Hyperinsulinemia and Insulin Resistance: What Comes First?

Pramod Patil*1 and Milind Watve2

- 1. Department of Physiology, Bharati Vidyapeeth University Medical College, Pune, India 411043.
- 2. Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India 411008.

E-Mail: Pramod Patil:- gibpramod@gmail.com; Milind Watve:- milind@iiserpune.ac.in

* Corresponding author.

Background

1. Classical explanation:

Classical explanation of diabetic pathophysiology states that obesity induced insulin resistance develops first and is followed by compensatory hyperinsulinemia^[1]. Further insulinresistanceleadstoprolonged, increased secretary demand on beta cells leading to subsequent secondary beta cell failure, giving rise to hyperglycaemia and diabetes^[2].

2. Neurobehavioral origin hypothesis:

Neurobehavioral origin hypothesis suggests that insulin resistance mediates a shift from muscle dependent (soldier) to brain dependent (diplomat) strategies of making a livelihood. If nutrient limitation affects intrauterine development, brain development is the least affected among all the organs^{[4][5]}. As a result, in IUGR babies muscle weight is poor but the brain is relatively well developed. Such a person is more likely to be a successful diplomat rather than a soldier and insulin resistance is adaptive for such an individual^[3]. Since insulin is involved in brain development and cognitive functions, higher levels of insulin are needed. As insulin is having strong anti-lipolytic effect,

hyperinsulinemia is followed by subsequent excess fat accumulation. Also compensatory insulin resistance is needed to avoid hypoglycemia. This hypothesis predicts a reverse order of pathophysiology i.e. primary hyperinsulinemia followed by compensatory insulin resistance^[3]

Classical Explanation Neurobehavioral origin hypothesis

Objective:

To determine in diabetes whether hyperinsulinemia develops first or insulin resistance develops first.

Methods:

We searched literature for studies that investigated directly or indirectly the sequence of development of hyperinsulinemia and insulin resistance in humans and animal models

from an early stage. Meta-analysis was conducted on published data.

Results:

- 1. In low birth weight neonates in humans as well as in rat models, hyperinsulinemia is found at very early stage. [6]
- 2. Development of insulin resistance is preceded by hyperinsulinemia in mice, rats as well as in humans. [7][8]
- 3. In normoglycaemic hyperinsulinemia state if insulin production is suppressed insulin sensitivity increases rapidly maintaining the normoglycaemic state. [9][10]
- 4. Beta cell expansion beginning in intrauterine life is independent of glucose, Insulin and Insulin receptors. [6]

Conclusion:

All the four lines of evidence indicate that hyperinsulinemia precedes insulin resistance supporting the predictions of neurobehavioral origin hypothesis over the orthodox

view.

References:

- 1. DeFronzo RA, Ferrannini E (1991).
- Diabetes Care 14:173-194
- 2. Kruszynska YT, Olefsky JM (1996).
- J Investig Med 44: 413-428.
- 3. Watve MG, Yajnik CY (2007).
- BMC Evolutionary Biology.7: 61-74.
- 4. Winick M, Rosso P, Waterlow JC (1970). Exp Neurol, 26:393-400.
- 5. Winick M. (1969) J Pediatr,74:667-679.6. Chakravarthy MV et.al. (2008) Diabetes,57:2698-2707.
- 7. Ramin A et. al. (1998) J Clin Endo and Met, 83:1911-1915.
- 8. Hansen BC (1990) Am J Physiol Regul Integr Comp Physiol 259: 612-617.
- 9. Stanley L (1981) Life Sciences, 28: 1829-1840.
- 10. Ratzmann KP et. al. (1983) Int J Obes, 7: 453-458