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Abstract 

A toroidal magnetic moment in the absence of conventional total magnetic moment is observed in a 

{Dy6} ring. The reason for the net toroidal arrangement of the local magnetic moments is the high 

symmetry of the complex in combination with strong intra-molecular dipolar interactions between Dy 

ions. The description of single-ion and inter-ion anisotropic magnetic interactions is achieved here for 

the first time fully ab initio, i.e., without use of phenomenological parameters. 

 

Introduction 

The non-collinear arrangement of the magnetic moments of individual magnetic centers in 

polynuclear molecular magnets can result in fascinating magnetic behavior.
1
 Among various 

possibilities of this arrangement, the toroidal magnetic state seems to be most promising for future 

applications in quantum computing and information storage.
2
 A key property of toroidal magnetic 

moments is their insensitivity to homogeneous magnetic fields.
2a

 This means that the two components 

of the toroidal magnetic state, corresponding to circular arrangements of magnetic moments in 

opposite directions,
1a

 will be much more protected against the action of a magnetic field, compared to 

the spin projection eigenstates of a true spin S = 1/2.
3
 Moreover, since the magnetic field produced by 

a net toroidal moment decays much faster than the field of a normal magnetic dipole, qubits designed 

on the basis of toroidal moments will be much less interfering and, therefore, could be packed much 

more densely than spin qubits.
3
 Finally, the toroidal magnetic moment interacts with a dc current 

passing through the molecule
4
 or a time-varying electric field

5
 via magneto-electric coupling,

6
 and this 

allows the moment to be controlled and manipulated purely by electrical means, a property much 

sought-after for molecular devices. The latter is a great advantage over collinear spin complexes, 

which can only be controlled by an applied magnetic field. 

The toroidal arrangement of local magnetic moments has been found recently in lanthanide 

magnetochemistry, and was first discovered in Dy3 triangles.
1a

 These toroidal states proved to be quite 

robust: they remained almost unchanged upon polymerization resulting in {Dy3Cu} chains.
7
 The non-

magnetic toroidal state was also very recently observed in {Dy4} tetramers.
8
 Herein we report a 

theoretical study of the 6-membered wheel  [Dy(Htea)(NO3)]6·8MeOH (H3tea= triethanolamine), 

recently synthesized and characterized,
9
 and show that it also exhibits a toroidal moment in the 

ground state. However, in contrast to all known previous compounds, this {Dy6} complex owes its net 

toroidal magnetic moment to high rotational symmetry. 

Ab initio calculations were performed for the mononuclear Dy fragments of Dy6 compound using the 

experimental structure.
9
 Due to the S6 symmetry of the complex, all Dy centers are electronically 
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equivalent, and therefore, it was sufficient to consider one single Dy center. For fragment calculations 

we have employed two structural approximations, A (small) and B (large) shown in Figure S1 and S2. 

For each calculated fragment we have employed two basis set approximations, 1 (small) and 2 (large), 

resulting in four computational approximations, A1, A2, B1 and B2 (Table S1). The necessity to 

consider two structural approximations and two basis set approximations is dictated by the need to 

check the convergence of the results of calculations with respect to the size of the calculated fragment 

and the basis set employed. 

In the approach used here, relativistic effects are taken into account in two steps, both based on the 

Douglas-Kroll Hamiltonian.
10

 In the first step, scalar relativistic effects are already taken into account 

in the basis set generation. Next, spin-free eigenstates are obtained in the Complete Active Space Self-

Consistent Field (CASSCF) method,
11

 as implemented in MOLCAS 7.6.
12

 The active space of 

CASSCF included 9 electrons spanning seven 4f orbitals of the Dy
3+

 ion. In the second step, spin-

orbit coupling is taken into account within the space of calculated spin-free eigenstates using the 

RASSI module.
13

 The obtained spin-orbit multiplets, corresponding to exact electronic states of the 

complex, were used for the calculation of matrix elements of the magnetic moment. The latter were 

employed in the module SINGLE_ANISO
12b

 which computed the magnetic properties and parameters 

of the Zeeman Hamiltonian of the fragments. This method has been previously applied for the 

elucidation of electronic and magnetic properties of other lanthanide complexes.
1a, 7, 8, 14 

The results of calculations of mononuclear Dy fragments do not differ significantly for the two 

structural and two basis set approximations (Table S2). The convergence of the energies of CASSCF 

terms in the series of calculations A1-B2 (Table S1), corresponding to a gradual increase of the orbital 

basis set, allows us to conclude that the CASSCF wave functions obtained for the highest 

approximation (B2) have the correct form. The latter is generally not guaranteed because of a complex 

self-consistency procedure employed in CASSCF calculations, which increases the risk of 

convergence to incorrect wave functions when the basis set or the space of active orbitals is 

increased.
12

 Following the convergence of terms and multiplet energies, the calculated g tensors for 

the lowest eight Kramers doublets on Dy site also show clear convergence in the series of A1-B2 

approximations (Table S3). Given the high sensitivity of the g tensors of lanthanide complexes to the 

computational approximation,
1a,7,8

 this convergence gives us confidence that the latter are reproduced 

quite accurately in our highest approximation B2. 

Table 1 shows the results for the lowest Kramers doublets on the Dy center obtained in the highest 

computational approximation. We can see that the first excited Kramers doublet is separated from the 

ground one by a gap which is much larger than the expected exchange splitting in this complex, which 

means that only the magnetic interactions between the ground Kramers doublets on the Dy ions is 

relevant. The g tensor of the ground Kramers doublet of individual Dy centers, although being axial, 
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contains relatively large transverse components (gx and gy) which means that the blockage of 

magnetization at individual Dy ions will not be achieved due to fast intra-ionic quantum tunneling of 

magnetization. This conclusion is in line with the experimental observation that, although displaying 

slow magnetic relaxation, the Dy6 molecule does not show blocking of the magnetization until T=2K.
9
  

The directions of local anisotropy axes on the Dy sites (corresponding to gZ in Table 1), calculated in 

the approximation B2, are shown in Figure 1 by dashed lines. The angle of these axes with the main 

symmetry axis of the complex (S6) is 43°. The angle between anisotropy axes on neighboring Dy sites 

is 73°. Table S4 shows that these angles achieve convergence in the series of employed 

approximations. 

 

KD Energy (cm
-1

) KD Energy (cm
-1

) 

1 0.0 5 237.2 

2 56.0 6 252.5 

3 113.8 7 343.2 

4 174.3 8 477.2 

g tensor of the ground Kramers doublet 

gX=0.18 ; gY=0.53 ; gZ=19.26 

 
Table 1. Energies (cm

-1
) of the lowest Kramers doublets (KD) of each Dy center in Dy6. 

 

The exchange interaction between nearest neighbor Dy sites was simulated within the Lines model as 

in our previous work,
 1a, 7, 8, 14

 using one phenomenological parameter. The intramolecular dipole-

dipole interactions between the local magnetic moments of all Dy ions were included. The 

calculations of the exchange spectrum and of the magnetic properties have been performed with the 

program POLY_ANISO.
15

 Because of the strong axiality of the Kramers doublets on the Dy sites 

(Table 1), the resulting magnetic interaction between the sites (exchange + dipolar) is described in a 

good approximation by a non-collinear Ising model: 

  (1) 

where ,i zs
 is the projection of the pseudospin 

1 2s 
 characterizing the Kramers doublet of the site 

Dyi, on the corresponding local magnetic axis (z); 
exchJ  are the exchange coupling constants between 

nearest neighbor Dy sites and ,

dipolar

i jJ
 are dipolar magnetic interaction constants between centers i and 
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j. The dipolar interaction is taken into account exactly,
 
since all the information needed for its 

calculation is available from ab initio calculations. 

 

 

Figure 1. Orientations of the local anisotropy axes in the ground Kramers doublet on the Dy sites (red 

dashed lines) and of the local magnetic moments in the ground exchange doublet of the Dy6 complex 

(green arrows). The S6 improper rotation axis is shown in blue as a dot in (a), and as a dashed line in 

(b). 

 

nearest 

neighbour* 

next-nearest 

neighbour* 

opposite* 

-4.168 -0.196 -0.387 

*-see Fig. 2. 

 

Table 2. Calculated constants of the dipolar interaction (cm
-1

) between the ground Kramers doublets 

of different magnetic centers in Dy6. 
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Figure 2. Magnetic interactions between Dy ions in the Dy6 complex. Dipolar coupling is non-

negligible for all pairs of metal ions (shown completely for center 1), while exchange interactions are 

only important for nearest neighbor ions.  

 

Table 2 shows the dipolar interaction constants between all Dy ions calculated ab initio in the highest 

approximation. We can see that the dipolar interaction between all pairs of metal ions is 

antiferromagnetic, while the dipolar interaction between opposite Dy centers is stronger than the 

interaction between next-nearest neighbors (for calculations in other approximations see Table S5). 

This is due to the fact that the anisotropy axes on opposite Dy centers are parallel, thus maximizing 

the value of the dipolar interaction, while the magnetic moments of next-nearest neighbors make an 

angle of 73°, which significantly lowers the magnitude of the dipolar interaction. As a result of 

antiferromagnetic dipolar coupling and of the S6 symmetry of the complex, local magnetic moments 

on Dy centers completely compensate each other in the ground exchange state, and the Dy6 molecule 

holds no magnetic moment (see Table 3 and Figure 1).  

As can be seen in Figure 1a, the magnetic moments of the Dy ions have a toroidal component, 

projected onto the plane of the wheel. This situation is very similar to the toroidal ground state of 

previously investigated Dy3 triangles.
3
 The difference between the Dy3 triangles and the present Dy6 

molecule is that the three magnetic moments of the Dy ions in the Dy3 triangles do not compensate 

completely (in the ground state they sum up into a residual magnetic moment μz = 0.56  oriented 

perpendicular to the plane of the three Dy atoms), because of a lack of symmetry in the complex. Thus 

the high symmetry of Dy6 is a crucial condition for its non-magnetic ground state. Moreover, the 

lowest excited exchange states are also non-magnetic. The quantum tunneling in the low-lying 

exchange doublets is expected to be weak (the tunneling gaps in Table 3 are relatively small) and will 

not contribute alone to magnetic relaxation. However, these states are related to each other by the 

reversal of the moment of one single Dy ion, a process which will not be slow given the relatively 
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large transversal g factors of Dy ions (see Table 1). Furthermore, Table 3 shows that they are very 

close in energy implying fast relaxation of magnetization through this bunch of excited exchange 

states. This precludes the blocking of magnetization in Dy6 at low temperatures without an applied dc 

field, as evidenced in the lack of a maximum in the experimental out-of-phase (χM”(ω)) ac magnetic 

susceptibility.
9 

We stress, however, that the obtained results do not preclude the blocking of the toroidal 

magnetization at low temperatures. Indeed, the ground doublet, which possesses a net toroidal 

moment, is characterized by a negligible tunneling gap. For temperatures significantly lower than the 

energy gap separating these doublets from the ground state (ca. 4.4 cm
-1

) the toroidal magnetic 

moment of the complex will be completely blocked. This blocking, however, cannot be evidenced via 

ac magnetic susceptibility or recovery magnetization measurements due to the lack of dipolar 

magnetic moment in the ground state. A suitable technique would be NMR which could probe the 

magnetic dynamics on individual Dy sites, through the broadening of 
13

C NMR line, for example.
16

 

 

Nr. Energy (cm
-1

) tun gZ 

1 0.000000000 

0.000000000 

0.00E+00 0.0 

2 4.389426111 

4.389435587 

9.47E-06 0.0 

3 4.390119911 

4.390119911 

0.00E+00 0.0 

4 4.390125127 

4.390125127 

0.00E+00 1.1 

5 4.391775363 

4.391775363 

0.00E+00 1.2 

6 4.391781618 

4.391781618 

0.00E+00 1.1 

7 4.393218925 

4.393229768 

1.08E-05 1.2 

8 4.612801449 

4.614214440 

1.41E-03 0.0 

9 4.614214440 

4.616800664 

2.58E-03 23.0 

10 4.617088144 

4.617088144 

0.00E+00 0.0 

 

Table 3. Lowest exchange doublets (cm
-1

) arising from the dipolar coupling, the corresponding tunnel 

splitting (tun) and the gZ value of each doublet (gX and gY = 0).  

 

On the basis of the calculated 2
8
=256 exchange eigenstates and local excited states on Dy ions, we 

have computed the magnetic properties of the Dy6 molecule using the package POLY_ANISO 
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interfaced with MOLCAS.
15

 Setting  , 1 0exch

i iJ  
 and taking into account only the intramolecular dipolar 

interaction, we obtain a reasonable description of the magnetic properties (Figure 3). This supports the 

correctness of the calculated exchange states in Table 3 and their magnetic properties, and points 

towards the relative weakness of exchange parameters Jexch, which is usually the case in polynuclear 

complexes containing only lanthanide ions.
17

 Since the dipolar interaction was taken into account 

exactly, our approach did not involve any fitting parameters. Figure 4 displays the evolution of the 

lowest exchange coupled states in an applied magnetic field. As one can see, the ground state is non-

magnetic in zero applied field, while the level crossing takes place upon application of a field of 

~0.65T. 
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Figure 3. (top) Comparison between the measured and calculated magnetic susceptibility of the Dy6 

complex. (bottom) Molar magnetization at T = 2.0 K. Up-scaling of the experimental data was 

performed only to estimate the difference. 
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Figure 4. Evolution of the exchange states in an applied magnetic field along the main symmetry axis 

of the Dy6 complex. The blue arrow shows the magnetic field where the ground state becomes 

magnetic. 

 

The obtained toroidal magnetic moment in the present Dy6 complex could be, in principle, increased 

by forcing the local anisotropy axes of the Dy ions to lie in the plane of the molecule. Theoretically, 

this goal can be achieved by modifying the ligand environment on the Dy sites. Furthermore, such an 

arrangement of the local anisotropy axes would lead to much stronger dipolar coupling between 

neighboring centers increasing significantly the stabilization energy of the toroidal state. In contrast to 

the present Dy6 molecule, the stabilization energy of the toroidal moment in the recently investigated 

Dy4 compound
8
 is already at its highest limit, because the magnetic moments of the four Dy ions lie 

almost in the plane of the molecule. 

In conclusion, a detailed ab initio investigation of the electronic and magnetic structure of the Dy6 

wheel revealed a non-magnetic ground state with a net toroidal magnetic moment. This arises due to 

the high symmetry of the wheel and the dipolar interactions of Dy magnetic moments in the molecule, 

which are large enough to stabilize this state with respect to the magnetic ones by ca. 4.4 cm
-1

. The 

obtained strong stabilization of toroidal magnetic moment allows for its experimental observation. 
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