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Abstract
Background: Currently real time PCR is the most precise method by which to measure gene
expression. The method generates a large amount of raw numerical data and processing may
notably influence final results. The data processing is based either on standard curves or on PCR
efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR
whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ
standard curves for relative PCR. This article provides an implementation of the standard curve
method and discusses its advantages and limitations in relative real time PCR.

Results: We designed a procedure for data processing in relative real time PCR. The procedure
completely avoids PCR efficiency assessment, minimizes operator involvement and provides a
statistical assessment of intra-assay variation.

The procedure includes the following steps. (I) Noise is filtered from raw fluorescence readings by
smoothing, baseline subtraction and amplitude normalization. (II) The optimal threshold is selected
automatically from regression parameters of the standard curve. (III) Crossing points (CPs) are
derived directly from coordinates of points where the threshold line crosses fluorescence plots
obtained after the noise filtering. (IV) The means and their variances are calculated for CPs in PCR
replicas. (V) The final results are derived from the CPs' means. The CPs' variances are traced to
results by the law of error propagation.

A detailed description and analysis of this data processing is provided. The limitations associated
with the use of parametric statistical methods and amplitude normalization are specifically analyzed
and found fit to the routine laboratory practice. Different options are discussed for aggregation of
data obtained from multiple reference genes.

Conclusion: A standard curve based procedure for PCR data processing has been compiled and
validated. It illustrates that standard curve design remains a reliable and simple alternative to the
PCR-efficiency based calculations in relative real time PCR.

Published: 21 March 2005

BMC Bioinformatics 2005, 6:62 doi:10.1186/1471-2105-6-62

Received: 11 November 2004
Accepted: 21 March 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/62

© 2005 Larionov et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15780134
http://www.biomedcentral.com/1471-2105/6/62
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2005, 6:62 http://www.biomedcentral.com/1471-2105/6/62

Page 2 of 16
(page number not for citation purposes)

Background
Data processing can seriously affect interpretation of real
time PCR results. In the absence of commonly accepted
reference procedures the choice of data processing is cur-
rently at the researcher's discretion. Many different
options for data processing are available in software sup-
plied with different cyclers and in different publications
[1-7]. However, the basic choice in relative real time PCR
calculations is between standard curve and PCR-efficiency
based methods. Compared to the growing number of
studies addressing PCR efficiency calculations [3,5,8-10]
there is a shortage of publications discussing practical
details of the standard curve method [11]. As a result, the
PCR efficiency approach appears as the method of choice
in data processing for relative PCR [12]. However, when
reliability of results prevails over costs and labor load, the
standard curve approach may have advantages.

The standard curve method simplifies calculations and
avoids practical and theoretical problems currently associ-
ated with PCR efficiency assessment. Widely used in many
laboratory techniques this approach is simple and relia-
ble. Moreover, at the price of a standard curve on each
PCR plate it also provides the routine validation for meth-
odology. To benefit from the advantages of the standard
curve approach and to evaluate its practical limitations we
designed a data processing procedure implementing this
approach and validated it for relative real time PCR.

Results
Description of the data processing procedure
Source data
Raw fluorescence readings were exported from Opticon
Monitor software and processed in MS Excel using a VBA
script (the mathematical formulae, script and samples of
source data are attached to the electronic version of publi-
cation, see Additional files 1 and 2).

Noise filtering
The random cycle-to-cycle noise was reduced by smooth-
ing with a 3 point moving average (two-point average in
the first and the last data points). Background subtraction
was performed using minimal value through the run. If
significant scattering in plateau positions was observed it
was removed by amplitude normalization (normalizing
by maximal value in the cell over the whole PCR run). The
noise filtering is illustrated in the Figure 1.

Crossing points calculation
The crossing points (CPs) were calculated directly as the
coordinates of points in which the threshold line actually
crossed the broken lines representing fluorescence plots
obtained after the noise filtering (Figure 2). If several
intersections were observed the last one was used as the
crossing point.

Standard curve calculation
A standard curve was derived from the serial dilutions by
a customary way. Relative concentrations were expressed
in arbitrary units. Logarithms (base 10) of concentrations
were plotted against crossing points. Least square fit was
used as the standard curve.

Threshold selection
The optimal threshold was chosen automatically. The
VBA script examined different threshold positions calcu-
lating coefficient of determination (r2) for each resulting

Noise filteringFigure 1
Noise filtering. Axes: vertical – fluorescence, horizontal – 
cycle number, A Source data, B Smoothing, C Baseline sub-
traction, D Amplitude normalization

Direct calculation of crossing pointsFigure 2
Direct calculation of crossing points.
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standard curve. The maximum coefficient of determina-
tion pointed to the optimal threshold (typically the max-
imum r2 was larger than 99%).

Calculating means and variances of means for crossing points in PCR 
replicas
The optimal threshold was used to calculate CPs for
unknown samples. Means and variances of means were
then calculated for CPs in PCR replicas.

Derivation of non-normalized values from crossing points
The non-normalized values were calculated from the CPs'
means by the standard curve equation followed by expo-
nent (base 10). The variances were traced by the law of
error propagation.

Summarizing data from several reference genes to a single 
normalizing factor
Two options are available in the VBA script to summarize
data from multiple reference genes:

- Arithmetic mean (deprecated),

- Geometric mean (recommended).

Calculation of normalized results for target genes
The final results representing relative expression of target
genes were calculated by dividing the non-normalized val-
ues by the above normalization factor. The normalized
results' variances were derived by the law of error
propagation.

When confidence intervals or coefficients of variation
were needed they have been calculated from the
corresponding variances (see Additional file 1 with for-
mulae for details).

Procedure testing and validation
We tested this procedure on the measurement of expres-
sion of 6 genes in 42 breast cancer biopsies (Figure 3,
Table 1).

To validate the assumption of a Normal distribution for
the initial data (i.e. CPs) we studied distributions of
crossing points in four plates, each of which represented a
96× PCR replica. The observed distributions were sym-
metric, bell-shaped and close to a Normal distribution
(Figure 4, Table 2).

Transformation of the Normal distribution through PCR
data processing was analyzed by a computer simulation.
It showed that the shape of resulting distributions signifi-
cantly depends on the initial data dispersion. At low vari-
ation in crossing points (SD < 0.2 or CV < 1%) the
distributions remain close to Normal through all steps of

data processing (Figure 5-A). In contrast, at higher initial
dispersion (crossing points' SD > 0.2 or CV > 1%) the PCR
data processing transformed the Normal distribution such
that the resulting distributions became asymmetric and
far from normal (Figure 5-C).

Addressing the use of amplitude normalization we stud-
ied several factors potentially affecting PCR plateau level.
On the gels run immediately after PCR the weak bands
initially visible without staining because of SYBR Green
originated from PCR mixes were remarkably increased
after additional staining with SYBR Green (Figure 6).
When PCRs were run with different concentrations of
primers, enzyme, and using different caps for PCR plate,
neither increase of primers nor addition of enzyme influ-
enced the plateau level and scattering. However, the caps
design did affect the plateau position (Figure 7).

Discussion
PCR data processing is a complex procedure that includes
a number of steps complementing each other. Many dif-
ferent options have been suggested by different authors at
each step of PCR data processing. In the discussion below
we go through our procedure on a step-to-step basis
shortly discussing the available options and explaining
our choices. In general, we preferred the simplest func-
tioning solutions. In statistical treatment we looked for
valid practical estimations rather than for mathematically
exact solutions. Because of lack of relevant theoretical data
we paid especial attention to the amplitude normalisation
and to statistical processing of intra-assay PCR replicas. To
validate these sections of our procedure we had to address
some basic theoretical issues.

PCR data processing may need to be optimized for specific
PCR machines and chemistry. The discussed processing
was optimized for data obtained on an Opticon Monitor
2 machine (MJ Research) using the QuantiTect SYBR
Green PCR kit (Qiagen).

Smoothing
Smoothing is necessary if noticeable non-specific scatter-
ing from cycle to cycle is observed on the raw fluorescence
plots. Apart from moving averages there are other more
sophisticated mathematical approaches to filter this kind
of noise e.g. sigmoidal fitting [13]. However, this fit is no
more than a mathematical abstraction fitting PCR plot.
Until the development of a genuine mathematical model
of real time PCR, all other fits will not be related to PCR
per se. Therefore, since simple 3 point moving average pro-
duced acceptable results there was no obvious need for
more complex methods.
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Background subtraction
Background subtraction is a common step in PCR data
processing. Often it requires operator's involvement to
choose between several available options (e.g. subtraction
of minimal value through the run, subtraction of average
over a certain cycle ranges, different kinds of "trends", etc).
To avoid the operator involvement we always subtract the
minimal value observed in the run. This option has a clear
interpretation and works well. It is important that the
baseline subtraction is performed after smoothing. So the
noise potentially affecting minimal values has already
been reduced before baseline subtraction.

Amplitude normalization
Amplitude normalization unifies plateau positions in dif-
ferent samples. Although amplitude normalization was

available in some versions of Light-Cycler software and
has been used by some researchers [14] this step still is not
common in PCR data processing. The caution with regard
to the amplitude normalization is probably caused by cur-
rent lack of understanding of the plateau phase in PCR.

Amplitude normalization is based on the suggestion that
in ideal PCR, output is determined by the initially availa-
ble PCR resources. In this case PCRs prepared from the
same master mix will run out of the same limiting
resource in different samples. The resource can run out
sooner (abundant template) or later (rare template) but
finally the same amount of PCR products will be pro-
duced in all samples. This assumption is valid for ideal
PCR but in practice it may not always hold (for example,
non-specific PCR products may also consume PCR

Expression of Cyclin B1 mRNA in breast cancer biopsiesFigure 3
Expression of Cyclin B1 mRNA in breast cancer biopsies. The observed decrease of Cyclin B1 expression after treat-
ment was expected in most but not all cases. Bars show actual 95% confidence intervals estimated by the described statistical 
procedure in a set of real clinical specimens (NB – these are confidence intervals for intra-assay PCR variation only).
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resources). The factors potentially leading PCR to the pla-
teau include utilization of primers or nucleotides, thermal
inactivation of DNA polymerase, competition between
primers and PCR products for annealing, enzyme inacti-
vation by PCR products and accumulation of inhibitors
[15]. The plateau may also be affected by factors influenc-

ing the detection of PCR products: e.g. by PCR volume and
by concentration of probe or SYBR-Green in PCR mix
[14,16,17]. In practice the plateau phase is probably
caused by different factors depending on the particular
PCR design and PCR mix composition.

In this work we used QuantiTect SYBR Green PCR kit
(Qiagen). With this kit neither increase of primers nor
addition of enzyme notably affected the plateau positions
(Figure 7). The fact that bands on PCR gels were remarka-
bly enlarged by additional staining with SYBR Green (Fig-
ure 6) suggests that the plateaus observed in PCRs could
had been caused simply by limited SYBR Green concentra-
tion. Therefore, in samples prepared with the same master
mix, the plateau scattering could be considered as a non-
specific noise and should be removed.

What may cause the plateau scattering in fluorescence
plots? In certain cases, it may be optical factors. Freshwa-
ter et al [18] showed that refraction and reflection notably
affects the plateau scattering in different types of tubes
(Figure 8). This is in agreement with our observations in
which (i) we failed to observe positive correlation
between plateau positions and the volumes of bands on
PCR gels and (ii) plateau scattering may be reduced by
passive dye normalization (data not shown). Potentially,
other factors may also play a role in plateau scattering: e.g.
non-uniform evaporation across PCR plates[18].

So far, lack of understanding of the PCR plateau nature
makes the amplitude normalization an optional step.
When used, amplitude normalization should be
empirically validated in each individual plate. Linearity of

Table 1: Primers' sequences

Short name Full name GenBank number Primers

SCGB2A2 Mammaglobin 1 (Secretoglobin, family 2A, member 2) NM_002411 TCC AAG ACA ATC AAT CCA CAA G
AAA ATA AAT CAC AAA GAC TGC TG

SCGB2A1 Mammaglobin 2 (Secretoglobin, family 2A, member 1) NM_002407 AAG ACC ATC AAT TCC GAC ATA
CAC CAA ATG CTG TCG TAC ACT

CCNB1 Cyclin B1 NM_031966 CAT GGT GCA CTT TCC TCC TT
CAG GTG CTG CAT AAC TGG AA

CKS2 CDC28 protein kinase regulatory subunit 2 NM_001827 TTC ATG AGC CAG AAC CAC AT
CTC GTG CAC AGG TAT GGA TG

PTN Pleiotrophin (heparin binding growth factor 8, neurite growth-
promoting factor 1)

NM_002825 GTG CAA GCA AAC CAT GAA GA
GCT CGC TTC AGA CTT CCA GT

LPIN2 Lipin 2 NM_014646 TTG TTG CTG CAG ATT GAT CC
CCA AAT GGC AAT GGA TTT TC

ACTB Actin, beta NM_001101 GGA GCA ATG ATC TTG ATC TT
CCT TCC TGG GCA TGG AGT CCT

GAPD glyceraldehyde-3-phosphate dehydrogenase NM_002046 TGC ACC ACC AAC TGC TTA GC
GGC ATG GAC TGT GGT CAT GAG

Primers for GAPD were taken from Vandesompele et al [20]

Distribution of crossing points in PCR replicasFigure 4
Distribution of crossing points in PCR replicas. Axes: 
vertical – relative frequency (%), horizontal – crossing points. 
Histogram represents a typical crossing points' distribution in 
96× replica (Plate 1 from Table 2). The Kolmogorov-Smirnov 
test has not revealed significant deviations from the Normal 
distribution. The red line shows a Normal fit.
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Table 2: Crossing points' distributions observed in PCR replicas

Plate Number of replicates Mean CP SD CV Skewness Kurtosis Kolmogorov-Smirnov test

1 96 21.48 0.06 0.3% 0.1 -0.1 Normal
2 94 18.09 0.07 0.4% 1.5 5.7 Sharper than normal
3 96 20.09 0.04 0.2% 0.1 -0.3 Normal
4 96 18.13 0.10 0.5% 0.5 1.0 Normal

Transformation of normal distribution through data processingFigure 5
Transformation of normal distribution through data processing. Axes: vertical – relative frequency (%), horizontal – 
results. Red lines show Normal fits. A: At CPs' CV 0.5% the deviations from normality were not detectable using the Kol-
mogorov-Smirnov test. B: At CPs' CV 1% the deviations from normality were not detectable in non-normalized values though 
moderate deviations were detectable in final results. C: At CPs' CV 2% deviations from normality were detectable in both non-
normalized values and in final results.

Crossing points Non-normalized values Normalized results
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the standard curve may act as an empirical test for ampli-
tude normalization, i.e. if the standard curve is good so
the amplitude normalization does not alter the results
and the procedure may be employed. Our experience is
that amplitude normalization usually improves the stand-
ard curve (Figure 9).

Finally, a "PCR-specific" explanation of plateau scattering
can not explain the scattering observed in PCR replicas
(Figure 10A). After amplitude normalization the fluores-
cence plots in replicas often converge toward a single line
(Figure 10B). In our experiments this reduced CV in
replicas by a factor of 2 to 7. Therefore, when a marked
plateau scattering is observed at a particular PCR, ampli-
tude normalization should be considered.

Threshold selection
As long as the standard curve provides both basis and
empirical validation for PCR results the threshold may be
put at any level where it produces a satisfactory standard
curve. At the same time, the linearity of standard curve is
theoretically explained at exponential phase of PCR only.
Therefore, the common practice is to put the threshold as
low as possible to cross the fluorescence plots in the
exponential phase. For this reason we usually restrict the
search of the optimal threshold position to the lower half
of the fluorescence plot.

Crossing point calculation
Currently the most established methods of crossing point
calculations are the fit point method and the second
derivative maximum method [4]. The fit point method
reliably allocates the threshold level in the exponential
phase and reduces minor inaccuracies by aggregating data
from several points. The second derivative maximum
method eliminates interactivity during threshold selec-
tion and baseline subtraction. These are robust and relia-
ble methods.

Our calculation method also produces good results. In
addition, it is simple and does not alter the initial mathe-
matical definition of crossing points.

Statistical treatment of PCR replicas
The next step in the data processing is derivation of results
from crossing points. Two separate issues need to be
addressed during this step: (i) best-fit values and (ii)
errors in replicates. Calculation of best-fit values is simple
with standard curve methodology (see formulae in Addi-
tional file 1) but statistical assessment of errors in repli-
cates requires detailed consideration.

Description and interpretation of intra-assay PCR variation
PCR uncertainty is usually characterized by coefficient of
variation. This reflects the fact that the errors propagated
to non-normalized values and to final results are higher at
higher best-fit values. This is not always the case with the
crossing points. However, coefficients of variation still

Effect of staining with SYBR Green 1 on PCR gelFigure 6
Effect of staining with SYBR Green 1 on PCR gel. A: Before staining. B: After staining. Before electrophoresis SYBR 
Green1 was added to marker but not to samples.

BA
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may be used for rough comparison of CPs' dispersions
because the CPs' absolute values vary in quite a limited
range (typically between 20 and 30 cycles).

Importantly, that during PCR interpretation the statistical
significance of differences between samples should not be
based on intra-assay variation. Intra-PCR replicates
account only for errors originated from PCR. At the same
time the uncertainty in final results is usually more
affected by pre-PCR steps [1]. In this case the replicates of
the whole experiment (including sampling, RNA extrac-
tion and reverse transcription) are needed to derive statis-
tical differences between samples. If the amount of
starting material is limited or replicates are unavailable
(for example when studying tumor biopsies) the prelimi-

nary assessment of replicates in an experimental set of
similar samples is required to base statistical comparison
between samples (type B evaluation of uncertainty
according to Taylor and Kuyatt [19]). This type of statisti-
cal treatment is not included in the described data
processing. Even though in our experiments the intra-
assay PCR variation can not be directly used for statistical
inferences, we routinely use it as an internal quality check
for PCR.

Starting point for statistical assessment
Two different approaches may be utilized for initial statis-
tical handling of intra-assay PCR replicates. Either CP val-
ues are first averaged and then transformed to non-
normalized values or vice versa. Both approaches may
yield similar results, as long as the arithmetic mean is used
for the CP values and geometric mean for the non-nor-
malized quantities. We prefer to start statistical assess-
ment using unmodified source data i.e. we average
crossing points before transformation to the non-normal-
ized values.

Crossing point distribution in PCR replicas
To choose appropriate statistical methods to deal with
crossing points, we started from the assessment of
crossing points' distributions in PCR replicates. Distribu-
tions of crossing points were studied in four PCR plates
each of those represented a 96× replicate. The distribu-
tions were close to the Normal (Table 2, Figure 4). Com-
bined analysis of a number of PCR reactions, made in
triplicates or quadruplicates, confirmed this result (data
not shown). Therefore, Normal distribution satisfactorily
reflects the distribution of crossing points in PCR repli-
cates. This allowed us to use arithmetic mean and mean's
variances to estimate best-fit values and their uncertainty
in crossing points.

Error propagation
The CPs' variances were traced to final results by the law
of error propagation. This assumed the normality of
distributions not only in crossing points but also at the
later steps of data processing. Strictly speaking, this
assumption is not completely true: the data processing
deforms normal distribution. Three functions are used to
calculate results from crossing points: linear function (lin-
ear standard curve), exponent (calculation of non-nor-
malized values) and ratio (normalizing by reference
genes). Among them only linear function keeps normality
of distribution. Exponent and ratio distort it. At the same
time, the degree of the introduced distortion depends on
particular numeric parameters. Analyzing the deforma-
tion of normal distribution at the parameters typical for
real time PCR we found that at low initial dispersions the
resulting distributions remain close to normal (Figure
5A). Therefore, the convenient parametric methods can be

Effect of different factors on plateau positionFigure 7
Effect of different factors on plateau position. A: More 
enzyme in blue than in red samples B: More primers in blue 
than in red samples C: Domed and plain caps
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used in PCR data processing if crossing points' CV in
replicas does not exceed 1% (for a typical PCR it roughly
corresponds to crossing points' SD ≤ 0.2 and to CV in non-
normalized values ≤ 14%, see Table 3). At higher initial
dispersions the resulting distributions become asymmet-
ric and require special statistical treatment (Figure 5C).
Actually observed in our experiments crossing points' CVs
usually were less than 0.5% (Table 2).

Additionally the analysis confirmed the remarkable
increase of relative variation at each step of data process-
ing. E.g. 2% CV at crossing points resulted to 28% CV in
the non-normalized values and to 40% CV in the final
results (Table 3). This also complicates interpretation of
results with high dispersion in crossing points.

Standard curves
In line with the common practice, we interpreted the
standard curve as an ordinary linear function ignoring its
statistical nature and uncertainty because the uncertainty
was usually quite small (typical coefficient of determina-
tion above 99%). With sufficient number and range of

standard dilutions and proper laboratory practice it is
always should be possible to produce the standard curve
of sufficient quality.

Specific design of standard curves may differ for different
genes depending on the variability of their expression. For
relatively stabile genes (e.g. Actin beta or GAPD) we usu-
ally were able to obtain good standard curves using 5–6
two-fold dilutions. To cover the dynamic range for genes
with less stable expression (e.g. Mammaglobin 1 in breast
cancers) more dilutions (up to 8) and/or higher factor at
each dilution (3–5 fold) were needed. We usually run
standards in triplicates (as well as the target specimens).

Even though the standard curves could be quite reproduc-
ible [12] we consider the presence of standard curves on
each plate to be a good laboratory practice. Additionally,
there is no great economy in sharing standard curves
between PCR plates, when the plates are filled up with
samples. For example, 6-point standard curve in
triplicates takes just 18 cells: this is less than 20% of 96-
plate and less than 5% of 386-plate. Therefore sharing of

Optical factors affect the plateau scatteringFigure 8
Optical factors affect the plateau scattering. SYBR Green real time PCR in frosted plates (green) and white plates (blue). 
Frosted plates cause increased plateau scattering because of inconsistent reflection and refraction (Reproduced from [18], with 
ABgene® permission).
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standard curves reduces costs and labour only in pilot
experiments with small number of samples. However,
even in pilot experiments the repeatability of shared
standard curves should be validated on a regular basis.

Summarizing data from several reference genes
Several reference genes are required for accurate relative
quantification [1,20]. Different ways may be used to
derive a single normalizing factor out of several genes. To
explore this in the attached version of VBA script we made
available two options: arithmetic and geometric mean.

Arithmetic mean is the most "intuitive" way. However, it
has a major disadvantage: it depends on arbitrary choice

of the absolute values for reference genes. For example,
the normalizing factor will differ, if a reference gene is
described either as a fraction of 1 (absolute values from 0
to 1) or in percents (values 0% to 100%). Importantly,
this can change the relative values of the normalizing
factor in different samples. In contrast, if geometric mean
is used, the arbitrary choice of units for any reference gene
will not affect the relative values of normalizing factor in
different samples. Neither arithmetic nor geometric mean
accounts for differences in uncertainties of different
reference genes. In practice this implies similar variances
in all reference genes. This assumption seems reasonable
in most of the cases. However, if this assumption does not

Effect of amplitude normalization on standard curveFigure 9
Effect of amplitude normalization on standard curve.
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hold the weights reciprocal to variances could be
introduced.

Obviously, the different ways of summarizing data from
reference genes will produce different results. At the same
time, at truly stable expression of reference genes the gen-
eral tendencies in results should be similar. Currently we
calculate the single normalizing factor by geometric
mean, because it better fits to the relative nature of meas-
urements as well as to the logarithmic scale of gene expres-
sion changes [20,21].

Unfortunately common practice tends to ignore the
uncertainty of normalizing factor. Our procedure
estimates this uncertainty using the law of error propaga-
tion (see formulae in Additional file 1).

Methods based on PCR efficiency and individual shapes of 
fluorescent plots
Standard curve approach was chosen for our procedure
because currently PCR efficiency assessment may compli-
cate data processing. The main complication is that actual
efficiency of replication is not constant through the PCR
run being high at exponential phase and gradually declin-
ing toward the plateau phase. However, most current
methods of PCR efficiency assessment report "overall"
efficiency as a single value. Additionally, PCR efficiency
may be calculated in different ways that can
"overestimate" or "underestimate" the "true" PCR effi-
ciency [12]. In contrast, the standard curve method is
based on a simple approximation of data obtained in
standard dilutions to unknown samples.

Effect of amplitude normalization on plateau scattering in 96× replicaFigure 10
Effect of amplitude normalization on plateau scattering in 96× replica. Axes: vertical – Fluorescence, horizontal – 
Cycle. Data for plate 3 from Table 2.

Table 3: Magnitude of propagated error at different steps of data processing

SD in crossing points CV in crossing points CV in non-normalized values CV in normalized results

0.1 0.5% 7% 10%
0.2 1.0% 14% 20%
0.3 1.5% 22% 31%
0.4 2.0% 28% 40%
0.6 3.0% 45% 66%

In all instances mean values are 20 in crossing points, 10 in non-normalized values and 1 in final results. See Figures 5 and 13 for more details.

Without amplitude normalization After amplitude normalization

Mean CP = 20
SD = 0.18
CV =0.9%

Mean CP = 20
SD = 0.04
CV =0.2%
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At present the most popular method of PCR efficiency
assessment is based on the slope of standard curve. This
method does not account for PCR efficiencies in individ-
ual target samples. In contrast, recent publications on PCR
efficiency assessment were concentrated on the analysis of
individual shapes of fluorescence plots [8-10]. Potentially
this may lead to better mathematical understanding of
PCR dynamic and to new practical solutions in PCR quan-
tification [13].

Limitations of our data processing
This section summarizes conditions that must be adhered
to in order to obtain valid results with our data
processing:

• all PCRs must achieve doubtless plateau and no non-
specific PCR products should be observed to use ampli-
tude normalization;

• standard curves with coefficient of determination above
99% are required to ignore uncertainty of regression and
to validate the use of amplitude normalization;

• low dispersion in PCR replicates (crossing points' CV <
1% or SD < 0.2) is required to use the conventional statis-
tical methods.

These limitations are linked: amplitude normalization
provides the low dispersion in replicas needed for statisti-
cal treatment.

Conclusion
In this article we described a procedure for relative real
time PCR data processing. The procedure is based on the
standard curve approach, does not require PCR efficiency
assessment, can be performed in fully automatic mode
and provides statistical assessment of intra-assay PCR var-
iation. The procedure has been carefully analyzed and
tested. The standard curve approach was found a reliable
and simple alternative to the PCR-efficiency based calcu-
lations in relative real time PCR.

Methods
Tissue samples, RNA extraction, reverse transcription
Breast cancer biopsies were taken from 21 patients before
and after treatment with an aromatase inhibitor. Samples
were obtained in the Edinburgh Breast Unit (Western
General Hospital, Edinburgh) with patients' informed
consent and ethical committee approval. Biopsies were
snap frozen and stored in liquid nitrogen until RNA
extraction. Before RNA extraction the frozen tissue was
defrosted and stabilized in RNA-later-ICE reagent
(Ambion). Total RNA was extracted with RNeasy-mini
columns (Qiagen). Amount and purity of RNA were eval-

uated by spectrophotometer. RNA integrity was con-
firmed by agarose gel electrophoresis.

cDNA was synthesised with SuperScript III reverse tran-
scriptase (Invitrogen) in accordance with the manufac-
turer's recommendations. Briefly:

1) oligo(dT)20 primers and dNTPs were added to total
RNA,

2) the mix was heated to 65°C for 5 min and then chilled
on ice,

3) first-Strand buffer, DDT, RNase inhibitor (RNaseOUT,
Invitrogen) and Reverse transcriptase were added to
specimens,

4) reverse transcription was carried out for 60 minutes at
50°C.

PCR
Calibrator preparation, cDNA dilution and PCR plate set
up were performed as illustrated in Figure 11. Briefly:

1. Aliquots of cDNA samples running on the same plate
were pooled and the pool was used as calibrator.

2. cDNAs were diluted with water prior PCR.

3. The set of samples consisting of the diluted cDNAs and
the dilutions of the calibrator were used for several PCR
plates: one plate for each gene.

4. For each sample the whole PCR mix including primers
and cDNA was prepared before dispensing into the plate.

5. Samples were loaded to 96× PCR plates by 15 µl per cell
in triplicates or quadruplicates.

Primer's sequences are given in Table 1. Primers were
designed basing on the sequences published in GenBank
and using Primer-3 software [22]. To avoid genomic DNA
amplification the primers were either located in different
exons or across exon-exon boundaries. Primers were syn-
thesized in Sigma Genosys or in Cancer Research UK. PCR
was performed using QuantiTect SYBR Green PCR kit
(Qiagen), Opticon-2 PCR machine (MJ Research), white
96× PCR plates and plain PCR caps (MJ Research). The
cycling parameters for all genes were the following: hot-
start 95°C 15 min, 45 cycles of (denaturation 94°C 15
sec, annealing 56°C 30 sec, elongation 72°C 30 sec, plate
read), final elongation 72°C 5 min, melting curve 65–
95°C. Gradient PCRs confirmed 56°C as appropriate
annealing temperature for all primers.
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PCR set upFigure 11
PCR set up.

cDNA from RT

Aliquots for calibrator

cDNA Dilution

Dilutions of calibrator

Calibrator

Diluted cDNA ready for PCR

Add PCR mix with primersTake aliquot to a new tube

1:1

For each dilution of calibrator and each sample of diluted cDNA:

PCR
mix

Dispense to plate in triplicates

Water

Use this set for several plates: one plate for one gene
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Several additional PCRs were run with different amount
of primers (0.1 µM, 0.3 µM, 0.9 µM), different amount of
enzyme (0.8U, 1.5U and 3.1U of HotStarTaq, Qiagen
were added to 15 µl PCRs made with QuantiTect SYBR
Green PCR mix, Qiagen) and different caps (domed and
plain caps, MJ Research).

PCR product electrophoresis
Electrophoreses were run immediately after PCRs. 10 µl of
PCR products were mixed with 2 µl of loading buffer. 6 µl
of the mix per well was loaded into 10% PAAG (TBE
Ready Gel, Biorad). Electrophoresis was run at 100 V for
~1 hr using MiniProtean-II cell (Biorad).

Computer simulation of PCR data processingFigure 12
Computer simulation of PCR data processing. Computer simulation of PCR data processing at 1% CV in crossing points 
(see Methods for details).

CP1 CP2 E1 E2 R
20.327 19.91491 7.978136 10.60543 0.752269

20.13962 20.1753 9.080605 8.859496 1.024957
19.54099 20.24734 13.73107 8.429409 1.628948

… … … … …

Two independent samples
from Normal distribution

For each sample:
n=1000, m=20,
s=0.2, CV=1%

E1=10Slope x CP1 + Intercept

E2=10Slope x CP2 + Intercept

Slope = - 0.3
Intercept = 7

R=E1/E2
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Prior electrophoresis 1 µl of 1:100 Sybr-Green-1 (Molecu-
lar Probes) was added into molecular weight marker (PCR
Low Ladder Set, Sigma) but not into the PCR samples.
After electrophoresis the gels were stained for 10 min in
fresh prepared 1:10000 SybrGreen-1 (Molecular Probes).
Photos were taken before and after staining using the
GelDocMega4 gel documentation system (Uvitec).

96× PCR replicas
To study distributions of crossing points in PCR replicas
four PCR plates have been run with a 96× replica on each.
The distributions were evaluated using histograms, skew-
ness and kurtosis measures, and the Kolmogorov-Smir-
nov test for Normality (see Table 2 and Figure 4).

Normal distribution transformation through the data 
processing
The transformation of Normal distribution through data
processing was studied by computer simulation (Figure
12).

Basing on the above empirical observations (Table 2, Fig-
ure 4) the crossing points were simulated by sampling
from the Normal. Samples of 1,000 random normal num-
bers were obtained using standard Excel data analysis
tool. A pair of such samples was used to simulate CPs for
one target and one reference genes. Then the simulated
CPs were processed in the same way as real PCR data. The
distributions obtained at each step of data processing
were evaluated for normality by histograms, skewness and
kurtosis measures, and the Kolmogorov-Smirnov test.

Parameters used in calculations were close to actual
parameters typically observed in our PCRs (MeanCP = 20,
Slope = -0.3, Intercept = 7). The resulted true values for
non-normalized and normalized results were 10 and 1
correspondingly.

To study error propagation at different initial dispersions
we performed simulations using the Normal distributions
with different variances (CV 0.5%, 1%, 1.5%, 2%, 3%, 4%
and 5%; the means were always 20). Detailed illustration
for CV 1% is presented in Figure 12. The summary of sim-
ulation results is presented in Figure 5 and Table 3.

Excel VBA macros
The calculations where performed using MS Excel VBA
script included to the electronic version of publication
(see Additional file 2).

List of abbreviations
GAPD – glyceraldehyde-3-phosphate dehydrogenase

CP (CPs) – crossing point (crossing points)

SD – standard deviation

CV – coefficient of variation

r2 – coefficient of determination in linear regression
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