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Abstract
Cellular decision-making is mediated by a complex interplay of external stimuli with the
intracellular environment, in particular transcription factor regulatory networks. Here we have
determined the expression of a network of 18 key haematopoietic transcription factors (TFs) in
597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We
demonstrate that different stem/progenitor populations are characterised by distinctive TF
expression states, and through comprehensive bioinformatic analysis reveal positively and
negatively correlated TF pairings, including previously unrecognised relationships between Gata2,
Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory
interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may
function to modulate cross-inhibition between Gfi1 and Gfi1b. Single cell expression profiling
therefore identifies network states and allows reconstruction of network hierarchies involved in
controlling stem cell fate choices, and provides a blueprint for studying both normal development
and human disease.

Haematopoiesis has long served as a model system for studying cell fate decisions during
stem cell differentiation1, 2. At the molecular level, transcription factors (TFs) are major
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drivers of cellular identity and cell fate transitions as exemplified by their key role in
reprogramming3 and lineage switching experiments4-6. TFs function within wider regulatory
networks, the connectivity of which can be revealed using classical transcriptional assays or
inferred from global expression and TF binding profiling studies7-12.

However, these experiments report population averages, while cell fate choices are made by
individual cells. The importance of studying single cells is emphasised by the known
functional heterogeneity in haematopoietic stem cells (HSCs) as well as other cell types,
which manifests as relatively stable subpopulations with either balanced production of
myeloid and lymphoid cells or a deficiency in lymphoid potential13-15. HSCs have also been
reported to be heterogeneous in gene expression16-18, although previous studies have been
limited in terms of numbers of genes, cells or populations analysed. Recent advances in
microfluidics technologies have facilitated high-throughput Q-RT-PCR analysis of tens of
genes in hundreds of single cells simultaneously19. This technology has recently been used
to resolve cell populations in 64 cell mouse embryos20, to dissect cellular heterogeneity in
human colon cancer21, and to reveal significant variation in early erythroid gene expression,
which resolved upon commitment22.

Here we analysed expression of a network of 18 densely interconnected TFs in 597 single
cells from five primary haematopoietic stem and progenitor cell populations, which not only
revealed characteristic expression states for the different cell populations, but also identified
previously unrecognized regulatory relationships. This included a putative regulatory triad
consisting of Gata2, Gfi1 and Gfi1b, which was validated using cell line and transgenic
mouse assays. Our 4 findings suggest that GATA2 may function in a regulatory loop to
modulate Gfi1/Gfi1b cross-antagonism during entry into the myeloid/lymphoid lineages,
thus demonstrating that high-throughput single cell TF expression analysis provides a
powerful approach towards the identification of regulatory network links.

RESULTS
Single-cell expression analysis reveals heterogeneity in transcription factor expression in
haematopoietic stem and progenitor cells

To study core regulatory circuits during early haematopoietic differentiation stages, we
performed gene expression analysis for transcription factors in single primary
haematopoietic stem/progenitor cells prospectively isolated from mouse bone marrow by
fluorescence activated cell sorting (FACS). We analysed long-term haematopoietic stem
cells (LSK CD150+CD48− HSC23), lymphoid-primed multipotent progenitors (LSK Flt3hi

LMPP24), bipotential megakaryocyte/erythroid progenitors
(CD16/32loCD41−CD150+CD105lo PreMegE25), granulocyte-monocyte progenitors
(CD41loCD16/32hi GMP25, 26), and common lymphoid progenitor (Lin−

IL7Rα+KitloSca-1lo CLP27) (Figure 1A and Supplementary Fig. 1). A total of 597 single
cells (123 CLPs, 124 GMPs, 121 HSCs, 116 LMPPs, 113 PreMegEs) passed quality control
measures (see Methods).

Single cell gene expression analysis was performed for 24 genes in all 597 cells (see
Supplementary Table 3 for raw Ct data). Our gene set included 18 transcription factors
(Figure 1B) with known key roles in haematopoiesis, as well as five housekeeping genes and
the Stem Cell Factor receptor c-Kit, which is expressed on the surface of all analysed
haematopoietic stem/progenitor subsets23-28. We have previously reported the potential for
abundant regulatory linkages between many of the 18 TFs9, 11, 12, 29-33, and a similarly
densely interconnected network was obtained using data curated from the literature and
protein interaction databases (Figure 1B). Importantly, while previous studies have
examined individual HSCs and commitment to the erythroid lineage, they have been limited
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in cell numbers16, were focussed on expression heterogeneity16, 17 or have examined a
lineage-specific set of genes22. Moreover, the potential for identifying regulatory
connections from single cell gene expression profiling had not been demonstrated, nor had
the potential for dynamic changes of regulatory network states been studied during the
differentiation of HSCs into the various multipotential blood progenitors.

Single cell gene expression analysis recovered expected expression patterns for the 18 TFs
as well as housekeepers and c-Kit (Figure 2). For example, c-Kit expression was highest in
HSCs and gradually reduced in the progenitor populations, consistent with the reported
downregulation in progenitors28. Gata1 is known to be expressed at high levels in erythroid
and megakaryocyte lineages, but not in HSCs34, and here was expressed in around two
thirds of PreMegE cells, yet absent in almost all cells of the other populations. Likewise,
Gata2 is known to be expressed in HSCs and during megakaryopoiesis35, 36, and in our data
was expressed in most HSCs and PreMegEs but at lower levels or not at all in LMPPs,
GMPs and CLPs. GFI1B is important for the development of erythroid progenitors, while
GFI1 is important for myeloid and T cell development, and the two factors are known to be
mutually inhibitory37, 38. Outside of the HSC population; Gfi1 was expressed in the majority
of LMPPs, CLPs and GMPs, but rarely in PreMegEs, while Gfi1b was expressed in most
PreMegEs, with lower or absent expression in LMPPs, CLPs and GMPs.

Many genes exhibited heterogeneous expression within cell populations, with some cells
expressing the gene at high levels and undetectable expression in others, in line with
previous reports of expression heterogeneity in blood stem and progenitor
populations16-18, 22. Several TFs, including Runx1 and Fli1, had a very similar gene
expression distribution in all cell types, and these genes were expressed in almost all
analysed cells. Conversely, genes including Erg, Lmo2 and Meis1, differed in expression
level between cell types. Genes including Gfi1, Gfi1b and Scl (also known as Tal1) showed
bimodal expression amongst the cells that expressed the gene, with the potential therefore to
generate three distinct expression states (high, medium, not-expressed) within a single
population that is pure based on FACS analysis. Importantly, such detailed insights into the
dynamical nature of TF gene expression in primary blood stem and progenitor cells could
not have been obtained from population studies.

Cell populations can be resolved by differential network activity states
To establish cell type-specific patterns of gene expression that may aid our understanding of
network activity and cell state transitions, we next performed hierarchical clustering and
principal component analysis using the expression data for our TFs in all 597
haematopoietic stem/progenitor cells. The relatedness of cells is determined using only the
gene expression values, without prior knowledge of which population a cell originates from.
Hierarchical clustering demonstrated that mRNA levels for these 18 key TFs allow the
partitioning of cells largely by sorted population (Figure 3A). This was particularly clear for
the GMPs, which formed a distinct cluster. HSCs and PreMegEs formed a cluster separate
from the myeloid and lymphoid lineages in which the two populations were also largely
separated from each other, while LMPPs and CLPs showed significant overlap. There was
some mixing of HSCs with LMPPs and PreMegEs, in line with the evidence that LMPPs
and the megakaryocyte/erythroid lineage may be generated as early and alternative fates of
HSCs24 and so are both closely related to HSCs but distinct from one another.

Principal component analysis confirmed the above results, where each data point represents
a single cell, colour-coded according to its flow cytometric phenotype (Figure 3B, upper
panel). Principal component 1, which captures the largest proportion of the variation in the
data, separates the HSCs and PreMegEs from the lymphoid and myeloid populations, and
partially separates the GMPs from the LMPPs and CLPs. Principal component 2 further
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separates the HSCs and PreMegEs. However, although individual populations can be
distinguished there is also significant overlap, particularly between the LMPPs and CLPs,
both of which contain lympho-myeloid-restricted progenitors39, indicating that cells at the
edges of adjacent populations have similar network activity states. Gata2, Gfi1b, Scl and
Gfi1 contribute to separation of the HSCs and PreMegEs from the myelolymphoid
populations along component 1, while Erg, Hhex and Gata1 are important across component
2 (Figure 3B, lower panel), consistent with known expression patterns in these populations.
Runx1 and Fli1 contributed little to the separation of cell types, consistent with their similar
expression distributions between cell types (Figure 2).

Gaussian Process Latent Variable Models (GPLVMs) are a non-linear generalisation of
PCA40 and were recently shown to be a powerful alternative, in particular for resolving non-
linear differences in single-cell gene expression patterns41. GPLVM resulted in a better
separation of the different cell types than PCA (Figure 3C), with the greatest improvement
found for GMPs. However, LMPPs and CLPs cells could not be resolved completely. Our
ability to separate populations was further confirmed by calculating the spatial median, a
robust multivariate measure of the ‘centre’ of the distribution for each cell type, and then
analysing distances between cell types. These GPLVM map distances reflected the
differentiation hierarchy shown in Figure 3A with cell types close in the hierarchy located
close together in the map (Supplementary Fig. 2).

While for standard PCA the relevance of different genes to the separation of the data
(quantified by component loadings in Figure 3B) can only be found for the entire PCA map,
the relevance of each gene can change across the GPLVM map, providing a greater
resolution of the changes separating cell types. The GPLVM relevance map (Figure 3D)
shows the most important gene at each point of the map, and illustrates for example that
Gata2, Gfi1 and Gfi1b feature frequently throughout the map and particularly in the region
bordering the HSC and LMPP populations. Indeed, expression maps for individual genes
(Figure 3E) demonstrate that high Gata2 expression occurs mostly in the HSC and PreMegE
populations, while high Gfi1 is restricted mostly to LMPPs, GMPs and a subset of CLPs.
Taken together therefore, bioinformatic analysis of single cell gene expression allowed us to
correlate distinct expression states of a core set of 18 key haematopoietic TFs with some of
the earliest blood stem and progenitor populations, including the earliest known lineage
restriction stage from HSCs resulting in distinct MegE and lympho-myeloid restricted
pathways.

Single cell analysis reveals dynamic regulatory relationships
We next hypothesised that single cell expression data could be used to identify regulatory
linkages by identifying pairs of factors with correlated expression, where a positive
correlation suggests that one factor may activate another and a negative correlation indicates
an antagonistic relationship. Correlation analysis and hierarchical clustering of the eighteen
transcription factors across all 597 haematopoietic stem/progenitor cells revealed both
positive and negative correlations (Figure 4A, top left panel). Among the positive
correlations is a group of seven genes (Scl, Gata2, Nfe2, Eto2, Gfi1b, Gata1 and Ldb1)
known to be important in the erythroid/megakaryocytic lineages35, 38, 42-49, while there was
a negative correlation between PU.1 and Gata1, which are thought to function as a switch
controlling erythroid and myelomonocytic fates50, 51. To establish whether such regulatory
relationships were stable or dynamic during differentiation, we repeated the correlation
analysis for each of the five stem/progenitor populations individually (Figure 4A). While
many of the strong positive correlations identified in the whole data set remained stable
between cell types, there were some clear differences, particularly in negative correlations,
which could suggest that repression, or relief of repression, of some TFs by others is a vital
step in cell fate transitions. For example, the strong negative correlation between Gfi1 and
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Gata2 present in the whole dataset is seen only in HSCs. Gfi1b and Gata1 are negatively
correlated with PU.1, Mitf, Gfi1, Lyl1 and Lmo2 in GMPs, and to some extent in CLPs, but
are either not correlated or positively correlated in the earlier progenitors and in the
erythroid/megakaryocyte lineage. Together these results indicate that expression of the core
haematopoietic transcriptional regulatory network is dynamic (Figures 2 and 3), which is
presumably intimately connected to the dynamics of regulatory interactions between the
components of the network (Figure 4).

Significant positive and negative correlations between TFs were displayed as a putative
interaction network (Figure 4B). Among these is the known Scl-Gata2 relationship and the
PU.1-Gata151 and Gfi1-Gfi1b37, 38 inhibitory relationships, indicating that additional
relationships identified may indeed signify previously unrecognised interactions. Two newly
predicted regulatory links (Gata2-Gfi1 and Gata2-Gfi1b) suggested possible involvement of
GATA2 in modulating the cross-inhibitory relationship between GFI1 and GFI1B (Figure
4B), which was of particular interest to us because we had seen downregulation of Gata2
and Gfi1b accompanied by reciprocal upregulation of Gfi1 in a recent transcriptomic and
epigenomic analysis of leukaemia development in an MLL-ENL-driven mouse model of
acute myeloid leukaemia (AML)52 (see Supplementary Fig. 3).

Direct repression of Gata2 distal enhancer elements by GFI1 provides a likely mechanism
for negatively correlated expression

To investigate whether downregulation of Gata2 might be mediated directly through GFI1
binding to Gata2 regulatory elements, we interrogated existing ChIP-Sequencing data for
GFI1 in MLL-ENL transduced cells52, 53. Across the Gata2 locus, a prominent peak was
identified 83kb upstream of the Gata2 transcriptional start site (Supplementary Fig. 3B).
This −83 kb region had been shown previously to loop to the Gata2 promoter54, and was
bound in the HPC7 haematopoietic progenitor cell line11, 55 by multiple TFs (Supplementary
Fig. 3)11. TF ChIP-Seq studies are currently not possible with the small numbers of cells
that can be obtained for the highly purified blood stem cell populations used here for single
cell expression analysis. We nevertheless wanted to confirm binding of GFI1 to the Gata2
gene locus in primary blood cells, and therefore performed GFI1 ChIP-Seq in primary mast
cells, which like HSCs express the stem cell factor receptor c-KIT and a number of TFs
important for HSCs including GFI1 and GATA2. This GFI1 ChIP-Seq experiment
confirmed GFI1 binding to the Gata2 −83 kb region in primary mouse blood cells (Figure
5A).

As no in vivo activity has as yet been reported for the Gata2 −83 kb region, we generated a
LacZ reporter construct with the −83 kb region fused to a minimal SV40 promoter/LacZ
reporter cassette. Analysis of LacZ expression in E11.5 transgenic mouse embryos
demonstrated consistent staining in the midbrain, hindbrain and spinal cord (Figure 5B), all
known domains of endogenous Gata2 expression56. However, no haematopoietic staining
was seen in any of the transgenic embryos. We had shown previously that a Gata2 −3 kb
enhancer is active at E11.5 in the dorsal aorta endothelium including budding
haematopoietic cells, but not the foetal liver9. Given the prominent TF binding to the −83 kb
region in haematopoietic cells, we next asked whether a combination of the −83 and −3 kb
enhancers was able to drive expression to foetal liver haematopoietic cells. Transgenic
embryos carrying a combined enhancer construct (−3/SV/lacZ/−83) displayed the neural
activities of both of the individual enhancers (Figure 5B). Moreover, staining was not only
seen in the dorsal aorta but also in foetal liver haematopoietic cells. Transgenic analysis
therefore confirmed the Gata2 −83 kb region as a candidate enhancer element involved in
haematopoietic expression of Gata2.
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To investigate whether GFI1 could repress activity of this element, we next generated a
luciferase reporter construct (−3/SV/luc/−83) and performed transfection assays in the HPC7
progenitor cell line which expresses high levels of Gata2 but very low levels of Gfi133.
Compared with control transfection assays, we observed that co-transfection of a Gfi1
expression construct caused a 40% reduction in reporter activity (Figure 5C). Taken together
therefore, ChIP-Seq, transgenic and transfection studies validated the previously
unrecognised regulatory interaction between GFI1 and Gata2.

Direct activation of Gfi1b distal enhancer elements by GATA2 provides a likely mechanism
for positively correlated expression

To investigate whether positively correlated expression of Gfi1b and Gata2 might be
mediated directly through GATA2 binding to the Gfi1b gene locus, we interrogated existing
ChIP-Seq data for the HPC7 cell line11 which demonstrated binding of GATA2 to the Gfi1b
promoter as well as three 3′ candidate enhancer regions 13kb, 16kb and 17kb downstream of
the start of the Gfi1b gene (Supplementary Fig. 4). To confirm binding in primary mouse
blood cells, we again turned to primary mast cells, and indeed, significant GATA2 binding
was observed at all four regions bound by GATA2 in HPC7 as well as a region in the first
intron not bound in HPC7 (Figure 6A). Taken together, TF-binding in both mast cells and
HPC7 therefore identified 4 candidate regulatory regions that might be involved in
mediating control of Gfi1b expression in stem/progenitor cells by GATA2.

To assess whether the four regions bound by GATA2 correspond to bona fide gene
regulatory sequences, we performed transgenic assays. LacZ reporter constructs were
generated for the Gfi1b promoter as well as the +13, +16 and +17 kb candidate enhancer
regions and assayed in E11.5 mouse embryos. The promoter region alone did not mediate
any haematopoietic expression, a phenomenon we have observed before for both Runx1 and
Scl/Tal1 promoters57, 58. By contrast, all three distal regions mediated haematopoietic
expression: the +13 kb region showed weak expression in a subset of circulating (likely
primitive) blood cells, the +16 kb region displayed strong staining in haematopoietic clusters
in the dorsal aorta as well as a subset of foetal liver cells, and the +17 kb region showed
staining in a small subset of foetal liver haematopoietic cells (Figure 6B). Transgenic
analysis therefore provided in vivo validation of GATA2-bound regions, with the +16 and
+17 kb regions being particularly relevant due to their activity in the anatomical sites of
early definitive haematopoietic development.

Since transgenic analysis had focussed our attention on the +16 and +17 kb enhancer regions
as possible mediators of Gfi1b activation by GATA2, we investigated the possible presence
of conserved GATA motifs. Both the +16 and +17 kb regions showed extensive sequence
conservation across a wide range of mammalian species consistent with their function as
gene regulatory elements (Supplementary Fig. 5). Moreover, both enhancers contained two
completely conserved GATA motifs. To investigate the role of the GATA sites in enhancer
activity, we generated luciferase reporter constructs with both the wild type and GATA
mutant +16 and +17 kb enhancers (Figure 6C). Following stable transfection assays in the
myeloid progenitor cell line 416B, both regions showed substantial enhancer activity that
was almost completely lost in the GATA mutant constructs. GATA2 binding in ChIP assays,
activity in transgenic assays and presence of conserved GATA motifs essential for enhancer
function are therefore all consistent with a model whereby GATA2 directly activates Gfi1b
expression through the +16 and +17 kb enhancer regions.

Taken together therefore, single cell gene expression analysis of primary blood stem and
progenitor cells suggests the existence of a regulatory triad including Gata2, Gfi1 and Gfi1b
(Figure 6D), the connectivity of which has been validated using transgenic and
transcriptional assays. In this triad, the reported mutual inhibition of GFI1 and GFI1B37, 38
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is retained, but is modulated by GATA2 through its activation of Gfi1b and repression by
GFI1.

DISCUSSION
Cellular phenotypes are controlled by networks of interacting TFs. Development can
therefore be described as a procession through multiple dynamic regulatory states, which in
the case of multilineage differentiation may give rise to multiple distinct outcomes.
However, classical networks derived from gene expression or ChIP-Seq data provide a
population average, giving little insight into cellular heterogeneity and possible regulatory
interactions likely to be critical for the lineage commitment/restriction steps of individual
progenitor cells59.

In this study, we investigated a core transcriptional network of 18 TFs in single cells of five
related stem and progenitor populations. Bioinformatic analyses were able to broadly
distinguish sorted cell populations based only on the expression of those TFs, indicating that
early haematopoietic stem/progenitor cells are characterised by related but distinct network
activity states. While gross gene expression patterns were consistent with published
population studies, we also found significant heterogeneity in TF expression within
populations. This confirms previous observations that FACS sorted populations are
molecularly and functionally heterogeneous at the single cell level16-18, and suggests either
that heterogeneity is an inherent characteristic of stem cells, or that previously unresolved
subpopulations may be present that could represent intermediate differentiation steps.

Importantly, heterogeneity did not confound our ability to resolve populations based on their
distinct gene expression patterns. Thus, further analysis of defining TF expression patterns
and interactions at important lineage restriction stages should facilitate the unravelling of
critical TF interactions decisive for lineage commitment steps. Index sorting for example
permits the tracing back of each cell to its position in the sorting data, and may therefore
allow us in future to link heterogeneous gene expression states to novel subpopulations.
Strikingly, in our study several transcription factors had similar expression levels in all 597
cells analysed, regardless of cell type of origin, including Runx1 and Fli1, while others were
much more variable. This may suggest that the blood network requires, or is able to tolerate,
variation in some factors but not others. Furthermore, correlation analysis revealed both
stable and dynamic TF relationships across the cell types analysed, together suggesting that
some TF interactions may be vital for the general stability of the network and so remain
constant, while others are important for network dynamics and state transitions and are
therefore more variable.

As transcriptional regulatory networks control the spatiotemporal regulation of lineage-
specific genes, successful reconstruction of regulatory hierarchies represents a major step
towards gaining a mechanistic understanding of cellular decision-making processes. For
example, detailed experimental and computational analysis of a core circuit of Gata2, Scl
and Fli1 revealed that this circuit is able to function as a bistable switch, where the internal
wiring enables the network to filter noise when responding to external cues9, 60. However,
the generation of large-scale experimentally validated network models is impeded by the
relatively low-throughput of experiments that can provide detailed experimental information
on the functionality of individual regulatory elements. Network inference, where
transcriptional interactions are inferred from statistical dependencies in large expression
profiling datasets, provides an alternative approach7. However, in addition to the very
substantial costs of performing hundreds of expression profiling experiments, standard
microarray or RNA-Seq profiling requires large cell numbers, which may not be feasible for
rare stem and progenitor populations.
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Here we have demonstrated that gene expression data from a large set of single cells
presents an alternative approach to network reconstruction through the analysis of pairwise
correlations between network components. While hundreds of samples are still required, the
fact that these are single cells makes this approach applicable to rare stem cell populations.
The robustness of inferred regulatory links was demonstrated by our ability to recover key
known regulatory relationships such as the Gata1-PU.1 and Gfi1-Gfi1b antagonisms.
Furthermore, we validated two novel putative regulatory interactions predicted from
bioinformatic analysis of our single cell expression profiling data. This demonstrated that
GFI1 directly represses Gata2 expression through the −83 kb regulatory region, while
GATA2 activates Gfi1b through the +16 kb and +17 kb regulatory regions. The resultant
connectivity resembles a type 2 coherent feed forward loop61, and suggests that GATA2
works within this regulatory triad to modulate the antagonism between GFI1 and GFI1B.
Moreover, GATA2 inhibits lymphopoiesis62, and along with Gfi1b is down-regulated
concurrent with Gfi1 upregulation in the myelolymphoid lineages in our data. This suggests
that direct downregulation of Gata2 and Gfi1b by GFI1 may represent a key event during the
specification of early lymphoid cells, similar to the role of Tif1γ in modulating the PU.1-
GATA1 antagonism in the erythroid versus myeloid fate choice in zebrafish63.

Loss of function mutations in Gata2 have recently been reported to predispose carriers to
developing acute myeloid leukaemia64, whereas inhibition of Gfi1 prolonged survival in
leukaemia mouse models65. This suggests that identification of network states and
reconstruction of network hierarchies from single cell expression profiling will not only
enhance our knowledge of normal differentiation and development, but also provide a
blueprint for understanding the subversion of cell fate control likely to underlie many
degenerative and malignant pathologies.

METHODS
Purification of stem cells and progenitor cells

Bone marrow cells were isolated from the bones (femurs, tibiae and crista ileaca) of 9-12
week old C57BL/6 mice. For the isolation of LMPPs and HSCs, cells were enriched for
CD117+ (c-Kit) cells by MACS bead separation with anti-CD117 immunomagnetic beads
(Miltenyi Biotec); for the other cell populations, unenriched bone marrow was used. Cells
were pre-incubated with Fc-block for the HSC, LMPP and CLP stains but not for the
myeloid progenitor stain (GMP and Pre-MegE isolation). Cells were stained with antibodies
to mouse antigens to allow separation of the individual populations (Supplementary Table
1). A FACSAria II (BD Biosciences) was used for all cell sorting. Fluorescence-minus-one
controls and unstained populations were used as gate-setting controls. Single cells were
seeded by an automated cell deposition unit directly into the Fludigm assay mixture (see
below). Test sorts before and after single cell sorts verified the purity of all populations at
>98% based on expression of cell-surface markers (Supplementary Fig. 1). Fluorescent
beads were sorted into 96-well plates before and after samples to verify that only single
events were sorted into each well.

Single cell gene expression analysis
Single-cell gene expression analysis was performed using 48.48 Dynamic Array integrated
fluidics chips (M48, Fluidigm Corporation) on the BioMark HD platform (Fluidigm
Corporation), which facilitates the simultaneous analysis of 48 genes in each of 48 samples.
cDNA synthesis and specific target amplification (preamplification) of genes of interest
were performed using the CellsDirect One-Step qRT-PCR kit (Invitrogen). Single cells were
sorted by FACS directly into individual wells of 96-well plates containing 5μL CellsDirect
2× reaction mix (Invitrogen), 0.1μL SUPERase RNase inhibitor (Ambion), 2.5μL 0.2× assay
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mix, 1.2μL TE buffer (Invitrogen) and 1.2μL SuperscriptIII/Platinum Taq (Invitrogen). The
0.2× assay mix contained a pool of 24 TaqMan assays (Applied Biosystems; details
available on request) at a 1:100 dilution of each assay in TE buffer. Reverse transcription
and specific target amplification were performed in the same plates immediately after
sorting as follows: 50°C for 15 minutes, 95°C for 2 minutes, 22 × (95°C for 15 seconds,
60°C for 4 minutes). cDNA was diluted 1:5 with TE prior to qPCR on the BioMark HD.
cDNA was stored at −20°C before processing on the BioMark HD. 6 positive controls of 20
cells per well, 14 negative controls (no cell sorted) and 124 single cells were sorted for each
population. This corresponds to 3 M48 Dynamic Arrays per population, each containing 2
positive controls, 4-6 negative controls and 40-42 single cells. For the qPCR, 3μL of each
TaqMan assay was mixed with 3μL Gene Expression Assay Loading Reagent (Fluidigm).
2.7μL of diluted cDNA was mixed with 3μL 2× TaqMan Universal Mastermix (Applied
Biosystems) and 0.3μL Gene Expression Sample Loading Reagent (Fluidigm). 5μL of each
sample and assay were loaded into individual sample and assay inlets on the M48 Dynamic
Array. Samples and assays were then loaded into the reaction chambers of the Dynamic
Array using the IFC Controller MX (Fluidigm), and then transferred to the BioMark HD for
qPCR (95°C for 10 minutes; 40 cycles of 95°C for 15 s and 60°C for 60 s).

Testing TaqMan Assays
TaqMan assays were tested for single cell PCR by performing standard curves on the
BioMark of cDNA from a population of 100 cells of the HPC7 haematopoietic progenitor
cell line55, reverse transcribed and preamplified as described above. Assays were selected
based on the amplification efficiency and lack of background expression in no template
controls. The linear range of all assays used was within the sensitivity of the BioMark HD
(Ct 7-27).

Bioinformatic analysis of single cell gene expression data
Single cell expression data were initially analysed with the Fluidigm Data Collection
software. For quality control, amplification curves were quality filtered using a threshold of
0.75 and Ct thresholds were set for each assay, with the same thresholds used across all
experiments and cell populations. Data were then exported to Excel as .csv files. A table
with all of the Ct values is available in the supplemental material accompanying this paper
as Supplementary Table 3. Samples not expressing any genes (likely as a result of a failure
of the sorter to put a cell in the well) were excluded from the analysis (n=6), as were cells
not expressing the housekeeping genes Ubc (n=0) or Polr2a (n=17). Expression values over
the cut off of the machine or beyond the linear range of the TaqMan assays (Ct>27) were set
to 28. Each assay was performed in duplicate, and the mean of the duplicates was used for
subsequent analysis. Following these quality control measures, ΔCt values were calculated
as previously described20 by cell-wise normalisation to the mean expression level of Ubc
and Polr2a, as the two most robustly expressed housekeeping genes. Briefly, Ct values were
subtracted from the assumed no template background of the BioMark of 2820, followed by
subtraction of the mean Ct value of Ubc and Polr2a for each cell. The ΔCt value for genes
that were not expressed was then set to 15, representative of the detection limit of the
BioMark. Hierarchical clustering and principal component analysis were performed in R
(www.r-project.org). Hierarchical clustering and principal component analysis were
performed only on the data for the 18 transcription factors, excluding c-Kit and
housekeeping genes. Hierarchical clustering was performed on cells using Spearman Rank
correlation. Positive and negative correlations between pairs of genes were tested with
Spearman Rank correlation, with P-values calculated based on 10,000 permutations. Positive
correlations with a Z-score above 12 (P < 3E-33) and negative correlations with a Z-score
below −4 (P < 6.09E-05) were considered significant, with known antagonistic relationships
recovered beyond these values. PCA was performed using the prcomp function.

Moignard et al. Page 9

Nat Cell Biol. Author manuscript; available in PMC 2013 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.r-project.org


A non-linear generalisation of PCA, a Gaussian Process Latent Variable Model (GPLVM),
was employed to generate a nonlinear embedding of the expression data using the FGPLVM
toolbox (http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/fgplvm/). A probabilistic
mapping was constructed from a 2 dimensional latent space to the 18 dimensional data space
using Gaussian processes40. To allow for non-linear effects we used a radial basis function
(rbf) kernel to construct the covariance matrix. The 2D coordinates of the latent points
corresponding as well as the kernel parameters were determined by optimising the
likelihood of the data-set using 1000 iterations of a scaled conjugate gradient optimiser40. A
gene relevance map – corresponding to a generalised loadings plot for standard PCA – was
generated; for this the mapping from latent space to data space was used to calculate the
gradient of the expected value for 20×20 regularly spaced points across the GPLVM-map
and the most important gene (greatest norm of gradient) was plotted41. Single-gene
expression maps were generated by calculating the expected value of a single gene for
50×50 equally spaced points across the GPLVM-map. For each cell type the spatial median
m in 2D was calculated by minimising the expected distance between m and the 2D
coordinates of all cells of the respective cell type using an extended Weiszfeld algorithm68.

Mouse bone marrow derived mast cells (BMMC)
Bone marrow cells were collected from tibias and femurs of 3- to 5-month old adult mice.
Cells were cultured in Iscove’s modified Dulbecco’s medium (IMDM) supplemented with
10% fetal bovine serum (Sigma), 1% penicillin/streptomycin (Sigma), 150 μM MTG
(Sigma), 10% stem cell factor conditional media from BHK/MKL cells and 10ng/ml of
recombinant mIL-3 (Peprotech). Cells were frequently transferred to new flasks to remove
adherent cells and experiments were performed after 3 weeks, when cultures were
homogenous. Homogeneity of culture was confirmed by presence of FcERI by FACS and
toluidine blue staining of cytospins.

Chromatin Immunoprecipitation Sequencing
ChIP assays were performed as previously described11 using polyclonal antibodies against
GATA2 (Santa Cruz, sc9008x) and GFI1 (Abcam, ab21061) and control nonspecific rabbit
IgG (Sigma, I5006). Each sample was amplified7 and sequenced using the Illumina 2G
Genome Analyzer, following manufacturer’s instructions. Sequencing reads were mapped to
the mm9 mouse reference genome using Bowtie69, converted to a density plot, and
displayed as UCSC genome browser custom tracks.

Transgenic Mouse Analysis and Luciferase assays
Luciferase and LacZ reporter constructs were generated using standard recombinant DNA
techniques. Coordinates of chromosomal regions cloned are given in Supplementary Table
2. Luciferase7 assays were performed as described70. E11.5 transgenic mouse embryos were
generated and LacZ-stained by Cyagen Biosciences. Staining patterns were analysed as
described71.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single cell gene expression analysis of a core haematopoietic transcriptional regulatory
network
(a) Schematic of the haematopoietic hierarchy, with the megakaryocyte-erythroid lineage in
red, the myeloid lineages in orange and the lymphoid lineage in blue. Cell types investigated
in this study are outlined in the colours used to represent these populations in subsequent
figures, and encompass both early multipotent stem and progenitors and committed
progenitors for each of the major haematopoietic lineages. Cell surface phenotypes were
LSK CD150+CD48− HSC (also gated as CD34loFlt3−), LSK Flt3hi LMPP,
Lin−IL7Rα+KitloSca-1lo CLP, CD41loCD16/32hi GMP (also gated Lin−c-Kit+CD150−),
CD16/32loCD41−CD150+CD105lo PreMegE (also gated Lin−c-Kit+). LT-HSC, long-term
haematopoietic stem cell; MPP, multi-potent progenitor; LMPP, lymphoid-primed multi-
potent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid progenitor;
GMP, granulocyte-monocyte progenitor; PreMegE, pre megakaryocyte erythroid progenitor;
NK cell, natural killer cell. (b) Network diagram of data curated from the literature and
protein interaction databases (STRING66 and FunctionalNet67) illustrating the complex
interactions between 18 core haematopoietic transcription factors. Green lines indicate
functional relationships and red lines indicate direct protein-protein interactions. Activating
and inhibitory connections are not distinguished.
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Figure 2. Haematopoietic transcription factors show heterogeneous expression in haematopoietic
stem and progenitor cells
Density plots for 18 transcription factors, the stem cell factor receptor c-Kit, and the
housekeeping gene Ubc, in five haematopoietic stem and progenitor populations. The
density indicates the fraction of cells at each expression level, allowing direct comparison of
the expression level of each gene in all five populations. Green, HSC; Blue, LMPP; Purple,
CLP; Red, GMP; Orange, PreMegE.
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Figure 3. Single cell gene expression analysis reveals cell type-specific regulatory codes
(a) Hierarchical clustering of 597 haematopoietic stem and progenitor cells according to the
expression of the 18 TFs. Coloured bar indicates cell type of origin: Green, HSC; Blue,
LMPP; Purple, CLP; Red, GMP; Orange, PreMegE. (b) Principal component projections of
the 597 haematopoietic stem/progenitor cells, in the first and second components (top), from
the expression of all 18 TFs. Principal component loadings (bottom) indicate the extent to
which each gene contributes to the separation of cells along each component. (c) Gaussian
process latent variable model (GPLVM) illustrating variations of 18 dimensional gene
expression patterns between and within cell types in 2D. GPLVMs are a non-linear
generalisation of PCA that allow for the analysis of more complex gene expression patterns
than PCA and can thus potentially better represent variations between and within
populations of different cell types. The uncertainty of the mapping from 2D to the 18
dimensional TF space is encoded in grey (white low uncertainty, grey high uncertainty). (d)
Relevance map showing the most important genes across the GPLVM map. The colours
correspond to the distance of the respective gene from the origin in a standard loadings plot
(red far away/important, blue close to origin). (e) Expression maps for Gata2 (left) and Gfi1
(right), with high expression in red and low or absent expression in blue. Gata2 is expressed
primarily in the HSC and PreMegE clusters, and Gfi1 in LMPPs, GMPs and some CLPs.
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Figure 4. Single cell expression analysis of haematopoietic TFs identifies previously unrecognised
putative regulatory interactions between key TFs
(a) Hierarchical clustering of Spearman Rank correlations between pairs of TFs for all 597
cells together and for the different cell types individually as indicated. Genes in all heatmaps
are ordered according to the clustering performed for all data. Positive correlations (red)
may result from the coordinate expression or lack of expression of pairs of factors in
individual cells, while negative correlations (blue) can result either from the expression of
one factor in the absence of the other, or from high expression of one factor and reciprocal
low expression of the other in the same cell. (b) Network diagrams showing putative
activating relationships between TFs suggested by significant positive correlations (top, red
lines) and antagonistic relationships suggested by significant negative correlations (bottom,
blue lines) in the whole data set. Known relationships are highlighted with bold lines. This
highlights a putative transcription factor triad in which Gfi1 is negatively correlated with
Gata2 and Gfi1b, but Gata2 and Gfi1b are positively correlated.
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Figure 5. Direct repression of Gata2 by GFI1 through a distal enhancer element provides a
mechanism for negatively correlated expression
(a) ChIP-seq analysis of Gfi1 in primary mast cells indicates that GFI1 binds to the Gata2
locus at the −83 kb regulatory element. (b) Representative embryos demonstrating LacZ
staining for the Gata2 −83kb, −3kb and combined −3/−83kb regulatory element reporter
constructs. The −83kb region alone (SV/LacZ/−83) showed consistent staining of the
midbrain, hindbrain and spinal cord, but no haematopoietic staining. The −3kb enhancer
(−3/SV/LacZ) had only hindbrain staining. The −83/−3kb combined element (−3/SV/LacZ/
−83) showed the neural activities of both individual enhancers, but also staining in the dorsal
aorta (right-hand top panel) and foetal liver haematopoietic cells (right-hand bottom panel).
Images of sections taken at 40× magnification. (c) A luciferase reporter construct carrying
both regulatory elements (−3/SV/luc/−83) was transfected into the HPC7 haematopoietic
progenitor cell line, which expresses high levels of Gata2 but low levels of Gfi1. Co-
transfection with a Gfi1 expression construct caused a 40% reduction in reporter activity.
Luciferase activity is shown relative to −3/SV/luc/−83 and bars are the mean and standard
deviation of three biological replicates.
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Figure 6. Direct activation of Gfi1b by GATA2 through distal enhancer elements
(a) ChIP-seq analysis of GATA2 in primary mast cells indicates that GATA2 binds to the
Gfi1b locus at multiple locations, including the promoter, a region in the first intron and the
+13, +16 and +17 kb regulatory elements. (b) Representative embryos demonstrating LacZ
staining for the Gfi1b promoter as well as the +13, +16 and +17 kb regulatory elements. The
promoter shows no staining. The +13 kb region shows weak expression in a subset of
circulating blood cells. The +16 kb region has strong staining in haematopoietic clusters in
the dorsal aorta, and in a subset of foetal liver cells. The +17 kb region shows staining in a
small subset of foetal liver haematopoietic cells. Images of sections taken at 40×
magnification. (c) Luciferase reporter constructs carrying the wild type +16kb (SV/luc/+16
WT) and +17 kb (SV/luc/+17 WT) kb regulatory regions transfected in 416B cells displayed
high levels of luciferase activity, particularly for the +16 kb region. Mutation of the two
conserved GATA sites in the +16 kb region (SV/luc/+16 GATA m12) reduced luciferase
activity by >95%. Mutation of the two conserved and one partially conserved GATA sites in
the +17 kb region (SV/luc/+17 GATA m123) also reduced luciferase activity by >95%. m12
and m123 indicate that GATA sites 1, 2 and 3 were mutated. Luciferase activity is shown
relative to SV/luc. Experiments were performed in biological duplicate or triplicate on two
separate occasions. Shown is one representative experiment displaying the mean and
standard deviation for three biological replicate transfections. (d) A putative regulatory triad
including GATA2, GFI1 and GFI1B suggested by the data. In this regulatory triad, GFI1
and GFI1B are mutually inhibitory, while GATA2 can activate expression of Gfi1b and
GFI1 can repress expression of Gata2.
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