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Abstract

Nominal logic is a variant of first-order logic that providegpport for reasoning about bound names
in abstract syntax. A key feature of nominal logic is the ryentifier, which quantifies ovéresh names
(names not appearing in any values considered so far). daeeattempts have been made to develop con-
venient rules for reasoning with the new-quantifier, but wgia that none of these attempts is completely
satisfactory.

In this article we develop a new sequent calculus for nomliogic in which the rules for the new-
quantifier are much simpler than in previous attempts. We pisve several structural and metatheo-
retic properties, including cut-elimination, consistgrand equivalence to Pitts’ axiomatization of nominal
logic.

1 Introduction

Nominal logic [15] is a variant of first-order logic with adiginal constructs for dealing withamesand
binding (or name-abstractionbased on the primitive notions of bijective renamisgvépping and name-
independencédieshnesk It was introduced by Pitt$ [15] as a first-order and reabbnaell-behaved frag-
ment of Fraenkel-Mostowski set theqgrthe setting for Gabbay and Pitts’ earlier foundationalkvon for-
malizing names, freshness, and binding using swapping [8].

One of the most interesting features of nominal logic is tlesence of a novel form of quantification over
fresh names The formulalla.¢ means, intuitively, “for fresh names ¢ holds”. The intended semantics
of nominal logic interprets expressions as value§initely-supported nominal setsr sets acted upon by
name-swapping and such that each value depends on at masyfinany names. The inspiration for the
M-quantifier is the fact that in the presence of infinitely mawaynes, a fresh name can be chosen for any
finitely-supported value, and equally-fresh names arestimdjuishable. As a result, a propertya) holds
for somefresh name if and only if it holds forall fresh names; in either case, we say taty holds.

Several formalizations of nominal logic have been invegdd. Pitts introduced nominal logic as a
Hilbert-style axiomatic system. Gabbay [9] proposed Fiastic (F'L), an intuitionistic Gentzen-style nat-
ural deduction system. Gabbay and Cheney [7] presdrifed,,, a sequent calculus version of Fresh Logic.
Schopp and Stark have developed a dependent type theoayrafaiand binding that contains nominal logic
as a special case [17].

However, none of these formalizations is ideal. Hilberttasys have well-known deficiencies for com-
puter science application$:L andF Lg., rely on a complicated technical device callitesfor the rules
involving . Schopp and Stark’s system is much more powerful than seepessary for many applications
of nominal logic, and there are many unresolved issues, asigoof normalization and the decidability of
the equality and typechecking judgments.

In this article we present a new and simpler sequent caldalusominal logic. Its main novelty is the
use of freshness information in typing contexts neededdaaring aboutl-quantified formulas, rather than
the technically more cumbersorskcesused inF'L andF' Lg.,. We prove basic proof-theoretic results such
as cut-elimination, establishing that this calculus isgbtiveoretically sensible. In addition, we prove that
N L= is consistent and equivalent to Pitts’ original axiomat@maof nominal logic.

This article incorporates some revised material from aipres/conference publicationl[1], extended with
detailed proofs and additional results concerning coramity. That paper also gave a sound and complete
embedding of Miller and Tiw's"O\Y [13] in N L=, extending an earlier result by Gabbay and Chehkgy [7]


http://arxiv.org/abs/1312.4840v1

Swapping

(CSy) Vaw,z:7. (aa) v~z
(CS9) Va,d':wv,z:7. (ad') - (ad) -z~ x
(CS3) Va,d":v. (ad')-a=d

Equivariance
(CEy) Va,d:v,bb:v x7. (ad) - (bb) -z~ ((ad)-b(ad) V) -(ad) -z

(CE3) Va,a v, b x:r.b# 2D (ad)-b# (ad)-x
(CEs) Va,d :.v,T7. (ad') - f(T) = f((ad)-T)
(CEy) Va,d" :.v,Z:7. p(T) D p((ad)-T

(CEs) Vb, b awv, i (b)) - ({a)z) = ((bY) - a)((bV) - x)
Freshness

(CFy) Va,a':.v,z:r.a# xNd #xD(ad) -z~
(CFy) Va,a'w.a # ad < asd

(CF5) Vaw,a':v.a# a

(CFy) VZ.T. Jaw.a # T
M-quantifier

(CQ) vZ.(Na:v. ) < (Baw.a # TN )
whereF'V (Wa.p) C {z}
Abstraction
(CAy) Va,d v, z,2'":7. (a)x =~ (d')s’ <= (a~d Ax~2a')

V. (d#zxzAnd =(ad)-x)

(CAs) Vy:(vyT.3aw, z:1. y = {(a)x

Figure 1: Axioms of Classical Nominal Logic

which gave a sound, but nonconservative translation fRe\" to F'Ls.,. These results are not presented
in this article.

2 Background

2.1 Pitts’ axiomatization

As presented by Pitts, nominal logic consists of typed firsker logic with equality and with a number of
special types, type constructors, and function and relajonbols formalized by a collection of axioms. In
particular, the basic sort symbols of nominal logic aredtdd intodata types), ' andatom types, v’ (which
we shall also preferentially catlame types In addition, whenever is a name type and is a type, there
exists another typé& ) called theabstractionof = by v.

Besides possessing equality at every type, nominal logiludtes a binanfreshnesgelation symbol
fresh,. : v,7 — oforeach name type and typer. In addition, nominal logic includes two special function
symbolsswap,, : v,v,7 — 7 andabs,, : v, — (v)7, calledswappingandabstractionrespectively. When
there is no risk of confusion, we abbreviate formulas of thenf fresh,-(a,t) asa # ¢, and terms of the
form swap, - (a, b, t) andabs, . (a,t) as(a b) - t and{a)t respectively. In addition, besides the ordinsignd
3 quantifiers, nominal logic possesses a third quantifieleddahefresh-name quantifieand writtenl1. A
M-quantified formuld/z:v.o may be constructed for any name-type

Pitts presented a Hilbert-style axiom system for nomingidshown in Figurgll. The axioms are divided
into five groups:

e Swapping axioms({S): describe the behavior of the swapping operation: swappingme for itself
has no effect'S1), swapping is involutive©'S>), and swapping exchanges names}).

e Equivariance axioms({ FE): prescribe thequivarianceroperty, namely that all relations are preserved
by and all function symbols commute with swapping. In patac, (CE;) says that the swapping
function symbol itself is equivariant{{F-) says that freshness is equivariatt/{s) says that all other



function symbols are equivariant, and¥,) says that all other relation symbols are equivariant. Also
(CEs) says that abstraction is equivariant.

e Freshness axiomg)(F"): describe the behavior of the freshness relation (andtiésaation with swap-
ping). (CFy) says that two names fresh for a value can be exchanged widlifeating the value.
(CFy) says that freshness coincides with inequality for namégr;s] says that distinct name-types
are disjoint. Finally, C'Fy) expresses thigseshness principlenamely, that for any finite collection of
values, a name fresh for all the values simultaneously mahbsen.

e M-quantifier axiom schem@'Q): Pitts’ original formalization introduced no new inferenwles for
W. Instead 1 was defined using the axiom scheewhich assertsz.(Na.¢ <= Ja.a # T A p),
whereF'V(y) C {a,T}.

e Abstraction axiom$C A): These define special properties of the abstraction fumstjonbol. Specif-
ically, (CA;) defines equality on abstractions as either structural égual equality up to “safe”
renaming of bound names. Gabbay and Pitts showed that thés@ezesyv-equivalence in, for exam-
ple, the lambda-calculus][8]; we shall not repeat the arquinere. Axiom(C A;) states a surjectivity
property for abstraction: any value of abstraction type- can be written aéa)2 for some name : v
and valuer : 7.

2.2 Gentzen systems

While admirable from a reductionist point of view, Hilbegtstsems have well-known deficiencies: Hilbert-
style proofs can be highly nonintuitive and circuitous.téa&l, Gentzen-styleatural deductiorandsequent
systems provide a more intuitive approach to formal reaspm which logical connectives are explained
asproof-searchoperations. Gentzen systems are especially useful for atatipnal applications, such as
automated deduction and logic programming. Such systeenalso convenient for relating logics by proof-
theoretic translations.

Gentzen-style rules fdfl have been considered in previous work. Pitts [15] proposgqdent and natural
deduction rules foW based on the observation that

Vaww.(a # T D ¢(a,T)) D Naww.p(a,T) D Jaw.(a # TA¢(a,T)) .

These rules (see Figuré 2(NL)) are symmetric, emphasidiagelf-duality. However, they are not closed
under substitution, which complicates proofs of cut-etiation or proof-normalization properties.

Gabbay[[9] introduced an intuitionistic natural deduct@ahculus called Fresh Logid*{L) and studied
semantic issues including soundness and completenessligzowing proof-normalization. Gabbay and
Cheney [[7] presented a similar sequent calculus calléd.,. Both F'L and F'Lg., had complex rules
for . In FL, Gabbay introduced a technical device calfidesfor obtaining rules that are closed under
substitution. (For the purpose of this discussion, it is metessary to go into the details of what slices
are, since we will show that we can do without them.) TecHhjica slice p[a#u] of a formulay is a
decomposition of the formula as(a, T)[u /7] for fresh variables;, such thatz does not appear in any of
thew. Slices were used in bothL andF'Lg., to deal withU (see Figur€l2f'L,F Ls.,)). The slice-based
rules shown in Figurel Z Ls.,) are closed under substitution, so proving cut-eliminationtfase rules is
relatively straightforward once several technical leminaslving slices have been proved. Noting that the
FLg.q rules are structurally similar téL and3R, respectively, Gabbay and Cheney observed that alternate
rules in whichIL was similar todL and/ R similar to¥ R were possible (see Figlel%eq)). These rules
seem simpler and more deterministic; however, they stibhive slices.

Experience gained in the process of implementiiRyolog, a logic programming language based on
nominal logic [3], suggests a much simpler reading/ias a proof-search operation than that implied by the
FL-style rules. InaProlog, when al1-quantifier is encountered (either in a goal or program @gysroof
search proceeds by generating a fresh nartebe used for thél-quantified name. Besides satisfying a
syntactic freshness requirement (like eigenvariabl&siimroduction or3-elimination rules), the fresh name
is also required to beemantically freshthat is, fresh for all values appearing in the derivationtaphe
point at which it is generated. In contrast, the proof-seamnterpretation suggested yL-style rules is to



Da#T=p,A (T=FV(,Na.yp,A)) R Ta#Z,0=>A (z=FV({I,Nav.p,A))

nrL

I'= Vav.p, A I Nawv.p = A (NL)
Pud#t TFopla#tu/a] T Wawgla#t] THu#T T,p[u/al- ¢
I'F WNa:v.plattt) =1 ME (FL)
T,u#t= ¢lu/a T,u#t,olu/al = 9
T, u # t = VNa:v.pla#t] i T, u # t, Na:v.pla#t] = (FLseq)
Pa#isg (ag FV(T,9) Pa#te=v (ag FV(T)
I = Na:v.pla#t] T, Na:v.plaftt] = o (FLS.,)
SHav;I'= ¢ (a¢X) S#HavTp=1¢ (a¢X)
T = Nawp VR 3T Naw.p = L (NL™)

Figure 2: Evolution of rules foll

search for a suitable slice of tiequantified formula. This reading seems much less detestigrihan that
employed inaProlog.

In this article we present a simplified sequent calculus fomimal logic, calledV L=, in which slices
are not needed in the rules figr (or anywhere else). Following Urban, Pitts, and Gabbay[@19and our
prior work [2], we employ a new syntactic classrme-symbols, b, . . . different from ordinary variables
x,y,z,.... Like variables, such name-symbols may be boundipybut unlike variables, two distinct
name-symbols always denote distinct name values. As exgaldh our previous paperi[2], name-symbols
can be used to construct ground terms, which is conveniemtttoe perspective of studying Herbrand models
and consistency. In place of slices, we introduce contdsdncode information about freshness as well
as identifying the types of variables and name-symbols.ci8pally, contexts¥#a:v may be formed by
adjoining afresh name-symbalwhich is also assumed to be semantically fresh for any valesetioned in
3. Our rules fo (Figure[2(V L™)) are in the spirit of the original rules and are very simple.

Besides presenting the sequent calculus and proving stalgiroperties such as cut-elimination, we
verify that NL= and Pitts’ axiomatizatiorVL are equivalent. We also present a syntactic proof of the
consistency of the nonlogical rules, which together with-@imination implies consistency of the whole
system.

The structure of this article is as follows: Sectidn 3 présehe sequent calculu¥ L= along with
proofs of structural properties. Sectidn 4 discusses akapplications, including proofs of consistency and
equivalence ofV L™ to N L. Sectiori b concludes.

This article builds upon prior work by Gabbay and Chenéy ff] &abbayi[B], which introduced sequent
and natural-deduction calculi for nominal logic, based bices. The closest-related prior publication is
Cheneyl[1], which introduced a single-conclusion, inanistic version ofN L= with the simpler rules for
M-quantifiers shown above. This article generalizes theagmbrtaken there and provides detailed proofs of
the main results, along with proofs of new results includiggivalence to classical nominal logic.

3 Sequent Calculus

3.1 Syntax

The typesr, termst, and formulasy of N L= are generated by the following grammar:
7,0 w= 0|lv| T
tu = a:|a|c|J_c(t) [ (ab)-t](a)t
e, u= T[L[p@) oAV oVi|eDyY|Vore|Inre | Vavy [[trult#u

The constructs to the right dfare syntactic sugar that are definable in terms of the cogriege as explained
below; we list them in the grammar for ease of reference. Eselhypes are datatypé&snd name-types;



FV(r) = {x}
FV@) = o
FV(Qu:op) = FV(p) —{x} (@€ {v.3})
FV(WNaww.p) = FV(p)
FN(z) = @
FN@) = {a}
FN(Qz:op) = FN(p) @Qe{v.3})
FNWaww.p) = FN(p)—{a}
Fa(c)=Fa(T)=Fa(l) = o
Fa(f(®) = Fa(p(t)) = UFa(t)
Fa(poy) = Fa(p)UFa() (ce{AV,D})
Fa((ab)-t) = Fa(a)U Fa(b)U Fa(t)
Fa({a)t) = Fala)U Fa(t)
FVN(t) = FV()UFN()

Figure 3: Free variables and names (nBtestands for eitheF'V or F'N)

(ab)-¢ = ¢ . (pe{T,L1})
(@b)-p(t) = p((ad)-1)
(@b)-poyp = (ab)-po(ab)-¢ (ce{AV,D})
(ab)-Qrop = Quio.(ab)-¢ (Q e {V,3},x ¢ FV(a) UFV (b))
(ab)-WNaww.p = WNaw.(abd)-p (a¢ FN(a) UFN(b))

Figure 4: Swapping for formulas

additional types are formed using the abstraction typetcotior. Terms are first-order, with variablesy
are drawn from a countably infinite S&t also, name-symbols b are drawn from a countably infinite set
A disjoint formV. The lettersz, b are typically used for terms of some name-typeNegation and logical
equivalence are defined as follows:

p=(@DLl) <= b=(@DY)A[Dyp)

We assume given a signature that maps constant symabtolsypesd, function symbolsf to sorts

T,...,Tn — 0, and relation symbols to sorts,..., 7, — o, and containing at least the following dec-
larations:
swapy, : VU, T =T absyr v, T = (V)T
eqr : T,T—o0 fresh,r : v,T—=o0

for name-types and types. The subscripts are dropped when clear from context. Thatinas(a b) - ¢
and (t)u are syntactic sugar for the termsap(a,b,t) andabs(t,u), respectively. Likewiset ~ u and
t # u are syntactic sugar forg(t, u) and fresh(t, u), respectively. The function8V (.), FN(-), FV N ()
calculate the sets of free variables, name-symbols, ordaihbles and name-symbols of a term or formula
(see Figur€l3). We lift the swapping operation to formulastasvn in Figuré}.

Thetyping contextsised inN L= are generated by the grammar:

Yo=-| X, o7 | X#aw

We often write-, x:7 and -#a:v to x:7 anda:v respectively. We writev for a term that may be either a
name-symbaod or a variabler. TheX#a:v binding indicates that is a name of type and is assumed to be
fresh with respect to all names and variableXinWe writew:T € ¥ if the bindingw:7 is present int. We
write 32, 2’ for the result of concatenating two contexts such fiBtV (X) N FVN(Y') = @.

We writeX -t : 7orX - ¢ : otoindicate that is a well-formed term of type or ¢ is a well-formed
formula. From the point of view of typechecking, the additib freshness information in the context is



c:0 fim,...,tn =0 XFt:T wiTeY

YkFe:d S f():6 Yrw:T YFT:o
EF%ZWO (OE{/\,\/,D}) Yra:v YFHt:T E}_t,UZT
YF1l:o YFyoy:o YFa#t:o YHt=u:o
Yk p:o Yxrkp:o S#Havkp:o
YEVoirp:o YFEdzrp:o YFWawp:o

Figure 5: Well-formedness rules

irrelevant. The rules for typechecking (shown in Figurerg)standard, except for the rules for freshness and
the N-quantifier. Quantification using and3 is only allowed over types not mentioniag/1-quantification
is only allowed over name-types.

Definition 3.1. LetTmys = {t | X ¢ : 7} be the set of well-formed terms in context

e We associate a set of freshness form{¥z¢o each context’ as follows:
|- |=2 2,z : 7| = %] |S#a:v|=Z|U{a#t|te€Tms}
For examplea # x, b # a andb # f(z,y) are in|x:T#a:v, y:o#b:/|.

e We say that’ is stronger thai (X < X') if Tmy C Tmy and|X| C |X'|. For examplea:v, x:7 <
TTHaw, yo.

e We say that:ry € X if ¥ = ¥'#a:v, X" for some context¥’, ¥ and similarlyz:7 € ¥ means that
¥ =Y, z:7, X" for some context¥’, X",

e We say that is fresh forX if a is not among the names appearin@irwe writea ¢ X to indicate that
this is the case. Similarly, we write ¢ X to indicate that variable does not appear iB.

The following routine properties hold:
Lemma 3.2(Term Weakening)If X ¢ : randX < ¥/ thenYX' F ¢ : 7.
Lemma 3.3(Term Substitution) If X - ¢ : 7 andX, x:7, X' - w : 7/ thenX, X/ - uft/x] : 7.

3.2 The Rules

Judgments are of the fortd;T" = A, whereX is a typing context and', A are multisets of formulas.
We define classical and intuitionistic versions/éf.~. Classical N L~ is based on the classical sequent
calculusG3c (see Figuréls). The new rules definingL= are defined in Figurdd 7 ahdl 83 L= includes
two additionallogical rules L andUR, as already shown in Figuré 2. In additiodi L= includes several
newnonlogical rulesdefining the properties of swapping, equality, freshneslsadostraction. (The standard
rules involving equality in Figurel6 are also consideredlagital rules.)

Many of the nonlogical rules correspond to first-order ursaéaxioms of nominal logic (Figuké 7), which
may be incorporated into sequent systems in a uniform fasiing theAx rule schema without affecting
cut-elimination[[14]. Here, we write an axiom of the fofa A ---A P, D Q1 V-V Qm as/\? > Va.

To illustrate, the instances of this scheme for axidrpand F, are:

STya#Eb=A YT,ax=b=A
I =A

F3 F4

“;Toa#a= A

The key point of this treatment of nonlogical rules is thaytlct only on the hypothesis d&tso they do not
introduce new principal cut cases in the proof of cut-eliation.



— — h
ST, p(0) = p0), A 7

ST=T.8 B ST, 1Ak
5T =, A S T=9, A T, 01,00 = A
ST= oA, A MR Z;F,¢1A¢2:>AAL
ST = 1,09, A S Teo=A T,v=A
ST = Vo d VB ST, oV = A
D=, A S I=p,A ST,9=A
S=¢pD9,A SR SeDy=A
Y00 =, A (x€X) Ytt:o I;T,Voiop, oft/z} = A
5T = Vaio.p, A VR T Voo = A VL
YShHt:o %7 = Jzop,p{t/z}, A S0 T, o= A (x€Y)
3T = Axiop, A Ik 51 Fziop = A 3L
Sht=t= A 5Tt~ u, P(t), Plu) = A
YN SDt~u, P = A

Figure 6: Classical first-order equational sequent cagc({t8c)

The remaining nonlogical rules are as follows. Rudlg expresses an invertibility property for abstrac-
tions: two abstractions are equal only if they are strudtyiequal or equal by virtue off;. A3 says that
all values of abstraction type are formed using the abstradtinction symbol. The rule expresses the
freshness principle: that a name fresh for a given conteytahaays be chosen. It is important to note that
the fresh name chosen fimay be of any name type and thus, all name types are inhabited; however, base
data type$ could be empty, and an abstraction typer is inhabited if and only if- is. Finally, theX+# rule
allows freshness information to be extracted from the odr¥e It states that in context, any constraint in
|| is valid.

Remark3.4. Although we have motivated some choiceNiL,= in terms of proof-search behavior based on
experience witmProlog, some rules, such ag andX#, do not have particularly pleasant proof-search
properties. It is fair to say thav L= addresses only the proof search complexity arising fromlthe
guantifier and (to some extent) freshness but does not hejpmech with the complexity arising from
equational/freshness reasoning. dBRrolog, special cases of these problems are dealt with ungnal
unification and freshness constraint solving; in this payeaim to deal with full nominal logic.

The naming of the nonlogical rule groups corresponds toubket! by Pitts: the axioms are divided into
groups for swappingS), equivarianc€ F), freshnes$F'), and abstractiofA). The(Q) axiom is replaced
by the logical rule#1L andVR.

3.3 Structural Properties

Figure[9 lists some additional rules, including weakenaugptraction, general form of hypothesis and equiv-
ariance rules, and cut. We will now prove their admissipiliNote that these rules are not part of the
definition of NL=, and so in proving admissibility, it suffices to consideryoderivations using the core
rules introduced in Sectidn 3.2.

We now list some routinely-verified syntactic properties\of.=. We writet-,, .J to indicate that judg-
ment.J has a derivation of height at mast

Lemma 3.5(Weakening) If -, X;T" = A is derivable then so is,, 3;T', o = A. Similarly,F,, ;T =
A .

Lemma 3.6(Context Weakening)If -, ;T = A andX < ¥’ thent,, ¥';T = A.
Lemma 3.7(Substitution) If -, ¥ F ¢ : 7and X, z:7, ¥; T = A thenk,, X, ¥, T'[t/x] = Alt/z].



8

(S1) (aa) o~
N (Fy) a#xANb#xD(ab) - z=zx
(S2) (ad)-(ab) -2~z (F;) a#b (a:v,b: v vEV)
(Ss) (ab)-a=b (F) adtas L
() (ah)- S~ fian)p D AN
ab)- f(t)~ ab)-t
(Ei) p(®) D p((abd) 1) (A1) a#yhaz=(ab)-yD(a)z~(y
Figure 7: Equational and freshness axioms
Evra/\ﬁaQI:A E7F1/\ﬁ7Qn:>A

— A P > \/ Q an axiom instance in Figufé 7
S T,AP = A v APSVE gure

5T {a)t = (Wu,a=bt~u=A %;T,{(a)t = (bu,a #u,t =~ (ab) -u= A
5T (a)t = (byu = A
Yt (vyo Zav,zolit={(a)z=A (a,z¢X)

2

5T = A As
S#Hav;I'= A (a¢ ) STa#t=A (a#te|x) 5
=T = A F ST = A #
S#Hav;I'= o, A (a¢X) S#HavTp=A (a¢X)
ST = Vavg, a B ST Vavgo=a M
Figure 8: Nonlogical antfl-quantifier rules
D= A 5T =9 A 5T e= A
s AW sy o~ 7 ; cut
o= A T o=, A >0, = A A
;T = A T (ab)-p= A X;I'=(ab)-p, A
X% (ab)-o BV (@b & o
o= A o= A T =Ap

Figure 9: Some admissible rules BfL~

Proof. The interesting cases are for the new rules, specificallglagical rules AL, andR. All of the
nonlogical rules are closed under substitution; in paldicdor ¥# we havea # u € |%, 2z, Y| thena #
ult/x] € |Z, 5.
For F we have a derivation
S, Y Haw; T = A
S, o, YT = A

By inductionwe hav&, ¥'#a:v; T'[t/x] = A[t/z], SO we can us€ againto derives, X' T'[t/x] = Alt/x].
This requires the observation that sincez ¥ andX + ¢ : 7, we must have ¢ FN(t). The proofs
for UL and/R are similar, requiring the additional observation tfdb:v.o)[t/x] = Wa:w.(p[t/x]) since
a g FN(t). O

The remaining structural transformations do not presdmeehieight of derivations. However, they do
preserve the logical height of the derivation, which is dedias follows.

Definition 3.8. Thelogical heightof a derivation is the maximum number of logical rules in angrith of
the derivation. We writ¢-!, .J to indicate that/ has a derivation of logical heigkt n.

Now we consider some structural properties specifiz/th™. In the following, recall the definition of
(a b) - ¢ given in Figuré 4.



Lemma 3.9(Admissibility of EVL, EVR). TheEV L and EV R rules

;0 (ab)- o= A 5= (ab)-p, A
o= A T =, A

EVR

wherey is an arbitrary formula inT'myx, are admissible; if the antecedent 5% L or EV R is derivable,
then the respective conclusion has a derivation of the sagiedl height.

Proof. We proceed by induction on the lexicographic product ofdagheight and total height to show that
if the hypothesis of an instance &fV' L or EV R has a derivation then the conclusion of the respective rule
has a derivation of the same logical height.

We first conside=V L. The only interesting cases are whenb) - ¢ is principal on the left, otherwise
the induction step is straightforward. Furthermore, ohly ¢ases fohyp and> L are nontrivial.

If the derivation is of the form

h
ST, (ab)-A= (ab)-A,A P

then we may deriv€', A = (a b) - A, A as follows:

~. h
T, (ab)-A= (ab)-A,A 7P
ST, A= (ab)- A A 3

This derivation has the same logical height, 1, as the first.
If the derivation is of the form
E;Fa(ab)'SOD(ab)'l/’:>(ab)'%A E;Fa(a’b)'w:A
5T, (ab)- 9D (ab)-p= A

DL
then using the admissibility dfV R and EV L on the left andE'V R on the right (on derivations of smaller
logical height) we obtain

YT, (ab)- b) - b) -, A YT, (ab)- A
;T (ab)-9D(ab)-y=(abd)-p, EVL EVR ;T (ab) -y =
ST, 0D = ¢, A

sro=a PV
SL

SDpDy=A

This transformation is obviously logical height-presag/by induction.
For EV R, the interesting cases are thoselgp andD> R where(a b) - ¢ is principal on the right. Suppose
the derivation is of the form

h
i, (ab)-A= (ab)-A,A P

Then we can derive

~. h
ST (ab)-(ab)- A= A A up

T,(ab)- A= A A 3

This derivation has the same logical height, 1, as the first.
If the derivation is of the form

5L (ab)-p=(ab) -, A
5T =(ab)-¢oD(ab)-¥,A

DR

then since’V L andE'V R are admissible for all subderivations of this derivatiopirimluction we can derive

5T (ab)- o= (ab) -9, A
50 p=9,A
0= @D, A

EVL,EVR

OR

This transformation is obviously logical height-presag/by induction. O



Lemma 3.10(Swapping Fresh Namespuppos&#a:v - ¢(a) : o andb ¢ FN(X#a:v). Then the rule

SH#awv#b:w; T, ob) = A
S#av#bwi I p(a) = A

is admissible using nonlogical axioms only.
Proof. Letz = F'V(X). The derivation is as follows:
S#av#bw;Tia# T,b # 7, 0b) = A 4
SHav#biT,a#T,b#7, (ab)-pa) = A E;C/L
S#aw#bwi;Tia# T, b #7T,0(a) = A 4
SHaw#bwiT p(a) = A

whereF; and equational reasoning is used repeatedly to showdhgt- p(a) D ¢(b). O

Lemma 3.11(Admissibility of hyp*). Thehyp* rule

o= A hyp

wherey is an arbitrary formula inT'my, is admissible.

Proof. The proof is by induction on the constructionof The cases for the ordinary connectives of first-
order logic are standard. The case for= WNa:v.¢’ is as follows. By induction, we may assume that
YSH#a:wv#b:w; T, o(b) = ¢(b), A is derivable. We derive

SH#aw#b:v; T, o(b) = p(b), A

S#Haw#bw; T, p(a) = o(b), A I|;I(-3‘mm
Y#aw; T, p(a) = Naw.y', A I/ILR

T, Naw.g' = Naw.', A

Using the induction hypothesis, the judgméhtta:v#b:v; T, p(b) = ¢(b), A is derivable, since it is an
instance ofhyp* with a smaller principal formula. O

Lemma 3.12(Inversion) TheAL, VL, DL, 3L, VR, NL, and/R rules are invertible; that is,
1. 1L ST, o A = Athentl ST, 0,1 = A.
CIfEL ST o v = Athenl, ©:T, o = AandF, ;7,9 = A.
CIfEL ST, 0 D = Athenkl ¥:T, ¢ = A.

CIfEL ST = A VzpthenHl Xy T = A, o[y/x].

2

3

4. IfFL ;T 3z.0 = Athent, ¥ y; T, ¢y /x] = A.

5

6. If -l 3T, Naw.p = A then!, S#a:v; T, p = A for fresha ¢ 3.
7

CIfEL ST = A Maw.p thenHl S#a:;T = A, ¢ for fresha ¢ 3.

Proof. The proofsfortherulesL, VL, >L,3L,VR are similar to those for the systei@3c andG3im [14].
For UL, the proof is by induction on the height of the derivation. $tlocases are straightforward. Only
cases such agR, 3L, As, F' that introduce variables or name-symbols ikt@re exceptions. We show the
reasoning fol/ R.
If the derivation is of the form
Yoo I, Naw.p = 1
;T Naw.p = Vot

then using the induction hypothesis, we haver:7#b:v; T, p(b) = . Using structural weakening we
have X#a:v, x:7#b:v; T, o(b) = . Sincea andb are fresh with respect to all terms fimy, it is
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straightforward to show thaf#a:v, z:7#b:w : T',(a b) - ¢(a) = . Thus, by equivariance, we can de-
rive Y#a:w, x:m#b:w; I, p(a) = 1. Now b is not mentioned in the sequent so usiigwe can derive
YH#aw, x:m; T, o(a) = 1, and using’R we can derives#a:v; T, p(a) = Va:7.1), as desired.

The proof for the invertibility oA R is symmetric. O

Lemma 3.13(Contraction) If -, ¥;T', ¢, = A is derivable then so is!, ¥;T',p = A. Similarly, if
ST = A, ¢, ¢ is derivable ther!, ;T = A, ¢.

Proof. The proof is by induction on the lexicographic product ofitag height and total height. That is, the

induction hypothesis applies to all derivations of smdbgiical height and to all derivations of equal logical

height but smaller total height. Most cases are similar p standard proof. The only new cases involve
nonlogical rules anifla:v.. For the nonlogical rules it suffices to show that for eachogical rule that has

a contractable instance, there is a nonlogical rule cooredipg to the contraction. The only such rulefis

If the derivation is of the form

STa#zx,a# x,(aa)-c=z=> A
Y“;a# x,a# = A

Fy

then we can transform the derivation to

S:Ta#x,(aa) z=z=A
Y Dya#x= A

S

Most of the remaining cases are standard. The only integestw case is when the contracted formula

is derived using/1 L:
S#aw; T p(a), biv.p(b) = A
3T, Naw.p(a), Ub:v.p(b) = A

Then using inversion we have, | S#aw#bw : T, ¢(a),p(b) = A. Now using nonlogical rules we
can derive-!, | S#aw#b:w;T,p(a),p(a) = A. Then using the induction hypothesis we hae ;
YH#a:w#b:w; T, p(a) = A. Finally we can derive

nr

S#av#bw; T pa) = A
Y#aw; T p(a) = A
3T, Nawp(a) = A

VL
The proof for right-contraction is symmetric, using thearbility of IR. O

3.4 Cut-Elimination

As usual for sequent systems, the most important properthéck to verify that the system is sensible is
cut-elimination.

Lemma 3.14(Admissibility of Cut). If - X;T = A, pandk X;T7, o = A thent ;T TV = A A/,

Proof. Following the proof of cut-elimination for similar systerasch asG3c or G3im of [14], we prove
the lemma by induction on the structure of the cut-formpland then by a sub-induction on the sizes of
the subderivationH of ;T = A, ¢ andIl’ of X; TV, p = A. Thus, for the induction hypothesis, we may
assume that the lemma holds for any instances with a lesslermpt-formula or for all instances with the
same cut-formula but with a smaller derivation of one or ttreepofII, IT'.

As in other proofs of cut-elimination for similar systentsete are four categories of cases:

e Base cases in whicH or IT’ is an axiom or initial sequent.
e Left-commuting cases in whicH starts with a rule in whickp is not principal.
e Right-commuting cases in whidl’ starts with a rule in whicly is not principal.

e Principal cases in whicH andII’ both start with a rule in whiclp is principal.

11



All cases involving first-order rules exclusively are stard] and are shown in any standard proof of
cut-elimination (e.g.[[14] or [18]); their proofs rely updine properties established in the previous section,
including weakening, admissibility éfyp*, contraction, and inversion. In addition, Negri and vort®[d4]
showed that nonlogical rules of the form we consider can ldeddo sequent systems like3c or G3im
without damaging cut-elimination. Hence, it will suffice ¢consider only the new cases involving the
quantifier rules.

e Base cases: There are no new base cases.

e Left-commuting cases: There are two new cases in wHitlegins withIR or N L.
In the first case, we have

Y#a:v, I‘}_[w = A0

T Narway = AL e

wherea ¢ X. We can weakedl’ to obtain a derivatioW (IT') of X#a:v;T7,p = A’, and by

induction, we havee#a:v;T', ¢, IV = A, A’. Then we may deriv&; T, Ma:v.9p, IV = A, A’ using
L.

In the second case, we have

nrL

11
S#Hawv;I'= Ay, ¢
T = A VNawap, ¢

wherea ¢ . We can weakeifl’ to getW (IT') derivingX#a:v; I, = A’ and then by induction
obtainX#a:v;IV,T' = A, A, 4. UsingR we can derives : TV, T = A, A/, Na:v.a).

VR

e Right-commuting cases. These cases are exactly symnwethe teft-commuting cases.
In the first case, we have )
IT
S#Haw; TV, o, = A’
3T o, Nawap = A’
wherea ¢ 3. We can weakeil to obtain a derivatiodV (II) of X#a:v;I" = A, ¢, and by induction,
we haveX#a:v; T, ¢y, IV = A, A’. Then we may deriv®; T", Ma:v.yp, TV = A, A’ usinglL.
In the second case, we have

nrL

HI
St#aw; T, o= Ay
ST o= Al Nawa
wherea ¢ . We can weakeilI to obtain a derivatiodV (IT) of X#a:v;T" = A, ¢ and then by
induction obtail#a:v; TV, T = A, A’, 1. UsingIR we can deriveZ; TV, T' = A, A/, Vla:v.1).

VR

e Principal cases. In this case, bathandIl’ decompose the cut formula. The only new rule for decom-
posing formulas on the right l4 R, so the only new principal cut case is when we have

IT 1T
Y#Hav;I'= Ao S#aw; T o = A’ WL
T = A Vaw.p 2T Naw.p = A/

forsomea ¢ . By induction we hav&+#a:v; ', " = A, A’, and we may conclude; T, TV = A, A/
by an application of the freshness rule.

This completes the proof. O

Theorem 3.15. Any derivableN L= sequent has a cut-free derivation; there is an algorithmpiamducing
such derivations.

Proof. Proof by induction on the number of cuts. Given a derivatising cut, we can always find an
uppermost use of cut in the derivation tree and remove its Tédduces the number of cuts by one. O

12



5T 0= oD =¢ 509 =A

ST= Dy, A oR SDpDy=A
Szl = (z¢€X) Yht:o I;T,Voiop, oft/z} = A
5T = Vaio.p, A VR T Voo = A VL
YkHt:o %7 = Jzop,p{t/az}, A S0 T, o= A (x€Y)
;T = Axiop, A IR 51 Fziop = A 3L

Figure 10: Variant rules for the intuitionistic multipleeclusion calculus@3im)

3.5 Intuitionistic calculus

Intuitionistic N L= (I N L™) is based on the multiple-conclusion intuitionistic cdls/G3im [14], in which
certain rules are restricted to discard alternative carichs (see Figufe 10). Itis straightforward to show that
all of the structural properties including cut-eliminatibold for I N L= ; the same arguments as given above
in the classical case apply. We will show in Secfion 4.3.2 {fdL.= corresponds to a theory of first-order
intuitionistic logic that is equivalent to Pitts’ axiomadition in classicalV L.

Theorem 3.16.In INL™, if ¥; T = A holds then there is a cut-free derivation®fI" = A.

It is also straightforward to show thafV L= is equivalent to a single-conclusion intuitionistic cdics)
since the nonlogical and-quantifier rules preserve the single-conclusion property

Theorem 3.17.If ¥;T" = A holds inINL= then¥;T" = \/ A holds in the single-conclusion variant of
INL=.

Proof. Most cases of the proof are analogous to the usual proofrrglét3i andG3im [14]. The additional
cases involve the nonlogical atfdquantifier rules. Of these, the nonlogical rules are shitfigward because
nothing changes on the right-hand side of the sequent ie th#ss. The case fi L is also straightforward
for the same reason.

We show the case fii R. Suppose the derivation is of the form:

S#Hav;I' = p, A
¥, = Naw.p, A

By induction on the subderivation we know tha¢ta:v;I" = ¢ vV \/ A. We reason as follows:

S#awv#bw; T, ¢ = p[b/a]

*

h
Y#Haw; o = Naw.p M\?R S#av;T)VA= VA up VR
S#aw; T o = Nawwp VA ! S#av; T VA= Navp VA L2
S#awiT = oV VA S#avil, oV VA= VawpV VA v

cut

S#aw;I'= VNawp VA
5T = WNawvp VvV A

We can use the intuitionistic (single-conclusion) variaht emmal3.1ID to concludB#a:v#b:v; T, o =
¢[b/al. O

4 Applications

4.1 Syntactic Consistency

For pure first-order logic, cut-elimination immediatelypties consistency, since by inspection of the rules
there can be no shortest proof of = 1. However, in the presence of general nonlogical rules, anly
weaker result holds. We say that an atomic formulaéemstraintif it is an equality or freshness formula,
andI is a constraint set of it contains only constraints.

13



Proposition 4.1. If -;- = L has a cut-free derivation, then it has one using only nomalgiules, in which
each sequentis of the fornT" = 1, wherel is a constraint set.

The proof is immediate by observing that only nonlogica¢suhre applicable to a derivation-of' = |
wherel is a constraint set. In particular, note that the instandb@flx rule scheme fot # o O 1 (axiom
F3) has no hypotheses:

SiT,a#a= A s

S0 it is not necessary to allow as a constraint (though this would not do any harm either).

This means that nominal logic is consistent if and only if ttemlogical rules are consistent. We know
that classical nominal logic is consistent with respech&gemantics given by Pitts using nominal sets [15],
and we will show in the next section that the two systems atévabpnt, however, here we would like to
give a direct syntactic proof that applies to both classiral intuitionistic variants ofV L=. To prove the
consistency of the nonlogical rules, it is necessary tolekhimodel. We review how to define a Herbrand-
style semantics in terms of the syntax of nominal terms (seGheneyi[?] for more details).

Definition 4.2 (Syntactic Swapping, Equality and Freshnedsjt T'm be the set of swapping-free nominal
terms generated by the grammar

ti=alcl f@ ] ()

We define theswapping functiomn such terms as follows:

(ab)-a b
(ab)-b = a
(ab)-c = ¢ (a,b#¢)
(ab)-c = ¢
(ab)-f@) = f((ab)-D)
(@ab): (ot = ((ab)-c,(ab)-1)

We define thdreshnesselation on ground terms using the rules:

(a#Db) aftty ... aftt, a#t (a#b)
af#tb a#c a# f(t) a# (a)t a# (b)t
Thenominal equalityrelation is defined as follows:
iU ... tn U, o t~(ab):-u a#u (a#b)
ara c=~c @) =~ f(u) (a)t ~ (a)u (a)t ~ (b)u

The following properties of syntactic freshness and edyalie a special case of more general properties
established elsewhere, e.g. by Urban et al. [19]:

Proposition 4.3. The nominal equality relatior: is an equivalence relation. Henc&/Tm = Tm/ is
well-defined. Moreover, botls and# are equivariant relations ofi'm.

We now show how to interpret arbitrary nominal terms\iii'm.

Definition 4.4. Let 6 : V — NT'm be a substitution of ground nominal terms for variablesledain
interpretation We lift 6 to a function from arbitrary terms t& 7'm as follows:

fla) = a
flc) = ¢
0(f(®) = [f(Ot),.-.,0(tn))
0((ab)-t) = (6(a)0(b))-6(1)
0((a)t) = (6(a))6(t)



We say that) : FV(X) — NTm satisfiess (written6 : ) if 8(z) : X(z) for eachz anda # 6(x) for
each constraing # = € |X|.

We writed F t ~ u or 0 F a # ¢ to indicate that)(t) ~ 0(u) or 6(a) # 6(t) respectively. Similarly,
0 E T indicates thafl E A for each constraintl in constraint sef’. We say that a constraiat (or constraint
setl) is satisfiablef there is an interpretatiof : 3 such that E A (respectivelyf F T') holds inNTm.

Proposition 4.5. The axioms listed in Figufg 7 are valid f&¥T'm, in the sense that for each axiofpP O
V Q,if 0 E A\ Pthend E Q; for someQ; € \/ Q.

Proof. For.S; andSs, the proof is by induction on the definition of swapping foognd terms. The validity
of S3 is immediate.

For the equivariance axioms, the definition of swapping rmgieain that abstraction and other function
symbols besides swapping itself are equivariant. In aatdljit is not difficult to show that

(@a)-(bb)-z=((aa")-b(aa’)-b)-(aa)

that is, that the syntactic swapping function is equivari&or the equivariance axioms for formulas, we only
need to consideE~ andE. But clearly equality is equivariant since

z~yD(ab)-zx(ab)-y
can be shown by induction on the derivatioruof y; similarly,
a#zD(bb)-a#(bb)-z

can be shown valid by induction on the derivatioragf x.

For the axiomFy, we must show that if # = andb # x then(a b) - = x. The proof is by induction
on the structure of. Forz = c the result is immediate; similarly, for = f(y¢ the induction step is
straightforward. For: = ¢, we havea,b # cso(ab).-c = ¢ = c. Forz = (c)y, there are two cases. If
a, b # cthen we have, b # y and

(@b)-(c)y=((ab)-c)(ab)-y=~(cy

since by inductior{a b) - y = y. Otherwise, without loss of generality suppdse: ¢ (the case where = ¢
is symmetric). We need to show thatb) - (b)y = (b)y, or equivalently thata)(a b) - y =~ (b)y. If a = b,
this is trivial. Otherwise, it is sufficient to show th@tb) - y ~ (a b) - y (which is immediate) and # y.
But sincea # (b)y anda # b, we know that # y holds.

For F3, clearly any two name symbadsy andb:»’ of different sorts are distinct, so# b.

For F3, we need to show that# a is not derivable. This is immediate from the definition of fresshness
relation.

For F,, we need to show that either# b ora = b is derivable. Ifa = b thena ~ b is derivable;
otherwisea £ b soa # b is derivable.

Finally, for A; we need to show that if # y andz ~ (a b) - y then(a)a &~ (b)y. There are two cases. If
a # b then the last rule in the definition of nominal equality applto show(a)z = (b)y. Otherwisea = b
sox = (ab) .y =yandsola)zr ~ (b)y. O

Proposition 4.6. If  F (a)x ~ (b)y theneithe® Fa = b,z =yordFa# y,z =~ (abd)-y.

Proof. The proof is by case analysis of the possible derivatior{ @f)z) ~ 6((b)y). There are only two
cases, corresponding to the last two rules in the definitigtroctural equality. The result is immediatel]

Proposition 4.7. If 6 : ¥ thend & a # t for eacha # t € |X.

Proof. The proof is by induction on the structure ©of The critical case is fot a variable; in this case, we
need to use the fact thét X only if a # 6(x) for eacha # z € |X|. O

Theorem 4.8. LetT" be a set of freshness and equality formulag:;If' = L is derivable thed” is unsatis-
fiable.
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Proof. Proof is by induction on the structure of the derivation. &lttat the only applicable rules are non-
logical rules. There is one case for each nonlogical rulestdases are straightforward. We present some
interesting cases.

All of the axioms in FiguréJ7 hold ifNT'm, by Propositiofi 4J5, so the cases in which these axioms are
used are straightforward. For example, for a derivatiomefform

ilba#a= 1 B

clearlyT', a # a is unsatisfiable.

For a derivation of the form

SiTa#b=1 XTlaxb= 1
>, I'= 1

Fy

we havel',a =~ b andl’, a # b unsatisfiable. 19 : ¥ then eithe(a) = 6(b) or §(a) # 6(b), in which case
6(a) # 0(b). In either casej cannot satisfy.
For a derivation ending witl#’,
Y#Hav;I'= L
T = 1
if 6 : X, then without loss of generality we can assum# 6 so thatd : X#a:v and sod i I" by induction.

ForX#:
SiTa#t=1 (a#telX))

T = L

if 6 : X thend F a # t for anya # ¢ € |X|, by Propositiof 4]7. Consequently? T
For A,,

N

STambarry=1 STa#yxzx(adb) -y=1
T, {a)x = (b)yy = L
supposé : 3. By inductiond ' T',a =~ b,z ~ yandf ¥ T',a # y,x = (a b) - y. There are three cases. If
0(a) =~ 0(b) andf(z) ~ 0(y), thend & T'. Similarly, if 6(a) # 6(y) andf(z) = (6(a) 6(b))-0(y) thend H# T.
Otherwise, by the contrapositive of Proposition 4.6 (a)x = (b)y. In any casel T, (a)z = (b)y.
For As,

Ao

St (wyr Yav,enDit={(a)r = L

T = L 3
if 6 : ¥ thend(t) = (a)v for somea : v andt : 7, so letd’ = O[a — a,x — t]. Clearlyt’ : ¥, a:v, z:7 and
0’ E t ~ (a)x so by inductiord’ & T'. Sincel” does not mention or z;, we can concludé & T. O

Corollary 4.9 (Syntactic consistency)There is no derivation of - = L.

Proof. This follows from Proposition 411 and Theoréml4.8, sigces a satisfiable constraint set. O

4.2 Orthogonality of abstraction

Using cut-elimination, we can also show that some partseétfuational theory are “orthogonal extensions”,
that is, derivable sequents not mentioning abstractiorbeaserived without using the special properties of
these symbols.

Theorem 4.10(Conservativity) Suppose. has no variables mentioning abstraction aRdl’ = A and
T', A have no subterms of the forfn)t. Then there is a derivation df;I" = A that does not use any
nonlogical rules involving abstraction.

Proof. We say that a context, formula, formula multiset, or seqigalbstraction-free if the abstraction func-
tion symbol and type constructor do not appear in it. A deidvais abstraction-free if the rule$;, Ao, As
do not appear in it. We write —4 for abstraction-free derivability.

The proofis by induction on the structure of cut-free deitsas. We need a stronger induction hypothesis.
We sayl is goodif abstraction is only mentioned in equations and freshifi@saulas. Note that it is
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abstraction-free and there are no constants whose typeasomabstraction then the only well-formed closed
terms of type(v)r are of the form{(a)t. Hence, any equations among abstraction-typed terms ateeof
form (a)t ~ (b)u; we call such formulas abstraction equations. Any contertloe partitioned intd@", I
such thatl” contains all the abstraction equations. We say fHas redundantrelative toT" if whenever
(a)t ~ (b)u € T’, we have either 4 ;T = a~bandt ~ wor-—4 %;T" = a # w andt ~ (a b) - u.

We will show that if:, A are abstraction-free add I is good and is redundant relative tB, then if
F ¥, IV = Athen-—4 ;T = A. An abstraction-fre& is obviously good and redundant relativedo
so the main theorem is a special case.

The proof is by structural induction on the derivation. Tlases involving left or right rules are straight-
forward because such rules act onlylorand do not affect goodness and redundancy. The case,fois
easy since the hypothesis cannot b&'in

For A, we have

SiTa# x,x=(ab) -y, IV {a)r =~ (b)y = A
STa# x,x~(ab) -y, I'= A
Clearly,IV, (a)x =~ (b)y is redundant relative t6, a # z,z = (a b) - y. Also, goodness is preserved. So by

induction we haveZ; T, a # z,2 =~ (a b) -y = A, as desired.
For A,, we have

1

50,V (a)x = by, a=br~=y=A X1V (a)x = by,a# y,x~(abd)-y= A
50,1 (a)x = (b)y = A

Ay

Sincel”, (a)x ~ (b)y is redundant relative td, there are two cases. B;I' = a ~ b andz ~ y, then
by induction we have a derivation &f;T",a ~ b,xz ~ y = A, and using cut we can derivg,I" = A
as desired. Otherwise, B;T" = a # y andz ~ (a b) - y, then by induction we have a derivation of
¥:T,a# y,x =~ (ab)-y = A, and using cut we can derivg I" = A as desired. Cut-elimination does not
introduce uses of the abstraction rules, so the resultingat®ns are abstraction-free.
For A3, we have
Yttt Yav,en Dt = {(a)z, T = A
T, = A

3

SinceX has no variables of abstraction type, we must haxe(u)v for someterm& - u : vandX - v : 7.
Therefore, we can substitute into the derivat®pu:v, :7; T, TV, t = (a)x = Ato getS; I, TV, (u)v =~
(uyp = A. Clearly3;T = u ~ wandv =~ v, andl”, (u)v = (u)v is redundant relative t&', so by
induction, we have a derivation &f;T" = A.

For the reflexivity rulex R, we have

DTttt = A
ST = A

If t = (a)x, then clearhy" = a ~ a andx =~ z, sol”, {(a)x ~ (a)x is redundant relative t&', and we
haveX;T' = A by induction. Otherwisd,, I, ¢ = t is obviously still good and” redundant with respect to
I',t = t, so we can again concludg I" = A by induction.

For~S-derivations, we have

STt~ u, P(t), Plu) = A
ST T t~u, Pt) = A

If P(u) is not an equation among abstraction-typed terms then thecfion step is easy. There are many
cases depending on the structurdf:), but in each case we can show ti#¥t:) is also redundant relative
tol',t =~ u (if t & w is not an abstraction equation) B(if ¢ ~ v is an abstraction equation).
The remaining nonlogical rules do not involve formulas & torm (a)z ~ (b)y, so the induction step is
immediate for these rules.
o
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4.3 Equivalence to Nominal Logic

In this section we discuss the relationship between theesgqualculiN L= and /N L= and classical and
intuitionistic variants of Nominal Logic respectively. Vidam to show that, modulo a straightforward syntactic
translation, formulas are provable in one system if an ohthey are provable in the other. This in turn
suggests that they are equally expressive in a model-tiesense (provided models fo¢ L= are defined

in an appropriate way for its slightly different syntax, @amd for example fof' L [9]); however, in this article
we will not pursue the model theory &f L=

4.3.1 Classical Nominal Logic

We first consider the classical case. We wiité for the set of all axioms of Pitts’ axiomatization of nominal
logic, as reviewed in Sectidn 2.1. For ordinary variabletegts> and N L-formula multisetd", A, we write
Fnr 3;T = A toindicate thab; ', IV = g3 A for somel” C N L. Without loss of generality, a finite’
can always be used. We writey - for derivability in N L=,

There is one technical point to address. Our system corgaplgit name-constants quantified yand
appearing in typing contexts, whereas in Pitts’ systémuantifies ordinary variables. To bridge this gap,
we translateV L formulas toN L= formulas by replacingf-bound variables with fresh name-symbols. For
example, theV L formulala:v.Nb:v' .p(a, b) translates to th&V L= formulaWa:v.Nb:v .p(a, b). We write
* for the translation ofp, which is defined as follows:

A = A
1* = 1
(DY) = " DY"
(Vo:r.@)* = Vot
(Nawv.p)* = Waw.(pa/a]) (a=1(a))

Technically, we translate sequents or derivation memtignariables inV U A’, to sequents or derivations
mentioning variables i/ U A’, whereA’ is an isomorphic copy of the set of nam&s We assume that
before translation, formulas are renamed so Midtound variables are id’, and we fix an isomorphism
¢ A’ = A. In what follows, we will sometimes leaveimplicit and assume tha{a) = a whenever we
encounter &1-quantifier or context of the forri#a:v.

The omitted cases fof, A, vV, 3 are derivable via de Morgan identities. The translation pfdgment
;T = Ais ¥ T = A*, wherel™, A* is the result of translating each elemenTofA respectively.

We first show that every theorem &fL translates to a theorem afL=".

Theorem 4.11.If -, ;T = A thenkyp= X; T = A*,

Proof. We defined-y; ;T = A to meantgs. X;I, TV = A for some finite subsdi’ € NL. Any
G3c derivation is anV L= derivation, so we just need to show thatht.=, all of the uses ofV L axioms
are redundant. We will show that each axigne N L is derivable inN L= . Thus, using:ut finitely many
times, we can derivE; " = Ain NL=.

For most of the axioms, this is straightforward. All of théams of the formvz. A P > \/ Q are clearly
derivable from the corresponding nonlogical rules as fadlp

with the topsequents all derivable usii@® andhyp.

This leaves axioms not fitting this pattern, includif@Fz), (CFy), (CA1), (CAz), and(CQ). (CA;)
and(C Az) can be derived using the nonlogical rulés, A;, A3, ~S of NL=, and(CF,) usingFs and F,
of NL=. We will show the cases fdiIC'Fy) and both directions ofCQ) in detail.
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For an instanc®z.da.a # T of C'Fy, the derivation is of the form

TTHav:aH#T=a#7T
TTHaw; - = dav.a #7T
.7 = dav.a # T

s-=>VrxT.dav.a #T

IR, SH#

VR

For a translated instance (€'Q) of the formvz.(Na:v.p(a,T) < Jaw.a # T A ¢(a,T)), we will
prove the two directions individually. For the forward diten, after some syntax-directed applications of
right-rules we have

— — - = hyp
: 2 , L), =
TTH#aw;o(a,T),a # T a#xz#n

TT#Haw;p(a,T) = a#T T:T#Haw; p(a,T) = ¢(a,T)
TTH#Haw;p(a,T) = a# TAp(a,T)

.7 Naw.p(a,T) = Ja.a # T A ¢(a,T)

- = VET.(Maw.p(a,Z) D Jaw.a # T A ¢(a,T))

AR

NL,3R
VR",OR

For the reverse direction, we need to shdi3a:v.a # T A v(a,T) D Na:w.p(a,T).

T.T, a:v#b:w; o(b,T) = (b, T)
#b:wia #ZT,b# T, (ab)-p(a,T) = p(b,T)
TT, a:v#tbv;a # T, 0(a,T) = (b, T)
T:T,a:v;a # T, 0(a,T) = WNaw.p(a, T)

Z:7; da:v.a # T A p(a,T) = WNaw.p(a, T)
- =>VET.(Fawv.a # T A p(a,T) D WNaw.p(a,T))

Ax*
S#* EVL

xTT,a:

X

VR
3L, AL
VR, DR

Since both: andb are fresh for all the other free variables@fwe havep(a,z) <= ¢((ba)-a,(ba) -
T) <= (b, T) using equivariance and the fact tha#t © Ab # x D (ab) - x = z.
Consequently, all the translations of axiomsf. can be derived ilVL~. As a result, ifl’ ¢ NL is
a finite set of axioms such thaty,- X;T, TV = A, then using the derivations of the axioms and finitely
many instances afut, we can obtain a derivation éfy = ¥;T" = A. O

Observe that this means that any closed theorey bfcan be derived inVL=. For example, from
Pitts [15, Prop. 3 and 4] we can show:

Proposition 4.12. e If FV(¢t) C T and FN(t) = @ then we can deriv&; I’ = Va:v.VI:T.a # 1 A
o ANa# xy DaHt.

o If FV(p) C {a,T} then we can derivE; " = Jaw.a # TA ¢(a,T) < Vav.a# T D ¢(a,T)

Now we consider the converse: showing that there are no “hearems”, that anw L sequent deriv-
able in NL= is also derivable inVL. This is not as straightforward because subderivationsaofstated
N L judgments may involve name-symbols. However, we can shawstiich name-symbols can always be
removed.

We also introduce a converse translation mappViig~ formulas toN L formulas:

AT = A
17 = 1
(o9t = ¢ oyl
(Vz:r.o) = Vel
Maw.p)t = Waw.(p'a/a]) (i(a) =a)
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Technically, we translaté&V L formulas over variable¥ to N L= formulas overV U A’, again using the
bijection. between name-variablés and names ir\. Note that (up tax-equivalence) thé—)*-translation
and(—)f-translation are inverses. We also define the|38tas follows:

IZ] = {a# 2| ua) # x € |X[} Ufa#b]ua) # 1(b) € [E]}

that is,||X|| is the finite subset d&| consisting of constraints whose right-hand sides are biassor names,
but with names replaced by the corresponding name-vasagieording to the bijection
We can now show the desired result.

Theorem 4.13.1f 3; T = A is derivable inN L= thenX’; T'T | X|| = AT is derivable inN L.

Proof. The proofis by induction on the logical height of this detiga, with secondary induction on the total
height. For the cases corresponding to first-order/equaltfiroof rules, the induction step is straightforward.
For the cases corresponding to nonlogical rules correspgrid universal axiom&z. AP O \/ Q,

suppose that we have derivations of the form

ST,P.Qi=A II,P.Q,=A
ILP=A

T

Then by induction, we haw¥ L derivations of theV L sequent&f; T'T, P, Q;, || = Affori € {1,...,n}.
It is straightforward to show that each of the axioms in Féliiis provable inV L, hence we can cut against
each axiom instance:

>hTt P,Q, |2 = A - BT P Q,, 2] = AT
ST B |5 = AP SIBATASEYN '
»HETH P APDOVQ, X = Af ok
 ho=va. APDOVQ LT PVZ.APDOVQ, || = AT ot

£HTE P, 2] = Af

The cases foFy, Fy, F, A, A3, X#, VL, UR remain.
For F3, we have a derivation

“iTa#a= A B
In NL we can derive"; T'T a # a, |2|| = AT using thea # b D a % b direction of(C F») sincea # a is

contradictory.
For F;, we have a derivation

SiThamb=>A STa#b= A P
T = A 4

By induction, we have derivations &t';T'T.a ~ b,[|2|| = AT andX¥;T'T,a # b,||2| = AT. Since
a#b < azbanda~0bVa#bisatautology in classical logie,# bV a % b is also a tautology. We
can cut against a derivation of this formula to deid” = Ain N L.
For F', suppose we have a derivation of the form
S#av;I'= A
Wi =A
By induction, we can derive th&¥ L sequent:t, a:v; T'T, | S#ta:v| = AT. Note that| S#a:v| = |||, a #
7 wherez = FV(XT). Using the freshness axio(@F}) of N L, we can derive

S aw; T |2, a # T = AT
o= VETFdava# T SUTTVEava # 7, |2 = AT
SISENTSTEWN

vL,3L

cut

20

L’n



Itis likewise easy to derive ruled,, As from axioms(C Ay ), (CAs) of NL usingcut.
For X#, suppose we have a derivation of the form:
El#azy,Eg;F,a#téA (a#t€|2]1|)
YhFaww, Yo ' = A

L#

By induction, we have&!, a:v, S5: I, a # ¢, || 51 #a:, 3o = AT. Observe that # T C |51 #a:w, 3s.
Using Proposition 4.12(1), we can derive as follows:
S aw, S5 DT |5 #aw, Bo|, a # ¢ = Af
ZJ{, a:v, Z;; = VavVTT.a#TDaF#t EI, a:v, Eg; It S #aw, 5|, Yav.VET.a # T Da # t = Al
S aw, S5 T |5 #aw, Do) = Al

VL*, SL*

cut

Finally, we consider the cases fdi. andR. ForVL, we have

S#aw; T p(a, ) = A
T, Naw.p(a,T) = A d

L

From the upper derivation, by induction, we have a derivatib X!, a:v; T'T, ||S#a:v||, o' (a,T) = AT.
Since |S#a:wv| = ||2|,a # 7 whereg = FV(XT) D 7, we can also deriv&®; T, |||, Ja:v.a #
T A p(a,T) = A using3L andVL. Finally, we can cut against the axiom instate7.Ja:v.a # T A
¢'(a,T) <= Wa:w.p'(a,7) to prove that’; T'T, Na:v.¢' (a,T) = AT,
ForR, we have
S#av;I' = ¢(a,T), A
5T = Naw.p(a, @), A

VR

The argumentis similar to the previous case: by inducti@can derivel’, a:v; T, | S#aw| = ¢ (a,7), Al
in NL. Thus, sincé|S#a:wv|| = |||, a # 7 wherey = FV (XT), we can conclud&’; T'T, ||S|| = Va:v.a #
7 D ¢(a,7), AT, Using Propositiof 4.12(2) and the axidifiQ) definingll in N L we can cut against the
formula

Vo7 (Vav.a # 7D ¢'(a,T)) <= Wav.p'(a,T)

wherey D 7. We can conclude that; T'T, ||S]| = AT, Va:v.of(a, T). O
Corollary 4.14. If ¥ only contains variables andy, ;T = A* thenX; ' = A is derivable inNL=.

Proof. By Theoren(4.13, we know thatf; (T*)', || 2| = (A*)'. By definition of the(—)* and (—)f
translations, we know thdl*)’ = " and(A*)" = A. Moreover, sincé contains no name-symbols, by
definitionX = ¥ and||3|| = @. Hence ;T = A. O

4.3.2 Intuitionistic Nominal Logic

We wish to argue that the intuitionistic calculdi®/ L= is really “intuitionistic nominal logic”. However,
Pitts only considered classical nominal logic. There islatlsty having to do with Pitts’ axioniC' F») in the
intuitionistic case.

Pitts’ original axiom(C' F») stated that freshness among names is the same as inequality:

(CFy) Va,d'w.a#d < -(arad)

However, this axiom does not fit the scheme for nonlogicasgliven by Negri and von Plato [14]. Instead,
in I N L= we use two nonlogical ruleB; andF, asserting that no name is fresh for itself and that two names
(of the same type) are either equal or fresh. These two axé@eequivalent td¢C F5) in classical logic, but
in intuitionistic logic, Pitts’ axiom is weaker, sinee~ b V a % b does not follow from(C'Fy). (Recall that
for the F; case of Theorein 4.1.3, we used excluded middle for name-iggual

We have modified Pitts’ axiomatization slightly by replagithe original axiom(C'F5) with two rules,
(I F») asserting that no name is fresh for itself, ddd3) stating that two names are either fresh or equal.
In classical logic, these are equivalent axiomatizatiartereag I F3) is not provable in intuitionistic logic
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Swapping

(I151) Vaw,z:T. (aa) -z~ =z
(I1S2) Va,a':v,x:7. (ad') - (ad) -z =z
(I1S3) Va,a":w. (ad)-a=d

Equivariance

(IEy) Va,a v, btV zr (aad) - (bV) -2~ ((ad) -b(ad) V) (ad)-x
(IE5) Vaaubu o b#xD(ad) - b# (ad)-x
(IEs) Va,o':v,T:7T. (ad)- f(T) = f((aa')-T)
(IEy) Va,a':.v,T: 7. p(T) D p((ad) - T)
(IEs5) Vb, V' aw, . (b)) - ((a)z) = ((bb) - a)((bV) - x)
Freshness

(IFy) VYa,a'.v,x:T.a# xNd #xD(ad) z=z
(IF3) Va:v. —(a # a)

(IF3) Va,a":v.a # a' Va=d

(IFy) Va:v,a':v'. a # o

(IF5) VT :T.3Jav.a #7T
M-quantifier

(IQ) vZ.(Na:v. ) <= Bav.a #TAp)

whereFV (Ua.p) C {z}

Abstraction

(TA1) Ya,d :w,z,z'" 7. (a)x ~ (a')z’ <7
Xr.T

(IA2) Yy : (v)T.Ja:w,

(amd Nz=z
(@ #xNx' = (ad)-x)
y~ (a)x

Figure 11: Axioms of Intuitionistic Nominal Logic

from Pitts’ axioms. Moreover, it is computationally plablsi that equality and freshness among names are
both decidable, since names are typically finite, discrate dtructures.

For this reason, we introduce an alternative axiomatinafiy L, shown in Figuré 111, differing in the
replacement of C F») with two axioms(IF,) and(IF5). These axioms are equivalent in classical logic to
(CFy), but better-behaved from a proof-theoretic perspective.

Letk; 1 indicate derivability in intuitionistic logic from the aaims in/ NV .. Using essentially the same
proof techniques as for the classical case, we have:

Theorem 4.15. If 3 contains only variables, theh;y; X;T" = A is derivable if and only ift-;n 1~
T = A*,

5 Conclusions

Nominal logic provides powerful techniques for reasonibgut fresh names and name-binding. One of the
most interesting features of nominal logic is tequantifier. However, the techniques used for reasoning
with U offered by previous formalizations of nominal logic aretiig(but unnecessarily) complex.

In this article we have introduced a new sequent calciNus~ for nominal logic which uses typing
contexts extended with freshness information to deal viigivt-quantifier. Its rules fon are symmetric and
rationalize a proof-search semantics fbthat seems natural and intuitive (inspired by the treatroéhtin
nominal logic programming). We proved cut-elimination ietail. In addition, we use& L= to provide a
syntactic proof of consistency and a detailed proof of egjeivce to Pitts’ axiomatization modulo ordinary
first-order (classical/intuitionistic) logic. These résware the first of their kind to be shown in detail.

N L= has also been used in other work:

e N L= provides a proof-search readingldfwhich is much closer to the approach taken in dliro-
log nominal logic programming languadég [3, 5]. While Gablaayl Cheney gave a proof-theoretic
semantics of nominal logic programming basedohg.,, this analysis does not seem relevant to
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aProlog because it suggests a quite different (and, for &mgrams, much more computationally
intensive) proof-search technique fidrquantified formulas. In contrasly L= seems to provide a
proof-theoretic foundation fatProlog’s existing search technique.

e Gabbay and Cheney][7] showed thaD\Y, another logic due to Miller and Tiu [13] possessing
a self-dual “fresh value” quantifier, can be soundly intetpd in a higher-order variant df L g.,
via a proof-theoretic translation. However, the transkatihey developed was incomplete, and the
possibility of finding a faithful translation was left opeiCheney[[1] showed how to translate to a
higher-order variant ofVL= and proved a completeness result. In this paper we haveddaus
N L= only over first-order terms. It would be interesting to funtlexploreN L= over higher-order
terms and compare its expressiveness to more recent gagaif Miller and Tiu's approach, such as
the “nominal abstraction” system of Gacek etlal.|[10].

e Miculan, Scagnetto and Honsell [12] have shown how to tetaslerivable judgments from (a natural-
deduction variant of)V L= to the Theory of Contexts [11], an extension of the Calculubduc-
tive Constructions with a theory axiomatizing a type of namiéth decidable equality, freshness, and
name-binding encoded as second-order function symbaisaytbe interesting to consider the reverse
direction, e.g. translating a first-order fragment of thedty of Contexts to nominal logic.

Additional directions for future work include the developnt of natural deduction calculi and type the-
ories using the ideas d¥ L=. One patrticularly interesting direction is the possikilif developing a type
system and confluent term rewriting system that could be tsddcide equality of nominal terms and proof
terms. In such a system, the explicit equality and freshttessry that necessitates the many nonlogical
rules inN L= could be dealt with implicitly via traditional rewriting a@nsyntactic side-conditions, leading
to an even simpler proof theory for nominal logic. Howeveoykvin this direction by Schopp and Stark [17]
indicates that there may be significant obstacles to thisogmh; the system introduced in this article may
be viewed as a well-behaved fragment of their system. Fudéeelopment of the proof theory and type
theory of nominal logic (for example, building on nominapgytheories by Pitts [16], Cheneyl [4], or Crole
and Nebel[[6]) seems possible and desirable.
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