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There is evidence across several species for genetic control of phenotypic variation of complex
traits1–4, such that the variance among phenotypes is genotype dependent. Understanding genetic
control of variability is important in evolutionary biology, agricultural selection programmes and
human medicine, yet for complex traits, no individual genetic variants associated with variance, as
opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide
association studies of phenotypic variation using 170,000 samples on height and body mass index
(BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP)
rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by
mean BMI for each rs7202116 genotype)5–7, is also associated with phenotypic variability. We
show that the results are not due to scale effects or other artefacts, and find no other experiment-
wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any
locus for height. The difference in variance for BMI among individuals with opposite homozygous
genotypes at the FTO locus is approximately 7%, corresponding to a difference of 0.5 kilograms
in the standard deviation of weight. Our results indicate that genetic variants can be discovered
that are associated with variability, and that between-person variability in obesity can partly be
explained by the genotype at the FTO locus. The results are consistent with reported FTO by
environment interactions for BMI8, possibly mediated by DNA methylation9,10. Our BMI results
for other SNPs and our height results for all SNPs suggest that most genetic variants, including
those that influence mean height or mean BMI, are not associated with phenotypic variance, or
that their effects on variability are too small to detect even with samples sizes greater than
100,000.

Genetic studies of complex traits usually focus on quantifying and dissecting phenotypic
variation within populations, by contrasting mean differences in phenotypes between
genotypes. For example, in association studies the difference between the average phenotype
(P) of each genotype is tested. In addition, the phenotypic variance among individuals of the
same genotype (G) can vary across genotypes, so that phenotypic variance conditional on
genotype, var(P|G), is not constant. Phenotypic variance given a particular genotype does
not need to be due to sensitivity to external environmental factors but can, for example, be
caused by developmental fluctuation of the internal micro-environment in a genotype-
dependent manner1. For example, genetic control of stochastic variation in development or
in homeostatic control1,4. The difference between genotypes can also depend on external
factors, for example, on the environment in which they are reared, in which case there is a
genotype by environment (G × E) interaction. In species in which the same genotype can be
measured across defined environments, such as in plant or animal populations, the
difference in mean phenotype for each genotype can be quantified experimentally, and is
known as the reaction norm of the genotype11,12. However, any environment is likely to be
heterogeneous, so that the environment experienced by each individual differs, although
these differences are not formally recognized by the experimenter. In this situation, if a G ×
E interaction exists it may manifest as differences in environmental sensitivity so that
genotypes differ in phenotypic variance. Therefore, even if the environments, internal or
external, are not directly measured, evidence for genetic control of variation can be
quantified through an analysis of variability.

There is empirical evidence for genetic control of phenotypic variation in several species1,
including Drosophila13, snails14, maize15 and chickens3, and specific quantitative trait loci
with an effect on variance have been reported for yeast2 and Arabidopsis4. Many theories
and methods to identify genetic loci responsible for phenotypic variability have been
proposed1,16–18. In humans, there have been reports that variability of serum cholesterol and
triglyceride levels within monozygotic twin pairs depends on their genotype at the MN
blood group system19. In clinical practice, knowledge of phenotypic variability as a function
of genotype may be important when the phenotypes are risk factors for disease or treatment
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response, in particular when there are no mean differences between genotypes in the
population19.

Detection of genetic variation in environmental or phenotypic variance requires large sample
sizes because relative to their expected values, the variance has a larger sampling error than
the mean16,20. We performed a meta-analysis of genome-wide association studies (GWAS)
of phenotypic variation for height and BMI in human populations on approximately 170,000
samples comprising 133,154 in a discovery set and 36,727 for in silico replication, and
report a single locus with a genome-wide significant effect on variability in BMI. Height and
BMI were chosen because genetic effects on variability in height and size traits have been
reported in other species, and because very large samples of genotyped and phenotyped
individuals are available through existing research consortia.

We performed a discovery meta-analysis of 38 studies consisting of 133,154 individuals
(60% females) of recent European decent to identify SNPs that are associated with the
variability of height or BMI. In each study, ~2.44 million genotyped and imputed autosomal
SNPs were included in the analysis after applying quality-control filters. We adjusted height
and BMI phenotypes for possible covariates such as age, sex and case-control status, and
standardized them to z scores by an inverse-normal transformation. We then regressed the
squared z scores (z2), which are a measure of variance20, on the genotype indicator variable
of each SNP to test for association of the SNP with trait variability. The association statistics
were corrected by the genomic control method21 in individual studies and then combined by
an inverse-variance meta-analysis across all of the studies (see Methods). We selected 42
SNPs at 6 loci for height and 51 SNPs at 7 loci for BMI with P < 5 × 10−6 for in silico
replication (Supplementary Fig. 1). We examined the top two SNPs at each of the 6 loci for
height and 7 loci for BMI in a further sample of 36,727 individuals (54% females) of
European ancestry from 13 studies (Methods). For BMI, only rs7202116 at the FTO locus
(Fig. 1) and rs7151545 at the RCOR1 locus (Supplementary Fig. 2) were replicated at
genome-wide significance level, with P = 2.9 × 10−4 and P = 3.6 × 10−3 in the validation set
and P = 2.4 × 10−10 and P = 4.1 × 10−8 in the combined set, respectively (Table 1). None of
the height SNPs was replicated (Table 1). We show by an approximate conditional analysis
using summary statistics from the discovery meta-analysis and estimated linkage
disequilibrium structure from the Atherosclerosis Risk In Communities (ARIC) cohort that
there is no secondary associated SNP in the FTO region when conditioning on rs7202116
(Supplementary Fig. 3). The estimate of the effect associated with rs7202116 on BMI z2 was
slightly larger in men (0.041, standard error (SE) = 0.009) than in women (0.033, SE =
0.007) in the combined set but the difference was not significant (P = 0.670). The RCOR1
SNP only just passed the genome-wide significance level (5 × 10−8), however, it did not
reach the experiment-wise significance level (2.5 × 10−8) considering that two independent
traits were tested. There were several case-control studies included in the meta-analysis that
were ascertained for diseases that may be correlated with BMI. We performed a further
meta-analysis in the combined set excluding these case-control studies, and the FTO SNP
rs7202116 remained genome-wide significant with P = 2.8 × 10−11 but the RCOR1 SNP did
not with P = 3.6 × 10−5 (Supplementary Table 1). We therefore focus on the FTO locus in
the main text and provide the results for the RCOR1 locus in the Supplementary
Information.

On the scale on which BMI is measured, the predicted perallele effect of the G allele (the
other allele is A) of rs7202116 on the mean difference is 0.37 kg m−2 in men and 0.43 kg
m−2 in women22, and the effect on the variance difference is 0.79 kg2 m−4 in men and 1.09
kg2 m−4 in women, reflecting the larger standard deviation of BMI in women compared with
men (Supplementary Table 2). Assuming an additive model, the mean difference between
the GG and AA genotypes is 0.74 kg m−2 in men and 0.86 kg m−2 in women, with a
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variance difference between the two genotypes of 1.58 kg2 m−4 in men and 2.18 kg2 m−4 in
women, which is 7.2% of the phenotypic variance of BMI in both men and women. To
provide an illustration of the effect of rs7202116 on BMI variance, we did an approximate
calculation of its effect on the variance of weight. If we take the mean height of 1.78 m for
men and 1.65 m for women, the difference in the variance of weight between the two
genotype groups is roughly 16 kg2 in both men and women (Supplementary Table 2). For
example, if the standard deviation (SD) of weight is 15 kg for men, the predicted SD of
weight in the two homozygous genotype classes is 14.73 and 15.27 kg, respectively.

The effect of a SNP on variance could be owing to our use of the z2 value as a measure of
variance or to a general relationship between mean and variance of BMI1,23. Below we
present evidence that excludes these two explanations.

If an SNP has an effect on the mean, the test statistic for association of the SNP with z2 will
be inflated, and the non-centrality parameter (NCPv0) of the χ2 test under the null
hypothesis of no effect on variance is: np(1 −p)(1 −2p)2(a +(1 −2p)d)4, in which n is the
sample size, p is the frequency of the coded allele, and a and d are the additive and
dominance effects, respectively, on the mean difference (Supplementary Note). We show by
analysis and simulation results based on an additive and dominance genetic model that such
inflation is inversely proportional to the minor allele frequency (MAF) of the SNP; that is,
SNPs with a lower MAF will tend to have higher test statistics under the null hypothesis
(Supplementary Fig. 4). However, when we plotted the observed test statistics of the
confirmed 180 height loci24 and 32 BMI loci22 that have the largest reported effects on the
mean, we did not observe such a trend (Supplementary Fig. 5). We calculated the NCPv0 of
the known height and BMI loci given the effects on the mean from the published
papers22,24, and the NCPv0 values of all these known loci were smaller than 1 (results not
shown). The observed genomic inflation factor in the discovery meta-analysis was 1.039 for
height and 1.033 for BMI (Supplementary Fig. 6). This small inflation could be due to many
SNPs affecting the mean and therefore having a tiny effect on z2 (Supplementary Fig. 7), or
many SNPs that have an effect on the variance that is too small to be significant even with
our large sample size. Across common SNPs in the genome, variants at the FTO locus have
the largest effect size on BMI22. The G allele of the FTO SNP rs7202116 has a population
frequency of ~0.4 and an additive effect on the mean BMI of ~0.1 z-score units5,22. If our
significant result at the FTO locus is due only to an allelic effect on mean BMI, we would
expect an allelic effect on variability of ~0.002 (predicted from the equation in the
Supplementary Note), which is very small compared with the observed effect of 0.036. For
some traits, the variance changes in a predictable manner as the mean changes. In this case,
a scale transformation, such as a logarithmic transformation, can remove effects on the
variance when they are simply due to an effect on the mean1. We were interested in effects
of SNP on variability that would remain after a scale transformation, and therefore sought to
exclude scale effects that could explain our observed association. We performed further
analyses in three data sets each with approximately 20,000 individuals with individual-level
genotype and phenotype data available to verify the effects of rs7202116 at the FTO locus
on BMI variance (Methods and Table 2). We used several tests, including Bartlett’s test
statistic, to test for the difference in variance between the three genotypes. The Bartlett’s test
P value was <0.05 in each of the three data sets, regardless of whether or not the BMI
phenotypes were adjusted for the mean difference, logarithm transformed or inverse-normal
transformed (Table 2). In the combined analysis of the three data sets totalling 60,624
individuals, the effect of rs7202116 on the BMI z2 score after adjusting for the mean
difference was 0.030 (P = 1.2 × 10−4) for inverse-normal transformed BMI, 0.065 (2.3 ×
10−12) for logarithm-transformed BMI, and 0.097 (8.9 × 10−16) for BMI without scale
transformation (Table 2). The decrease of the effect of rs7202116 on BMI z2 owing to the
adjustment of the mean difference was ~0.003, in line with that of ~0.002 as predicted from
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the theory above. Similar conclusions as above can be drawn from the further analyses for
rs7151545 at the RCOR1 locus (Supplementary Table 3). We plotted the test statistics and
estimates for the effects on the variability in our discovery meta-analysis against those for
the effects on the mean from the published GIANT meta-analyses for height24 and BMI22,
and did not find any apparent correlations except for a few outlying SNPs at the FTO locus
(Supplementary Fig. 7). These results together suggest that the observed effect of the FTO
SNP on variability is neither a consequence of the effect on the mean nor due to the choice
of scale, and that our inverse-normal transformation is likely to be overly conservative.
Results from reported quantile regression of untransformed BMI on a multiple SNP
predictor of BMI and on FTO25 are consistent with our results but are also consistent with
scale effects due to the skewed distribution of untransformed BMI. We have shown in this
study that the effect of FTO on variability is not due to a scale effect and, concordantly, a
quantile regression of both transformed and untransformed BMI z-scores on the SNPs at the
FTO and RCOR1 loci on BMI on 17,974 individuals shows a relationship between effect
size and the quantile of the distribution (Supplementary Fig. 8). By contrast, the use of
untransformed BMI induces widespread correlation between estimated SNP effects on the
mean and on variance (Supplementary Fig. 9).

We have reported a meta-analysis of GWAS of squared normalized residuals for two
quantitative traits in human populations, and provide empirical evidence that the FTO and
RCOR1 loci influence phenotypic variance of obesity. Conversely, we did not observe any
significant SNPs for height or any significant SNPs other than those at the FTO and RCOR1
loci for BMI to be genome-wide significantly associated with phenotypic variance (Table 1),
even for those loci known to have effects on the mean (Supplementary Fig. 5), which
indicates that SNP effects on variance are uncommon for height and BMI, and those
previously identified SNP effects on the mean, although very small, are robust to
environmental perturbation. We provide evidence that the association between the FTO
locus and BMI variability is not due to artefacts such as scale or ascertainment. We also
discuss that it is implausible that the observed effect of the FTO SNP on variance is due to
its strong linkage disequilibrium (D′ = 1) with a causal variant that has a large effect on the
mean (Supplementary Note). The FTO SNPs that are associated with variance are also
associated with mean differences in BMI. Interestingly, this phenomenon seems to be
restricted to the FTO gene and to obesity, because we did not observe such effects for height
or for BMI at loci other than FTO. One possible explanation of the observation is a
differential response to physical activity26, because interactions between FTO genotypes and
physical activity have been reported for the same SNPs as we report in this study: the G
allele that is associated with an increase in mean BMI has a smaller effect in the group of
people with a high level of physical activity than in the absence of physical activity8,27,28.
There may be other unknown lifestyle factors, including diet, that also interact with the FTO
genotype and result in the observed effect on variability.

We do not provide a mechanism of how alleles at FTO influence variability (how FTO
alleles affect the mean is also not known). However, the fact that the allele that increases
obesity also increases variability suggests a breakdown of homeostatic control. Data on mice
lacking the Fto gene suggest that the observed effects on mean obesity in humans may be
due to upregulation or dysregulation of FTO expression, resulting in an increased
susceptibility to obesity29. If both upregulation and impairment of FTO expression have a
role then this could provide a mechanism of the observed effect on variability. The FTO
protein affects demethylation of nuclear RNA in vitro29, but whether the efficiency of this
process depends on the FTO genotype or how this may be related to the observed effects on
BMI is not clear. Notably, a recent study reported that rs7202116 allele G, which is present
on the obesity-susceptibility haplotype at the FTO locus, creates a CpG site along with other
variants in perfect linkage disequilibrium with it9, and therefore risk alleles have increased
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DNA methylation. In addition, it was reported that a CpG site in the first intron of FTO
showed significant hypomethylation in type 2 diabetes cases relative to controls30, and that
the risk variant seems to have an effect on methylation status at other genes10. DNA
methylation can be affected by environmental influences, including dietary and lifestyle
factors, and may affect gene expression. For example, physical exercise may increase gene
expression at the FTO locus, but less so in GG individuals compared with AA individuals
because their alleles are more methylated. This therefore suggests a possible mechanism for
the observed effects on both the mean and variability. However, more research is needed to
determine the molecular effect and mechanism of FTO on both the levels and variability of
obesity.

Overall, our findings are consistent with a low heritability of phenotypic variability1 and no
common genetic variants that account for a large proportion of variation in environmental or
phenotypic variability. They also indicate an absence of widespread genotype-by-
environment interaction effects, at least for height and obesity in humans and with
interaction effects large enough to be detected in our study in which specific environmental
factors were not identified. Nevertheless, the demonstration that individual genetic loci with
effects on variability can be identified with sufficiently large sample sizes facilitates further
study to understand the function and evolution of the genetic control of variation.

METHODS
Fifty-one studies were included in the meta-analysis. All individuals were of recent
European descent. In each of the participating studies, genotyped SNPs that passed standard
quality-control processes (missingness, Hardy–Weinberg equilibrium test and MAF) were
used to impute the ungenotyped SNPs to the HapMap II CEU reference panel31. We
excluded SNPs with imputation quality score <0.4 for IMPUTE32 and <0.3 otherwise33,34.
A summary of sample size, genotyping platform, quality-control filters and the imputation
tool of all the participating studies is provided in Supplementary Table 4. We further
excluded SNPs with MAF < 0.01 in each study or in the meta-analysis, and retained about
2.68 million autosomal SNPs in the analysis.

In each study, height and BMI phenotypes were adjusted for age and standardized to z score
by an inverse-normal transformation. The analysis protocol supplied to all cohorts is given
as a Supplementary Note. The descriptive statistics of phenotypes of each study are shown
in Supplementary Table 5. The association analyses of phenotypic variability were
performed on a single-SNP basis by the following additive genetic model: y = α +βx +e, in
which y is z2, α is the intercept, β is the additive SNPeffect on z2, x is the allelic dosage
coded as 0, 1 or 2 for the three genotype groups, and e is the residual. We stratified the
analysis by gender group and/or case-control status where applicable. We selected 38 studies
consisting of 133,154 individuals as the discovery set by the time when data were available.
We collected summary-level association results of all the SNPs from these studies and
adjusted the standard errors of all SNPs by the genomic control approach in each study21,
that is, multiplying the standard errors of the estimates of β by the square root of the
genomic inflation factor21. We then combined the effect of each SNP by an inverse-variance
meta-analysis implemented in METAL35. In a regression analysis, the squared standard
error of the estimate of a SNP effect is: σ2/(2p(1 −p)n), in which σ2 is the residual variance,
p is the frequency of the coded allele, and n is the sample size. This assumes Hardy–
Weinberg equilibrium of genotype frequencies. If the effect size is small, σ2 is
approximately equal to the variance of y, which is 2. We checkedthe overall quality of each
study by plotting the median of 1/SEacross all SNPs against thereported sample size, and by
plotting the median of 2p(1 −p)nSE2 across all SNPs to see if it was close to 2
(Supplementary Fig. 10). We further estimated the effective sample size of each SNP by: ñ =
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2/(2p(1 − p)SE2), using the summary statistics of the whole discovery set, and excluded
SNPs with ñ < mean(ñ) −2SD(ñ) and retained ~2.44 million SNPs for both height and BMI.
We collected data from a further 36,727 samples from 13 cohorts (Supplementary Tables 4
and 5), and validated the top SNPs at 6 associated loci for height and 7 for BMI (P < 5 ×
10−6) in these extra samples.

We performed further analyses in three data sets with a total sample size of 60,624 with
individual-level genotype and phenotype data to verify our findings. These three data sets
include 22,888 individuals from the WGHS cohort, and 19,762 individuals from the EPIC
cohorts, and a combined sample of 17,974 individuals from the ARIC, QIMR, NHS and
HPFS cohorts, with 17,365 individuals from the EPIC cohort and 5,233 individuals from the
NHS and HPFS cohorts not part of the meta-analysis. We used logarithm or inverse-normal
transformation to remove a possible mean–variance relationship of BMI phenotypes, and
adjusted the phenotype for the effect of the top SNP at the FTO or RCOR1 locus on the
mean of BMI. We performed permutation tests to assess the significance of the effect of
FTO or RCOR1 on BMI z2 with 10,000 permutations, and used the Bartlett’s statistic to test
for difference in variance of BMI between three genotypes for FTO or RCOR.

The plot of association results at the FTO locus in Fig. 1 was generated using LocusZoom36

with the recombination rates and pairwise linkage disequilibrium r2 values between SNPs
estimated from the HapMap CEU panel31.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Test statistics (−log10(P values)) for association with BMI variability in the discovery
meta-analysis of SNPs at the FTO locus against their physical location
The SNPs surrounding rs7202116 are colour-coded to reflect their linkage disequilibrium
with rs7202116. The recombination rates are plotted in cyan to reflect local linkage
disequilibrium structure. Genes, the position of exons and the direction of transcription from
the University of California, Santa Cruz (UCSC) genome browser are noted. The P value for
rs7202116 in the combined set is represented by a purple diamond, and that from the
discovery set by a purple circle.
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