

Edinburgh Research Explorer

A simple sequent calculus for nominal logic

Citation for published version:
Cheney, J 2016, 'A simple sequent calculus for nominal logic' Journal of Logic and Computation, vol. 26, no.
4, pp. 699-726. DOI: 10.1093/logcom/exu024

Digital Object Identifier (DOI):
10.1093/logcom/exu024

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Logic and Computation

Publisher Rights Statement:
This is an electronic version of an article published in Journal of Logic and Computation ©: 2014

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1093/logcom/exu024
https://www.research.ed.ac.uk/portal/en/publications/a-simple-sequent-calculus-for-nominal-logic(368844b3-a2f1-4402-9f5b-d52a23efbcf2).html

ar
X

iv
:1

31
2.

48
40

v1
 [

cs
.L

O
]

17
 D

ec
 2

01
3

A Simple Sequent Calculus for Nominal Logic

James Cheney

December 18, 2013

Abstract

Nominal logic is a variant of first-order logic that providessupport for reasoning about bound names
in abstract syntax. A key feature of nominal logic is the new-quantifier, which quantifies overfresh names
(names not appearing in any values considered so far). Previous attempts have been made to develop con-
venient rules for reasoning with the new-quantifier, but we argue that none of these attempts is completely
satisfactory.

In this article we develop a new sequent calculus for nominallogic in which the rules for the new-
quantifier are much simpler than in previous attempts. We also prove several structural and metatheo-
retic properties, including cut-elimination, consistency, and equivalence to Pitts’ axiomatization of nominal
logic.

1 Introduction

Nominal logic [15] is a variant of first-order logic with additional constructs for dealing withnamesand
binding (or name-abstraction) based on the primitive notions of bijective renaming (swapping) and name-
independence (freshness). It was introduced by Pitts [15] as a first-order and reasonably well-behaved frag-
ment ofFraenkel-Mostowski set theory, the setting for Gabbay and Pitts’ earlier foundational work on for-
malizing names, freshness, and binding using swapping [8].

One of the most interesting features of nominal logic is the presence of a novel form of quantification over
fresh names. The formula Na.ϕ means, intuitively, “for fresh namesa, ϕ holds”. The intended semantics
of nominal logic interprets expressions as values infinitely-supported nominal sets, or sets acted upon by
name-swapping and such that each value depends on at most finitely many names. The inspiration for the

N-quantifier is the fact that in the presence of infinitely manynames, a fresh name can be chosen for any
finitely-supported value, and equally-fresh names are indistinguishable. As a result, a propertyϕ(a) holds
for somefresh namea if and only if it holds forall fresh names; in either case, we say thatNa.ϕ holds.

Several formalizations of nominal logic have been investigated. Pitts introduced nominal logic as a
Hilbert-style axiomatic system. Gabbay [9] proposed FreshLogic (FL), an intuitionistic Gentzen-style nat-
ural deduction system. Gabbay and Cheney [7] presentedFLSeq, a sequent calculus version of Fresh Logic.
Schöpp and Stark have developed a dependent type theory of names and binding that contains nominal logic
as a special case [17].

However, none of these formalizations is ideal. Hilbert systems have well-known deficiencies for com-
puter science applications.FL andFLSeq rely on a complicated technical device calledslicesfor the rules
involving N. Schöpp and Stark’s system is much more powerful than seemsnecessary for many applications
of nominal logic, and there are many unresolved issues, suchas proof normalization and the decidability of
the equality and typechecking judgments.

In this article we present a new and simpler sequent calculusfor nominal logic. Its main novelty is the
use of freshness information in typing contexts needed in reasoning about N-quantified formulas, rather than
the technically more cumbersomeslicesused inFL andFLSeq. We prove basic proof-theoretic results such
as cut-elimination, establishing that this calculus is proof-theoretically sensible. In addition, we prove that
NL⇒ is consistent and equivalent to Pitts’ original axiomatization of nominal logic.

This article incorporates some revised material from a previous conference publication [1], extended with
detailed proofs and additional results concerning conservativity. That paper also gave a sound and complete
embedding of Miller and Tiu’sFOλ∇ [13] in NL⇒, extending an earlier result by Gabbay and Cheney [7]

1

http://arxiv.org/abs/1312.4840v1

Swapping
(CS1) ∀a:ν, x:τ. (a a) · x ≈ x
(CS2) ∀a, a′:ν, x:τ. (a a′) · (a a′) · x ≈ x
(CS3) ∀a, a′:ν. (a a′) · a ≈ a′

Equivariance
(CE1) ∀a, a′:ν, b, b′:ν′, x:τ. (a a′) · (b b′) · x ≈ ((a a′) · b (a a′) · b′) · (a a′) · x
(CE2) ∀a, a′:ν, b:ν′, x:τ. b # x ⊃ (a a′) · b # (a a′) · x
(CE3) ∀a, a′:ν, x:τ. (a a′) · f(x) ≈ f((a a′) · x)
(CE4) ∀a, a′:ν, x:τ . p(x) ⊃ p((a a′) · x)
(CE5) ∀b, b′:ν′, a:ν, x:τ. (b b′) · (〈a〉x) ≈ 〈(b b′) · a〉((b b′) · x)
Freshness
(CF1) ∀a, a′:ν, x:τ. a # x ∧ a′ # x ⊃ (a a′) · x ≈ x
(CF2) ∀a, a′:ν. a # a′ ⇐⇒ a 6≈ a′

(CF3) ∀a:ν, a′:ν′. a # a′

(CF4) ∀x:τ . ∃a:ν. a # x
N-quantifier
(CQ) ∀x.(Na:ν. ϕ) ⇐⇒ (∃a:ν. a # x ∧ ϕ)

whereFV (Na.ϕ) ⊆ {x}
Abstraction

(CA1)
∀a, a′:ν, x, x′:τ. 〈a〉x ≈ 〈a′〉x

′
⇐⇒ (a ≈ a′ ∧ x ≈ x′)
∨ (a′ # x ∧ x′ ≈ (a a′) · x)

(CA2) ∀y:〈ν〉τ .∃a:ν, x:τ. y ≈ 〈a〉x

Figure 1: Axioms of Classical Nominal Logic

which gave a sound, but nonconservative translation fromFOλ∇ to FLSeq. These results are not presented
in this article.

2 Background

2.1 Pitts’ axiomatization

As presented by Pitts, nominal logic consists of typed first-order logic with equality and with a number of
special types, type constructors, and function and relation symbols formalized by a collection of axioms. In
particular, the basic sort symbols of nominal logic are divided intodata typesδ, δ′ andatom typesν, ν′ (which
we shall also preferentially callname types). In addition, wheneverν is a name type andτ is a type, there
exists another type〈ν〉τ called theabstractionof τ by ν.

Besides possessing equality at every type, nominal logic includes a binaryfreshnessrelation symbol
freshντ : ν, τ → o for each name typeν and typeτ . In addition, nominal logic includes two special function
symbolsswapντ : ν, ν, τ → τ andabsντ : ν, τ → 〈ν〉τ , calledswappingandabstractionrespectively. When
there is no risk of confusion, we abbreviate formulas of the form freshντ (a, t) asa # t, and terms of the
form swapντ (a, b, t) andabsντ (a, t) as(a b) · t and〈a〉t respectively. In addition, besides the ordinary∀ and
∃ quantifiers, nominal logic possesses a third quantifier, called thefresh-name quantifierand written N. A

N-quantified formula Nx:ν.ϕ may be constructed for any name-typeν.
Pitts presented a Hilbert-style axiom system for nominal logic shown in Figure 1. The axioms are divided

into five groups:

• Swapping axioms (CS): describe the behavior of the swapping operation: swappinga name for itself
has no effect (CS1), swapping is involutive (CS2), and swapping exchanges names (CS3).

• Equivariance axioms (CE): prescribe theequivarianceproperty, namely that all relations are preserved
by and all function symbols commute with swapping. In particular, (CE1) says that the swapping
function symbol itself is equivariant; (CE2) says that freshness is equivariant, (CE3) says that all other

2

function symbols are equivariant, and (CE4) says that all other relation symbols are equivariant. Also,
(CE5) says that abstraction is equivariant.

• Freshness axioms (CF): describe the behavior of the freshness relation (and its interaction with swap-
ping). (CF1) says that two names fresh for a value can be exchanged withoutaffecting the value.
(CF2) says that freshness coincides with inequality for names. (CF3) says that distinct name-types
are disjoint. Finally, (CF4) expresses thefreshness principle, namely, that for any finite collection of
values, a name fresh for all the values simultaneously may bechosen.

• N-quantifier axiom scheme(CQ): Pitts’ original formalization introduced no new inference rules for
N. Instead, Nwas defined using the axiom schemeQ, which asserts∀x.(Na.ϕ ⇐⇒ ∃a.a # x ∧ ϕ),

whereFV (ϕ) ⊆ {a, x}.

• Abstraction axioms(CA): These define special properties of the abstraction function symbol. Specif-
ically, (CA1) defines equality on abstractions as either structural equality or equality up to “safe”
renaming of bound names. Gabbay and Pitts showed that this generalizesα-equivalence in, for exam-
ple, the lambda-calculus [8]; we shall not repeat the argument here. Axiom(CA2) states a surjectivity
property for abstraction: any value of abstraction type〈ν〉τ can be written as〈a〉x for some namea : ν
and valuex : τ .

2.2 Gentzen systems

While admirable from a reductionist point of view, Hilbert systems have well-known deficiencies: Hilbert-
style proofs can be highly nonintuitive and circuitous. Instead, Gentzen-stylenatural deductionandsequent
systems provide a more intuitive approach to formal reasoning in which logical connectives are explained
asproof-searchoperations. Gentzen systems are especially useful for computational applications, such as
automated deduction and logic programming. Such systems are also convenient for relating logics by proof-
theoretic translations.

Gentzen-style rules forNhave been considered in previous work. Pitts [15] proposed sequent and natural
deduction rules for Nbased on the observation that

∀a:ν.(a # x ⊃ ϕ(a, x)) ⊃ Na:ν.ϕ(a, x) ⊃ ∃a:ν.(a # x ∧ ϕ(a, x)) .

These rules (see Figure 2(NL)) are symmetric, emphasizingN’s self-duality. However, they are not closed
under substitution, which complicates proofs of cut-elimination or proof-normalization properties.

Gabbay [9] introduced an intuitionistic natural deductioncalculus called Fresh Logic (FL) and studied
semantic issues including soundness and completeness as well proving proof-normalization. Gabbay and
Cheney [7] presented a similar sequent calculus calledFLSeq. Both FL andFLSeq had complex rules
for N. In FL, Gabbay introduced a technical device calledslicesfor obtaining rules that are closed under
substitution. (For the purpose of this discussion, it is notnecessary to go into the details of what slices
are, since we will show that we can do without them.) Technically, a sliceϕ[a#u] of a formulaϕ is a
decomposition of the formula asϕ(a, x)[u/x] for fresh variablesx, such thata does not appear in any of
theu. Slices were used in bothFL andFLSeq to deal with N(see Figure 2(FL,FLSeq)). The slice-based
rules shown in Figure 2(FLSeq) are closed under substitution, so proving cut-elimination forthese rules is
relatively straightforward once several technical lemmasinvolving slices have been proved. Noting that the
FLSeq rules are structurally similar to∀L and∃R, respectively, Gabbay and Cheney observed that alternate
rules in which NL was similar to∃L and NR similar to∀R were possible (see Figure 2(FL′

Seq)). These rules
seem simpler and more deterministic; however, they still involve slices.

Experience gained in the process of implementingαProlog, a logic programming language based on
nominal logic [3], suggests a much simpler reading ofNas a proof-search operation than that implied by the
FL-style rules. InαProlog, when a N-quantifier is encountered (either in a goal or program clause), proof
search proceeds by generating a fresh namea to be used for the N-quantified name. Besides satisfying a
syntactic freshness requirement (like eigenvariables in∀-introduction or∃-elimination rules), the fresh name
is also required to besemantically fresh, that is, fresh for all values appearing in the derivation upto the
point at which it is generated. In contrast, the proof-search interpretation suggested byFL-style rules is to

3

Γ, a # x⇒ ϕ,∆ (x = FV (Γ, Na.ϕ,∆))

Γ ⇒ Na:ν.ϕ,∆ NR
Γ, a # x, ϕ⇒ ∆ (x = FV (Γ, Na:ν.ϕ,∆))

Γ, Na:ν.ϕ⇒ ∆
NL

(NL)

Γ ⊢ u # t Γ ⊢ ϕ[a#t][u/a]

Γ ⊢ Na:ν.ϕ[a#t]
NI

Γ ⊢ Na:ν.ϕ[a#t] Γ ⊢ u # t Γ, ϕ[u/a] ⊢ ψ

Γ ⇒ ψ
NE

(FL)

Γ, u # t⇒ ϕ[u/a]

Γ, u # t⇒ Na:ν.ϕ[a#t]
NR

Γ, u # t, ϕ[u/a] ⇒ ψ

Γ, u # t, Na:ν.ϕ[a#t] ⇒ ψ
NL

(FLSeq)

Γ, a # t⇒ ϕ (a 6∈ FV (Γ, ψ))

Γ ⇒ Na:ν.ϕ[a#t]
NR

Γ, a # t, ϕ⇒ ψ (a 6∈ FV (Γ, ψ))

Γ, Na:ν.ϕ[a#t] ⇒ ψ
NL

(FL′
Seq)

Σ#a:ν; Γ ⇒ ϕ (a /∈ Σ)

Σ; Γ ⇒ Na:ν.ϕ NR
Σ#a:ν; Γ, ϕ⇒ ψ (a /∈ Σ)

Σ; Γ, Na:ν.ϕ⇒ ψ
NL

(NL⇒)

Figure 2: Evolution of rules for N

search for a suitable slice of theN-quantified formula. This reading seems much less deterministic than that
employed inαProlog.

In this article we present a simplified sequent calculus for nominal logic, calledNL⇒, in which slices
are not needed in the rules forN(or anywhere else). Following Urban, Pitts, and Gabbay [19,9], and our
prior work [2], we employ a new syntactic class ofname-symbolsa, b, . . . different from ordinary variables
x, y, z, Like variables, such name-symbols may be bound (byN), but unlike variables, two distinct
name-symbols always denote distinct name values. As explained in our previous paper [2], name-symbols
can be used to construct ground terms, which is convenient form the perspective of studying Herbrand models
and consistency. In place of slices, we introduce contexts that encode information about freshness as well
as identifying the types of variables and name-symbols. Specifically, contextsΣ#a:ν may be formed by
adjoining afresh name-symbola which is also assumed to be semantically fresh for any value mentioned in
Σ. Our rules for N(Figure 2(NL⇒)) are in the spirit of the original rules and are very simple.

Besides presenting the sequent calculus and proving structural properties such as cut-elimination, we
verify thatNL⇒ and Pitts’ axiomatizationNL are equivalent. We also present a syntactic proof of the
consistency of the nonlogical rules, which together with cut-elimination implies consistency of the whole
system.

The structure of this article is as follows: Section 3 presents the sequent calculusNL⇒ along with
proofs of structural properties. Section 4 discusses several applications, including proofs of consistency and
equivalence ofNL⇒ toNL. Section 5 concludes.

This article builds upon prior work by Gabbay and Cheney [7] and Gabbay [9], which introduced sequent
and natural-deduction calculi for nominal logic, based on slices. The closest-related prior publication is
Cheney [1], which introduced a single-conclusion, intuitionistic version ofNL⇒ with the simpler rules for

N-quantifiers shown above. This article generalizes the approach taken there and provides detailed proofs of
the main results, along with proofs of new results includingequivalence to classical nominal logic.

3 Sequent Calculus

3.1 Syntax

The typesτ , termst, and formulasϕ of NL⇒ are generated by the following grammar:

τ, σ ::= δ | ν | 〈ν〉τ
t, u ::= x | a | c | f(t) ‖ (a b) · t | 〈a〉t
ϕ, ψ ::= ⊤ | ⊥ | p(t) | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⊃ ψ | ∀x:τ.ϕ | ∃x:τ.ϕ | Na:ν.ϕ ‖ t ≈ u | t # u

The constructs to the right of‖ are syntactic sugar that are definable in terms of the core language as explained
below; we list them in the grammar for ease of reference. The base types are datatypesδ and name-typesν;

4

FV (x) = {x}
FV (a) = ∅

FV (Qx:σ.ϕ) = FV (ϕ)− {x} (Q ∈ {∀, ∃})
FV (Na:ν.ϕ) = FV (ϕ)

FN(x) = ∅

FN(a) = {a}
FN(Qx:σ.ϕ) = FN(ϕ) (Q ∈ {∀, ∃})
FN(Na:ν.ϕ) = FN(ϕ)− {a}

Fα(c) = Fα(⊤) = Fα(⊥) = ∅

Fα(f(t)) = Fα(p(t)) =
⋃
Fα(ti)

Fα(ϕ ◦ ψ) = Fα(ϕ) ∪ Fα(ψ) (◦ ∈ {∧,∨,⊃})
Fα((a b) · t) = Fα(a) ∪ Fα(b) ∪ Fα(t)

Fα(〈a〉t) = Fα(a) ∪ Fα(t)

FV N(t) = FV (t) ∪ FN(t)

Figure 3: Free variables and names (noteFα stands for eitherFV orFN)

(a b) · ϕ = ϕ (ϕ ∈ {⊤,⊥})
(a b) · p(t) = p((a b) · t)

(a b) · ϕ ◦ ψ = (a b) · ϕ ◦ (a b) · ψ (◦ ∈ {∧,∨,⊃})
(a b) ·Qx:σ.ϕ = Qx:σ.(a b) · ϕ (Q ∈ {∀, ∃}, x /∈ FV (a) ∪ FV (b))
(a b) · Na:ν.ϕ = Na:ν.(a b) · ϕ (a /∈ FN(a) ∪ FN(b))

Figure 4: Swapping for formulas

additional types are formed using the abstraction type constructor. Terms are first-order, with variablesx, y
are drawn from a countably infinite setV; also, name-symbolsa, b are drawn from a countably infinite set
A disjoint formV. The lettersa, b are typically used for terms of some name-typeν. Negation and logical
equivalence are defined as follows:

¬ϕ = (ϕ ⊃ ⊥) ϕ ⇐⇒ ψ = (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ)

We assume given a signature that maps constant symbolsc to typesδ, function symbolsf to sorts
τ1, . . . , τn → δ, and relation symbols to sortsτ1, . . . , τn → o, and containing at least the following dec-
larations:

swapντ : ν, ν, τ → τ absντ : ν, τ → 〈ν〉τ
eqτ : τ, τ → o freshν,τ : ν, τ → o

for name-typesν and typesτ . The subscripts are dropped when clear from context. The notations(a b) · t
and 〈t〉u are syntactic sugar for the termsswap(a, b, t) andabs(t, u), respectively. Likewise,t ≈ u and
t # u are syntactic sugar foreq(t, u) andfresh(t, u), respectively. The functionsFV (·), FN(·), FV N(·)
calculate the sets of free variables, name-symbols, or bothvariables and name-symbols of a term or formula
(see Figure 3). We lift the swapping operation to formulas asshown in Figure 4.

Thetyping contextsused inNL⇒ are generated by the grammar:

Σ ::= · | Σ, x:τ | Σ#a:ν

We often write·, x:τ and ·#a:ν to x:τ anda:ν respectively. We writeω for a term that may be either a
name-symbola or a variablex. TheΣ#a:ν binding indicates thata is a name of typeν and is assumed to be
fresh with respect to all names and variables inΣ. We writeω:τ ∈ Σ if the bindingω:τ is present inΣ. We
writeΣ,Σ′ for the result of concatenating two contexts such thatFV N(Σ) ∩ FV N(Σ′) = ∅.

We writeΣ ⊢ t : τ or Σ ⊢ ϕ : o to indicate thatt is a well-formed term of typeτ or ϕ is a well-formed
formula. From the point of view of typechecking, the additional freshness information in the context is

5

c : δ
Σ ⊢ c : δ

f : τ1, . . . , τn → δ Σ ⊢ ti : τi

Σ ⊢ f(t) : δ
ω : τ ∈ Σ
Σ ⊢ ω : τ Σ ⊢ ⊤ : o

Σ ⊢ ⊥ : o

Σ ⊢ ϕ, ψ : o (◦ ∈ {∧,∨,⊃})

Σ ⊢ ϕ ◦ ψ : o
Σ ⊢ a : ν Σ ⊢ t : τ

Σ ⊢ a # t : o

Σ ⊢ t, u : τ

Σ ⊢ t ≈ u : o

Σ, x:τ ⊢ ϕ : o

Σ ⊢ ∀x:τ.ϕ : o

Σ, x:τ ⊢ ϕ : o

Σ ⊢ ∃x:τ.ϕ : o

Σ#a:ν ⊢ ϕ : o

Σ ⊢ Na:ν.ϕ : o

Figure 5: Well-formedness rules

irrelevant. The rules for typechecking (shown in Figure 5) are standard, except for the rules for freshness and
the N-quantifier. Quantification using∀ and∃ is only allowed over types not mentioningo; N-quantification
is only allowed over name-types.

Definition 3.1. Let TmΣ = {t | Σ ⊢ t : τ} be the set of well-formed terms in contextΣ.

• We associate a set of freshness formulas|Σ| to each contextΣ as follows:

| · | = ∅ |Σ, x : τ | = |Σ| |Σ#a : ν| = |Σ| ∪ {a # t | t ∈ TmΣ}

For example,a # x, b # a andb # f(x, y) are in|x:τ#a:ν, y:σ#b:ν′|.

• We say thatΣ′ is stronger thanΣ (Σ ≤ Σ′) if TmΣ ⊆ TmΣ′ and|Σ| ⊆ |Σ′|. For example,a:ν, x:τ ≤
x:τ#a:ν, y:σ.

• We say thata:ν ∈ Σ if Σ = Σ′#a:ν,Σ′′ for some contextsΣ′,Σ′′ and similarlyx:τ ∈ Σ means that
Σ = Σ′, x:τ,Σ′′ for some contextsΣ′,Σ′′.

• We say thata is fresh forΣ if a is not among the names appearing inΣ; we writea /∈ Σ to indicate that
this is the case. Similarly, we writex /∈ Σ to indicate that variablex does not appear inΣ.

The following routine properties hold:

Lemma 3.2(Term Weakening). If Σ ⊢ t : τ andΣ ≤ Σ′ thenΣ′ ⊢ t : τ .

Lemma 3.3(Term Substitution). If Σ ⊢ t : τ andΣ, x:τ,Σ′ ⊢ u : τ ′ thenΣ,Σ′ ⊢ u[t/x] : τ ′.

3.2 The Rules

Judgments are of the formΣ;Γ ⇒ ∆, whereΣ is a typing context andΓ,∆ are multisets of formulas.
We define classical and intuitionistic versions ofNL⇒. ClassicalNL⇒ is based on the classical sequent
calculusG3c (see Figure 6). The new rules definingNL⇒ are defined in Figures 7 and 8.NL⇒ includes
two additionallogical rules, NL and NR, as already shown in Figure 2. In addition,NL⇒ includes several
newnonlogical rulesdefining the properties of swapping, equality, freshness and abstraction. (The standard
rules involving equality in Figure 6 are also considered nonlogical rules.)

Many of the nonlogical rules correspond to first-order universal axioms of nominal logic (Figure 7), which
may be incorporated into sequent systems in a uniform fashion using theAx rule schema without affecting
cut-elimination [14]. Here, we write an axiom of the formP1 ∧ · · · ∧ Pn ⊃ Q1 ∨ · · · ∨Qm as

∧
P ⊃

∨
Q.

To illustrate, the instances of this scheme for axiomsF3 andF4 are:

Σ;Γ, a # a⇒ ∆
F3

Σ;Γ, a # b⇒ ∆ Σ;Γ, a ≈ b⇒ ∆

Σ;Γ ⇒ ∆
F4

The key point of this treatment of nonlogical rules is that they act only on the hypothesis setΓ, so they do not
introduce new principal cut cases in the proof of cut-elimination.

6

Σ;Γ, p(t) ⇒ p(t),∆
hyp

Σ;Γ ⇒ ⊤,∆
⊤R

Σ;Γ,⊥ ⇒ ∆
⊥L

Σ;Γ ⇒ ϕ,∆ Σ;Γ ⇒ ψ,∆

Σ;Γ ⇒ ϕ ∧ ψ,∆
∧R

Σ;Γ, ϕ1, ϕ2 ⇒ ∆

Σ;Γ, ϕ1 ∧ ϕ2 ⇒ ∆
∧L

Σ;Γ ⇒ ϕ1, ϕ2,∆

Σ;Γ ⇒ ϕ1 ∨ ϕ2,∆
∨R

Σ;Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Σ;Γ, ϕ ∨ ψ ⇒ ∆
∨L

Σ;Γ, ϕ⇒ ψ,∆

Σ;Γ ⇒ ϕ ⊃ ψ,∆
⊃R

Σ;Γ ⇒ ϕ,∆ Σ;Γ, ψ ⇒ ∆

Σ;Γ, ϕ ⊃ ψ ⇒ ∆
⊃L

Σ, x:σ; Γ ⇒ ϕ,∆ (x 6∈ Σ)

Σ; Γ ⇒ ∀x:σ.ϕ,∆
∀R

Σ ⊢ t : σ Σ;Γ, ∀x:σ.ϕ, ϕ{t/x} ⇒ ∆

Σ;Γ, ∀x:σ.ϕ⇒ ∆
∀L

Σ ⊢ t : σ Σ;Γ ⇒ ∃x:σ.ϕ, ϕ{t/x},∆

Σ;Γ ⇒ ∃x:σ.ϕ,∆
∃R

Σ, x:σ; Γ, ϕ⇒ ∆ (x 6∈ Σ)

Σ; Γ, ∃x:σ.ϕ⇒ ∆
∃L

Σ;Γ, t ≈ t⇒ ∆

Σ;Γ ⇒ ∆
≈R

Σ;Γ, t ≈ u, P (t), P (u) ⇒ ∆

Σ;Γ, t ≈ u, P (t) ⇒ ∆
≈S

Figure 6: Classical first-order equational sequent calculus (G3c)

The remaining nonlogical rules are as follows. RuleA2 expresses an invertibility property for abstrac-
tions: two abstractions are equal only if they are structurally equal or equal by virtue ofA1. A3 says that
all values of abstraction type are formed using the abstraction function symbol. TheF rule expresses the
freshness principle: that a name fresh for a given context may always be chosen. It is important to note that
the fresh name chosen inF may be of any name typeν, and thus, all name types are inhabited; however, base
data typesδ could be empty, and an abstraction type〈ν〉τ is inhabited if and only ifτ is. Finally, theΣ# rule
allows freshness information to be extracted from the context Σ. It states that in contextΣ, any constraint in
|Σ| is valid.

Remark3.4. Although we have motivated some choices inNL⇒ in terms of proof-search behavior based on
experience withαProlog, some rules, such asA3 andΣ#, do not have particularly pleasant proof-search
properties. It is fair to say thatNL⇒ addresses only the proof search complexity arising from theN-
quantifier and (to some extent) freshness but does not help very much with the complexity arising from
equational/freshness reasoning. InαProlog, special cases of these problems are dealt with usingnominal
unification and freshness constraint solving; in this paperwe aim to deal with full nominal logic.

The naming of the nonlogical rule groups corresponds to thatused by Pitts: the axioms are divided into
groups for swapping(S), equivariance(E), freshness(F), and abstraction(A). The(Q) axiom is replaced
by the logical rules NL and NR.

3.3 Structural Properties

Figure 9 lists some additional rules, including weakening,contraction, general form of hypothesis and equiv-
ariance rules, and cut. We will now prove their admissibility. Note that these rules are not part of the
definition ofNL⇒, and so in proving admissibility, it suffices to consider only derivations using the core
rules introduced in Section 3.2.

We now list some routinely-verified syntactic properties ofNL⇒. We write⊢n J to indicate that judg-
mentJ has a derivation of height at mostn.

Lemma 3.5(Weakening). If ⊢n Σ;Γ ⇒ ∆ is derivable then so is⊢n Σ;Γ, ϕ ⇒ ∆. Similarly,⊢n Σ;Γ ⇒
∆, ϕ.

Lemma 3.6(Context Weakening). If ⊢n Σ;Γ ⇒ ∆ andΣ ≤ Σ′ then⊢n Σ′; Γ ⇒ ∆.

Lemma 3.7(Substitution). If ⊢n Σ ⊢ t : τ andΣ, x:τ,Σ′; Γ ⇒ ∆ then⊢n Σ,Σ′; Γ[t/x] ⇒ ∆[t/x].

7

(S1) (a a) · x ≈ x
(S2) (a b) · (a b) · x ≈ x
(S3) (a b) · a ≈ b
(E1) (a b) · c ≈ c
(E2) (a b) · f(t) ≈ f((a b) · t)
(E3) p(t) ⊃ p((a b) · t)

(F1) a # x ∧ b # x ⊃ (a b) · x ≈ x
(F2) a # b (a : ν, b : ν′, ν 6≡ ν′)
(F3) a # a ⊃ ⊥
(F4) a # b ∨ a ≈ b
(A1) a # y ∧ x ≈ (a b) · y ⊃ 〈a〉x ≈ 〈b〉y

Figure 7: Equational and freshness axioms

Σ;Γ,
∧
P ,Q1 ⇒ ∆ · · · Σ;Γ,

∧
P ,Qn ⇒ ∆

Σ;Γ,
∧
P ⇒ ∆

Ax
∧
P ⊃

∨
Q an axiom instance in Figure 7

Σ;Γ, 〈a〉t ≈ 〈b〉u, a ≈ b, t ≈ u⇒ ∆ Σ;Γ, 〈a〉t ≈ 〈b〉u, a # u, t ≈ (a b) · u⇒ ∆

Σ;Γ, 〈a〉t ≈ 〈b〉u⇒ ∆
A2

Σ ⊢ t : 〈ν〉σ Σ, a:ν, x:σ; Γ, t ≈ 〈a〉x⇒ ∆ (a, x /∈ Σ)

Σ; Γ ⇒ ∆
A3

Σ#a:ν; Γ ⇒ ∆ (a /∈ Σ)

Σ; Γ ⇒ ∆
F

Σ;Γ, a # t⇒ ∆ (a # t ∈ |Σ|)

Σ; Γ ⇒ ∆
Σ#

Σ#a:ν; Γ ⇒ ϕ,∆ (a /∈ Σ)

Σ; Γ ⇒ Na:ν.ϕ,∆ NR
Σ#a:ν; Γ, ϕ⇒ ∆ (a /∈ Σ)

Σ; Γ, Na:ν.ϕ⇒ ∆
NL

Figure 8: Nonlogical and N-quantifier rules

Σ;Γ ⇒ ∆

Σ;Γ, ϕ⇒ ∆
W

Σ;Γ, ϕ⇒ ϕ,∆
hyp∗

Σ;Γ ⇒ ϕ,∆ Σ;Γ′, ϕ⇒ ∆′

Σ;Γ,Γ′ ⇒ ∆,∆′ cut

Σ;Γ, ϕ, ϕ⇒ ∆

Σ;Γ, ϕ⇒ ∆
C

Σ;Γ, (a b) · ϕ⇒ ∆

Σ;Γ, ϕ⇒ ∆
EV L

Σ;Γ ⇒ (a b) · ϕ,∆

Σ;Γ ⇒ ∆, ϕ
EV R

Figure 9: Some admissible rules ofNL⇒

Proof. The interesting cases are for the new rules, specifically, nonlogical rules, NL, and NR. All of the
nonlogical rules are closed under substitution; in particular, for Σ# we havea # u ∈ |Σ, x,Σ′| thena #
u[t/x] ∈ |Σ,Σ′|.

ForF we have a derivation
Σ, x:τ,Σ′#a:ν; Γ ⇒ ∆

Σ, x:τ,Σ′; Γ ⇒ ∆
F

By induction we haveΣ,Σ′#a:ν; Γ[t/x] ⇒ ∆[t/x], so we can useF again to deriveΣ,Σ′; Γ[t/x] ⇒ ∆[t/x].
This requires the observation that sincea /∈ Σ andΣ ⊢ t : τ , we must havea /∈ FN(t). The proofs
for NL and NR are similar, requiring the additional observation that(Na:ν.ϕ)[t/x] = Na:ν.(ϕ[t/x]) since
a 6∈ FN(t).

The remaining structural transformations do not preserve the height of derivations. However, they do
preserve the logical height of the derivation, which is defined as follows.

Definition 3.8. The logical heightof a derivation is the maximum number of logical rules in any branch of
the derivation. We write⊢l

n J to indicate thatJ has a derivation of logical height≤ n.

Now we consider some structural properties specific toNL⇒. In the following, recall the definition of
(a b) · ϕ given in Figure 4.

8

Lemma 3.9(Admissibility ofEV L,EV R). TheEV L andEV R rules

Σ;Γ, (a b) · ϕ⇒ ∆

Σ;Γ, ϕ⇒ ∆
EV L

Σ;Γ ⇒ (a b) · ϕ,∆

Σ;Γ ⇒ ϕ,∆
EV R

whereϕ is an arbitrary formula inTmΣ, are admissible; if the antecedent ofEV L or EV R is derivable,
then the respective conclusion has a derivation of the same logical height.

Proof. We proceed by induction on the lexicographic product of logical height and total height to show that
if the hypothesis of an instance ofEV L orEV R has a derivation then the conclusion of the respective rule
has a derivation of the same logical height.

We first considerEV L. The only interesting cases are when(a b) · ϕ is principal on the left, otherwise
the induction step is straightforward. Furthermore, only the cases forhyp and⊃L are nontrivial.

If the derivation is of the form

Σ;Γ, (a b) ·A⇒ (a b) ·A,∆
hyp

then we may deriveΓ, A⇒ (a b) ·A,∆ as follows:

Σ;Γ, (a b) ·A⇒ (a b) ·A,∆
≈, hyp

Σ;Γ, A⇒ (a b) ·A,∆
E3

This derivation has the same logical height, 1, as the first.
If the derivation is of the form

Σ;Γ, (a b) · ϕ ⊃ (a b) · ψ ⇒ (a b) · ϕ,∆ Σ;Γ, (a b) · ψ ⇒ ∆

Σ;Γ, (a b) · ϕ ⊃ (a b) · ψ ⇒ ∆
⊃L

then using the admissibility ofEV R andEV L on the left andEV R on the right (on derivations of smaller
logical height) we obtain

Σ;Γ, (a b) · ϕ ⊃ (a b) · ψ ⇒ (a b) · ϕ,∆

Σ;Γ, ϕ ⊃ ψ ⇒ ϕ,∆
EV L,EV R

Σ;Γ, (a b) · ψ ⇒ ∆

Σ;Γ, ψ ⇒ ∆
EV L

Σ;Γ, ϕ ⊃ ψ ⇒ ∆
⊃L

This transformation is obviously logical height-preserving by induction.
ForEV R, the interesting cases are those forhyp and⊃Rwhere(a b)·ϕ is principal on the right. Suppose

the derivation is of the form

Σ;Γ, (a b) ·A⇒ (a b) ·A,∆
hyp

Then we can derive

Σ;Γ, (a b) · (a b) ·A⇒ A,∆
≈, hyp

Σ;Γ, (a b) ·A⇒ A,∆
E3

This derivation has the same logical height, 1, as the first.
If the derivation is of the form

Σ;Γ, (a b) · ϕ⇒ (a b) · ψ,∆

Σ;Γ ⇒ (a b) · ϕ ⊃ (a b) · ψ,∆
⊃R

then sinceEV L andEV R are admissible for all subderivations of this derivation, by induction we can derive

Σ;Γ, (a b) · ϕ⇒ (a b) · ψ,∆

Σ;Γ, ϕ⇒ ψ,∆
EV L,EV R

Σ;Γ ⇒ ϕ ⊃ ψ,∆
⊃R

This transformation is obviously logical height-preserving by induction.

9

Lemma 3.10(Swapping Fresh Names). SupposeΣ#a:ν ⊢ ϕ(a) : o andb /∈ FN(Σ#a:ν). Then the rule

Σ#a:ν#b:ν; Γ, ϕ(b) ⇒ ∆

Σ#a:ν#b:ν; Γ, ϕ(a) ⇒ ∆

is admissible using nonlogical axioms only.

Proof. Let x = FV (Σ). The derivation is as follows:

Σ#a:ν#b:ν; Γ, a # x, b # x, ϕ(b) ⇒ ∆

Σ#a:ν#b:ν; Γ, a # x, b # x, (a b) · ϕ(a) ⇒ ∆
Ax

Σ#a:ν#b:ν; Γ, a # x, b # x, ϕ(a) ⇒ ∆
EV L

Σ#a:ν#b:ν; Γ, ϕ(a) ⇒ ∆
Σ#

whereF1 and equational reasoning is used repeatedly to show that(a b) · ϕ(a) ⊃ ϕ(b).

Lemma 3.11(Admissibility of hyp∗). Thehyp∗ rule

Σ;Γ, ϕ⇒ ϕ,∆
hyp∗

whereϕ is an arbitrary formula inTmΣ, is admissible.

Proof. The proof is by induction on the construction ofϕ. The cases for the ordinary connectives of first-
order logic are standard. The case forϕ = Na:ν.ϕ′ is as follows. By induction, we may assume that
Σ#a:ν#b:ν; Γ, ϕ(b) ⇒ ϕ(b),∆ is derivable. We derive

Σ#a:ν#b:ν; Γ, ϕ(b) ⇒ ϕ(b),∆

Σ#a:ν#b:ν; Γ, ϕ(a) ⇒ ϕ(b),∆
Lemma 3.10

Σ#a:ν; Γ, ϕ(a) ⇒ Na:ν.ϕ′,∆
NR

Σ;Γ, Na:ν.ϕ′ ⇒ Na:ν.ϕ′,∆
NL

Using the induction hypothesis, the judgmentΣ#a:ν#b:ν; Γ, ϕ(b) ⇒ ϕ(b),∆ is derivable, since it is an
instance ofhyp∗ with a smaller principal formula.

Lemma 3.12(Inversion). The∧L, ∨L, ⊃L, ∃L, ∀R, NL, and NR rules are invertible; that is,

1. If ⊢l
n Σ;Γ, ϕ ∧ ψ ⇒ ∆ then⊢l

n Σ;Γ, ϕ, ψ ⇒ ∆.

2. If ⊢l
n Σ;Γ, ϕ ∨ ψ ⇒ ∆ then⊢l

n Σ;Γ, ϕ⇒ ∆ and⊢l
n Σ;Γ, ψ ⇒ ∆.

3. If ⊢l
n Σ;Γ, ϕ ⊃ ψ ⇒ ∆ then⊢l

n Σ;Γ, ψ ⇒ ∆.

4. If ⊢l
n Σ;Γ, ∃x.ϕ⇒ ∆ then⊢l

n Σ, y; Γ, ϕ[y/x] ⇒ ∆.

5. If ⊢l
n Σ;Γ ⇒ ∆, ∀x.ϕ then⊢l

n Σ, y; Γ ⇒ ∆, ϕ[y/x].

6. If ⊢l
n Σ;Γ, Na:ν.ϕ⇒ ∆ then⊢l

n Σ#a:ν; Γ, ϕ⇒ ∆ for fresha /∈ Σ.

7. If ⊢l
n Σ;Γ ⇒ ∆, Na:ν.ϕ then⊢l

n Σ#a:ν; Γ ⇒ ∆, ϕ for fresha /∈ Σ.

Proof. The proofs for the rules∧L,∨L,⊃L, ∃L, ∀R are similar to those for the systemsG3c andG3im [14].
For NL, the proof is by induction on the height of the derivation. Most cases are straightforward. Only

cases such as∀R, ∃L,A3, F that introduce variables or name-symbols intoΣ are exceptions. We show the
reasoning for∀R.

If the derivation is of the form
Σ, x:τ ; Γ, Na:ν.ϕ⇒ ψ

Σ;Γ, Na:ν.ϕ⇒ ∀x:τ.ψ

then using the induction hypothesis, we haveΣ, x:τ#b:ν; Γ, ϕ(b) ⇒ ψ. Using structural weakening we
haveΣ#a:ν, x:τ#b:ν; Γ, ϕ(b) ⇒ ψ. Sincea and b are fresh with respect to all terms inTmΣ, it is

10

straightforward to show thatΣ#a:ν, x:τ#b:ν : Γ, (a b) · ϕ(a) ⇒ ψ. Thus, by equivariance, we can de-
rive Σ#a:ν, x:τ#b:ν; Γ, ϕ(a) ⇒ ψ. Now b is not mentioned in the sequent so usingF we can derive
Σ#a:ν, x:τ ; Γ, ϕ(a) ⇒ ψ, and using∀R we can deriveΣ#a:ν; Γ, ϕ(a) ⇒ ∀x:τ.ψ, as desired.

The proof for the invertibility of NR is symmetric.

Lemma 3.13(Contraction). If ⊢l
n Σ;Γ, ϕ, ϕ ⇒ ∆ is derivable then so is⊢l

n Σ;Γ, ϕ ⇒ ∆. Similarly, if
⊢l
n Σ;Γ ⇒ ∆, ϕ, ϕ is derivable then⊢l

n Σ;Γ ⇒ ∆, ϕ.

Proof. The proof is by induction on the lexicographic product of logical height and total height. That is, the
induction hypothesis applies to all derivations of smallerlogical height and to all derivations of equal logical
height but smaller total height. Most cases are similar to any standard proof. The only new cases involve
nonlogical rules and Na:ν.ϕ. For the nonlogical rules it suffices to show that for each nonlogical rule that has
a contractable instance, there is a nonlogical rule corresponding to the contraction. The only such rule isF1.
If the derivation is of the form

Σ;Γ, a # x, a # x, (a a) · x ≈ x⇒ ∆

Σ;Γ, a # x, a # x⇒ ∆
F1

then we can transform the derivation to

Σ;Γ, a # x, (a a) · x ≈ x⇒ ∆

Σ;Γ, a # x⇒ ∆
S1

Most of the remaining cases are standard. The only interesting new case is when the contracted formula
is derived using NL:

Σ#a:ν; Γ, ϕ(a), Nb:ν.ϕ(b) ⇒ ∆

Σ;Γ, Na:ν.ϕ(a), Nb:ν.ϕ(b) ⇒ ∆
NL

Then using inversion we have⊢l
n−1 Σ#a:ν#b:ν : Γ, ϕ(a), ϕ(b) ⇒ ∆. Now using nonlogical rules we

can derive⊢l
n−1 Σ#a:ν#b:ν; Γ, ϕ(a), ϕ(a) ⇒ ∆. Then using the induction hypothesis we have⊢l

n−1

Σ#a:ν#b:ν; Γ, ϕ(a) ⇒ ∆. Finally we can derive

Σ#a:ν#b:ν; Γ, ϕ(a) ⇒ ∆

Σ#a:ν; Γ, ϕ(a) ⇒ ∆
F

Σ;Γ, Na:ν.ϕ(a) ⇒ ∆
NL

The proof for right-contraction is symmetric, using the invertibility of NR.

3.4 Cut-Elimination

As usual for sequent systems, the most important property tocheck to verify that the system is sensible is
cut-elimination.

Lemma 3.14(Admissibility of Cut). If ⊢ Σ;Γ ⇒ ∆, ϕ and⊢ Σ;Γ′, ϕ⇒ ∆ then⊢ Σ;Γ,Γ′ ⇒ ∆,∆′.

Proof. Following the proof of cut-elimination for similar systemssuch asG3c or G3im of [14], we prove
the lemma by induction on the structure of the cut-formulaϕ and then by a sub-induction on the sizes of
the subderivationsΠ of Σ;Γ ⇒ ∆, ϕ andΠ′ of Σ;Γ′, ϕ ⇒ ∆. Thus, for the induction hypothesis, we may
assume that the lemma holds for any instances with a less complex cut-formula or for all instances with the
same cut-formula but with a smaller derivation of one or the other ofΠ,Π′.

As in other proofs of cut-elimination for similar systems, there are four categories of cases:

• Base cases in whichΠ orΠ′ is an axiom or initial sequent.

• Left-commuting cases in whichΠ starts with a rule in whichϕ is not principal.

• Right-commuting cases in whichΠ′ starts with a rule in whichϕ is not principal.

• Principal cases in whichΠ andΠ′ both start with a rule in whichϕ is principal.

11

All cases involving first-order rules exclusively are standard, and are shown in any standard proof of
cut-elimination (e.g. [14] or [18]); their proofs rely uponthe properties established in the previous section,
including weakening, admissibility ofhyp∗, contraction, and inversion. In addition, Negri and von Plato [14]
showed that nonlogical rules of the form we consider can be added to sequent systems likeG3c or G3im

without damaging cut-elimination. Hence, it will suffice toconsider only the new cases involving theN-
quantifier rules.

• Base cases: There are no new base cases.

• Left-commuting cases: There are two new cases in whichΠ begins with NR or NL.

In the first case, we have
Π

Σ#a:ν; Γ, ψ ⇒ ∆, ϕ

Σ;Γ, Na:ν.ψ ⇒ ∆, ϕ
NL

wherea 6∈ Σ. We can weakenΠ′ to obtain a derivationW (Π′) of Σ#a:ν; Γ′, ϕ ⇒ ∆′, and by
induction, we haveΣ#a:ν; Γ, ψ,Γ′ ⇒ ∆,∆′. Then we may deriveΣ;Γ, Na:ν.ψ,Γ′ ⇒ ∆,∆′ using

NL.

In the second case, we have
Π

Σ#a:ν; Γ ⇒ ∆, ψ, ϕ

Σ;Γ ⇒ ∆, Na:ν.ψ, ϕ NR

wherea 6∈ Σ. We can weakenΠ′ to getW (Π′) derivingΣ#a:ν; Γ′, ϕ ⇒ ∆′ and then by induction
obtainΣ#a:ν; Γ′,Γ ⇒ ∆,∆′, ψ. Using NR we can deriveΣ : Γ′,Γ ⇒ ∆,∆′, Na:ν.ψ.

• Right-commuting cases. These cases are exactly symmetric to the left-commuting cases.

In the first case, we have
Π′

Σ#a:ν; Γ′, ϕ, ψ ⇒ ∆′

Σ;Γ′, ϕ, Na:ν.ψ ⇒ ∆′ NL

wherea 6∈ Σ. We can weakenΠ to obtain a derivationW (Π) of Σ#a:ν; Γ ⇒ ∆, ϕ, and by induction,
we haveΣ#a:ν; Γ, ψ,Γ′ ⇒ ∆,∆′. Then we may deriveΣ;Γ, Na:ν.ψ,Γ′ ⇒ ∆,∆′ using NL.

In the second case, we have
Π′

Σ#a:ν; Γ′, ϕ⇒ ∆′, ψ

Σ;Γ′, ϕ⇒ ∆′, Na:ν.ψ
NR

wherea 6∈ Σ. We can weakenΠ to obtain a derivationW (Π) of Σ#a:ν; Γ ⇒ ∆, ϕ and then by
induction obtainΣ#a:ν; Γ′,Γ ⇒ ∆,∆′, ψ. Using NR we can deriveΣ;Γ′,Γ ⇒ ∆,∆′, Na:ν.ψ.

• Principal cases. In this case, bothΠ andΠ′ decompose the cut formula. The only new rule for decom-
posing formulas on the right isNR, so the only new principal cut case is when we have

Π
Σ#a:ν; Γ ⇒ ∆, ϕ

Σ;Γ ⇒ ∆, Na:ν.ϕ NR

Π′

Σ#a:ν; Γ′, ϕ⇒ ∆′

Σ;Γ′, Na:ν.ϕ⇒ ∆′ NL

for somea 6∈ Σ. By induction we haveΣ#a:ν; Γ,Γ′ ⇒ ∆,∆′, and we may concludeΣ;Γ,Γ′ ⇒ ∆,∆′

by an application of the freshness rule.

This completes the proof.

Theorem 3.15. Any derivableNL⇒ sequent has a cut-free derivation; there is an algorithm forproducing
such derivations.

Proof. Proof by induction on the number of cuts. Given a derivation using cut, we can always find an
uppermost use of cut in the derivation tree and remove it. This reduces the number of cuts by one.

12

Σ;Γ, ϕ⇒ ψ

Σ;Γ ⇒ ϕ ⊃ ψ,∆
⊃R

Σ;Γ, ϕ ⊃ ψ ⇒ ϕ Σ;Γ, ψ ⇒ ∆

Σ;Γ, ϕ ⊃ ψ ⇒ ∆
⊃L

Σ, x:σ; Γ ⇒ ϕ (x 6∈ Σ)

Σ; Γ ⇒ ∀x:σ.ϕ,∆
∀R

Σ ⊢ t : σ Σ;Γ, ∀x:σ.ϕ, ϕ{t/x} ⇒ ∆

Σ;Γ, ∀x:σ.ϕ⇒ ∆
∀L

Σ ⊢ t : σ Σ;Γ ⇒ ∃x:σ.ϕ, ϕ{t/x},∆

Σ;Γ ⇒ ∃x:σ.ϕ,∆
∃R

Σ, x:σ; Γ, ϕ⇒ ∆ (x 6∈ Σ)

Σ; Γ, ∃x:σ.ϕ⇒ ∆
∃L

Figure 10: Variant rules for the intuitionistic multiple-conclusion calculus (G3im)

3.5 Intuitionistic calculus

IntuitionisticNL⇒ (INL⇒) is based on the multiple-conclusion intuitionistic calculusG3im [14], in which
certain rules are restricted to discard alternative conclusions (see Figure 10). It is straightforward to show that
all of the structural properties including cut-elimination hold forINL⇒; the same arguments as given above
in the classical case apply. We will show in Section 4.3.2 that INL⇒ corresponds to a theory of first-order
intuitionistic logic that is equivalent to Pitts’ axiomatization in classicalNL.

Theorem 3.16. In INL⇒, if Σ;Γ ⇒ ∆ holds then there is a cut-free derivation ofΣ;Γ ⇒ ∆.

It is also straightforward to show thatINL⇒ is equivalent to a single-conclusion intuitionistic calculus,
since the nonlogical andN-quantifier rules preserve the single-conclusion property.

Theorem 3.17. If Σ;Γ ⇒ ∆ holds inINL⇒ thenΣ;Γ ⇒
∨
∆ holds in the single-conclusion variant of

INL⇒.

Proof. Most cases of the proof are analogous to the usual proof relatingG3i andG3im [14]. The additional
cases involve the nonlogical andN-quantifier rules. Of these, the nonlogical rules are straightforward because
nothing changes on the right-hand side of the sequent in these rules. The case forNL is also straightforward
for the same reason.

We show the case forNR. Suppose the derivation is of the form:

Σ#a:ν; Γ ⇒ ϕ,∆

Σ;Γ ⇒ Na:ν.ϕ,∆ NR

By induction on the subderivation we know thatΣ#a:ν; Γ ⇒ ϕ ∨
∨

∆. We reason as follows:

Σ#a:ν; Γ ⇒ ϕ ∨
∨
∆

Σ#a:ν#b:ν; Γ, ϕ⇒ ϕ[b/a]

Σ#a:ν; Γ, ϕ⇒ Na:ν.ϕ NR

Σ#a:ν; Γ, ϕ⇒ Na:ν.ϕ ∨
∨
∆

∨R1

Σ#a:ν; Γ,
∨
∆ ⇒

∨
∆

hyp∗

Σ#a:ν; Γ,
∨
∆ ⇒ Na:ν.ϕ ∨

∨
∆

∨R2

Σ#a:ν; Γ, ϕ ∨
∨
∆ ⇒ Na:ν.ϕ ∨

∨
∆

∨L

Σ#a:ν; Γ ⇒ Na:ν.ϕ ∨
∨
∆

cut

Σ;Γ ⇒ Na:ν.ϕ ∨
∨

∆
F

We can use the intuitionistic (single-conclusion) variantof Lemma 3.10 to concludeΣ#a:ν#b:ν; Γ, ϕ ⇒
ϕ[b/a].

4 Applications

4.1 Syntactic Consistency

For pure first-order logic, cut-elimination immediately implies consistency, since by inspection of the rules
there can be no shortest proof of·; · ⇒ ⊥. However, in the presence of general nonlogical rules, onlya
weaker result holds. We say that an atomic formula is aconstraintif it is an equality or freshness formula,
andΓ is a constraint set of it contains only constraints.

13

Proposition 4.1. If ·; · ⇒ ⊥ has a cut-free derivation, then it has one using only nonlogical rules, in which
each sequent is of the form·; Γ ⇒ ⊥, whereΓ is a constraint set.

The proof is immediate by observing that only nonlogical rules are applicable to a derivation of·; Γ ⇒ ⊥
whereΓ is a constraint set. In particular, note that the instance oftheAx rule scheme fora # a ⊃ ⊥ (axiom
F3) has no hypotheses:

Σ;Γ, a # a⇒ ∆
F3

so it is not necessary to allow⊥ as a constraint (though this would not do any harm either).
This means that nominal logic is consistent if and only if thenonlogical rules are consistent. We know

that classical nominal logic is consistent with respect to the semantics given by Pitts using nominal sets [15],
and we will show in the next section that the two systems are equivalent, however, here we would like to
give a direct syntactic proof that applies to both classicaland intuitionistic variants ofNL⇒. To prove the
consistency of the nonlogical rules, it is necessary to exhibit a model. We review how to define a Herbrand-
style semantics in terms of the syntax of nominal terms (see e.g. Cheney [2] for more details).

Definition 4.2 (Syntactic Swapping, Equality and Freshness). Let Tm be the set of swapping-free nominal
terms generated by the grammar

t ::= a | c | f(t) | 〈a〉t

We define theswapping functionon such terms as follows:

(a b) · a = b

(a b) · b = a

(a b) · c = c (a, b 6= c)

(a b) · c = c

(a b) · f(t) = f((a b) · t)

(a b) · 〈c〉t = 〈(a b) · c, (a b) · t〉

We define thefreshnessrelation on ground terms using the rules:

(a 6= b)

a # b a # c

a # t1 . . . a # tn

a # f(t) a # 〈a〉t

a # t (a 6= b)

a # 〈b〉t

Thenominal equalityrelation is defined as follows:

a ≈ a c ≈ c

t1 ≈ u1 . . . tn ≈ un

f(t) ≈ f(u)
t ≈ u

〈a〉t ≈ 〈a〉u

t ≈ (a b) · u a # u (a 6= b)

〈a〉t ≈ 〈b〉u

The following properties of syntactic freshness and equality are a special case of more general properties
established elsewhere, e.g. by Urban et al. [19]:

Proposition 4.3. The nominal equality relation≈ is an equivalence relation. Hence,NTm = Tm/≈ is
well-defined. Moreover, both≈ and# are equivariant relations onTm.

We now show how to interpret arbitrary nominal terms inNTm.

Definition 4.4. Let θ : V → NTm be a substitution of ground nominal terms for variables, called an
interpretation. We lift θ to a function from arbitrary terms toNTm as follows:

θ(a) = a

θ(c) = c

θ(f(t)) = f(θ(t1), . . . , θ(tn))

θ((a b) · t) = (θ(a) θ(b)) · θ(t)

θ(〈a〉t) = 〈θ(a)〉θ(t)

14

We say thatθ : FV (Σ) → NTm satisfiesΣ (written θ : Σ) if θ(x) : Σ(x) for eachx anda # θ(x) for
each constrainta # x ∈ |Σ|.

We writeθ � t ≈ u or θ � a # t to indicate thatθ(t) ≈ θ(u) or θ(a) # θ(t) respectively. Similarly,
θ � Γ indicates thatθ � A for each constraintA in constraint setΓ. We say that a constraintA (or constraint
setΓ) is satisfiableif there is an interpretationθ : Σ such thatθ � A (respectively,θ � Γ) holds inNTm.

Proposition 4.5. The axioms listed in Figure 7 are valid forNTm, in the sense that for each axiom
∧
P ⊃∨

Q, if θ �
∧
P thenθ � Qi for someQi ∈

∨
Q.

Proof. ForS1 andS2, the proof is by induction on the definition of swapping for ground terms. The validity
of S3 is immediate.

For the equivariance axioms, the definition of swapping makes plain that abstraction and other function
symbols besides swapping itself are equivariant. In addition, it is not difficult to show that

(a a′) · (b b
′) · x = ((a a′) · b (a a′) · b′) · (a a′) · x

that is, that the syntactic swapping function is equivariant. For the equivariance axioms for formulas, we only
need to considerE≈ andE#. But clearly equality is equivariant since

x ≈ y ⊃ (a b) · x ≈ (a b) · y

can be shown by induction on the derivation ofx ≈ y; similarly,

a # x ⊃ (b b
′) · a # (b b

′) · x

can be shown valid by induction on the derivation ofa # x.
For the axiomF1, we must show that ifa # x andb # x then(a b) · x ≈ x. The proof is by induction

on the structure ofx. For x = c the result is immediate; similarly, forx = f(yt the induction step is
straightforward. Forx = c, we havea, b 6= c so (a b) · c = c ≈ c. Forx = 〈c〉y, there are two cases. If
a, b 6= c then we havea, b # y and

(a b) · 〈c〉y = 〈(a b) · c〉(a b) · y ≈ 〈c〉y

since by induction(a b) · y ≈ y. Otherwise, without loss of generality supposeb = c (the case wherea = c

is symmetric). We need to show that(a b) · 〈b〉y ≈ 〈b〉y, or equivalently that〈a〉(a b) · y ≈ 〈b〉y. If a = b,
this is trivial. Otherwise, it is sufficient to show that(a b) · y ≈ (a b) · y (which is immediate) anda # y.
But sincea # 〈b〉y anda 6= b, we know thata # y holds.

ForF2, clearly any two name symbolsa:ν andb:ν′ of different sorts are distinct, soa # b.
ForF3, we need to show thata # a is not derivable. This is immediate from the definition of thefreshness

relation.
For F4, we need to show that eithera # b or a ≈ b is derivable. Ifa = b thena ≈ b is derivable;

otherwisea 6= b soa # b is derivable.
Finally, forA1 we need to show that ifa # y andx ≈ (a b) · y then〈a〉x ≈ 〈b〉y. There are two cases. If

a 6= b then the last rule in the definition of nominal equality applies to show〈a〉x ≈ 〈b〉y. Otherwise,a = b

sox ≈ (a b) · y = y and so〈a〉x ≈ 〈b〉y.

Proposition 4.6. If θ � 〈a〉x ≈ 〈b〉y then eitherθ � a ≈ b, x ≈ y or θ � a # y, x ≈ (a b) · y.

Proof. The proof is by case analysis of the possible derivations ofθ(〈a〉x) ≈ θ(〈b〉y). There are only two
cases, corresponding to the last two rules in the definition of structural equality. The result is immediate.

Proposition 4.7. If θ : Σ thenθ � a # t for eacha # t ∈ |Σ|.

Proof. The proof is by induction on the structure oft. The critical case is fort a variable; in this case, we
need to use the fact thatθ : Σ only if a # θ(x) for eacha # x ∈ |Σ|.

Theorem 4.8. LetΓ be a set of freshness and equality formulas. IfΣ;Γ ⇒ ⊥ is derivable thenΓ is unsatis-
fiable.

15

Proof. Proof is by induction on the structure of the derivation. Note that the only applicable rules are non-
logical rules. There is one case for each nonlogical rule. Most cases are straightforward. We present some
interesting cases.

All of the axioms in Figure 7 hold inNTm, by Proposition 4.5, so the cases in which these axioms are
used are straightforward. For example, for a derivation of the form

Σ;Γ, a # a⇒ ⊥
F3

clearlyΓ, a # a is unsatisfiable.
For a derivation of the form

Σ;Γ, a # b⇒ ⊥ Σ;Γ, a ≈ b⇒ ⊥

Σ;Γ ⇒ ⊥
F4

we haveΓ, a ≈ b andΓ, a # b unsatisfiable. Ifθ : Σ then eitherθ(a) ≈ θ(b) or θ(a) 6= θ(b), in which case
θ(a) # θ(b). In either case,θ cannot satisfyΓ.

For a derivation ending withF ,
Σ#a:ν; Γ ⇒ ⊥

Σ;Γ ⇒ ⊥
F

if θ : Σ, then without loss of generality we can assumea # θ so thatθ : Σ#a:ν and soθ 6� Γ by induction.
ForΣ#:

Σ;Γ, a # t⇒ ⊥ (a # t ∈ |Σ|)

Σ; Γ ⇒ ⊥
Σ#

if θ : Σ thenθ � a # t for anya # t ∈ |Σ|, by Proposition 4.7. Consequentlyθ 6� Γ.
ForA2,

Σ;Γ, a ≈ b, x ≈ y ⇒ ⊥ Σ;Γ, a # y, x ≈ (a b) · y ⇒ ⊥

Σ;Γ, 〈a〉x ≈ 〈b〉y ⇒ ⊥
A2

supposeθ : Σ. By inductionθ 6� Γ, a ≈ b, x ≈ y andθ 6� Γ, a # y, x ≈ (a b) · y. There are three cases. If
θ(a) ≈ θ(b) andθ(x) ≈ θ(y), thenθ 6� Γ. Similarly, if θ(a) # θ(y) andθ(x) ≈ (θ(a) θ(b))·θ(y) thenθ 6� Γ.
Otherwise, by the contrapositive of Proposition 4.6,θ 6� 〈a〉x ≈ 〈b〉y. In any case,θ 6� Γ, 〈a〉x ≈ 〈b〉y.

ForA3,
Σ ⊢ t : 〈ν〉τ Σ, a:ν, x:τ ; Γ, t ≈ 〈a〉x⇒ ⊥

Σ;Γ ⇒ ⊥
A3

if θ : Σ thenθ(t) = 〈a〉v for somea : ν andt : τ , so letθ′ = θ[a 7→ a, x 7→ t]. Clearlyθ′ : Σ, a:ν, x:τ and
θ′ � t ≈ 〈a〉x so by inductionθ′ 6� Γ. SinceΓ does not mentiona or x, we can concludeθ 6� Γ.

Corollary 4.9 (Syntactic consistency). There is no derivation of·; · ⇒ ⊥.

Proof. This follows from Proposition 4.1 and Theorem 4.8, since∅ is a satisfiable constraint set.

4.2 Orthogonality of abstraction

Using cut-elimination, we can also show that some parts of the equational theory are “orthogonal extensions”,
that is, derivable sequents not mentioning abstraction canbe derived without using the special properties of
these symbols.

Theorem 4.10(Conservativity). SupposeΣ has no variables mentioning abstraction andΣ;Γ ⇒ ∆ and
Γ,∆ have no subterms of the form〈a〉t. Then there is a derivation ofΣ;Γ ⇒ ∆ that does not use any
nonlogical rules involving abstraction.

Proof. We say that a context, formula, formula multiset, or sequentis abstraction-free if the abstraction func-
tion symbol and type constructor do not appear in it. A derivation is abstraction-free if the rulesA1, A2, A3

do not appear in it. We write⊢−A for abstraction-free derivability.
The proof is by induction on the structure of cut-free derivations. We need a stronger induction hypothesis.

We sayΓ is good if abstraction is only mentioned in equations and freshnessformulas. Note that ifΣ is

16

abstraction-free and there are no constants whose types mention abstraction then the only well-formed closed
terms of type〈ν〉τ are of the form〈a〉t. Hence, any equations among abstraction-typed terms are ofthe
form 〈a〉t ≈ 〈b〉u; we call such formulas abstraction equations. Any context can be partitioned intoΓ,Γ′

such thatΓ′ contains all the abstraction equations. We say thatΓ′ is redundantrelative toΓ if whenever
〈a〉t ≈ 〈b〉u ∈ Γ′, we have either⊢−A Σ;Γ ⇒ a ≈ b andt ≈ u or ⊢−A Σ;Γ ⇒ a # u andt ≈ (a b) · u.

We will show that ifΣ,∆ are abstraction-free andΓ,Γ′ is good andΓ′ is redundant relative toΓ, then if
⊢ Σ;Γ,Γ′ ⇒ ∆ then⊢−A Σ;Γ ⇒ ∆. An abstraction-freeΓ is obviously good and redundant relative to∅,
so the main theorem is a special case.

The proof is by structural induction on the derivation. The cases involving left or right rules are straight-
forward because such rules act only onΓ and do not affect goodness and redundancy. The case forhyp is
easy since the hypothesis cannot be inΓ′.

ForA1, we have
Σ;Γ, a # x, x ≈ (a b) · y,Γ′, 〈a〉x ≈ 〈b〉y ⇒ ∆

Σ;Γ, a # x, x ≈ (a b) · y,Γ′ ⇒ ∆
A1

Clearly,Γ′, 〈a〉x ≈ 〈b〉y is redundant relative toΓ, a # x, x ≈ (a b) · y. Also, goodness is preserved. So by
induction we haveΣ;Γ, a # x, x ≈ (a b) · y ⇒ ∆, as desired.

ForA2, we have

Σ;Γ,Γ′, 〈a〉x ≈ 〈b〉y, a ≈ b, x ≈ y ⇒ ∆ Σ;Γ,Γ′, 〈a〉x ≈ 〈b〉y, a # y, x ≈ (a b) · y ⇒ ∆

Σ;Γ,Γ′, 〈a〉x ≈ 〈b〉y ⇒ ∆
A2

SinceΓ′, 〈a〉x ≈ 〈b〉y is redundant relative toΓ, there are two cases. IfΣ;Γ ⇒ a ≈ b andx ≈ y, then
by induction we have a derivation ofΣ;Γ, a ≈ b, x ≈ y ⇒ ∆, and using cut we can deriveΣ;Γ ⇒ ∆
as desired. Otherwise, ifΣ;Γ ⇒ a # y andx ≈ (a b) · y, then by induction we have a derivation of
Σ;Γ, a # y, x ≈ (a b) · y ⇒ ∆, and using cut we can deriveΣ;Γ ⇒ ∆ as desired. Cut-elimination does not
introduce uses of the abstraction rules, so the resulting derivations are abstraction-free.

ForA3, we have
Σ ⊢ t : 〈ν〉τ Σ, a:ν, x:τ ; Γ, t ≈ 〈a〉x,Γ′ ⇒ ∆

Σ;Γ,Γ′ ⇒ ∆
A3

SinceΣ has no variables of abstraction type, we must havet = 〈u〉v for some termsΣ ⊢ u : ν andΣ ⊢ v : τ .
Therefore, we can substitute into the derivationΣ, a:ν, x:τ ; Γ,Γ′, t ≈ 〈a〉x ⇒ ∆ to getΣ;Γ,Γ′, 〈u〉v ≈
〈u〉v ⇒ ∆. ClearlyΣ;Γ ⇒ u ≈ u andv ≈ v, andΓ′, 〈u〉v ≈ 〈u〉v is redundant relative toΓ, so by
induction, we have a derivation ofΣ;Γ ⇒ ∆.

For the reflexivity rule≈R, we have

Σ;Γ,Γ′, t ≈ t⇒ ∆

Σ;Γ,Γ′ ⇒ ∆
≈R

If t = 〈a〉x, then clearlyΓ ⇒ a ≈ a andx ≈ x, soΓ′, 〈a〉x ≈ 〈a〉x is redundant relative toΓ, and we
haveΣ;Γ ⇒ ∆ by induction. Otherwise,Γ,Γ′, t ≈ t is obviously still good andΓ′ redundant with respect to
Γ, t ≈ t, so we can again concludeΣ;Γ ⇒ ∆ by induction.

For≈S-derivations, we have

Σ;Γ, t ≈ u, P (t), P (u) ⇒ ∆

Σ;Γ,Γ′, t ≈ u, P (t) ⇒ ∆
≈S

If P (u) is not an equation among abstraction-typed terms then the induction step is easy. There are many
cases depending on the structure ofP (x), but in each case we can show thatP (u) is also redundant relative
to Γ, t ≈ u (if t ≈ u is not an abstraction equation) orΓ (if t ≈ u is an abstraction equation).

The remaining nonlogical rules do not involve formulas of the form〈a〉x ≈ 〈b〉y, so the induction step is
immediate for these rules.

17

4.3 Equivalence to Nominal Logic

In this section we discuss the relationship between the sequent calculiNL⇒ andINL⇒ and classical and
intuitionistic variants of Nominal Logic respectively. Weaim to show that, modulo a straightforward syntactic
translation, formulas are provable in one system if an only if they are provable in the other. This in turn
suggests that they are equally expressive in a model-theoretic sense (provided models forNL⇒ are defined
in an appropriate way for its slightly different syntax, as done for example forFL [9]); however, in this article
we will not pursue the model theory ofNL⇒.

4.3.1 Classical Nominal Logic

We first consider the classical case. We writeNL for the set of all axioms of Pitts’ axiomatization of nominal
logic, as reviewed in Section 2.1. For ordinary variable contextsΣ andNL-formula multisetsΓ,∆, we write
⊢NL Σ;Γ ⇒ ∆ to indicate thatΣ;Γ,Γ′ ⇒G3c ∆ for someΓ′ ⊆ NL. Without loss of generality, a finiteΓ′

can always be used. We write⊢NL⇒ for derivability inNL⇒.
There is one technical point to address. Our system containsexplicit name-constants quantified byNand

appearing in typing contexts, whereas in Pitts’ systemNquantifies ordinary variables. To bridge this gap,
we translateNL formulas toNL⇒ formulas by replacing N-bound variables with fresh name-symbols. For
example, theNL formula Na:ν. Nb:ν′.p(a, b) translates to theNL⇒ formula Na:ν. Nb:ν′.p(a, b). We write
ϕ∗ for the translation ofϕ, which is defined as follows:

A∗ = A

⊥∗ = ⊥

(ϕ ⊃ ψ)∗ = ϕ∗ ⊃ ψ∗

(∀x:τ.ϕ)∗ = ∀x:τ.ϕ∗

(Na:ν.ϕ)∗ = Na:ν.(ϕ∗[a/a]) (a = ι(a))

Technically, we translate sequents or derivation mentioning variables inV ∪ A′, to sequents or derivations
mentioning variables inV ∪ A

′, whereA′ is an isomorphic copy of the set of namesA. We assume that
before translation, formulas are renamed so thatN-bound variables are inA′, and we fix an isomorphism
ι : A′ → A. In what follows, we will sometimes leaveι implicit and assume thatι(a) = a whenever we
encounter a N-quantifier or context of the formΣ#a:ν.

The omitted cases for⊤,∧,∨, ∃ are derivable via de Morgan identities. The translation of ajudgment
Σ;Γ ⇒ ∆ isΣ;Γ∗ ⇒ ∆∗, whereΓ∗,∆∗ is the result of translating each element ofΓ,∆ respectively.

We first show that every theorem ofNL translates to a theorem ofNL⇒.

Theorem 4.11. If ⊢NL Σ;Γ ⇒ ∆ then⊢NL⇒ Σ;Γ∗ ⇒ ∆∗.

Proof. We defined⊢NL Σ;Γ ⇒ ∆ to mean⊢G3c Σ;Γ,Γ′ ⇒ ∆ for some finite subsetΓ′ ⊆ NL. Any
G3c derivation is anNL⇒ derivation, so we just need to show that inNL⇒, all of the uses ofNL axioms
are redundant. We will show that each axiomϕ ∈ NL is derivable inNL⇒. Thus, usingcut finitely many
times, we can deriveΣ;Γ ⇒ ∆ in NL⇒.

For most of the axioms, this is straightforward. All of the axioms of the form∀x.
∧
P ⊃

∨
Q are clearly

derivable from the corresponding nonlogical rules as follows:

x:τ ;P,Q1 ⇒
∨
Q · · · x:τ ;P ,Qn ⇒

∨
Q

x:τ ;P ⇒
∨
Q

Ax

x:τ ; · ⇒
∧
P ⊃

∨
Q

⊃R,∧R

·; · ⇒ ∀x:τ .
∧
P ⊃

∨
Q

∀R

with the topsequents all derivable using∨R andhyp.
This leaves axioms not fitting this pattern, including(CF2), (CF4), (CA1), (CA2), and(CQ). (CA1)

and(CA2) can be derived using the nonlogical rulesA1, A2, A3,≈S of NL⇒, and(CF2) usingF3 andF4

of NL⇒. We will show the cases for(CF4) and both directions of(CQ) in detail.

18

For an instance∀x.∃a.a # x of CF4, the derivation is of the form

x:τ#a:ν : a # x⇒ a # x

x:τ#a:ν; · ⇒ ∃a:ν.a # x
∃R,Σ#

x:τ ; · ⇒ ∃a:ν.a # x
F

·; · ⇒ ∀x:τ .∃a:ν.a # x
∀R

For a translated instance of(CQ) of the form∀x.(Na:ν.ϕ(a, x) ⇐⇒ ∃a:ν.a # x ∧ ϕ(a, x)), we will
prove the two directions individually. For the forward direction, after some syntax-directed applications of
right-rules we have

x:τ#a:ν;ϕ(a, x), a # x⇒ a # x
hyp

x:τ#a:ν;ϕ(a, x) ⇒ a # x
Σ#n

x:τ#a:ν;ϕ(a, x) ⇒ ϕ(a, x)

x:τ#a:ν;ϕ(a, x) ⇒ a # x ∧ ϕ(a, x)
∧R

x:τ ; Na:ν.ϕ(a, x) ⇒ ∃a.a # x ∧ ϕ(a, x)
NL, ∃R

·; · ⇒ ∀x:τ.(Na:ν.ϕ(a, x) ⊃ ∃a:ν.a # x ∧ ϕ(a, x))
∀Rn,⊃R

For the reverse direction, we need to show∀x.∃a:ν.a # x ∧ ϕ(a, x) ⊃ Na:ν.ϕ(a, x).

x:τ , a:ν#b:ν;ϕ(b, x) ⇒ ϕ(b, x)

x:τ, a:ν#b:ν; a # x, b # x, (a b) · ϕ(a, x) ⇒ ϕ(b, x)
Ax∗

x:τ, a:ν#b:ν; a # x, ϕ(a, x) ⇒ ϕ(b, x)
Σ#∗, EV L

x:τ , a:ν; a # x, ϕ(a, x) ⇒ Na:ν.ϕ(a, x)
NR

x:τ ; ∃a:ν.a # x ∧ ϕ(a, x) ⇒ Na:ν.ϕ(a, x)
∃L,∧L

·; · ⇒ ∀x:τ.(∃a:ν.a # x ∧ ϕ(a, x) ⊃ Na:ν.ϕ(a, x))
∀R,⊃R

Since botha andb are fresh for all the other free variables ofϕ, we haveϕ(a, x) ⇐⇒ ϕ((b a) · a, (b a) ·
x) ⇐⇒ ϕ(b, x) using equivariance and the fact thata # x ∧ b # x ⊃ (a b) · x ≈ x.

Consequently, all the translations of axioms ofNL can be derived inNL⇒. As a result, ifΓ′ ⊂ NL is
a finite set of axioms such that⊢NL⇒ Σ;Γ,Γ′ ⇒ ∆, then using the derivations of the axioms and finitely
many instances ofcut, we can obtain a derivation of⊢NL⇒ Σ;Γ ⇒ ∆.

Observe that this means that any closed theorem ofNL can be derived inNL⇒. For example, from
Pitts [15, Prop. 3 and 4] we can show:

Proposition 4.12. • If FV (t) ⊆ x andFN(t) = ∅ then we can deriveΣ;Γ ⇒ ∀a:ν.∀x:τ .a # x1 ∧
· · · ∧ a # xn ⊃ a # t.

• If FV (ϕ) ⊆ {a, x} then we can deriveΣ;Γ ⇒ ∃a:ν.a # x ∧ ϕ(a, x) ⇐⇒ ∀a:ν.a # x ⊃ ϕ(a, x)

Now we consider the converse: showing that there are no “new theorems”, that anyNL sequent deriv-
able inNL⇒ is also derivable inNL. This is not as straightforward because subderivations of translated
NL judgments may involve name-symbols. However, we can show that such name-symbols can always be
removed.

We also introduce a converse translation mappingNL⇒ formulas toNL formulas:

A† = A

⊥† = ⊥

(ϕ ⊃ ψ)† = ϕ† ⊃ ψ†

(∀x:τ.ϕ)† = ∀x:τ.ϕ†

(Na:ν.ϕ)† = Na:ν.(ϕ†[a/a]) (ι(a) = a)

19

Technically, we translateNL formulas over variablesV to NL⇒ formulas overV ∪ A′, again using the
bijectionι between name-variablesA′ and names inA. Note that (up toα-equivalence) the(−)∗-translation
and(−)†-translation are inverses. We also define the set‖Σ‖ as follows:

‖Σ‖ = {a # x | ι(a) # x ∈ |Σ|} ∪ {a # b | ι(a) # ι(b) ∈ |Σ|}

that is,‖Σ‖ is the finite subset of|Σ| consisting of constraints whose right-hand sides are variables or names,
but with names replaced by the corresponding name-variables according to the bijectionι.

We can now show the desired result.

Theorem 4.13. If Σ;Γ ⇒ ∆ is derivable inNL⇒ thenΣ†; Γ†, ‖Σ‖ ⇒ ∆† is derivable inNL.

Proof. The proof is by induction on the logical height of this derivation, with secondary induction on the total
height. For the cases corresponding to first-order/equational proof rules, the induction step is straightforward.

For the cases corresponding to nonlogical rules corresponding to universal axioms∀x.
∧
P ⊃

∨
Q,

suppose that we have derivations of the form

Σ;Γ, P ,Q1 ⇒ ∆ Σ;Γ, P ,Qn ⇒ ∆

Σ;Γ, P ⇒ ∆
Ax

Then by induction, we haveNL derivations of theNL sequentsΣ†; Γ†, P ,Qi, ‖Σ‖ ⇒ ∆† for i ∈ {1, . . . , n}.
It is straightforward to show that each of the axioms in Figure 7 is provable inNL, hence we can cut against
each axiom instance:

Σ†; · ⇒ ∀x.
∧
P ⊃

∨
Q

Σ†; Γ†, P , ‖Σ‖ ⇒
∧
P

Σ†; Γ†, P ,Q1, ‖Σ‖ ⇒ ∆† · · · Σ†; Γ†, P ,Qn, ‖Σ‖ ⇒ ∆†

Σ†; Γ†, P ,
∨
Q, ‖Σ‖ ⇒ ∆†

∨Ln

Σ†; Γ†, P ,
∧
P ⊃

∨
Q, ‖Σ‖ ⇒ ∆†

⊃L

Σ†; Γ†, P , ∀x.
∧
P ⊃

∨
Q, ‖Σ‖ ⇒ ∆†

∀R

Σ†; Γ†, P , ‖Σ‖ ⇒ ∆†
cut

The cases forF3, F4, F, A2, A3,Σ#, NL, NR remain.
ForF3, we have a derivation

Σ;Γ, a # a⇒ ∆
F3

In NL we can deriveΣ†; Γ†, a # a, ‖Σ‖ ⇒ ∆† using thea # b ⊃ a 6≈ b direction of(CF2) sincea 6≈ a is
contradictory.

ForF4, we have a derivation

Σ;Γ, a ≈ b⇒ ∆ Σ;Γ, a # b⇒ ∆

Σ;Γ ⇒ ∆
F4

By induction, we have derivations ofΣ†; Γ†, a ≈ b, ‖Σ‖ ⇒ ∆† andΣ†; Γ†, a # b, ‖Σ‖ ⇒ ∆†. Since
a # b ⇐⇒ a 6≈ b anda ≈ b ∨ a 6≈ b is a tautology in classical logic,a # b ∨ a 6≈ b is also a tautology. We
can cut against a derivation of this formula to deriveΣ;Γ ⇒ ∆ in NL.

ForF , suppose we have a derivation of the form

Σ#a:ν; Γ ⇒ ∆

Σ;Γ ⇒ ∆
F

By induction, we can derive theNL sequentΣ†, a:ν; Γ†, ‖Σ#a:ν‖ ⇒ ∆†. Note that‖Σ#a:ν‖ = ‖Σ‖, a #
x wherex = FV (Σ†). Using the freshness axiom(CF4) of NL, we can derive

Σ†; · ⇒ ∀x:τ .∃a:ν.a # x

Σ†, a:ν; Γ†, ‖Σ‖, a # x⇒ ∆†

Σ†; Γ†, ∀x.∃a:ν.a # x, ‖Σ‖ ⇒ ∆†
∀L, ∃L

Σ†; Γ†, ‖Σ‖ ⇒ ∆†
cut

20

It is likewise easy to derive rulesA2, A3 from axioms(CA1), (CA2) of NL usingcut.
ForΣ#, suppose we have a derivation of the form:

Σ1#a:ν,Σ2; Γ, a # t⇒ ∆ (a # t ∈ |Σ1|)

Σ1#a:ν,Σ2; Γ ⇒ ∆
Σ#

By induction, we haveΣ†
1, a:ν,Σ

†
2; Γ

†, a # t, ‖Σ1#a:ν,Σ2‖ ⇒ ∆†. Observe thata # x ⊆ ‖Σ1#a:ν,Σ2‖.
Using Proposition 4.12(1), we can derive as follows:

Σ†
1, a:ν,Σ

†
2; · ⇒ ∀a:ν.∀x:τ .a # x ⊃ a # t

Σ†
1, a:ν,Σ

†
2; Γ

†, ‖Σ1#a:ν,Σ2‖, a # t⇒ ∆†

Σ†
1, a:ν,Σ

†
2; Γ

†, ‖Σ1#a:ν,Σ2‖, ∀a:ν.∀x:τ .a # x ⊃ a # t⇒ ∆†
∀L∗,⊃L∗

Σ†
1, a:ν,Σ

†
2; Γ

†, ‖Σ1#a:ν,Σ2‖ ⇒ ∆†
cut

Finally, we consider the cases forNL and NR. For NL, we have

Σ#a:ν; Γ, ϕ(a, x) ⇒ ∆

Σ;Γ, Na:ν.ϕ(a, x) ⇒ ∆
NL

From the upper derivation, by induction, we have a derivation of Σ†, a:ν; Γ†, ‖Σ#a:ν‖, ϕ†(a, x) ⇒ ∆†.
Since‖Σ#a:ν‖ = ‖Σ‖, a # y wherey = FV (Σ†) ⊇ x, we can also deriveΣ†; Γ†, ‖Σ‖, ∃a:ν.a #
x ∧ ϕ(a, x) ⇒ ∆ using∃L and∀L. Finally, we can cut against the axiom instance∀x:τ .∃a:ν.a # x ∧
ϕ†(a, x) ⇐⇒ Na:ν.ϕ†(a, x) to prove thatΣ†; Γ†, Na:ν.ϕ†(a, x) ⇒ ∆†.

For NR, we have
Σ#a:ν; Γ ⇒ ϕ(a, x),∆

Σ;Γ ⇒ Na:ν.ϕ(a, x),∆
NR

The argument is similar to the previous case: by induction, we can deriveΣ†, a:ν; Γ†, ‖Σ#a:ν‖ ⇒ ϕ†(a, x),∆†

inNL. Thus, since‖Σ#a:ν‖ = ‖Σ‖, a # y wherey = FV (Σ†), we can concludeΣ†; Γ†, ‖Σ‖ ⇒ ∀a:ν.a #
y ⊃ ϕ(a, x),∆†. Using Proposition 4.12(2) and the axiom(CQ) defining Nin NL we can cut against the
formula

∀y:τ .(∀a:ν.a # y ⊃ ϕ†(a, x)) ⇐⇒ Na:ν.ϕ†(a, x)

wherey ⊇ x. We can conclude thatΣ†; Γ†, ‖Σ‖ ⇒ ∆†, Na:ν.ϕ†(a, x).

Corollary 4.14. If Σ only contains variables and⊢NL Σ;Γ∗ ⇒ ∆∗ thenΣ;Γ ⇒ ∆ is derivable inNL⇒.

Proof. By Theorem 4.13, we know thatΣ†; (Γ∗)†, ‖Σ‖ ⇒ (∆∗)†. By definition of the(−)∗ and (−)†

translations, we know that(Γ∗)† = Γ and(∆∗)† = ∆. Moreover, sinceΣ contains no name-symbols, by
definitionΣ† = Σ and‖Σ‖ = ∅. Hence,Σ;Γ ⇒ ∆.

4.3.2 Intuitionistic Nominal Logic

We wish to argue that the intuitionistic calculusINL⇒ is really “intuitionistic nominal logic”. However,
Pitts only considered classical nominal logic. There is a subtlety having to do with Pitts’ axiom(CF2) in the
intuitionistic case.

Pitts’ original axiom(CF2) stated that freshness among names is the same as inequality:

(CF2) ∀a, a′:ν. a # a′ ⇐⇒ ¬(a ≈ a′)

However, this axiom does not fit the scheme for nonlogical rules given by Negri and von Plato [14]. Instead,
in INL⇒ we use two nonlogical rulesF3 andF4 asserting that no name is fresh for itself and that two names
(of the same type) are either equal or fresh. These two axiomsare equivalent to(CF2) in classical logic, but
in intuitionistic logic, Pitts’ axiom is weaker, sincea ≈ b ∨ a 6≈ b does not follow from(CF2). (Recall that
for theF4 case of Theorem 4.13, we used excluded middle for name-equality).

We have modified Pitts’ axiomatization slightly by replacing the original axiom(CF2) with two rules,
(IF2) asserting that no name is fresh for itself, and(IF3) stating that two names are either fresh or equal.
In classical logic, these are equivalent axiomatizations,whereas(IF3) is not provable in intuitionistic logic

21

Swapping
(IS1) ∀a:ν, x:τ. (a a) · x ≈ x
(IS2) ∀a, a′:ν, x:τ. (a a′) · (a a′) · x ≈ x
(IS3) ∀a, a′:ν. (a a′) · a ≈ a′

Equivariance
(IE1) ∀a, a′:ν, b, b′:ν′, x:τ. (a a′) · (b b′) · x ≈ ((a a′) · b (a a′) · b′) · (a a′) · x
(IE2) ∀a, a′:ν, b:ν′, x:τ. b # x ⊃ (a a′) · b # (a a′) · x
(IE3) ∀a, a′:ν, x : τ. (a a′) · f(x) ≈ f((a a′) · x)
(IE4) ∀a, a′:ν, x : τ . p(x) ⊃ p((a a′) · x)
(IE5) ∀b, b′:ν′, a:ν, x:τ. (b b′) · (〈a〉x) ≈ 〈(b b′) · a〉((b b′) · x)
Freshness
(IF1) ∀a, a′:ν, x:τ. a # x ∧ a′ # x ⊃ (a a′) · x ≈ x
(IF2) ∀a:ν. ¬(a # a)
(IF3) ∀a, a′:ν. a # a′ ∨ a ≈ a′

(IF4) ∀a:ν, a′:ν′. a # a′

(IF5) ∀x : τ . ∃a:ν. a # x
N-quantifier
(IQ) ∀x.(Na:ν. ϕ) ⇐⇒ (∃a:ν. a # x ∧ ϕ)

whereFV (Na.ϕ) ⊆ {x}
Abstraction

(IA1)
∀a, a′:ν, x, x′:τ. 〈a〉x ≈ 〈a′〉x

′
⇐⇒ (a ≈ a′ ∧ x ≈ x′)
∨ (a′ # x ∧ x′ ≈ (a a′) · x)

(IA2) ∀y : 〈ν〉τ .∃a:ν, x:τ. y ≈ 〈a〉x

Figure 11: Axioms of Intuitionistic Nominal Logic

from Pitts’ axioms. Moreover, it is computationally plausible that equality and freshness among names are
both decidable, since names are typically finite, discrete data structures.

For this reason, we introduce an alternative axiomatization INL, shown in Figure 11, differing in the
replacement of(CF2) with two axioms(IF2) and(IF3). These axioms are equivalent in classical logic to
(CF2), but better-behaved from a proof-theoretic perspective.

Let⊢INL indicate derivability in intuitionistic logic from the axioms inINL. Using essentially the same
proof techniques as for the classical case, we have:

Theorem 4.15. If Σ contains only variables, then⊢INL Σ;Γ ⇒ ∆ is derivable if and only if⊢INL⇒

Σ;Γ∗ ⇒ ∆∗.

5 Conclusions

Nominal logic provides powerful techniques for reasoning about fresh names and name-binding. One of the
most interesting features of nominal logic is theN-quantifier. However, the techniques used for reasoning
with Noffered by previous formalizations of nominal logic are highly (but unnecessarily) complex.

In this article we have introduced a new sequent calculusNL⇒ for nominal logic which uses typing
contexts extended with freshness information to deal with the N-quantifier. Its rules for Nare symmetric and
rationalize a proof-search semantics forNthat seems natural and intuitive (inspired by the treatmentof Nin
nominal logic programming). We proved cut-elimination in detail. In addition, we usedNL⇒ to provide a
syntactic proof of consistency and a detailed proof of equivalence to Pitts’ axiomatization modulo ordinary
first-order (classical/intuitionistic) logic. These results are the first of their kind to be shown in detail.

NL⇒ has also been used in other work:

• NL⇒ provides a proof-search reading ofNwhich is much closer to the approach taken in theαPro-
log nominal logic programming language [3, 5]. While Gabbayand Cheney gave a proof-theoretic
semantics of nominal logic programming based onFLSeq, this analysis does not seem relevant to

22

αProlog because it suggests a quite different (and, for typical programs, much more computationally
intensive) proof-search technique forN-quantified formulas. In contrast,NL⇒ seems to provide a
proof-theoretic foundation forαProlog’s existing search technique.

• Gabbay and Cheney [7] showed thatFOλ∇, another logic due to Miller and Tiu [13] possessing
a self-dual “fresh value” quantifier, can be soundly interpreted in a higher-order variant ofFLSeq

via a proof-theoretic translation. However, the translation they developed was incomplete, and the
possibility of finding a faithful translation was left open.Cheney [1] showed how to translate to a
higher-order variant ofNL⇒ and proved a completeness result. In this paper we have focused on
NL⇒ only over first-order terms. It would be interesting to further exploreNL⇒ over higher-order
terms and compare its expressiveness to more recent variations of Miller and Tiu’s approach, such as
the “nominal abstraction” system of Gacek et al. [10].

• Miculan, Scagnetto and Honsell [12] have shown how to translate derivable judgments from (a natural-
deduction variant of)NL⇒ to the Theory of Contexts [11], an extension of the Calculus of Induc-
tive Constructions with a theory axiomatizing a type of names with decidable equality, freshness, and
name-binding encoded as second-order function symbols. Itmay be interesting to consider the reverse
direction, e.g. translating a first-order fragment of the Theory of Contexts to nominal logic.

Additional directions for future work include the development of natural deduction calculi and type the-
ories using the ideas ofNL⇒. One particularly interesting direction is the possibility of developing a type
system and confluent term rewriting system that could be usedto decide equality of nominal terms and proof
terms. In such a system, the explicit equality and freshnesstheory that necessitates the many nonlogical
rules inNL⇒ could be dealt with implicitly via traditional rewriting and syntactic side-conditions, leading
to an even simpler proof theory for nominal logic. However, work in this direction by Schöpp and Stark [17]
indicates that there may be significant obstacles to this approach; the system introduced in this article may
be viewed as a well-behaved fragment of their system. Further development of the proof theory and type
theory of nominal logic (for example, building on nominal type theories by Pitts [16], Cheney [4], or Crole
and Nebel [6]) seems possible and desirable.

References

[1] J. Cheney. A simpler proof theory for nominal logic. InFOSSACS 2005, volume 3441 ofLNCS, pages
379–394. Springer-Verlag, 2005.

[2] J. Cheney. Completeness and Herbrand theorems for nominal logic. Journal of Symbolic Logic,
71(1):299–320, 2006.

[3] J. Cheney and C. Urban. Alpha-Prolog: A logic programming language with names, binding and alpha-
equivalence. InProceedings of the 20th International Conference on Logic Programming (ICLP 2004),
number 3132 in LNCS, pages 269–283, St. Malo, France, 2004. Springer-Verlag.

[4] James Cheney. A dependent nominal type theory.Logical Methods in Computer Science, 8(1), 2012.

[5] James Cheney and Christian Urban. Nominal logic programming. ACM Transactions on Programming
Languages and Systems, 30(5):26, August 2008.

[6] Roy L. Crole and Frank Nebel. Nominal lambda calculus: Aninternal language for FM-cartesian closed
categories. InMFPS, 2013. In press.

[7] M. J. Gabbay and J. Cheney. A sequent calculus for nominallogic. In LICS 2004, pages 139–148.
IEEE, 2004.

[8] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.Formal Aspects
of Computing, 13:341–363, 2002.

[9] Murdoch Gabbay. Fresh logic: proof-theory and semantics for FM and nominal techniques.J. Applied
Logic, 5(2):356–387, 2007.

23

[10] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction.Inf. Comput., 209(1):48–73,
2011.

[11] Furio Honsell, Marino Miculan, and Ivan Scagnetto. Thetheory of contexts for first order and higher
order abstract syntax. InTOSCA, volume 62 ofElectronic Notes on Theoretical Computer Science,
2001.

[12] M. Miculan, I. Scagnetto, and F. Honsell. Translating specifications from nominal logic to CIC with
the theory of contexts. In R. Pollack, editor,MERLIN, pages 41–49, Tallinn, Estonia, September 2005.
ACM Press.

[13] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. Comput. Logic,
6(4):749–783, 2005.

[14] Sara Negri and Jan von Plato.Structural Proof Theory. Cambridge University Press, 2001.

[15] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
183:165–193, 2003.

[16] A. M. Pitts. Structural recursion with locally scoped names. Journal of Functional Programming,
21(3):235–286, 2011.

[17] Ulrich Schöpp and Ian Stark. A dependent type theory with names and binding. InCSL 2004, number
3210 in LNCS, pages 235–249, Karpacz, Poland, 2004.

[18] A. S. Troelstra and H. Schwichtenberg.Basic Proof Theory. Number 43 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, second edition, 2000.

[19] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science, 323(1–
3):473–497, 2004.

24

	1 Introduction
	2 Background
	2.1 Pitts' axiomatization
	2.2 Gentzen systems

	3 Sequent Calculus
	3.1 Syntax
	3.2 The Rules
	3.3 Structural Properties
	3.4 Cut-Elimination
	3.5 Intuitionistic calculus

	4 Applications
	4.1 Syntactic Consistency
	4.2 Orthogonality of abstraction
	4.3 Equivalence to Nominal Logic
	4.3.1 Classical Nominal Logic
	4.3.2 Intuitionistic Nominal Logic

	5 Conclusions

