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Abstract

Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from
the host, but it is unknown whether either process is essential to the parasite.

Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free
media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei
brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was
studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and
Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable
extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA
content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 29deoxyuridine,
and cytidine allowed a diminished growth rate and density. PYR6-52/2 trypanosomes were more sensitive to pyrimidine
antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs
were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic
trypanosome line.

Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However,
trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source,
strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host
environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine
supply was lethal.
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Introduction

Human African Trypanosomiasis (HAT, or sleeping sickness) is

caused by infection with the protozoan parasites Trypanosoma brucei

gambiense and T. b. rhodesiense in West Africa and in East and

Southern Africa, respectively. In addition the subspecies T. b. brucei

and the other non-human infective species T. vivax and T. congolense

cause the veterinary condition African Animal Trypanosomiasis

(AAT, or nagana) in livestock in much of sub-Saharan Africa. Both

diseases continue to have profound health and economic

implications in poor and isolated populations of the region. This

problem is exacerbated by the inadequacies of the existing drugs,

especially their toxicity, and a parenteral route of administration

[1], and by high levels of treatment failure that reach about 30%

in some areas [2]. The drug of choice for late stage HAT,

eflornithine, is currently administered in the form of nifurtimox

and eflornithine combination therapy (NECT) and is not suitable

for T. b. rhodesiense infection, which still has to be treated by

suramin or melarsoprol, for Stage I (periphery) or Stage II (central

nervous system) disease, respectively; both have severe adverse

effects on patients [1,2]. The use of NECT lowers cost and toxicity

but may not halt the spread of eflornithine resistance indefinitely

[3,4]. The quest for new drugs led to the study of nucleotide

salvage and biosynthesis in protozoa, and initially focused on

inhibitors of purine metabolism, as pathogenic protozoan parasites

(but not free-living protists) have lost the de novo purine biosynthesis

pathways [5,6]. However, in many protozoa, including kineto-

plastid parasites, redundancy of purine transporters [7,8,9] and

interconversion pathways [10,11,12] makes therapy based on

purine metabolism inhibitors extremely difficult to achieve.
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In contrast, most parasitic protozoa are fully capable of

synthesizing the pyrimidine ring de novo [10] and yet are also

capable of salvaging pyrimidine nucleosides and/or nucleobases

[13,14,15,16]. Exceptions are Plasmodium spp, which are incapable

of pyrimidine salvage [17], and the amitochondriate protozoa

Trichomonas vaginalis, Tritrichomonas foetus and Giardia spp, which lack

the de novo biosynthesis pathway [18,19]. While possession of both

the biosynthesis and salvage routes would appear to make

pyrimidine metabolism an unattractive drug target, it has not

been established whether either pyrimidine biosynthesis or salvage

is essential in African trypanosomes. Moreover, the salvage and

biosynthesis pathways actually share most of the pyrimidine

metabolizing enzymes, many of which have now been shown to be

essential because (in contrast to purine metabolism) there is little or

no redundancy in the pathways. For example, dihydrofolate

reductase - thymidylate synthase (DHFR-TS) is essential in

trypanosomes and its knockout can only be rescued by high levels

of thymidine [20], and CTP synthetase is essential as T. b. brucei

are unable to incorporate extracellular cytosine or cytidine in their

nucleic acids [21]. Furthermore, T. b. brucei deoxyuridine 59-

triphosphate nucleotidohydrolase (dUTPase) was recently shown

to be essential [22] and it is clear that several other enzymes of the

same pathways may equally be good drug targets.

However, it is as yet unclear whether either the uptake of

extracellular pyrimidines or the de novo biosynthesis of the first

pyrimidine nucleotide, UMP, is essential in kinetoplastid parasites.

We have previously shown that in procyclic T. b. brucei pyrimidines

are mainly taken up through the TbU1 uracil transporter [23,16]

and recently completed a study of pyrimidine transport activities in

bloodstream form T. b. brucei showing the presence of only one

high affinity uracil transporter, TbU3, and almost no uptake of

other pyrimidines at physiological levels [24]. A previous study, by

Arakaki et al [25] showed that RNAi disruption of one of the

biosynthesis enzymes, dihydroorotate dehydrogenase, led to

impaired growth which could be compensated for by pyrimidine

uptake. The rescue by extracellular uracil, however, was not

observed in the presence of the TbU3 inhibitor 5-fluorouracil [25].

In the present study we simulated complete inhibition of

pyrimidine salvage by in vitro growth in pyrimidine-free medium

and inhibition of de novo biosynthesis through the construction of a

genetic deletion mutant lacking the final step of the pyrimidine

biosynthesis pathway, which in trypanosomes is a fusion of the two

enzymes Orotidine Monophosphate Decarboxylase (PYR6,

OMPDCase) and orotate phosphoribosyltransferase (PYR5,

OPRT) [26,27]. The PYR6-52/2 trypanosomes were character-

ized in vitro and in vivo. While they were completely non-viable in

the absence of pyrimidines in vitro, they were able to grow on low

levels of pyrimidines, similar as reported for Leishmania donovani

promastigotes [28]. The activity of the TbU3 transporter, and

expression of Uridine Phosphorylase were both significantly

increased when PYR6-52/2 trypanosomes were shifted to pyrim-

idine-free conditions. However, the observation that these

parasites were able to establish an infection in mice showed that

pyrimidine biosynthesis is not essential in vivo, with pyrimidine

salvage from the blood sufficient for T. brucei viability and growth.

Materials and Methods

Ethics statement
The maintenance and care of experimental animals complied

with the appropriate legislation; the UK Animals (Scientific

Procedures) Act, 1986, and with the national and University of

Glasgow maintenance and care guidelines. All procedures were

carried out by trained, registered and licensed animal workers.

Care of animals was done by professional staff in the designated

University of Glasgow facility under supervision of qualified

Veterinarians. Mice infected with trypanosomes were humanely

euthanized before becoming seriously ill from the infection.

Approval for these experiments was explicitly granted by the

UK Home Office, project licence PPL 60/5760 and personal

licence PIL60/2328.

Culture of trypanosomes
Bloodstream forms of T. b. brucei strain 427 were routinely

cultured in HMI-9 medium [29] obtained from Invitrogen,

supplemented with 10% Heat Inactivated Fetal Bovine Serum

Gold (FBS; PAA Laboratories) in culture flasks, at 37uC, in a 5%

CO2 atmosphere. Where indicated, trypanosomes were grown in a

pyrimidine-free medium that was identical to the standard HMI-

9/FBS, except that it did not contain thymidine (or any other

pyrimidines) and that the serum was first thoroughly dialysed (12–

14 kDa cut-off) against phosphate-buffered saline pH 7.4); this

medium is referred to as HMI-9-tmd whereas the standard medium

is simply referred to as HMI-9. The dialysis details and the exact

composition of the HMI-9 and HMI-9-tmd media are given in the

Supplementary materials.

Transport of [3H]-uracil and [3H]-uridine
Transport assays were performed exactly as described [30,31].

Briefly, trypanosomes were washed into the appropriate assay

buffer (AB; 33 mM HEPES, 98 mM NaCl, 4.6 mM KCl,

0.55 mM CaCl2, 0.07 mM MgSO4, 5.8 mM NaH2PO4,

0.3 mM MgCl2, 23 mM NaHCO3, 14 mM glucose, pH 7.3) to

a final concentration of 108 cells ml21. 100 ml cell suspension was

incubated with either [5,6-3H]-uracil (Perkin Elmer, 40.3 Ci/

mmol) or [5,6-3H]-uridine (American Radiolabeled Chemicals

Inc, 30 Ci/mmol) at concentrations indicated in the results

section, in the presence or absence of unlabeled substrate or other

competitive inhibitors. The incubation was stopped after a

predetermined interval using 1 ml of an ice-cold 1-mM solution

of unlabeled substrate (uracil or uridine) and immediate centrifu-

gation through oil (13,0006g) for 1 min. The resulting cell pellet

was transferred to a scintillation tube and radioactivity was

determined by liquid scintillation counting. The results were

plotted to appropriate equations for linear or non-linear regression

using the Prism 5 software package (GraphPad) after correction for

non-specific association of radiolabel with the pellet, as described

[30].

Generation of auxotrophic T. brucei bloodstream forms
The plasmid pLHTL-PYR6-5 [27] was generously donated by

Professor George Cross of Rockefeller University, New York, NY.

This construct contains a hygromycin resistance cassette (hygro-

mycin B phosphotransferase) and a negative selection marker,

Herpes simplex Thymidine Kinase (HSVTK) open reading frame

between loxP domains [32] and is targeted to the PYR6-5 locus by

flanking sequences of 496 bp immediately downstream of the

target locus and of 365 bp commencing 134 bp upstream of the

ORF.

Bloodstream forms of T. brucei s427 were cultivated to a density

of ,1–26107 cells ml21 and washed into Human T-Cell Solution

for transfection with the LHTL-PYR6-5 cassette (liberated by

digestion with PvuII) using an Amaxa Nucleofactor electroporator

exactly as described [27], creating a PYR6-5+/2 strain. Transfor-

mants were grown and cloned out in standard HMI-9 containing

hygromycin (2 mg ml21) and loss of the second PYR6-5 allele was

induced by exposure of the clonal lines to 100 mM 5-fluoroorotic

acid (5FOA; Sigma), resulting in a PYR6-52/2 strain, exactly as

Pyrimidine Auxotrophy in Trypanosoma brucei
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described [27], which was cloned by limiting dilution. PYR6-5

single and double knockout clones were confirmed by PCR. DNA

was extracted from WT s427, and from the single and double

PYR6-5 knockout strains using a DNeasy Blood and Tissue Kit

(Qiagen). Primers were designed to amplify an 870 bp part of the

PYR6-5 gene. PCR was performed on 200 ng of the isolated DNA

using forward (59 GTTCTCGAGTGCAAGCGGAT) and reverse

(59CACAATGCGGTCAAACTGCA) primers annealing at 56uC
and extension at 72uC for 60 s. A Southern blot was also

performed to confirm knockouts, using restricted digest of 10 mg

DNA and blotting performed as described [33], using DNA probes

specific for the PYR6-5 and hygromycin B phosphotransferase

genes. The PYR6-5 probe was generated using the primers and

conditions given above for the PCR confirmation, whilst the

hygromycin probe was generated by a PCR using forward

(59ATGAAAAAGCCTGAACTCAC) and reverse (59ACTC-

TATTCCTTTGCCCTCG) primers annealing at 55uC and

extension at 72uC for 60 s.

Growth analysis
Growth of WT and PYR6-52/2 strains was assessed in standard

HMI-9 and in HMI-9-tmd supplemented with specific pyrimidines

as indicated in the text. Cells were seeded at 16105 cells ml21 and

for this purpose grown in 12-well plates, with each condition set up

in 2 wells; incubation was at 37uC and 5% CO2. Cells were

counted every 12 or 24 h. The experiment was performed

independently on three separate occasions.

Alamar blue drug sensitivity assays
Sensitivities of PYR6-52/2 and s427-WT cells to 5-fluorouracil,

5-fluoroorotic acid, 5-fluorouridine, 5-fluoro-29deoxyuridine and

5-fluoro-29deoxycytidine (all Sigma) were determined using the

Alamar Blue assay exactly as described by [34,35], using a

FLUOstar Optima (BMG Labtech, Durham, NC); lexc was

544 nm and lem was 620 nm. Seeding density was 105 per well

(final volume 200 ml) in doubling dilutions of test compounds and

plates were incubated under standard conditions for 48 h, after

which the blue, non-fluorescent indicator dye Alamar Blue

(resazurin sodium salt; Sigma) was added and the plates were

incubated for a further 24 h. Pentamidine was used as positive

control throughout, with drug-free incubations as negative control

(4 per plate). All drugs were doubly diluted over 23 wells with a

starting concentration of test compound of 5 mM for pyrimidines

and of 100 mM for pentamidine.

Flow cytometry
The DNA content of bloodstream trypanosomes was deter-

mined exactly as described [36]. Briefly, trypanosome samples

were fixed o/n in methanol:PBS (7:3, v/v), treated with RNase

and stained with propidium iodide (both Sigma) and analysed with

a FACSCalibur (Benton Dickinson) using the FL2-area detector.

Quantitative PCR of Uridine Phosphorylase
RNA isolated from WT s427 and PYR6-52/2 cells was

quantified using a Nanodrop (Thermo Scientific); 2 mg of RNA

was diluted in RNase-free water to a total volume of 25 ml.

Complementary DNA (cDNA) was produced using a Reverse-

Transcriptase (RT) kit (Primerdesign, UK). cDNA for each sample

was diluted 1:10 and then used for Real Time-PCR. Amplification

of cDNA was performed in a 7500 Real Time PCR System

(Applied Biosystems). The dissociation curve was used to ensure

the amplification of only one product; samples without RT or

cDNA were used as controls. The constitutively expressed gene

GPI8 [37] was used as endogenous control, with primer sequences

59- TCTGAACCCGCGCACTTC and 59-CCACTCACG-

GACTGCGTTT. For uridine phosphorylase (UP), the DDCT

method was used for relative quantification (RQ) using WT cells in

HMI-9 as a calibrator or internal control. Data was analyzed using

Applied Biosystems 7500 SDS Real-Time PCR systems software.

Primers used for the amplification of UP were 59-

TTTGACCCCTCCACCATGA and 59-GATTCAGCAGGT-

GAGCCACAA. The entire experiment was performed on three

independent occasions, starting from cell culture and RNA

isolation.

Infectivity in mice
Six-weeks-old female ICR (CD-1) Swiss outbred mice (Harlan)

were divided into 3 groups of six mice each. Mice were injected

intraperitoneally with 105 bloodstream forms of Trypanosoma brucei

brucei strains .427 WT, Pyr6-5+/2 and Pyr6-52/2 in 200 ml of

HMI-9 medium supplemented with 10% FBS. To quantify

parasitaemia, 1 ml of blood was daily harvested by tail venepunc-

ture of each infected mice and appropriately diluted in red blood

cell lysis buffer (Sigma). 10 ml of the diluted cells was examined

under a light microscope using a haemocytometer and parasitae-

mia was expressed as number of parasites per ml blood.

Results

Generation and confirmation of pyrimidine auxotrophic
T. brucei

A schematic representation of the generation of a PYR6-52/2

strain is shown in Figure 1A. Plasmids with the positive selection

marker hygromycin phosphotransferase (HYG) and the negative

selection marker Herpes simplex virus thymidine kinase (HSVTK)

(generous donation from George Cross, Rockefeller University,

New York) were used. Bloodstream form T. b. brucei s427 (16106

cells ml21) were transformed with the loxP-HYG-HSVTK-loxP

cassette using an Amaxa Nucleofector. The transformants were

grown in selective medium containing 4.5 mg ml21 hygromycin

(Sigma) and were cloned using limiting dilution, creating a

heterozygote PYR6-5+/2 strain. Viable clones with the desired

insert were subjected to increasing drug pressure with 5-

fluoroorotic acid (5-FOA) leading to loss of the second PYR6-5

gene (loss of heterozygosity) at 100 mM (Fig. 1B). Loss of

heterozygosity (LOH) and the generated homozygous PYR6-52/2

were further confirmed using Southern blot (Fig. 1C).

Growth of pyrimidine auxotrophs on different pyrimidine
sources

Under standard culture conditions there was no clear growth

phenotype associated with loss of the PYR6-5 locus, as growth of

the knockout cells in standard HMI-9 was similar to that of WT

s427 trypanosomes in HMI-9-tmd supplemented with 10% dialysed

FBS (Fig. S1). PYR6-52/2 cells were grown either in standard

HMI-9 or in HMI-9-tmd, which does not contain any pyrimidines

but does contain 1 mM hypoxanthine as a purine source (Table

S1) and is supplemented with FBS that was extensively dialysed to

remove small molecules such as nucleosides. As expected, PYR6-

52/2 cells were unable to grow in this semi-defined medium

without pyrimidines, and the trypanosome population rapidly

declined after 24 h (Fig. 2A,B). In contrast, a shift to purine-free

conditions only caused growth arrest after approximately 48 h

(Fig. 2B), consistent with previous observations in procyclic T.

brucei [38]. Evidently, any interruption in pyrimidine supply

rapidly makes trypanosomes non-viable and we investigated how

quickly the damage becomes irreversible (Fig. 2A), by adding back

Pyrimidine Auxotrophy in Trypanosoma brucei
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100 mM uracil at various times after passage of PYR6-52/2 to

HMI-9-tmd. Cells grew to the same density as in standard HMI-9

when uracil was added immediately after passage (0 h control) but

adding the uracil after as little as 12 h resulted in irreversible

growth arrest and the eventual death of the parasite population.

From 24 h, the addition of uracil was almost redundant, with the

cell population rapidly declining as in continuously pyrimidine-

free conditions (Fig. 2A).

We next tested the ability of these cells to grow on 100 mM or

1 mM (Fig. 3) of each natural pyrimidine nucleoside or

nucleobase. At the lower concentration, uracil supported near-

normal growth but at 1 mM appeared to have become somewhat

growth inhibitory and growth was less pronounced, possibly

Figure 1. Generation of Pyr6-5 Knockouts. (A) Schematic representation of the generation of Orotidine Monophosphate Decarboxylase
(OMPDCase) knockout. The first step is replacement of one PYR6-5 allele with a construct containing both positive selection marker hygromycin
phosphotransferase (HYG) and negative marker Herpes simplex virus thymidine kinase (HSVTK) between 34-bp loxP elements. The second step creates
the homozygous PYR6-52/2 through drug pressure with 5-fluoroorotic acid (5 FOA), causing loss of heterozygosity. (B) PCR analysis of the PYR6-5
gene, generating an 870 bp amplicon as described in the Materials and Methods section confirmed the absence of the gene in Pyr6-52/2 (lane 1) and
its continued presence in Pyr6-5+/2 (lane 2). Lane 3 is the control with WT s427 DNA. (C) Southern blot confirming knockout strategy, using probes for
the PYR6-5 locus and for the HYG-HSVTK cassette. Lane 1, Pyr6-52/2, lane 2, Pyr6-5+/2, Lane 3, WT s427. Band ‘a’ is PYR6-5, band ‘b’ is HYG-HSVTK.
doi:10.1371/journal.pone.0058034.g001

Figure 2. Growth of bloodstream form T. b. brucei in media with various purine and pyrimidine content. A. Pyr5-62/2 trypanosomes
were transferred from HMI-9 to HMI-9-tmd (pyrimidine-free, %) medium to which subsequently uracil was added to a final concentration of 100 mM at
the indicated time after seeding the culture. Samples were taken every 12 h and cell densities determined using a haemocytometer. In cultures with
conditions that allowed fast growth, the trypanosome population declined after 36–48 h due to overgrowth. Cell population in the ‘0 h’ group
declined after 60 h due to over-growth and exhaustion of the medium. B. Comparison of purine-free and pyrimidine conditions. WT s427 cells were
passaged from mid-log cultures (grown in standard HMI-9 into fresh cultures with the same medium (control,m) or the same medium without
hypoxanthine and supplemented with dialysed serum (purine free,N). Pyrimidine-auxotrophic T. b. brucei (PYR6-52/2) were transferred from standard
HMI-9 into HMI-9-tmd (pyrimidine-free, &) medium. Cell population in the ‘WT, HMI-9 control’ group declined sharply after 26–48 h due to over-
growth and exhaustion of the media.
doi:10.1371/journal.pone.0058034.g002

Pyrimidine Auxotrophy in Trypanosoma brucei
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because the resulting excessive uracil influx could cause an

imbalance between pyrimidine nucleotides and 29deoxyribonucle-

otides, or between purine and pyrimidine nucleotides. Uridine also

supported growth at 100 mM and even better at 1 mM, whereas

29-deoxyuridine barely had any effect at all at 100 mM. Of the

other pyrimidines, only cytidine had any effect on growth, and

only at 1 mM.

[3H]-Uracil uptake in pyrimidine auxotrophic
Trypanosoma brucei

We determined uracil uptake rates in Pyr6-52/2 and control

s427 WT cells to assess whether uracil uptake capacity in

bloodstream form T. b. brucei increased in the absence of

pyrimidine biosynthesis. WT and Pyr6-52/2 were grown in

standard HMI-9 and uptake of 0.15 mM [3H]-uracil was measured

in a timecourse over 120 s. The initial rate of uracil uptake was

consistently higher in the Pyr6-52/2 cells (Fig. 4A). The rates were

0.010960.0001 and 0.024160.0014 pmol(107 cells)21s21 for WT

and Pyr6-52/2 trypanosomes, respectively (n = 3; P,0.05, Stu-

dent’s T-test, unpaired). The increased uptake rate could not be

attributed to the expression of an additional uracil transporter in

the knockout strain not present in the WT cells, as Km values were

identical in both strains (0.3160.01 and 0.3460.03 mM, respec-

tively (n = 3)) and uracil transport was almost completely

insensitive to uridine in both strains (Ki values .3 mM, n = 3;

Fig. 4B). Indeed, uptake of 2.5 mM [3H]-uridine was almost

undetectable in both strains (data not shown). However, the Vmax

for uracil transport was significantly increased in Pyr6-52/2 cells

(0.1460.01 versus 0.08760.007 pmol(107 cells)21s21, respective-

ly; n = 3, P = 0.012) (Fig. 4C), consistent with the increased initial

rate seen in the time course, and probably reflecting a higher

number of the uracil transporter in the plasma membrane rather

than the expression of a different or additional transport protein.

Sensitivity of pyrimidine auxotrophic of trypanosomes to
pyrimidine analogues

We tested whether pyrimidine auxotrophs were more sensitive

to cytotoxic pyrimidine analogues and found that Pyr6-52/2 cells

are approximately one order of magnitude more sensitive to most

analogues, including 5-fluorouracil and 5-fluoro-29deoxyuridine

(Table 1). The only exception was 5-fluoroorotic acid, whose

action is dependent on OPRT and OMPDCase, and to which the

Pyr6-52/2 cells were completely impervious up to 5 mM although

WT trypanosomes were sensitive to this compound with an EC50

of 13.261.2 mM. Interestingly, the Pyr6-52/2 strain was also

sensitized to 5-fluorouridine whereas the WT cells were not

sensitive to this compound up to the limit tested (5 mM).

Expression of Uridine Phosphorylase in pyrimidine
auxotrophs

We observed that cultures of Pyr6-52/2 cells appeared to be

able to adapt to uridine as a sole pyrimidine source (data not

shown). In order to utilize uridine for the synthesis of pyrimidine

nucleotides they need to generate uracil from it, using uridine

phosphorylase (UP) [39]. We thus inferred that upregulation of UP

could be a possible adaptation to pyrimidine starvation and

performed quantitative PCR to assess relative UP mRNA levels in

WT and Pyr6-52/2 cells grown in different media. As shown in

Figure 5, UP expression was identical in WT cells grown in

standard HMI-9 or in HMI-9-tmd supplemented with 100 mM

uracil, but was significantly increased after 48 h growth on HMI-9-

tmd supplemented with 1 mM uridine (P,0.001). In Pyr6-52/2

cells cultured long-term in standard HMI-9 but transferred to

HMI-9-tmd/uracil for 48 h UP expression levels were higher than

for s427-WT under the same conditions (P,0.001) and the level

was further increased for Pyr6-52/2 cells grown 48 h in HMI-9-

tmd/uridine (P,0.001). These data appear to indicate that T. b.

brucei can adjust its UP expression levels to accommodate growth

on uridine as its sole pyrimidine source, whether these cells are

pyrimidine auxotrophs or prototrophs. We next investigated

whether Pyr6-52/2 strains can adapt when long-term cultured

on uridine as sole pyrimidine source. We found that these cells do

express significantly higher UP levels than s427-WT control cells

grown in standard HMI-9 or on HMI-9-tmd/uracil (P,0.01), but

revert quickly to control levels of expression when shifted to HMI-

9-tmd/uracil (Fig. 5).

The effect of pyrimidine starvation on DNA content and
integrity of pyrimidine auxotrophic T. b. brucei

Pyrimidine auxotrophs die relatively rapidly in the absence of a

salvageable pyrimidine source (uracil.uridine.29deoxyuridi-

ne.cytidine; see figure 3), with death of the population

progressing soon after 24 hours. To investigate the cause of the

rapid cell death we examined DNA content of the Pyr6-52/2 cells

grown in HMI-9-tmd supplemented with 100 mM of various

pyrimidines, using flow cytometry with the DNA-binding fluor-

Figure 3. Growth of pyrimidine auxotrophic T. b. brucei bloodstream forms on various pyrimidine sources. PYR6-52/2 cell cultures were
seeded at a density of 16105 cells ml21 and cultured at 37uC/5% CO2, either in normal HMI-9 or in a simplified pyrimidine version supplemented with
dialysed FBS and the indicated pyrimidine source at (A) 100 mM or (B) 1 mM. Samples were taken every 24 h and cell densities determined using a
haemocytometer, in duplicate. The experiment shown is representative of several similar experiments with essentially identical results. In cultures
with conditions that allowed fast growth, the trypanosome population declined after 36–48 h due to overgrowth.
doi:10.1371/journal.pone.0058034.g003
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ophore propidium iodide; Pyr6-52/2 cells grown in normal HMI-

9 served as control. We found that DNA content in control cells

presented a classical distribution of most cells in G1 phase

(diploid), a small proportion in S-phase undergoing DNA synthesis

and finally a percentage of the population in G2 phase (double set

of chromosomes) (Fig. 6). This profile was stable over the 48 hours

of the experiment, although the proportion in G2 phase increased

somewhat over this period, probably reflecting the mid-log phase

of growth of the population at the end of the experiment,

compared to early log phase at the start (% in G2 was 4.962.8%,

11.663.1% and 13.961.9% at 24 h, 36 and 48 h, respectively;

quantified using the ModFit software package). In sharp contrast,

there was a rapid increase in cells displaying an incomplete

complement of chromosomes in Pyr6-52/2 cells grown in HMI-9-

tmd, resulting both in cells with less fluorescence (i.e. less DNA) than

should be associated with normal G1 phase cells, or cells with a

DNA content between G1 and G2 phase (Fig. 6). This clearly

indicates that the cells are attempting cell division ‘as normal’ but

are unable to complete chromosome synthesis due to lack of

pyrimidine nucleotides, leading to aberrant cells with incomplete

and fragmented chromosomes that are ultimately non-viable. This

phenomenon progressed rapidly and at 48 h few live cells could be

detected. The cells that could be counted by the flow cytometer

almost all contained incomplete and presumably fragmented

DNA. Highly similar flow cytometry results were obtained when

supplementing HMI-9-tmd with cytosine, thymine or thymidine,

whereas supplementation with uracil or uridine produced profiles

highly similar to the control (growth in standard HMI-9); addition

of 29deoxyuridine, cytidine or 29deoxycytidine resulted in inter-

mediate levels of DNA damage over 48 h (results not shown). In

an effort to quantify the emergence of aberrant cells the flow

Figure 4. Uracil transport by T. b. brucei bloodstream forms. (A) Timecourse of 0.15 mM [3H]-uracil uptake by WT s427 and by PYR6-52/2 cells,
in the presence or absence of 1 mM unlabelled uracil, as indicated. Dashed lines represent linear regression over the first 50 s, yielding correlation
coefficients of 0.97 and 0.92 for the knockout and WT strains, respectively. In the presence of excess unlabelled uracil uptake was not significantly
different from zero (F-test) for both strains. The experiment shown is representative of three identical experiments with highly similar outcomes and
shows average and SE of triplicate determinations. In the presence of 1 mM uridine, the lines for WT and PYR6-52/2 were superimposed. (B) Uptake of
[3H]-uracil by PYR6-52/2 trypanosomes was measured over 30 s in the presence or absence of unlabelled uracil (#) or uridine (&) at the indicated
concentrations. The data was plotted to a sigmoid curve with variable slope which in the case of uridine inhibition was set at zero for its minimum.
The data are the average and SE of triplicate determinations and the experiment shown is representative of several independent experiments with
essentially identical outcomes. (C) Michaelis-Menten saturation plots for uracil uptake of [3H]-uracil by WT (#) or PYR6-52/2 (&) T. b. brucei
bloodstream forms. The data represents the average and SE of three identical experiments, each performed in triplicate.
doi:10.1371/journal.pone.0058034.g004

Table 1. EC50 values for some pyrimidine analogues tested
on WT s427 and PYR6-52/2 bloodstream forms grown in
standard HMI-9, using a standard protocol based on the
fluorescent indicator dye Alamar Blue.

WTs427 PYR6-52/2
RF P value

AVG ± SE
(mM) n

AVG ± SE
(mM) n

5-Fluorouracil 35.961.5 4 2.360.07 4 0.06 ,0.001

5-Fluoro-29deoxyuridine 4.660.5 3 0.7760.10 3 0.16 0.002

5-Fluoro-29deoxycytidine 43.764.4 3 4.660.9 3 0.105 ,0.001

5-Fluorouridine .5000 5 47263 3 ,0.09 ,0.001

5-Fluoroorotic acid 13.261.2 3 .5000 4 .380 ,0.001

RF, resistance factor, being the ratio of the EC50 values (mM) for knockout over
WT strains. P value is based on an unpaired Students t-test.
doi:10.1371/journal.pone.0058034.t001
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cytometry profiles were analyzed with the ModFit software

package which models the peak area. This was not successful for

the 48-h time points because of the lack of viable cells and too

extensive DNA damage, which did not allow reliable estimates of

relevant peaks. However, some results for the 24-h and 36-h time

points are shown in figure 7. The use of thymidine as sole

pyrimidine source caused a highly significant increase in cells in

G2 phase, possibly because of the anticipated imbalance between

thymidine nucleotides and deoxycytidine nucleosides, which the

cell cannot generate from thymidine. The peak classified as ‘DNA

debris’ increased within 24 h of pyrimidine-free conditions and

this was highly significant (P,0.01) after 36 h; the debris amount

was also significantly increased by culturing on thymidine (Fig. 7).

We conclude that any significant interruption of pyrimidine

nucleotide availability leads to major defects in DNA synthesis.

Infectivity of pyrimidine auxotrophic of T. b. brucei in
mice

The observation (Fig. 3) that pyrimidine auxotrophic Pyr6-52/2

cells grow in standard HMI-9, which contains only thymidine as a

pyrimidine source, but cannot grow in thymidine-supplemented

medium with dialyzed FBS strongly suggest that (1) T. b. brucei

cannot use thymidine as its sole pyrimidine source and (2) it is able

to salvage sufficient amounts of other pyrimidines from the non-

dialyzed serum. It could thus be speculated that pyrimidine

auxotrophic trypanosomes should be able to survive in vivo. To test

this, we infected groups of 6 mice with a high inoculum of 105

trypanosomes of s427-WT, Pyr6-5+/2 or Pyr6-52/2 strains and

followed survival and parasitaemia for 15 days. Figure 8A shows

that WT trypanosomes were the most virulent and killed all mice

between 4 and 8 days. The single allele knockout strain Pyr6-5+/2

caused the death of four mice by day 5 but two of the animals

survived until day 12. In contrast, all the animals inoculated with

Pyr6-52/2 survived until day 15, when the experiment was

terminated. However, the auxotrophs were able to survive and to

multiply in the host, as evidenced by the average parasitaemia,

which reached similar levels as for the other strains albeit much

more slowly (Fig. 8B). We conclude that T. brucei can salvage just

enough uracil and/or uridine in vitro to maintain an infection.

Discussion

Kinetoplastid parasites are able to salvage preformed pyrimi-

dine nucleobases and/or nucleosides [6,7,15,40,41] as well as

synthesise them de novo from glutamine and aspartate [42]. The

two pathways converge at UMP, the end-product of the 6-step

biosynthesis pathway as well as the nexus for salvaged cytidine,

uridine, 29dUrd, 29dCtd and uracil, through the actions of cytidine

deaminase, uridine phosphorylase and uracil phosphoribosyltrans-

ferase (UPRT). From UMP the cell can then make all pyrimidine

ribonucleotides and 29deoxyribonucleotides that it needs, through

non-redundant pathways. Salvaged thymidine can be utilised as

thymidine nucleotides but not to produce any other pyrimidine

nucleotides ([24]; reviewed in 10 and 19) and both procyclic and

bloodstream form trypanosomes take up thymidine very poorly

[16,24]. Therefore it is clear that pyrimidine metabolism in

protozoa must be replete with good drug targets. Indeed, T. b.

brucei DHFR-TS, CTP synthetase and dUTPase have all been

shown already to be essential enzymes [20,21,22]. These enzymes

are all in the pathways downstream from UMP and thus shared by

the salvage route and the biosynthesis route.

What is less clear is whether either of the two biochemical

pathways to obtain UMP in the first place might be essential and

thus a potential drug target. In order to therapeutically target the

salvage pathway to UMP it would be necessary to inhibit either the

uptake of uracil, uridine, 29deoxyuridine, cytidine and 29deoxy-

cytidine, or to inhibit UPRT. With regards to the former option it

should be noted that cytidine and 29deoxycytidine are incorpo-

rated very poorly into the T. b. brucei nucleotide pool [21,24] and it

would thus only be necessary to inhibit the carriers for uracil,

29deoxyuridine and uridine, and we recently reported that all

three are mediated by the same transporter, TbU3, in bloodstream

forms [24]. However, we report here that WT trypanosomes (i.e.

pyrimidine prototrophs) grow almost unimpeded in the absence of

any pyrimidine source and must conclude that neither pyrimidine

transporters nor UPRT are essential functions in bloodstream

form T. b. brucei - consistent with a recent report that deletion of

UPRT in L. donovani promastigotes created a pyrimidine proto-

trophic parasite with normal in vitro growth [43]. It can thus be

concluded that pyrimidine salvage is not an essential function for

trypanosomes.

Arakaki et al [25] previously investigated whether the de novo

biosynthesis route to UMP was essential to T. b. brucei in vitro; they

employed RNA-interference (RNAi) to reduce expression of T.

brucei dihydroorotate dehydrogenase (DHODH). These authors

reported that knockdown of this enzyme did not affect growth in

standard HMI-9 but greatly reduced growth in pyrimidine-

depleted medium using a commercial dialysed serum. Our own

observations with a PYR6-52/2 strain are entirely consistent with

Arakaki’s report: the growth rate of pyrimidine auxotrophs is at

most slightly affected in normal medium with non-dialysed serum.

As shown in the Supplementary data, thymidine (,83 mM) is the

Figure 5. Comparative expression of uridine phosphorylase in
wild-type and pyrimidine auxotrophic trypanosomes. Expres-
sion of uridine phosphorylase (UP) was assessed by Real Time PCR in
WT and PYR6-52/2 strains grown under various conditions. The results
are presented normalized to the control (group1) and are the average
and SE of 8 replicates. 1. Control: WT grown in HMI-9; 2. WT grown 48 h
in HMI-9-tmd+100 mM uracil; 3. WT grown 48 h in HMI-9-tmd+1 mM
uridine; 4. PYR6-52/2 grown 48 h in HMI-9-tmd+100 mM uracil; 5. PYR6-
52/2 grown 48 h in HMI-9-tmd+1 mM uridine; 6. PYR6-52/2long-term
adapted to growth on uridine, grown 48 h in HMI-9-tmd+100 mM uracil;
7. PYR6-52/2long-term adapted to growth on uridine, grown 48 h in
HMI-9-tmd+1 mM uridine. Data were analysed with a one-way ANOVA
with Tukey’s correction. Horizontal asterisks indicate significant
differences from control; vertical asterisks indicate significant differenc-
es between individual bars as indicated.
doi:10.1371/journal.pone.0058034.g005
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only pyrimidine added to that medium but since this nucleoside

cannot be converted to uridine and cytidine nucleotides by T. b.

brucei, it is redundant [24,25] and clearly the serum provides

sufficient pyrimidines for growth, consistent with the average

uracil concentration of 0.1760.05 mM in human plasma [44] and

high affinity uptake of pyrimidines, particularly uracil, by T. brucei

[23,24]. We thus conclude that pyrimidine biosynthesis is not

essential for in vitro growth, and the fact that even 10% FBS

supplies sufficient pyrimidines, seems to indicate that it may not be

essential for in vivo growth either.

This was tested by infecting mice with s427-WT, PYR6-5+/2

and PYR6-52/2 trypanosomes. All three strains were able to

maintain an infection and although the homozygous knockout

strain was clearly less virulent, it unambiguously establishes that

inhibition of the de novo pyrimidine biosynthesis is not a viable

therapeutic strategy against African trypanosomes. These findings

are very similar to those reported for promastigote L. donovani [28]

but, in contrast to the authors of that report, we contend that the

fact that disruption of pyrimidine biosynthesis can be compensated

for by physiological levels of pyrimidines demonstrates that this

pathway is not essential in kinetoplastids, and not a viable drug

target. Indeed, the same authors very recently demonstrated that

L. donovani that lack carbamoyl phosphate synthetase, and are thus

pyrimidine auxotrophic, were able to establish a ‘robust’ infection

in mice [43]. It is noteworthy, however, that Leishmania species are

obligated intracellular parasites and that this manuscript is the first

assessment of in vivo growth of an extracellular pyrimidine-

auxotrophic protozoan. This is relevant as the intracellular and

extracellular nucleoside and nucleobase levels are potentially very

different, with the intracellular purines and pyrimidines over-

whelmingly existing as nucleotides, which cannot be taken up

directly by protozoan transporters [6]. In addition, a previous

report on pyrimidine-auxotrophic Toxoplasma gondii, another

obligate intracellular protozoan, showed that these parasites were

completely avirulent even in immunocompromised mice [45] - a

phenotype attributed to the lack of free pyrimidines within animal

cells which also prevents growth of pyrimidine auxotrophic

bacteria [46].

Inhibition of the pyrimidine biosynthesis pathway in T. b. brucei

greatly sensitises the trypanosomes to cytotoxic pyrimidine

analogues such as 5-fluorouracil, 5-fluoro-29deoxyuridine, 5-

fluorodeoxycytidine and 5-fluorouridine (Table 1). The enhanced

effect of 5-fluorouracil was also noted by Arakaki et al [25], who

attributed it to inhibition of uracil uptake. Whilst this analogue is

indeed a competitive inhibitor of uracil transport in T. brucei, none

of these fluorinated pyrimidines would sufficiently inhibit uracil

uptake in bloodstream forms at the EC50 values given in Table 1,

especially not 5F-29deoxyuridine or 5F-29deoxycytidine [24]. As

an alternative explanation, we propose that these fluorinated

pyrimidines enter the trypanosomes as prodrugs and subversive

substrates for the pyrimidine salvage enzymes, are converted to

nucleotides and incorporated into nucleic acids, as indeed is the

case in mammalian cells [47] and as we have recently shown for 5-

fluorouracil in T. b. brucei [24]. This incorporation is more efficient

in the absence of a newly synthesised pool of pyrimidine

metabolites that would compete with the halogenated analogues

at the level of each enzyme as well as for RNA and/or DNA

polymerases.

We thus conclude that an inhibitor of any one of the enzymes of

the de novo pathway together with either an inhibitor of uracil/

uridine uptake, or with a cytotoxic nucleoside analogue, would be

a powerful and synergistic combination that would act on

trypanosomes through both misincorporation of false nucleotides,

and by causing pyrimidine starvation through inhibition of

pyrimidine carriers, and we found that trypanosome populations

die much more quickly from a lack of pyrimidines than from a lack

Figure 6. Flow cytometry for DNA content in bloodstream form PYR6-52/2 cells. Pyrimidine auxotrophic trypanosomes were either
incubated in standard HMI-9 or, in parallel, in pyrimidine-free HMI-9-tmd for up to 48 h, stained with propidium iodide and prepared for flow
cytometric analysis. Whereas control cultures show a classical distribution of cells in G1, S and G2 phase, as well as a small percentage of cells with
less than the normal diploid DNA content (debris, d), cells grown in pyrimidine-free medium showed a much higher percentage of cells with partial
DNA content, and this increased dramatically between 24 and 48 h.
doi:10.1371/journal.pone.0058034.g006
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Figure 7. Quantitative analysis of DNA content in pyrimidine-starved trypanosomes. The peak area of G1, G2 and debris of flow
cytometric analysis of DNA content (Fig. 6) was determined using the ModFit software package after 24 or 36 of growth under various culturing
conditions. Growth was in HMI-9 (control) or in HMI-9-tmd with or without the addition of 100 mM of one pyrimidine as indicated. The data are the
average of 3–6 independent determinations and statistical analysis was performed using one-way ANOVA with Tukey’s correction (Prism 5,
GraphPad). *, P,0.05; **, P,0.01.
doi:10.1371/journal.pone.0058034.g007

Figure 8. Infectivity of pyrimidine auxotrophic T. b. brucei. (A) Survival of mice in groups of 6, each inoculated with 105 bloodstream form
trypanosomes of various clonal lines. (B) Parasitaemia of the same mice as depicted for survival in panel A. The average parasitaemia of the surviving
mice is shown. Detection was by phase-contrast microscopy and detection limit was 16104; where the infected was sub-patent, a value of 5000 cells
ml21 was inserted in order to arrive at a reasonable average. Both panels: #, WT s427; &, PYR6-5+/2; m, PYR6-52/2.
doi:10.1371/journal.pone.0058034.g008

Pyrimidine Auxotrophy in Trypanosoma brucei

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e58034



of purines [38]. It can easily be speculated that kinetoplastid

parasites, having evolved without the capacity to synthesise their

own purines, must be relatively well-adapted to periods with

relatively low purine availability, as demonstrated by the

reversibility of purine starvation-induced growth arrest [38]. In

contrast, they have not needed to develop a mechanism to cope

with a prolonged dearth of pyrimidines, being able to make

sufficient amounts themselves, and trypanosomes are therefore

unable to recover from even short periods of pyrimidine

starvation. We did observe, consistently, increased expression of

uridine phosphorylase, and an increase in uracil uptake capacity

(both about two-fold), in pyrimidine-starved trypanosomes but this

hardly constitutes a major upregulation of the pyrimidine salvage

pathway and it is at best uncertain whether this is a regulated,

physiological response to low pyrimidine levels. Indeed, the lack of

a regulated response to the insufficient level of pyrimidine

nucleotides was manifest in the major defects in DNA synthesis

after only 24 h, leading to fragmented and incomplete chromo-

somes.

In summary, we have shown that neither pyrimidine uptake or

de novo biosynthesis is essential in African trypanosomes but that a

drug combination targeting both systems would be a very powerful

approach to novel therapeutic approaches against kinetoplastid

parasites.

Supporting Information

Figure S1 Growth of PYR6-52/2 T. b. brucei blood-
stream forms in standard HMI-9 and s427-WT in HMI-
9-tmd supplemented with 10% dialysed FBS. Seeding

density was 16105 cells ml21 and cells were manually counted

every 24 h. On day 3 cells were passaged to relevant fresh

medium, again at 16105 cells ml21.
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