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Abstract

The Stanley Miller experiment suggests that amino acid-
based life is ubiquitous in our universe, although its varieties
will not have followed the particular, highly contingent and
path-dependent, evolutionary trajectory found on Earth. Are
many alien organisms likely to be conscious in ways we would
recognize? Almost certainly. Will some develop high order
technology? Less likely, but still fairly probable. If so, will we
be able to communicate with them? Only on a basic level, and
only with profound difficulty. The argument is fairly direct.
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1 Introduction

In spite of a popular social construction as such (e.g., Pen-
rose, 1994), individual consciousness is no great mystery, con-
stituting a basic evolutionary adaptation likely a half-billion
years old (R.G. Wallace and R. Wallace, 2009, and references
therein). Bernard Baars’ global workspace/global broadcast
model – the current front-runner in the Darwinian competi-
tion between consciousness theories (e.g., Dehaene and Nac-
cache, 2001) – is itself nearly a generation old and accounts
neatly, in a qualitative manner, for individual consciousness-
as-we-know-it on Earth (Baars, 1988, 2005):

1. The brain can be viewed as a collection of distributed
specialized networks (processors).

2. Individual consciousness is associated with a global
workspace in the brain – a fleeting memory capacity whose
focal contents are widely distributed (broadcast) to many un-
conscious specialized networks.

3. Conversely, a global workspace can also serve to integrate
many competing and cooperating input networks.

4. Some unconscious networks, called contexts, shape con-
scious contents, for example unconscious parietal maps mod-
ulate visual feature cells that underlie the perception of color
in the ventral stream.

5. Such contexts work together jointly to constrain con-
scious events.
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6. Motives and emotions can be viewed as goal contexts.
7. Executive functions work as hierarchies of goal contexts.
Although this basic approach has been the focus of work

by many researchers for two decades, scientific consciousness
study has only recently, in the context of a deluge of empirical
results from brain imaging experiments, begun digesting the
perspective and preparing to move on (Baars, 2005).

The first essential point in developing a quantitative theory
of individual consciousness based on Baars’ model is to rec-
ognize Dretske’s central argument (Dretske, 1994) that high
level mental process of any nature inevitably involves the gen-
eration and transmission of information, both of which are
constrained by the asymptotic limit theorems of information
theory: Shannon Coding, Shannon-McMillan Source Coding,
and the Rate Distortion theorems (Khinchin, 1957; Cover and
Thomas, 2006).

The second fundamental point is that, in the sense of Feyn-
man (2000) and Bennett (1988), information is simply another
form of free energy, and arguments-by-abduction from statis-
tical physics are not unreasonable. Indeed, it is not at all
difficult to construct a simple (ideal) machine that turns the
information contained in a message into work.

Third, cognitive process, in the sense of Atlan and Cohen
(1998), involves comparison of a perceived signal with an in-
ternal picture of the world, and then, on that comparison,
choice of a response from a large repertoire of those possible,
causing a reduction in a formal measure of uncertainty. It
is then easy to show (Wallace, 2000; Wallace and Wallace,
2008, 2009, summarized in the Mathematical Appendix) that
a substantial class of such cognitive phenomena is necessarily
associated with a well-behaved information source: If there
are N(n) possible behavioral and hence temporal output
paths of that information source having length n, then there
will be a path-independent limit H such that

H = lim
n→∞

log[N(n)]

n
.

(1)
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This is the Shannon uncertainty of the (stationary, ergodic)
information source dual to the cognitive process.

We envision the evolution of a broad set of unconscious
cognitive modules within a reproducing organism that serve a
number of independent purposes, ranging from the search for
food and habitat, and the avoidance of predation, to modal-
ities of reproduction. Thus even a simple organism will have
a large network of unconscious cognitive modules that, nec-
essarily, interact through some kind of crosstalk, indexed by
an average measure P .

2 Cognitive Phase Transitions

Recall that the free energy density of a physical system is
defined as

F = lim
V→∞

−T log[Z[T, V ]]

V
≡ log[Ẑ[T, V ]]

V
,

(2)

where Z is the partition function of the Hamiltonian of a
physical system

Z =
∑
i

exp[
−Ei(V )

κT
].

(3)

Ei(V ) is the energy of state i at system volume V , T the
temperature, and κ a constant.

Recall also Landau’s perspective on phase transition (Pet-
tini, 2007). The essence of his insight was that certain phase
transitions took place in the context of a significant symme-
try change, with one phase being more symmetric than the
other. A symmetry is lost in the transition, i. e., spontaneous
symmetry breaking. The greatest possible set of symmetries
being that of the Hamiltonian describing the energy states.
Usually, states accessible at lower temperatures will lack the
symmetries available at higher temperatures, so that the lower
temperature state is less symmetric, with the transition oc-
curring in a punctuated manner.

Larger scale information sources can thus emerge in a punc-
tuated manner from the crosstalk-enabled interaction of un-
derlying unconscious cognitive biological modules – increas-
ing P , parameterizing the average strength of crosstalk. Then
equation (1), representing the source uncertainty of this larger
information source, written as H, becomes

H[P ] = lim
n→∞

log[N(n, P )]

n
,

(4)

similar to the second part of equation (2), and we can apply
Landau’s argument, assigning P as the temperature-analog.

Some evolved neural substructures of organisms may be
expected to operate at relatively high speed, in the realm of
milliseconds. This implies, in turn, the inevitable and highly
punctuated emergence of a rapid global cognitive process from
the interaction of unconscious cognitive submodules if P be-
comes large enough.

Evolution can then take this emergent phenomenon and run
with it.

Given a network of interacting unconscious cognitive mod-
ules, we can construct an interacting network of dual infor-
mation sources, and define a metric, say r, on it, using the
methods of Wallace (2005). On that network it is then possi-
ble to define renormalization symmetries in terms of the usual
‘clumping’ transformation, so that, for clumps of size R, in
an external ‘field’ of strength J (that we can set to 0 in the
limit), one can write, in the usual manner (e.g., Wilson, 1971)

H[P (R), J(R)] = f(R)H[P (1), J(1)],

χ(P (R), J(R)) = χ(P (1), J(1))/R,

(5)

where χ is a characteristic correlation length on the underly-
ing network of interacting dual information sources.

As Wallace (2005) shows, following Wilson (1971), very
many ‘biological’ renormalizations, f(R), are possible that
lead to a number of quite different classes of phase trans-
formation. Baars’ shifting global workspace emerges, in this
model, through the tuning of the renormalization symmetries
(Wallace, 2005). In particular, Pettini’s (2007) topological ar-
gument can be used to create topologically-defined thresholds
for detection of sensory signals by the shifting global informa-
tion source representing consciousness (Wallace and Fullilove,
2008, Section 3.7; Wallace, 2007).

Nothing in this set of realizations of the Baars model seems
restricted to terrestrial biological entities. Indeed, even on
Earth, we know of widely different brain structures that in-
stantiate conscious behaviors, ranging from familiar mam-
malian and avian forms, to reptiles, cephalopods, and perhaps
insect colonies (Griffin and Speck, 2004; Edelman et al., 2005;
Cartmill, 2000).
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The essential point, from an astrobiological perspective,
is that any organism evolving a set of unconscious cogni-
tive submodules is likely to undergo an evolutionary trans-
formation into something having a shifting, tunable, global
workspace/broadcast mechanism. Those operating in the
realm of a few hundred milliseconds would be analogous to
consciousness-as-we-know-it.

3 Quantum Systems

The theory above is quite classical, and produces Baars’ re-
sults directly. Wallace (2005, Chapter 5, Section 6), however,
does examine how quantum versions of the asymptotic limit
theorems of information theory (e.g., Bjelakovic et al., 2003,
2004) might be used to generalize the model. Unfortunately,
the quantum results are not well characterized, and an exact
treatment is lacking, Nonetheless, it becomes quite clear that
consciousness in quantum systems – at least those supporting
relatively large coherence lengths – would be to consciousness-
as-we-know-it much as a flask of superfluid helium is to a glass
of water.

Tegmark (2000), of course, has convincingly shown the im-
possibility of quantum treatments of consciousness at normal
biological temperatures.

Since information is a form of free energy, even quantum
systems having large coherence lengths will suffer second law
heating through information transmission and transforma-
tion that will inherently limit the possible size of quantum-
conscious structures. Typically 109 − 1010 interacting com-
ponents are needed for high level mental function, involving
large-scale information transfer. This scale of activity is likely
to generate much heat, and unlikely to be attained in quan-
tum realms by evolutionary process in the natural world.

The inference is, then, that conscious quantum systems are
likely to remain in the realm of perpetual motion machines of
the second kind.

4 Culture, Technology, and Collec-
tive Consciousness

The evolutionary anthropologist Robert Boyd has asserted
that ‘Culture is as much a part of human biology as the
enamel in our teeth,’ (e.g., Richerson and Boyd, 2004) and,
while many other animals on Earth display some measure of
culture as learned and transmitted behavior (e.g., Avital and
Jablonka, 2000), nothing defines humans quite like the inter-
penetration of mind and self with cultural milieu. Technology
and its artifacts are, of course, one part of that milieu.

It is not difficult to extend the Baars model to include in-
teraction with an embedding culture and with a hierarchical
set of institutions within that culture seen as a generalized
transmissible language associated with a nested set of infor-
mation sources. This includes both a form of niche construc-
tion (Wallace, 2010), and distributed cognitive institutions
acting on various scales (Wallace and Fullilove, 2008). This is

most easily done by invoking the set of interacting informa-
tion sources dual to cognitive process via network informa-
tion theory (e.g., El Gamal and Kim, 2010, p.2-26): Given a
basic set of such dual information sources, say (X1, ..., Xk),
that can be partitioned into two ordered sets, say X(J ) and
X(J ′), then the splitting criterion of the larger system be-
comes H(X(J )|X(J ′)). Generalization to three or more such
ordered sets seems direct, and leads to a Baars-like theory of
collective consciousness in which different global workspaces
act at different scales of size and time.

As the anthropologists will attest, an astounding variety of
culturally-driven institutions, associated forms of mind and
self, and dynamics of interaction, graces the world. Typi-
cally, humans, whose overall genetic structure is more uniform
than that of chimpanzee populations, do not communicate
well across the many different cultural modes. Wallace and
Fullilove (2008) suggest that stabilizing complex systems of
interacting cognitive institutions is exceedingly difficult, given
that canonical inability to communicate, and the planet seems
to be facing a serious crisis of sustainability.

5 Consciousness, Culture, and As-
trobiology

Certain matters seem clear from this line of argument:
Life in the cosmos is likely to be ubiquitous. Organisms

that must react on timescales of a few hundred milliseconds
should host many ‘neural-like’ structures that, in the pres-
ence of sufficient crosstalk, provide evolutionary process with
the basic material to produce adaptive tunable/shifting global
workspace/broadcast phenomena that become fixed in repro-
duction and that we would likely recognize as conscious.

A significant number of alien organisms will, over suffi-
cient time, become synergistic with learned, transmissible,
language-like patterns of adaptation analogous to culture that
include collective structures of various forms acting under dis-
tributed cognition that are capable of large-scale cooperative
activity. Assuming some few of these creatures able to sta-
bilize the resulting systems of collective consciousness, emer-
gence of high technology seems likely, although communica-
tion with them would probably be limited to exchanges of
Balmer series symbols and schematics for amino acids.

In conclusion, astrobiology and, with reservations, as-
tropsychology, appear relatively straightforward. Astroethol-
ogy, by contrast, would be a profound intellectual challenge.

6 Mathematical Appendix

Cognitive pattern recognition-and-selected response, follow-
ing the model of Atlan and Cohen (1998), proceeds by convo-
luting an incoming external ‘sensory’ signal with an internal
‘ongoing activity’ – which includes, but is not limited to, the
learned picture of the world – and, at some point, triggering
an appropriate action based on a decision that the pattern
of sensory activity requires a response. It is not necessary
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to specify how the pattern recognition system is trained, and
hence possible to adopt a weak model, regardless of learning
paradigm, that can be more formally described by the Rate
Distortion Theorem. Fulfilling Atlan and Cohen’s criterion of
meaning-from-response, it is possible to define a language’s
contextual meaning entirely in terms of system output.

The model, a simplification of the standard neural network,
is as follows.

A pattern of ‘sensory’ input – incorporating feedback from
the external world – is expressed as an ordered sequence
y0, y1, .... This is mixed in a systematic (but unspecified)
algorithmic manner with internal ‘ongoing’ activity, a se-
quence w0, w1, ..., to create a path of composite signals x =
a0, a1, ..., an, ..., where aj = f(yj , wj) for some function f .
This path is then fed into a highly nonlinear, but other-
wise similarly unspecified, decision oscillator generating an
output h(x) that is an element of one of two (presumably)
disjoint sets B0 and B1. We take B0 ≡ {b0, ..., bk}, B1 ≡
{bk+1, ..., bm}.

Thus the model permits a graded response, supposing that
if h(x) ∈ B0 the pattern is not recognized, and if h(x) ∈ B1

the pattern is recognized and some action bj , k + 1 ≤ j ≤ m
takes place.

This approach is broadly analogous to, but simpler than,
the Hopfield/Hebb stochastic neuron in which series of inputs
yji , i = 1...m from m nearby neurons at time j is convoluted

with ‘weights’ wj
i , i = 1...m, using an inner product aj =

yj · wj =
∑m

i=1 y
j
iw

j
i in the context of a ‘transfer function’

f(yj ·wj) such that the probability of the neuron firing and
having a discrete output zj = 1 is P (zj = 1) = f(yj · wj).
Thus the probability that the neuron does not fire at time j
is 1− f(yj ·wj).

The m values yji constitute ‘sensory activity’ and the m

weights wj
i the ‘ongoing activity’ at time j, with aj = yj ·

wj and x = a0, a1, ...an, .... A little more work leads to a
fairly standard neural network model in which the network is
trained by appropriately varying the w through least squares
or other error minimization feedback.

The principal focus of the simpler model given here is
the composite paths x that trigger pattern recognition-and-
response. That is, given a fixed initial state a0, such that
h(a0) ∈ B0, we examine all possible subsequent paths x be-
ginning with a0 and leading to the event h(x) ∈ B1. Thus
h(a0, ..., aj) ∈ B0 for all 0 ≤ j < m, but h(a0, ..., am) ∈ B1.
Remember, the yj , the ‘sensory’ input convoluted with the
internal wj , contains feedback from the external world, i.e.,
how well h matches intent with need.

For each positive integer n let N(n) be the number of gram-
matical and syntactic high probability paths of length n which
begin with some particular a0 having h(a0) ∈ B0 and lead to
the condition h(x) ∈ B1. Call such paths ‘meaningful’ and
assume N(n) to be considerably less than the number of all
possible paths of length n – pattern recognition-and-response
is comparatively rare. Again assume that the longitudinal
finite limit H ≡ limn→∞ log[N(n)]/n both exists and is inde-
pendent of the path x. Call such a cognitive process ergodic.

Note that disjoint partition of state space may be possible

according to sets of states which can be connected by mean-
ingful paths from a particular base point, leading to a natural
coset algebra of the system defining a groupoid.

It is thus possible to define an ergodic information source X
associated with stochastic variates Xj having joint and con-
ditional probabilities P (a0, ..., an) and P (an|a0, ..., an−1) such
that appropriate joint and conditional Shannon uncertainties
may be defined which satisfy the standard relations (Cover
and Thomas, 2006).

This information source is taken as dual to the ergodic cog-
nitive process.

Recall that the Shannon-McMillan Theorem and its vari-
ants provide ‘laws of large numbers’ that permit definition of
the Shannon uncertainties in terms of cross-sectional sums of
the form H = −

∑
Pk log[Pk], where the Pk constitute a prob-

ability distribution (Ash, 1990; Cover and Thomas, 2006).

Different quasi-languages will be defined by different divi-
sions of the total universe of possible responses into various
pairs of sets B0 and B1. Like the use of different distortion
measures in the Rate Distortion Theorem, however, it seems
obvious that the underlying dynamics will all be qualitatively
similar.

Nonetheless, dividing the full set of possible responses into
the sets B0 and B1 may itself require higher order cogni-
tive decisions by another module or modules, suggesting the
necessity of choice within a more or less broad set of pos-
sible quasi-languages. This would directly reflect the need
to shift gears according to the different challenges faced by
the organism or organic subsystem. A critical problem then
becomes the choice of a normal zero-mode language among
a very large set of possible languages representing accessible
excited states. This is a fundamental matter that mirrors, for
isolated cognitive systems, the resilience arguments applica-
ble to more conventional ecosystems, that is, the possibility
of more than one zero state to a cognitive system. Identifi-
cation of an excited state as the zero mode becomes, then,
a kind of generalized autoimmune disorder that can be trig-
gered by linkage with external ecological information sources
representing various kinds of structured stress.

In sum, meaningful paths – creating an inherent grammar
and syntax – have been defined entirely in terms of system
response, as Atlan and Cohen (1998) propose.
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