
of applications...

EXAMPLE 1. A disjoint union [of groups] G =
∪λGλ, λ ∈ Λ, is a groupoid: the product ab is defined
if and only if a, b belong to the same Gλ, and ab is
then just the product in the group Gλ. There is an
identity 1λ for each λ ∈ Λ. The maps α, β coincide
and map Gλ to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a
set] X becomes a groupoid with α, β : R → X the
two projections, and product (x, y)(y, z) = (x, z)
whenever (x, y), (y, z) ∈ R. There is an identity,
namely (x, x), for each x ∈ X...

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on
a space B arises in a natural way as the orbit equiv-
alence relation of some groupoid G over B. Instead
of dealing directly with the orbit space B/G as an
object in the category Smap of sets and mappings,
one should consider instead the groupoid G itself as
an object in the category Ghtp of groupoids and ho-
motopy classes of morphisms.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
be defined by differential equation models, (Golubitsky and
Stewart, 2006).

6.2 Morse Theory

Morse theory examines relations between analytic behavior of
a function – the location and character of its critical points
– and the underlying topology of the manifold on which the
function is defined. We are interested in a number of such
functions, for example a ‘free energy’ constructed from infor-
mation source uncertainties on a parameter space and ‘second
order’ iterations involving parameter manifolds determining
critical behavior. These can be reformulated from a Morse
theory perspective. Here we follow closely the elegant treat-
ments of Pettini (2007).

The essential idea of Morse theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M → R where R is the set of real numbers. The
a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a},

the set of all points in M with f(x) = a. If M is compact,
then the whole manifold can be decomposed into such slices
in a canonical fashion between two limits, defined by the min-
imum and maximum of f on M . Let the part of M below a
be defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between
the minimum and maximum of f .

Morse functions are defined as a particular set of smooth
functions f : M → R as follows. Suppose a function f has
a critical point xc, so that the derivative df(xc) = 0, with
critical value f(xc). Then f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at xc, whose elements, in terms of local
coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigenvalues,
so that there are no lines or surfaces of critical points and,
ultimately, critical points are isolated.
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The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical point
xc ∈ f−1(a).

Again following Pettini (2007), the essential results of
Morse theory are:

1. If an interval [a, b] contains no critical values of f , then
the topology of f−1[a, v] does not change for any v ∈ (a, b].
Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology
of f−1[a, v] changes in a manner determined by the properties
of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e. critical
points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact, then
on a finite interval [a, b] ⊂ R, there is only a finite number of
critical points p of f such that f(p) ∈ [a, b]. The set of critical
values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse
functions on M is an open dense set in the set of real functions
of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that
are the same for all the manifolds that have the same topology
as M , can be estimated and sometimes computed exactly once
all the critical points of f are known: Let the Morse numbers
µi(i = 1, ...,m) of a function f on M be the number of critical
points of f of index i, (the number of negative eigenvalues of
H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M ,

χ =

m∑
i=0

(−1)iµi.

The Euler characteristic reduces, in the case of a simple
polyhedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

7. Another important theorem states that, if the interval
[a, b] contains a critical value of f with a single critical point
xc, then the topology of the set Mb defined above differs from
that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e., the direct
product of an i-disk and an (m− i)-disk.

Again, Pettini (2007) contains both mathematical details
and further references. See, for example, Matusmoto (2002)
or the classic by Milnor (1963).

6.3 Universality class tuning

6.3.1 Biological renormalization

Equation (7) states that the information source and the cor-
relation length, the degree of coherence on the underlying
network, scale under renormalization clustering in chunks of
size R as

H[KR, JR]/f(R) = H[J,K]

χ[KR, JR]R = χ(K,J),

with f(1) = 1,K1 = K,J1 = J , where we have slightly
rearranged terms.

Differentiating these two equations with respect to R, so
that the right hand sides are zero, and solving for dKR/dR
and dJR/dR gives, after some consolidation, expressions of
the form

dKR/dR = u1d log(f)/dR+ u2/R

dJR/dR = v1JRd log(f)/dR+
v2
R
JR.

(15)

The ui, vi, i = 1, 2 are functions of KR, JR, but not explic-
itly of R itself.

We expand these equations about the critical value KR =
KC and about JR = 0, obtaining

dKR/dR = (KR −KC)yd log(f)/dR+ (KR −KC)z/R

dJR/dR = wJRd log(f)/dR+ xJR/R.

(16)

The terms y = du1/dKR|KR=KC
, z =

du2/dKR|KR=KC
, w = v1(KC , 0), x = v2(KC , 0) are

constants.
Solving the first of these equations gives

KR = KC + (K −KC)Rzf(R)y,

(17)
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again remembering that K1 = K,J1 = J, f(1) = 1.
Wilson’s (1971) essential trick is to iterate on this relation,

which is supposed to converge rapidly near the critical point,
assuming that for KR near KC , we have

KC/2 ≈ KC + (K −KC)Rzf(R)y.

(18)

We iterate in two steps, first solving this for f(R) in terms
of known values, and then solving for R, finding a value RC
that we then substitute into the first of equations (7) to obtain
an expression for H[K, 0] in terms of known functions and
parameter values.

The first step gives the general result

f(RC) ≈ [KC/(KC −K)]1/y

21/yR
z/y
C

.

(19)

Solving this forRC and substituting into the first expression
of equation (7) gives, as a first iteration of a far more general
procedure (Shirkov and Kovalev, 2001), the result

H[K, 0] ≈ H[KC/2, 0]

f(RC)
=

H0

f(RC)

χ(K, 0) ≈ χ(KC/2, 0)RC = χ0RC ,

(20)

which are the essential relationships.
Note that a power law of the form f(R) = Rm,m = 3,

which is the direct physical analog, may not be biologically
reasonable, since it says that ‘language richness’ can grow
very rapidly as a function of increased network size. Such
rapid growth is simply not observed.

Taking the biologically realistic example of non-integral
‘fractal’ exponential growth,

f(R) = Rδ,

(21)

where δ > 0 is a real number which may be quite small,
equation we can be solve for RC , obtaining

RC =
[KC/(KC −K)][1/(δy+z)]

21/(δy+z)

(22)

for K near KC . Note that, for a given value of y, one might
characterize the relation α ≡ δy + z = constant as a ‘tunable
universality class relation’ in the sense of Albert and Barabasi
(2002).

Substituting this value for RC back gives a complex expres-
sion for H, having three parameters: δ, y, z.

A more biologically interesting choice for f(R) is a loga-
rithmic curve that ‘tops out’, for example

f(R) = m log(R) + 1.

(23)

Again f(1) = 1.
Using Mathematica 4.2 or above to solve equation (19) for

RC gives

RC = [
Q

LambertW [Q exp(z/my)]
]y/z,

(24)

where

Q ≡ (z/my)2−1/y[KC/(KC −K)]1/y.

The transcendental function LambertW(x) is defined by the
relation

LambertW (x) exp(LambertW (x)) = x.

It arises in the theory of random networks and in renormal-
ization strategies for quantum field theories.

An asymptotic relation for f(R) would be of particular bi-
ological interest, implying that ‘language richness’ increases
to a limiting value with population growth. Taking
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f(R) = exp[m(R− 1)/R]

(25)

gives a system which begins at 1 when R = 1, and approaches
the asymptotic limit exp(m) as R → ∞. Mathematica 4.2
finds

RC =
my/z

LambertW [A]
,

(26)

where

A ≡ (my/z) exp(my/z)[21/y[KC/(KC −K)]−1/y]y/z.

These developments indicate the possibility of taking the
theory significantly beyond arguments by abduction from sim-
ple physical models, although the notorious difficulty of im-
plementing information theory existence arguments will un-
doubtedly persist.

6.3.2 Universality class distribution

Physical systems undergoing phase transition usually have rel-
atively pure renormalization properties, with quite different
systems clumped into the same ‘universality class,’ having
fixed exponents at transition (Binney et al., 1986). Biological
and social phenomena may be far more complicated:

If the system of interest is a mix of subgroups with different
values of some significant renormalization parameter m in the
expression for f(R,m), according to a distribution ρ(m), then
the first expression in equation (7) should generalize, at least
to first order, as

H[KR, JR] =< f(R,m) > H[K,J ]

≡ H[K,J ]

∫
f(R,m)ρ(m)dm.

(27)

If f(R) = 1 +m log(R) then, given any distribution for m,

< f(R) >= 1+ < m > log(R)

(28)

where < m > is simply the mean of m over that distribution.
Other forms of f(R) having more complicated dependencies

on the distributed parameter or parameters, like the power
law Rδ, do not produce such a simple result. Taking ρ(δ) as
a normal distribution, for example, gives

< Rδ >= R<δ> exp[(1/2)(log(Rσ))2],

(29)

where σ2 is the distribution variance. The renormalization
properties of this function can be determined from equation
(19), and the calculation is left to the reader as an exercise,
and can be done in Mathematica 4.2 or above.

Thus the information dynamic phase transition properties
of mixed systems will not in general be simply related to those
of a single subcomponent, a matter of possible empirical im-
portance: If sets of relevant parameters defining renormaliza-
tion universality classes are indeed distributed, experiments
observing pure phase changes may be very difficult. Tun-
ing among different possible renormalization strategies in re-
sponse to external signals would result in even greater am-
biguity in recognizing and classifying information dynamic
phase transitions.

Important aspects of mechanism may be reflected in the
combination of renormalization properties and the details of
their distribution across subsystems.

In sum, real biological, social, or interacting biopsychoso-
cial systems are likely to have very rich patterns of phase
transition which may not display the simplistic, indeed, liter-
ally elemental, purity familiar to physicists. Overall mecha-
nisms will, however, still remain significantly constrained by
the theory, in the general sense of probability limit theorems.

6.3.3 Punctuated universality class tuning

The next step is to iterate the general argument onto the
process of phase transition itself, producing a tunable punc-
tuation.

As described above, an essential character of physical sys-
tems subject to phase transition is that they belong to par-
ticular ‘universality classes’. Again, this means that the ex-
ponents of power laws describing behavior at phase transition
will be the same for large groups of markedly different sys-
tems, with ‘natural’ aggregations representing fundamental
class properties (Binney et al., 1986).

It appears that biological or social systems undergoing
phase transition analogs need not be constrained to such
classes, and that ‘universality class tuning’, meaning the
strategic alteration of parameters characterizing the renor-
malization properties of punctuation, might well be possible.
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Here we focus on the tuning of parameters within a single,
given, renormalization relation. Clearly, however, wholesale
shifts of renormalization properties must ultimately be con-
sidered as well.

Universality class tuning has been observed in models of
‘real world’ networks. As Albert and Barabasi (2002) put it,

The inseparability of the topology and dynam-
ics of evolving networks is shown by the fact that
[the exponents defining universality class] are related
by [a] scaling relation..., underlying the fact that a
network’s assembly uniquely determines its topol-
ogy. However, in no case are these exponents unique.
They can be tuned continuously...

Suppose that a structured external environment, itself an
appropriately regular information source Y, ‘engages’ a mod-
ifiable system characterized by an information source. The
environment begins to write an image of itself on the sys-
tem in a distorted manner permitting definition of a mutual
information I[K] splitting criterion according to the Rate Dis-
tortion or Joint Asymptotic Equipartition Theorems. K is an
inverse coupling parameter between system and environment.
At punctuation – near some critical point KC – the systems
begin to interact very strongly indeed, and, near KC , using a
simple physical model,

I[K] ≈ I0[
KC −K
KC

]α.

For a physical system α is fixed, determined by the under-
lying ‘universality class.’ Here we will allow α to vary, and,
in the section below, to itself respond explicitly to imposed
signals.

Normalizing KC and I0 to 1,

I[K] ≈ (1−K)α.

(30)

The horizontal line I[K] = 1 corresponds to α = 0, while
α = 1 gives a declining straight line with unit slope which
passes through 0 at K = 1. Consideration shows there are
progressively sharper transitions between the necessary zero
value at K = 1 and the values defined by this relation for
0 < K,α < 1. The rapidly rising slope of transition with
declining α is of considerable significance:

The instability associated with the splitting criterion I[K]
is defined by

Q[K] ≡ −KdI[K]/dK = αK(1−K)α−1,

(31)

and is singular at K = KC = 1 for 0 < α < 1. Following
earlier work (e.g., Wallace and Fullilove, 2008), we interpret
this to mean that values of 0 < α� 1 are highly unlikely for
real systems, since Q[K], in this model, represents a kind of
barrier for ‘social’ information systems.

On the other hand, smaller values of α mean that the sys-
tem is far more efficient at responding to the adaptive de-
mands imposed by the embedding structured environment
or regulatory authority, since the mutual information which
tracks the matching of internal response to external demands,
I[K], rises more and more quickly toward the maximum for
smaller and smaller α as the inverse coupling parameter K de-
clines below KC = 1. That is, systems able to attain smaller
α are more responsive to external signals than those charac-
terized by larger values, in this model, but smaller values will
be harder to reach, probably only at some considerable phys-
iological or opportunity cost. Focused conscious action takes
resources, of one form or another.

The more biologically realistic renormalization strategies
given above produce sets of several parameters defining the
universality class, whose tuning gives behavior much like that
of α in this simple example.

Formal iteration of the phase transition argument on this
calculation gives a tunable regulation, focusing on paths of
universality class parameters:

Suppose the renormalization properties of an information
source at some ‘time’ k are characterized by a set of appro-
priately coarse-grained parameters Ak ≡ αk1 , ..., α

k
m. Fixed

parameter values define a particular universality class for the
renormalization. We suppose that, over a sequence of ‘times’,
the universality class properties can be characterized by a
path xn = A0, A1, ..., An−1 having significant serial correla-
tions which, in fact, permit definition of another adiabati-
cally piecewise stationary ergodic information source associ-
ated with the paths xn. Call that source X.

Suppose also, in the now-usual manner, that the set of ex-
ternal (or internal, systemic) signals impinging on the infor-
mation source of basic interest is also highly structured and
forms another information source Y that interacts not only
with the system of interest globally, but specifically with its
universality class properties as characterized by X. Y is nec-
essarily associated with a set of paths yn.

Pair the two sets of paths into a joint path, zn ≡ (xn, yy)
and invoke an inverse coupling parameter, K, between the
information sources and their paths. This leads, by the ar-
guments above, to phase transition punctuation of I[K], the
mutual information between X and Y, under either the Joint
Asymptotic Equipartition Theorem or under limitation by a
distortion measure, through the Rate Distortion Theorem.
The essential point is that I[K] is a splitting criterion under
these theorems, and thus partakes of the homology with free
energy density which we have invoked above.

Activation of universality class tuning, the mean field
model’s version of attentional focusing, then becomes itself
a punctuated event in response to increasing linkage between
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the organism and an external structured signal or some par-
ticular system of internal events.

This iterated argument exactly parallels the extension of
the General Linear Model to the Hierarchical Linear Model
in regression theory.

Another path to the fluctuating dynamic threshold might
be through a second order iteration similar to that just above,
but focused on the parameters defining the universality class
distributions given above.
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