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Abstract: Autism Spectrum Conditions (ASC) are much
more common in males, a bias that may offer clues to the
etiology of this condition. Although the cause of this bias
remains a mystery, we argue that it occurs because ASC is
an extreme manifestation of the male brain. The extreme
male brain (EMB) theory, first proposed in 1997, is an
extension of the Empathizing-Systemizing (E-S) theory of
typical sex differences that proposes that females on
average have a stronger drive to empathize while males
on average have a stronger drive to systemize. In this first
major update since 2005, we describe some of the
evidence relating to the EMB theory of ASC and consider
how typical sex differences in brain structure may be
relevant to ASC. One possible biological mechanism to
account for the male bias is the effect of fetal testosterone
(fT). We also consider alternative biological theories, the X
and Y chromosome theories, and the reduced autosomal
penetrance theory. None of these theories has yet been
fully confirmed or refuted, though the weight of evidence
in favor of the fT theory is growing from converging
sources (longitudinal amniocentesis studies from preg-
nancy to age 10 years old, current hormone studies, and
genetic association studies of SNPs in the sex steroid
pathways). Ultimately, as these theories are not mutually
exclusive and ASC is multi-factorial, they may help explain
the male prevalence of ASC.

Is There Really a Male Bias?

The diagnosis of classic autism and Asperger Syndrome (AS),

known as Autism Spectrum Conditions (ASC), rests on difficulties

in reciprocal social interaction and communication, alongside

strongly repetitive behavior and unusually narrow interests [1].

The prevalence of ASC is estimated to be 1% [2,3]. A diagnosis of

classic autism, unlike AS, also requires the presence of additional

learning difficulties and language delay. ASC is neurobiological,

evidenced by atypical brain development in structure and function

[4]. ASC is also genetic [5,6] though not without some interaction

with environmental influences.

ASC is strongly biased towards males [7], with ratios of 4:1

(male:female) for classic autism [8] and as high as 11:1 in

individuals with AS [9]. The specific factors responsible for the

higher male prevalence in ASC remain unclear. ASC is not the

only neurodevelopmental condition more common among

males—a greater prevalence in males versus females is also seen

in Attention Deficit and Hyperactivity Disorder (ADHD), dyslexia,

conduct disorder (CD), specific language impairment, Tourette

Syndrome, and Learning Difficulties (see Table 1) [10].

However, the male bias is much more pronounced in ASC,

especially in the case of AS. This male bias could simply reflect the

difficulty of diagnosing AS in females. Though classic autism

would not be missed in females, AS could be if it presented as some

other condition, such as anorexia [11] or borderline personality

disorder [12], both of which involve the exercise of excessive

control over the environment or other people, and a certain degree

of a self-centeredness. Equally, AS in females could be under-

diagnosed if females are more motivated to learn to conform

socially or have better imitation skills that allow them to ‘‘pretend

to be normal’’ [13]. Finally, this male bias might reflect the

inability of the widely used diagnostic instruments (the Autism

Diagnostic Observation Schedule (ADOS) or Autism Diagnostic

Interview-Revised (ADI-R)) to detect the more subtle ways in

which AS may present in females.

While these explanations of mis- or under-diagnosis may

explain part of the male bias, there may also be biological reasons

for the male bias in ASC. We argue that the bias can be

understood as an extreme expression of the psychological and

physiological attributes of the male brain; that is, males need only

slight psychological and physiological changes to exhibit ASC

while females would require more, thus making ASC rarer in

females. What factors might favor overdevelopment of male

characteristics? One possible biological mechanism could be the

masculinizing effect of fetal testosterone (fT). Two other

possibilities include the X- and Y-linked theories and the reduced
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autosomal penetrance theory (which posits that females harbor

fewer ASC-related mutations on autosomal chromosomes). Future

research will help to resolve the validity or flaws of these theories,

which for now remain neither fully confirmed nor refuted. Here,

we lay out some of the evidence for these theories in explaining the

male bias in ASC.

Is ACS an Extreme Expression of the Male Brain?

The Extreme Male Brain (EMB) theory of autism extends the

Empathizing-Systemizing (E-S) theory of typical sex differences

[14], which proposes that females on average have a stronger drive

to empathize (to identify another person’s thoughts and feelings and

to respond to these with an appropriate emotion), while males on

average have a stronger drive to systemize (to analyze or construct

rule-based systems). Whilst sociologists still debate if there are any

sex differences at all, and if so whether these are purely the result

of cultural conditioning, biologists have long known from animal

research that sex differences in behavior exist in primates and are

influenced by biology as well as the environment.

On the Empathy Quotient (EQ) [15] typical females score

higher than typical males who score higher than those with ASC

[15]. On the Systemizing Quotient (SQ), individuals with ASC

score higher than typical males who score higher than typical

females [16–18]. Additional psychological evidence (summarized

in Table 2 and in Text S1) shows that—irrespective of the

direction of sex difference—people with autism show an extreme

of the male profile. Note that the EMB theory does not state that

all psychological sex differences will be exaggerated in ASC—only

those relating to empathy and systemizing.

Sexual Dimorphism in the Human Brain
Additional support for the EMB theory of ASC comes from

evidence of neural sexual dimorphism across development. Some

key examples of typical sexual dimorphism reveal an extreme of

the typical male profile in the neurodevelopment of ASC [19].

However, one caveat to keep in mind is that just as all psychological

sex differences do not constitute an exaggerated form of maleness

in ASC, neither do all neural differences. Indeed, given that the

EMB theory is defined at the psychological level, we should expect

only a narrow set of neural sex differences will be involved in such

hyper-masculinization in ASC. A key finding supporting this

prediction is that infant males on average have a larger brain than

females [20] and children with autism have even larger brains

early in life right around the time they would typically receive a

diagnosis (2–4 years) [21]. In addition, independent of global

differences in brain size, the amygdala in typical males tends to be

larger than in females [22], and early in development the

amygdala in autism is even more enlarged than that observed in

typical males [23–25]. In addition to such structural sexual

dimorphism in the brain, exaggeration of neural sexual dimor-

phism extends to brain function and corroborates predictions from

the EMB theory (see Table 3 and Text S1 for fuller discussion)

[26–29].

The set of striking findings of hyper-masculinization in ASC at

three simultaneous levels (cognitive, neuroanatomy, and neural

function) raises the question as to which biological mechanism(s)

are involved. Two plausible mechanisms that could give rise to

sexual dimorphism, hyper-masculinization, and/or the absence of

typical sexual dimorphism at the levels of brain, cognition, and

behavior are the ‘‘organizing’’ effects of fetal testosterone (fT) [30–

32] and X- or Y-linked genetic factors. We review these three

interesting hypotheses, since these may also have relevance to the

sex ratio in ASC. These are not proposed as complete explanations

for ASC, since ASC is recognized to be multi-factorial, but they

may form an important part of the explanation.

What Might Cause an Extreme Male Brain?

The Fetal Testosterone (fT) Theory
Fetal androgens affect the brain: Evidence from animal

and human studies. Animal studies, especially in rodents,

confirm that early exposure to androgens (such as testosterone)

acts on the brain to produce sex differences in behavior, cognition,

brain structure, and function (see Text S1 for more discussion of

work with animals) [31–33]. It is widely accepted that fT exposure

also affects brain development and behavior in humans. Human

males experience a surge in fT between weeks 8 to 24 of gestation

[34–36], reaching almost pubertal levels. There is also a second

surge soon after birth (here called ‘‘neonatal testosterone,’’ or nT).

Usually the levels remain high and then drop to barely detectable

levels by 4–6 months [37], until the third surge at puberty. Whilst

the third surge is understood to be controlling the onset of puberty,

the function of first surge (fT) is believed to play a major role in

brain masculinization.

While direct manipulation of hormones as has been conducted

in animal studies is unquestionably unethical in human fetuses and

infants, alternative research strategies include relating individual

variation in amniotic fT exposure to later development [38], or

studying people in whom—for medical reasons—the sex hor-

Table 1. Male biased sex ratios in other neurodevelopmental conditions.

1 Attention Deficit Hyperactivity Disorder (ADHD). The ratio of males to females with ADHD is high in clinic samples (up to 10:1) [106,107]. However, it
drops to 2:1 to 4:1 in community samples [108,109,110] and the majority of studies in adults show no significant effect of sex on prevalence [111]. This suggests
that the biased sex ratios observed in ADHD may result from referral bias rather than a biological mechanism.

2 Conduct Disorder (CD). Males are two to four times more likely to develop CD than females [112], though no sex difference was observed in the recent
NHANES study [110]. This discrepancy probably reflects the observation that while sex differences are not pronounced in adolescent-limited antisocial behavior,
the male:female ratio for early-onset, life-course-persistent antisocial behavior is 10:1 or greater [113].

3 Dyslexia/Reading Disability (RD). Early research suggested that there was a significant excess of males with RD, but this view has been challenged as
reflecting referral bias and subjective methods of assessment [114]. It is clear that ascertainment bias does inflate the true prevalence of RD in males, but a
review of existing studies suggests that there is a slightly skewed gender ratio, between 1.7 and 2.00 [115].

4 Specific Language Impairment (SLI). While many early studies reported a male biased sex ratio of between 2:1 and 3:1 [116] for SLI, it has been suggested
that this reflects ascertainment bias [114]. Epidemiological studies have identified equivalent numbers of males and females meeting diagnostic criteria [117] or
increased prevalence in females [118].

5 Tourette Syndrome (TS). TS shows a male to female ratio of between 4:1 and 6:1 [119]. It is notable that 50%–90% have comorbid ADHD, particularly in
clinic populations, which may contribute to the biased ratio.

doi:10.1371/journal.pbio.1001081.t001
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mones are higher or lower than expected for a person’s sex [39],

and using proxy measures of fT exposure. Here we review

evidence from studies of cognitive traits relevant to ASC and their

relationship with amniotic fT. (Evidence from disorders of sexual

differentiation and from proxy measures of fT exposure is

presented in the Text S1.)

Fetal androgens affect ASC traits: evidence from amniotic

fluid testosterone. fT can be measured in amniotic fluid,

obtained during routine amniocentesis. Because amniocentesis is

typically performed during the second trimester of pregnancy

(usually 14–20 weeks of gestation), when serum testosterone peaks

in male fetuses, it offers a unique opportunity to compare fT with

ASC traits. There is a well-documented large sex difference in

amniotic androgen levels [40–44]. The origin of androgens in

amniotic fluid appears to be the fetus itself, and testosterone

obtained in amniotic fluid is thought to be a good reflection of the

levels in the fetus [38]. In the Cambridge Fetal Testosterone

Project, initiated by our group in 1998, children whose mothers

had amniocentesis during pregnancy (but who were otherwise

developing normally) have been followed up after birth every year

or two and are now approximately 11 years of age [34].

Evidence that amniotic fT affects individual differences in

cognitive development in typically developing children (but with

clear relevance to ASC) includes the following: fT is inversely

associated with frequency of eye contact at 12 months old [45] and

with size of vocabulary development at 18 and 24 months [46]. fT

is also inversely associated with quality of social relationships at 48

months [47] and with empathy at 48 and 96 months [48,49]. In

contrast, amniotic fT is positively associated with narrow interests at

48 months [47], with ‘‘systemizing’’ at 96 months [18], and with

performance on the Embedded Figures Test (EFT) as a measure of

attention to detail at 96 months [50]. These are all behaviors that

show sexual dimorphism, but critically, these fT effects are often

found within one sex as well as when analyzing the sexes

Table 2. A summary of the psychological evidence for the Extreme Male Brain (EMB) theory (see Text S1 for a fuller discussion).

Psychological Measure Autism.Male.Female Female.Male.Autism Key References

Adolescent AQ 3 [120]

Adult Autism Spectrum Quotient (AQ) 3 [104,121–124]

Adult Systemizing Quotient (SQ) 3 [16]

Child AQ 3 [125]

Child SQ 3 [126]

Childhood Autism Spectrum Test (CAST) 3 [127–130]

Embedded Figures Test 3 [131,132]

Intuitive Physics Test 3 [133,134]

Social Responsiveness Scale 3 [135,136]

Quantitative Checklist for Autism in Toddlers (Q-CHAT) 3 [137]

Adult Empathy Quotient (EQ) 3 [15]

Child EQ 3 [126]

Faux Pas Test 3 [138]

Friendship and Relationship Questionnaire (FQ) 3 [139]

Reading the Mind in the Eyes 3 [140]

Social Stories Questionnaire (SSQ) 3 [133]

doi:10.1371/journal.pbio.1001081.t002

Table 3. A summary of the evidence consistent with the EMB theory at the neural level (see Text S1 for a fuller discussion).

Brain Region Autism.Male.Female Female.Male.Autism Key References

Structure

Total brain volume 3 [20,141–143]

Amgydala 3 [22–25,144–150].

Corpus callosum 3 [151,152]

Perisylvian language areas (Heschl’s
gyrus/planum temporale)

3 [22,153–156]

L.R asymmetry in planum temporale 3 [22,154,157–160]

Lateral fronto-parietal cortex 3 [144,145,147,150,156,161–165]

Function

Default Mode Network Connectivity 3 [166,167]

Embedded Figures fMRI 3 [27–29,168]

Reading the Mind in the Eyes task fMRI 3 [26,28]

doi:10.1371/journal.pbio.1001081.t003
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combined. The finding of a consistent inverse correlation between

fT and social domains, and a consistent positive correlation

between fT and non-social domains, across development, is

striking and suggests these are real effects which substantiate the

notion that fT plays an ‘‘organizational’’ role in development.

In the first study to directly assess if fT affects not just human

cognition but also human brain structure, we found that increasing

levels of fT are associated with increasing rightward asymmetry in

the thickness of one subsection of the corpus callosum, the isthmus

[51]. This is interesting since the isthmus projects to posterior

parietal and superior temporal cortices, which are integral for

language and visuospatial ability and are known to be sexually

dimorphic in lateralization, structure, and function (see Text S1).

All of the above behavioral domains (eye contact, language

development, quality of social relationships, narrow interests,

empathy, systemizing, and embedded figures/attention to detail)

and brain structure show sexual dimorphism and appear hyper-

masculinized in ASC, raising the possibility that fT may play a role

in the development of ASC itself. Three recent experiments have

confirmed a positive correlation between fT levels and the number

of autistic traits a child shows in toddlerhood [52] and in later

childhood [53]. The Cambridge Fetal Testosterone Project has too

few children (currently n = 635 are enrolled) to test whether fT is

elevated in those who later are diagnosed with ASC, but testing for

a direct association between fT levels and diagnosed ASC will be

possible in our ongoing collaboration with the Danish Biobank,

which has tens of thousands of amniotic samples, with adequate

power to test this hypothesis. Using a different line of evidence, a

number of studies have found also current androgen dysregulation

in ASC or in their relatives, or androgen-related genes being

associated with ASC (see Table 4 for a summary of the evidence

for the fT/androgen theory).

Although some studies have failed to support a role for

testosterone in ASC (and most of these have not been able to

study fT specifically), the studies reported above suggest that fT is

implicated in the biased sex ratio seen in ASC. However,

alternative models exist which could also explain the excess of

males with ASC. In the final part of this article we review the main

contender, the X chromosome theory. For completeness, we also

briefly review the Y chromosome theory and the reduced

autosomal penetrance theory.

The X Chromosome Theory
The X chromosome contains more genes expressed in the brain

than the other chromosomes [54]. In addition, more than 10% of

people with learning difficulties show an X-linked pattern of

inheritance [55], involving mutations in over 90 different X-linked

genes [56,57]. Individuals with X-linked learning difficulties may

also have ASC, the best-known example being Fragile X

Syndrome, where 46% of males and 16% of females carrying

the full mutation also have ASC [58].

On the face of it, the biased sex ratio in ASC would therefore be

parsimoniously explained by an X chromosome theory. A problem

for this theory is that the majority of linkage and association

studies of ASC have failed to find regions of interest on the X

chromosome [59–72]. A related problem for this theory is that in

the three recent genome-wide studies of copy number variation

(CNV) in individuals with ASC that identified mutations affecting

the X chromosome, this was only true in a very small minority of

cases. This suggests X-linked mutations are only occasionally seen

in ASC and therefore cannot account for the large majority of

cases. A final problem for the X-linked theory is that other large

CNV scans have reported no significant findings on the X

chromosome [67,73–75]. While epigenetic effects on X chromo-

Table 4. Evidence for the effect of sex steroids in autism (see Text S1 for a fuller discussion).

Evidence Key References

From typically developing children

Eye contact is inversely related to fT [45]

Quality of social relationships are inversely related to fT [47]

Vocabulary size is inversely related to fT [46]

Empathy is inversely related to fT [48,49]

Autistic traits are positively associated with fT [52,53]

Restricted interests are positively associated with fT [47]

Systemizing is positively associated with fT [18]

Rightward asymmetry in the isthmus of the corpus callosum is positively associated with fT [51]

From people with ASC

10 genes involved in sex steroid synthesis, transport, and/or metabolism associated with AS or AQ or empathy:
HSD11B1, LHCGR, CYP17A1, CYP19A1, SCP2, CYP11B1, ESR1, ESR2, HSD17B4, HSD17B2

[169]

Timing of puberty: Boys with ASC enter puberty earlier. Girls with ASC enter puberty later [170–172]

Testosterone related medical conditions in women with ASC and their mothers (e.g., PCOS, breast and ovarian cancers, acne) [172]

Testosterone related characteristics in women with ASC and their mothers [172,173]

Lower 2D:4D ratio in ASC, and parents [174–176]

SRD5A1 and AR genes associated with ASC [177,178]

Decreased expression of RORA gene and aromatase in post-mortem frontal and cerebellar tissue [179,180]

Females with Congenital Adrenal Hyperplasia (CAH) have elevated AQ [181]

Testosterone levels are elevated in ASC [182]

Androstenedione levels are elevated in ASC [183]

doi:10.1371/journal.pbio.1001081.t004
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some genes could affect risk for autism, this hypothesis has not yet

been empirically tested. In summary, at present it appears that

there are X-linked causes of ASC, but these represent a far smaller

percentage of cases than is seen in learning difficulties.

Girls with Turner Syndrome (TS) (characterized by the XO

karyotype) [76] are at an increased risk for ASC, which could be

the result of an X-linked recessive gene, but this is not clear-cut

since XYY and XXYY males are also at increased risk [77]. One

study [78] has also reported higher autistic traits scores (as

measured on the Autism Spectrum Quotient [AQ] in XXY males),

though this is not always seen [77].

There are other possible versions of the X chromosome theory

of ASC. Although females have two X chromosomes, only one of

these is generally active. X chromosome inactivation (the process by

which one X chromosome is suppressed while the other remains

active) acts to negate the ‘‘dosage’’ difference in X chromosome

genes between males and females. However, 10%–15% of X

chromosome genes may continue to be expressed from the

supposedly inactive X. Gong and colleagues [79] directly tested

this hypothesis and found no evidence for a skewed X

chromosome inactivation in a large sample of individuals with

and without ASC. X chromosome gene dosage could play a role in

sex ratios if the non-silenced genes were protective. However,

comparing the incidence of ASC across different sex aneuploidies

does not suggest a simple dosage effect, and frequently the ASC

occurs in the context of clear learning disabilities, and so could

simply be secondary to the latter. It is increasingly recognized that

learning difficulties are themselves a risk factor for ASC [80], so

any evaluation of the X chromosome theory needs to consider

these separately.

Genomic imprinting (the process by which genetic effects are

influenced by whether the genes are transmitted through the

father or the mother [81]) is also of interest. Ordinarily this would

not result in sex differences in the rate of a condition, but could do

so if the imprinting affects the X chromosome. Skuse [82,83]

suggested that an imprinted X-locus could explain sex differences

in social and communication skills and the male vulnerability to

social and communication impairment. His theory was inspired by

the finding that in individuals with TS, the rate of social difficulties

varied according to whether their single X chromosome was

inherited from the father (XpO cases) or the mother (XmO cases)

(where p is paternal, and m is maternal) [82]. Social problems are

greater in XmO relative to XpO individuals. Typical females

always inherit an X chromosome from both parents (XpXm), but

typical males always have only a maternal X (XmY). Skuse

hypothesized that a gene expressed on the paternal X acts as a

protective factor against the social problems seen in TS and, by

extrapolation, as a protective factor against ASC.

Creswell and colleagues [84] subsequently reported five cases of

ASC from an unselected sample of 150 subjects with TS. All the

cases were XmO (or had a structurally abnormal paternal X). All

of the cases in that report also had moderate to severe learning

difficulties and low verbal IQ scores, despite the fact that

intelligence is usually in the average range in TS. This raises the

possibility that the kind of ASC observed was related to learning

difficulties (i.e., applicable only to classic autism rather than the full

autistic spectrum, which includes AS). Also, given that 77% of TS

females are XmO, while only 23% are XpO [85], this means that

by chance one would expect to find ASC more often associated with

XmO than with XpO.

No specific X-linked genes have yet been identified which

explain these findings, but there is evidence that whichever genes

are involved may modulate amygdala circuits which are disrupted

in ASC [86]. Whilst the amygdala has not been directly examined,

a study of the whole brain in a mouse model of TS did not identify

any paternally expressed X-linked genes, but did identify a

maternally expressed gene, xlr3b, which was implicated in

cognitive flexibility [87]. However, it is unclear if a functioning

human orthologue of this gene exists.

A recent study searched for imprinted genes in the preoptic area

(POA) and medial prefrontal cortex (mPFC) in mouse. No X-

linked imprinted genes were identified when using a cut-off of

p,0.05, but using a less stringent cut-off of 0.1, a small set of

putative X-linked imprinted genes were identified including three

paternally expressed genes in the POA and three different

paternally expressed genes in the mPFC [88]. Three of these

genes (cask, acsl4, and ids) have human orthologues whose

disruption can cause MR. Another intriguing finding from this

study was that total levels of expression from Xm were increased

relative to those of Xp in females. This could reflect preferential

inactivation of the Xp and would act to minimize dosage

differences between the sexes. If a screen of females with ASC

identified rare mutations or CNVs on the Xp, this would provide

important evidence for the theory.

The Y Chromosome Theory
Since the XYY and XXYY syndromes have an increased

incidence of ASC [89–91], it is important to consider if the male

bias in ASC could also result from the male-limited expression of

genes on the Y chromosome. This possibility has attracted very

little research attention. Such genes should be located in the non-

recombining region of the Y. SRY (the sex determining gene) is

expressed in the medial rostral hypothalamus, as well as the frontal

and temporal regions of the human brain [92]. In vitro assays

suggest that SRY can increase transcription of tyrosine hydroxylase

(the rate-limiting enzyme in dopamine biosynthesis) by binding at

a promoter site [93]. In addition, the knockdown of SRY

expression in the substantia nigra of the rat decreases tyrosine

hydroxylase expression [94]. This could implicate SRY in the male

bias for disorders involving disregulated catecholamines such as

ADHD. SRY may also regulate the monoamine oxidase A (MAO-

A) gene [95]. Other Y-linked genes known to be expressed in

human brain include ZFY and PCDH11Y [92,96].

A small candidate gene study failed to find associations between

variants in PCDH11Y and autism [96], while ZFY has not been

specifically investigated. One study has reported a missense variant

in NLGN4Y in a single patient with autism and his father with

learning difficulties [97]. Comparison of Y chromosome haplotype

groups between cases and controls represents an alternative

strategy to identifying Y chromosome effects. Two such studies

have been conducted in regard to ASC—one was positive [98] and

one was negative [99]. Y chromosome effects certainly merit

additional research attention, but current evidence is too sparse to

evaluate to what extent this mechanism could explain the sex bias

in ASC.

Reduced Autosomal Penetrance in Females? A Final
Theory

For completeness we briefly mention a final theory, arising from

studies of rare CNVs with ASC [67,74,100,101]. As mentioned

earlier, these scans have not routinely implicated the X

chromosome, but this final model proposes that a significant

proportion of ASC cases are the result of dominant de novo

mutations (on the autosomes) which have reduced penetrance in

females. Statistical analysis of ASC family data has provided

supporting evidence [102]. A problem for this theory, however, is

that the majority of studies report that the sex ratio in children

with ASC and de novo CNVs is 1:1. This clearly does not fit with
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reduced penetrance in females [103]. A second problem for this

theory is that it does not address why penetrance should be reduced

in females. However, we agree that it is critical that large-scale

linkage and association studies test for sex-specific effects.

Not Mutually Exclusive Theories
The X and Y chromosome theories and the fT model offer

potential explanations for the biased sex ratio in ASC and warrant

further research. While often conceived as competing theories,

they need not be mutually exclusive. This is because we cannot

rule out the possibility that genes on the X and Y chromosomes

may be regulated by fT or have products that affect the production

or sensitivity of an individual to fT. X chromosome genes may also

regulate Y chromosome genes and vice versa. In addition, it is

possible that X or Y chromosome genes and fT exposure are

independent risk factors for ASC.

The theories do, however, make contrasting predictions for

individuals with certain intersex conditions, in particular those

with Complete Androgen Insensitivity Syndrome (CAIS), where

there is a complete deficiency of working androgen receptors, in

the presence of a typical male genetic complement (XY). Given the

rarity of this condition, studies using measures of autistic traits

(such as the AQ [104]) may be more feasible than studies of

diagnosed cases of ASC in CAIS per se. (These contrasting

predictions are summarized in Table 5.)

Finally, whilst it may be that the psychiatric classification system

is ‘‘carving nature at its joints,’’ it is also possible that some of the

underlying hormonal and genetic mechanisms are involved not

just in ASC but are relevant to a broader category of

neurodevelopmental conditions (see Box 1).

Looking Ahead: Toward a Unified Theory?

For as long as ASC has been recognized, a higher prevalence

has been observed in males, yet until 1997, when our group

proposed the extreme male brain theory, this potential clue to the

etiology of the condition went unexplored [105]. In the early years

following the publication of the EMB theory, the majority of the

evidence relevant to the theory came from psychological studies,

but since 2001 supporting evidence has also come from biology.

In the present article we have considered studies that suggest

that fetal testosterone is involved in sex differences in key areas of

behavior and cognition in the general population (in social

development, language development, empathy, systemizing, and

attention to detail), as well as in influencing brain structure, and

the number of autistic traits an individual possesses. Understand-

ing the relationship between empathy and systemizing will require

more research because presenting them as independent ignores the

fact that both are related to fT. Nor can we yet extrapolate the fT

results to individuals with an ASC diagnosis since this will require

much larger collections of amniotic samples than has been possible

to date. Strengthening a role for fT in ASC is the recent genetic

evidence in which SNPs in key sex steroid genes are associated

with either diagnosed AS and/or autistic traits.

Table 5. Rates of ASC/autistic traits in different medical conditions, as predicted by the X and Y chromosome theories, and the fT
theory.

Medical Condition
Prediction from X-Dosage or
X-Linked Recessive Model

Prediction from
Imprinted X Model

Prediction from Y-
Chromosome Model

Prediction from FT
Theory

Complete Androgen Insensitivity
Syndrome (CAIS) in males

Similar to typical males Similar to typical males Similar to typical males Similar to typical females

Congenital Adrenal Hyperplasia
(CAH) in females

Similar to typical females Similar to typical females Similar to typical females Similar to typical males

Turner Syndrome (with a
maternal X; XmO)

Similar to typical males Similar to typical males Similar to typical females Similar to typical females

Turner Syndrome (with a
paternal X; XpO)

Similar to typical males Similar to typical females Similar to typical females Similar to typical females

doi:10.1371/journal.pbio.1001081.t005

Box 1. fT and X-linked factors in other neurodevelop-
mental conditions.
ADHD: fT has been implicated by several studies using
the proxy measure of 2D:4D (finger) ratio [176,184,185]
and one study of genetic variation at the androgen
receptor [186]. An animal model of ADHD suggests that
early androgen exposure affects catecholamine innerva-
tion of the frontal cortex and cognitive function [187].
ADHD has also been associated with X-linked genes, in
particular monoamine oxidase-B [188,189] and steroid
sulfatase [190]. The latter has also been implicated in
attention deficits in a mouse model of Turner Syndrome
[191]. However, genome-wide scans have not implicated
the X chromosome in ADHD [192,193].
Conduct Disorder (CD): Activational effects of gonadal
steroids have shown relationships with CD [194–196], but
there is not a simple one-to-one correspondence. In
addition, the X-linked gene coding for monoamine oxidase
A has been linked to aggression and neural hyperactivity
to threat [197].
Reading Disorder/Dyslexia: Two studies have failed to
find a relation between 2D:4D (digit) ratio (as a proxy for
fT) and dyslexia [115,198]. One genome-wide linkage
analysis suggested a locus on Xq26 [199]. A nearby
susceptibility locus in a single extended family has also
been reported [198].
Specific Language Impairment: The correlation be-
tween amniotic fT levels and early vocabulary [46,200]
could indicate a role for fT in SLI. Genome-wide linkage
studies have not implicated the X chromosome [201–203].
Tourette Syndrome: Tics in individuals with TS increase
in intensity during puberty, suggesting an activational
testosterone effect. A role for fT has also been proposed
based on a study of gender dysphoria, play preferences,
and spatial skills in individuals with TS [204]. Genome-wide
linkage studies have not implicated the X chromosome
[205], but Lawson-Yuen [206] have reported a pedigree
with a NLGN4X deletion which was associated with TS in
one family-member.
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The main alternatives to the fT theory are the X and Y

chromosome theories. Future research could usefully test these

theories against each other, or test if all are valid, either

independently or because of gene-hormone interactions. Whilst

it remains a possibility that the male bias in ASC simply reflects

diagnostic difficulties in recognizing ASC in females, the link

between ASC and maleness has generated a novel framework for

exploring the link between sex and ASC, and a wealth of data

relating prenatal hormones to masculinization of the mind and the

brain.
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