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Making the Auroras glow: regulation of Aurora A and B kinase
function by interacting proteins
Mar Carmena, Sandrine Ruchaud and William C Earnshaw

The conserved Aurora family of protein kinases have emerged

as crucial regulators of mitosis and cytokinesis. Despite their

high degree of homology, Aurora A and B have very distinctive

localisations and functions: Aurora A associates with the

spindle poles to regulate entry into mitosis, centrosome

maturation and spindle assembly; Aurora B is a member of the

Chromosomal Passenger Complex (CPC) that transfers

from the inner centromere in early mitosis to the spindle

midzone, equatorial cortex and midbody in late mitosis and

cytokinesis. Aurora B functions include regulation of

chromosome–microtubule interactions, cohesion, spindle

stability and cytokinesis. This review will focus on how

interacting proteins make this functional diversity possible by

targeting the kinases to different subcellular locations and

regulating their activity.
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Introduction
Successful cell division depends upon the function of key

regulatory protein kinases. The best known of these,

Cyclin dependent kinases (CDKs), Polo-like kinases

(PLKs) and Aurora kinases control mitotic entry and

ensure the accurate coordination of chromosomal and

cytoskeletal events, leading to the correct partition of

the genetic material into two daughter cells. Defects in

the function and expression of these kinases result in

aneuploidy and have been linked to tumorigenesis [1],

making them attractive targets for the development of

new anti-cancer treatments [2]. The study of their func-

tions and regulation is revealing a network of interactions

between the pathways controlled by each kinase. Many

recent studies of these kinases have focused on the de-

velopment and characterisation of Aurora-specific and

Aurora-selective inhibitors. These have been recently

reviewed [3] and will not be covered here.

The Aurora family of Ser/Thr kinases has emerged as

crucial regulators of essential processes ranging from

mitotic entry to cytokinesis. The number of family mem-

bers varies depending on the species: fungi have one

Aurora gene, whereas in most higher eukaryotes the

family has branched, with Auroras A and B adopting

different subcellular localisations and functions (see

below). In mammals, a third member — Aurora C — that

most closely resembles Aurora B, is normally expressed

primarily in testis.

Aurora A and B are very similar proteins in sequence and

structure, sharing 70% identity in the catalytic domain.

However despite their similarities they have quite dis-

tinct localisations and functions during mitosis (Figure 1).

Aurora A associates with the spindle poles and functions

in mitotic entry, centrosome maturation and separation

and spindle bipolarity [4,5]. Aurora B is the enzymatically

active member of the Chromosomal Passenger Complex

(CPC), which includes the scaffolding protein INCENP

and the targeting subunits Survivin and Borealin/Dasra B.

The CPC associates with the inner centromere until

metaphase and then transfers to the spindle midzone,

equatorial cell cortex and midbody in late mitosis and

cytokinesis [5,6]. Aurora B functions include regulation of

chromosome interactions with microtubules, chromatid

cohesion, spindle stability and cytokinesis [6]. How such

similar proteins can occupy these diverse functional cel-

lular niches is partly explained by their association with

specific cofactors (Figure 2) that act as targeting and

activating subunits (see below).

Surprisingly, most of these cofactors associate with

highly conserved residues in the Aurora catalytic domain

rather than the more variable N-terminus. Structural

mutagenesis analysis revealed that a single amino acid

difference (G198 in human Aurora A/N142 in human

Aurora B) is responsible for the differences in basal

kinase activity [7] and allows TPX2 to discriminate

between Aurora A and B [7,8]. An Aurora A G198N

mutant shows classical Aurora B localisation, partially

rescues Aurora B loss of function and associates with the

CPC subunits INCENP and Survivin [9,10]. Interest-

ingly, despite showing several ‘Aurora B-like’ features,

the yeast enzymes have a Glycine in the equivalent

residue, like Aurora A [7].
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Indeed, Aurora A and B normally exhibit limited func-

tional interchangeability. Aurora A can phosphorylate

some Aurora B substrates in vitro (i.e. Histone 3,

CENP-A, INCENP, Survivin) and both kinases act upon

common substrates at different times during mitosis (i.e.

MCAK, Kif2, RASSF1A). This partial overlap in substrate

specificity could have important implications when the

kinases are misexpressed or mislocalised. Nonetheless,

the two kinases are fundamentally distinct, and Aurora A,

but not Aurora B can function as a classical oncogene

when overexpressed [11].

Regulation of Aurora kinases occurs at the levels of gene

expression, targeting, local activation and degradation.

Degradation of Aurora kinases depends mainly on the

Anaphase Promoting Complex/Cyclosome (APC/C) with

its auxiliary subunit Cdh1 [12–15]. It has been claimed

that degradation of Aurora A is the main contribution of

Cdh1 to the regulation of mitotic exit [16��]. When

stabilised by depletion of Cdh1 Aurora A accumulates

on the spindle poles and microtubule asters persist until

G1. In these cells there is an increased accumulation of

Aurora B in the equatorial cortex [16��]. Removal of

Aurora B from the chromosome arms in early mitosis

and subsequent transfer to the central spindle involve

a distinct CUL3-containing SCF ubiquitin ligase [17].

Degradation of Aurora A is regulated by phosphorylation

in two different ways. Firstly, its degradation requires

dephosphorylation of a serine residue in the A-Box (Ser53

in Xenopus, Ser 51 in human Aurora A), probably by PP2A

[18�]. An alternative pathway for Aurora A degradation

involves phosphorylation of AIP1 by GSK3beta [19].

AIP1 localises at the centrosome where it binds and

downregulates Aurora A early in mitosis [20].

Full activation of both Auroras requires binding to

specific protein cofactors. These frequently induce a

conformational change in the kinase domain, leading to

auto-phosphorylation of a Threonine residue in the T-

loop (T288 in human Aurora A, T232 in Aurora B). Most

importantly, kinase activation at specific cellular locations

during mitosis requires timely association with interacting

proteins. In the following sections we will focus on these

interactors and the way in which they modulate the

function of Aurora kinases.

Aurora A functions
Aurora A was discovered in a screen for Drosophila
mutations affecting the poles of the mitotic spindle

(hence the name referring to the Aurora Borealis [21]),

and many Aurora A functions are related to its ability to

bind microtubules coupled with its location at spindle
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Figure 1

Distribution of Aurora A and Aurora B in mitotic HeLa cells.

www.sciencedirect.com Current Opinion in Cell Biology 2009, 21:796–805



poles. Aurora A microtubule binding and centrosomal

targeting depends on numerous auxiliary proteins (see

next section).

Mitotic entry

Aurora A phosphorylation of CDC25B on Ser353, pro-

motes the activation of this critical phosphatase [22,23],

leading to the activation of centrosome-associated

CyclinB–CDK1 [24]. Activation of PLK1 by Aurora A

in complex with its auxiliary cofactor Bora in G2 also

contributes to the final activation of CyclinB–CDK1

[25��,26��] as PLK1 promotes degradation of the CDK1

inhibitor Wee1 [27].

Centrosome maturation

Centrosomes increase both in size and in microtubule-

nucleating capacity just before mitotic entry [28]. Aurora

A contributes to this by recruiting pericentriolar material

(PCM) proteins including Centrosomin [29], LATS2,

TACC and NDEL1 [30–32]. The Ser/Thr kinase LATS2

is required for recruitment of gamma-tubulin, a key step

in increasing the microtubule-nucleating capacity of the

centrosome. NDEL1 is required for the recruitment of

the microtubule-severing protein katanin p60, promoting

microtubule remodelling. Interestingly, NDEL1 also

contributes to the centrosomal targeting of TACC [32],

which, when phosphorylated, forms a complex with

XMAP215/Msps and promotes microtubule growth.

Bipolar spindle formation

Centrosome separation and bipolar spindle formation

require both sliding forces between anti-parallel micro-

tubules and cortical forces that act on the asters. Integrity

of the astral microtubules connecting the centrosomes

with the cell cortex depends on Aurora A [33]. The

bipolar kinesin Eg5 can slide anti-parallel microtubules

and is involved in centrosome separation [34]. Eg5 is an

Aurora A substrate, however, there is no direct evidence

for a function of this phosphorylation in centrosome

separation.

Chromosomal pathway of spindle formation

This pathway, which is particularly important in cells

lacking centrosomes, depends on a Ran-GTP gradient

that locally activates MAPs involved in bipolar spindle

assembly. In Xenopus extracts, Aurora A drives this Ran-

GTP-dependent bipolar spindle formation by a mechan-

ism involving gamma-tubulin and TPX2 [35]. Aurora A

promotes the formation and function of a complex con-

taining TPX2, Eg5, HURP (a microtubule bundling

factor) and XMAP215 (a microtubule stabiliser) that is

essential for spindle bipolarity [36]. Aurora A phosphoryl-

ation blocks binding of the HURP C-terminus to its own

N-terminus, thereby allowing its interaction with micro-

tubules [37]. Aurora A phosphorylation of the microtu-

bule-destabilising kinesin 13 MCAK promotes its

localisation to spindle poles [38] and also controls the

stability of Aster Associated Protein (ASAP) [39]. Both

MCAK and ASAP are required for bipolar spindle assem-

bly [38,39].

Regulation by Aurora A interacting proteins
The best studied protein cofactor for Aurora A is TPX2, a

MAP that targets the kinase to the mitotic spindle (but

not the centrosome) and activates it [40,41]. TPX2 has a

dual role in Aurora A activation. Its N-terminus binds the

kinase, inducing a conformational change that facilitates

auto-phosphorylation of Thr288 in the T-loop [42,43].

Bound TPX2 then shields this residue from dephosphor-

ylation by PP1 on entry into mitosis [42,43].

Ajuba is a multifunctional protein that interacts with the

N-terminus of Aurora A at the centrosome. Ajuba phos-

phorylation by Aurora A promotes kinase auto-phos-

phorylation and its full activation [24]. Ajuba is a MAP

that tracks on assembling MTs from the centrosome to

the kinetochore, where it partially colocalises with Aurora

798 Cell division, growth and death

Figure 2

The major regulators of (A) Aurora A and (B) Aurora B kinases. Protein

kinases are indicated in red and phosphorylation events by red arrows.

Protein phosphatases are indicated in blue.
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B and BubRI [44]. Although Ajuba binds these proteins in
vitro it is unclear whether this binding has a role at

centromeres in vivo.

Bora was originally identified due to its role in Drosophila
asymmetric cell division [45]. Bora binding and phos-

phorylation by Aurora A is also required for full kinase

activation. In addition, both Bora and Aurora A are required

for PLK1 activation at the centrosome in G2 [25��]. Bora

binding to PLK1 controls Aurora A access to the PLK1

T-loop, where Aurora A phosphorylates Thr210, leading to

full PLK1 activation [26��]. Interestingly, Bora degradation

appears to involve a negative feedback loop: PLK1 phos-

phorylation of Bora creates a recognition site for the E3

ubiquitin ligase SCF-betaTrCP [46].

Inhibitor 2 is a PP1 regulatory subunit that binds and

activates Aurora A in vitro [47]. During mitosis it localises

to the mitotic spindle, midzone and midbody, where it

has been suggested to balance the activities of PP1 and

Aurora B [48].

Curiously, three proteins with previously well-defined

roles at focal adhesions also colocalise with, and appear

to regulate, Aurora A at the centrosome and/or micro-

tubule asters. HEF-1 binding and activation of Aurora-A

is required for phosphorylation and activation of HDAC6,

a tubulin deacetylase that promotes ciliary disassembly at

the basal body [49�]. This is the only non-mitotic function

of Aurora A thus far described in vertebrates.

The other two focal adhesion components that regulate

Aurora A are both protein kinases. Inhibition or depletion

of ILK (Integrin-like kinase) causes mitotic spindle

defects by disrupting interactions between Aurora A

and TACC3/ch-TOG [50]. PAK1 is a member of the

PAK–PIX–GIT complex that targets and regulates focal

adhesions. This complex is also required for centrosome

maturation [51]. PAK1 becomes activated at the centro-

some and promotes activation of Aurora A by phosphoryl-

ation on Thr288 and Ser342 [51].

Not all Aurora A interacting factors activate the kinase.

Two protein phosphatases bind and inhibit Aurora A. PP1

dephosphorylation of T288 keeps Aurora A inactive in

interphase. At NEB TPX2 alleviates this inhibition by

binding to Aurora A and blocking PP1 access [42,43].

PP2A can bind Aurora A in vivo and the two are mutually

dependent for their centrosomal localisation [18]. PP2A

promotes Aurora A inactivation by dephosphorylating the

kinase directly [42] and also by stabilising PTTG1 (pitu-

itary tumor transforming gene 1), a mammalian securin

protein that inhibits Aurora A in vivo and in vitro [52�].

Amongst its multitudinous other activities, p53 regulates

transcription of GADD45a, a protein that binds and

strongly inhibits Aurora A [53]. p53 also colocalises with

Aurora A at the centrosome, where it may inhibit the

kinase directly. TPX2 binding shields the Aurora A T-

loop from p53 inhibition [54]. This could explain why the

transforming capability of Aurora A in human cells is

detected mainly when the p53 pathway is compromised.

Regulation of Aurora B by interacting proteins
The core CPC

Aurora B localisation and activation requires the three

regulatory subunits of the CPC: INCENP, Survivin and

Borealin/Dasra B [55–61]. INCENP, Borealin and Survi-

vin form a 1:1:1 complex through a three-helix bundle

involving the N-termini of INCENP and Borealin, and

the C-terminus of Survivin [62��]. This core subcomplex

is stable and can target to centromeres in vivo (Z Xu et al.,
unpublished data), and association with Aurora B occurs

via contacts with the INCENP IN-Box [57].

INCENP binding to Aurora B increases basal activation

of the kinase, which then achieves full activity via a

feedback loop following phosphorylation of the bound

INCENP at a TSS motif proximal to the C-terminus

[63,64]. Borealin/Dasra B is suggested to promote local

clustering that leads to Aurora B auto-activation at the

centromere [64,65]. Phosphorylation of Borealin by the

checkpoint kinase Mps1 leads to increased activation of

the kinase at the centromere [66�] by an as yet unknown

mechanism. Survivin appears to be involved in targeting

the CPC to centromeres [67], however its role, if any, in

regulating Aurora B activity remains controversial [68–
71]. There is a vast literature examining the roles of

Survivin in apoptosis regulation, inspired largely by its

having a BIR domain resembling that found in other IAP

(inhibitor of apoptosis) proteins. However, analysis of

Survivin knockout mice, which are early-embryonic

lethals [58] and detailed analysis of a conditional knock-

out of Survivin in DT40 cells [71] have failed to confirm

any role for this protein in the regulation of apoptosis. As

one possible solution to this paradox, it has been

suggested that Survivin, when present in the cytoplasm

as a dimer, may exert anti-apoptotic functions under

certain circumstances, whereas when present as a mono-

mer in the CPC, its anti-apoptotic functions (if any) may

be abrogated [72].

The recent discovery of CPC paralogues has posed a

conundrum that remains to be solved. As stated above,

mammals, which have single genes for INCENP, Bor-

ealin and Survivin, have a third Aurora kinase, Aurora C,

whose only known activities in non-transformed cells are

found in testis [73–77]. Immunostaining reveals that this

kinase exhibits a CPC-like distribution similar to Aurora

B during meiosis [77], and Aurora C knockout mice were

viable, though sterile [76]. Paradoxically, a number of

model organisms, including Drosophila, Xenopus, chicken

and zebra fish, have paralogues of other CPC components,

including Survivin, Borealin and INCENP, but only the
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canonical Aurora A and Aurora B. These have been little

studied, but the Borealin paralogues Dasra A and Aus-

tralin appear, like Aurora C to be meiosis-specific [61,78].

Survivin2 has been reported to have a role in haemato-

poiesis [79], but is not expressed in chicken DT40 cells (J.

Bergmann, K. Samejima and WCE, unpublished results).

INCENP2 has thus far only been described in chicken,

where it is expressed in somatic cells and is unable to

substitute for the canonical INCENP (Z Xu et al., unpub-

lished data).

Other Aurora B regulators

Two kinases are involved directly in the activation of

Aurora B. C. elegans Tousled-like kinase (TLK-1) is a

substrate activator that increases Aurora B activity in an

INCENP-dependent manner [80]. The checkpoint

kinase Chk1 phosphorylates Aurora B and increases its

activity at the centromere [81]. The mechanisms by

which these kinases increase Aurora B activity remain

to be determined.

The little-studied fifth chromosomal passenger TD-60

(telophase disc-60 kD) was first discovered as the target of

a human auto-antibody [82]. When TD-60 was cloned, its

cDNA was shown to encode a sequence that could be

modelled as an RCC1-like GTPase exchange factor

(GEF) [83]. Depletion of the protein by RNAi led to a

penetrant prometaphase mitotic arrest. A more recent

study has shown that full activation of Aurora B kinase

in vitro requires both TD-60 and microtubules [84��]. In

this assay TD-60 apparently did not function as a GEF,

and the significance of its structural similarity to RCC1

remains uncertain. TD-60 binds INCENP and is also

required for the centromeric localisation of the CPC and

Haspin kinase. The involvement of microtubules in

Aurora B activation was further supported by studies in
vivo in Xenopus S3 cells during anaphase using a proxi-

mity-ligation in situ assay [85��].

The protein phosphatases PP1 and PP2A bind and inhibit

Aurora B [86,87]. In anaphase, binding of the microtubule

plus-end-binding protein EB1 shields the kinase T-loop

from PP2A dephosphorylation [87]. The checkpoint

protein BubR1 inhibits Aurora B activity (as detected

by CENP-A phosphorylation) at the kinetochore. This

may promote the formation of stable microtubule–kine-

tochore attachments (see below) [88].

Aurora B functions
Spindle assembly

Aurora B and the CPC are required for stability of the

bipolar mitotic spindle [60,89]. In X. laevis egg extracts,

Aurora B phosphorylates and inhibits two proteins

involved in the chromatin-driven spindle assembly path-

way, the microtubule-destabilising protein Stathmin/

Op18 and the kinesin-13 microtubule depolymerase

MCAK [90,91]. However, bipolar spindles can form when

CPC components are depleted (Z Xu et al., unpublished

data) [60,71,89]. The role of the CPC in maintaining

bipolar spindle stability remains unknown.

Promoting chromosome bi-orientation by correcting

mis-attachments

One of the best-described functions of Aurora B is in

promoting chromosome bi-orientation. This was first

proposed as a result of studies in budding yeast suggesting

that Aurora activity was required for kinetochores to

release bound microtubules [92]. Those authors

suggested a physical model in which Aurora B in the

centromere would continually promote disruption of

kinetochore–microtubule attachments until the bi-

oriented chromosome came under tension, stretching

the kinetochores away from the inner centromere and

removing them from the ‘zone of influence’ of the Aurora

B. This was proposed to lead to stabilisation of the

attachments. Two subsequent studies provided evidence

consistent with this hypothesis by looking at the distri-

bution of the microtubule depolymerising kinesin-13

MCAK phosphorylated by Aurora B on kinetochores that

were or were not under tension [93,94].

This very prescient model has recently been confirmed in

a particularly elegant manner by tethering Aurora B at

differing locations within the centromere [95��]. If teth-

ered in the inner centromere, Aurora B is active, but does

not efficiently promote detachment of microtubules from

the kinetochore. In contrast, if tethered within the kine-

tochore itself, the kinase efficiently promotes microtu-

bule detachment, thereby interfering with stable bi-

orientation of the chromosomes on the spindle. These

observations provided clear support for the hypothesis

that Aurora B activity can be regulated by adjusting its

physical separation from its substrates [95��].

How does Aurora B promote microtubule release by

kinetochores? The formation of incorrect attachments

of vertebrate chromosomes to the spindle appears to be

relatively common in early mitosis, and cells employ

redundant mechanisms to correct these errors. Aurora B

phosphorylation of the N-terminal region of Hec1/Ndc80

decreases its affinity for microtubules [96,97]. Since

Hec1/Ndc80 is a key microtubule-binding component

of the KMN network [97], this is predicted to promote

microtubule release. Aurora B also promotes the correc-

tion of microtubule mis-attachments by regulating the

activity of MCAK [93,94,98,99] and by regulating the

recruitment of Kif2b to outer kinetochores [100].

Spindle assembly checkpoint

The spindle assembly checkpoint (SAC) is a surveillance

mechanism that delays anaphase onset until all chromo-

somes are bi-oriented and under tension (for a compre-

hensive review of the SAC signalling and the possible

roles of Aurora B see the review by Nezi and Musacchio in

800 Cell division, growth and death
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this issue [101]). There has been an energetic argument

over the years regarding whether the SAC senses only

kinetochore occupancy with microtubules or can also sense

decreased tension at microtubule–kinetochore attach-

ments. Part of the reason for the complexity of this argu-

ment is that tension regulates the stability of microtubule

attachments (see above), and therefore treatments that

lower spindle tension would also favour sporadic detach-

ment of microtubules from bi-oriented chromosomes.

The budding yeast Aurora kinase, Ipl1 is required for

SAC function in response to a lack of tension [102,103]. In

vertebrates, the use of small molecule inhibitors or inhibi-

tory antibodies revealed a similar requirement for Aurora

B in the checkpoint response to microtubule stabilising

agents that induce a lack of tension [104–106]. Thus,

Aurora B activity was required for maintenance of a stable

checkpoint response to taxol, but not when microtubules

were completely disassembled with agents such as noco-

dazole (although see [104]).

Similar defects were observed in the checkpoint response

to taxol when Survivin levels were lowered by RNAi

[107,108], but a more recent study has shown that the

situation is slightly more complex. In DT40 cells with a

conditional knockout of Survivin, the checkpoint

response to microtubule depolymerisation is normal,

but so is the response to high doses of taxol [71]. Defects

in the checkpoint were observed only at low doses of

taxol, possibly suggesting that Aurora B activity is

required primarily to amplify weak checkpoint signals,

for example when the occasional bi-oriented kinetochore

briefly releases its microtubules due to defective tension.

DT40 cells have only four microtubules per kinetochore

[109], and they may therefore represent a sensitised

system where detachment occurs more readily and Aurora

B activity is less important to stimulate the formation of

completely unattached kinetochores.

Sister chromatid and centromeric cohesion

Once chromosome bi-orientation is complete and the

SAC is satisfied, cells start the destruction of cyclins

and other APC/C substrates, and culminating in the onset

of anaphase with the release of sister chromatid cohesion.

Several studies have shown that Aurora B participates in

the control of sister chromatid cohesion [110,111]. In

vertebrates, this cohesion is released during two different

stages of mitosis [112]. In prophase, Aurora B together

with Plk1 controls the dissolution of cohesion between

chromosome arms [110,113]. Centromeric cohesion is

maintained/protected until anaphase onset and requires

the presence of the Shugoshin protein SGO1 whose

localisation depends on PP2A phosphatase, Aurora B

and BUB1 [114–117].

The release of sister chromatid cohesion is triggered by

separase after the degradation of securin through the

APC/C (anaphase promoting complex/cyclosome).

Recently Aurora B was shown to be involved in regulating

the association of separase with mitotic chromosomes

[118].

Cleavage furrow ingression and cytokinesis

During anaphase, Aurora B concentrates at the spindle

midzone and equatorial cortex, accumulating ultimately

at the midbody. This localisation of the protein is essen-

tial for late mitotic events. Indeed, Aurora B and all of the

CPC components have essential roles in cytokinesis in a

wide range of organisms [5,6,56,119,120]. In anaphase,

the position of the cleavage furrow is dictated by the

location of a microtubule-dependent zone of local RhoA

activity within the spindle midzone [121,122]. Using a

FRET-based reporter for Aurora B activity, an anaphase

Aurora B gradient has been observed on the spindle

midzone. Aurora B activity across this gradient is main-

tained through interaction with midzone microtubules

and signals the positioning of the cleavage furrow [85��].
The chain of events leading to the activation of RhoA and

therefore to the contraction of the acto-myosin ring is

regulated by Aurora B through phosphorylation of the

centralspindlin complex composed of the kinesin

MKLP1/ZEN4 and the Rac GTPase activating protein

1 (MgcRacGAP) [123,124].

Aurora B is also a key regulator of abscission timing if

unsegregated chromatin is trapped at the furrow ingres-

sion site in human cells. In cells with chromatin bridges

between daughter nuclei, active Aurora B persists in the

intercellular bridge together with phosphorylated

MKLP1 [125�]. How this stabilises the bridge is not

known, but small molecule inhibition of Aurora B

advances the time of abscission in otherwise unperturbed

mitosis. The persistence of the Aurora B and stabilisation

of the bridge depends on chromatin, as severing the

chromatin of the bridge with a laser leads to subsequent

abscission.

Similarly, in S. cerevisiae, Aurora/Ipl1 is required for the

NoCut checkpoint, which can detect either spindle

damage leading to failures in chromosome segregation

or other problems (e.g. topoisomerase II mutants or

uncleavable cohesin) that prevent the complete segre-

gation of the sister chromatids [126,127�]. Ipl1 activity on

the central spindle is required for the location of the

proteins Boi1 and Boi2 to the bud neck, where they

inhibit abscission.

Conclusions
Since first discovered more than a decade ago [128,21] the

Aurora kinase family has emerged as a major controller of

the cell cycle and mitosis. As discussed here, regulation of

the two major branches of the family is quite different,

with Aurora B functioning within the confines of the CPC,

whereas Aurora A interacts with many different partners
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at different times and places. These highly versatile

kinases will no doubt continue to reward further detailed

study for years to come.
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