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Abstract

Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To
date, identification of common genetic variants influencing blood pressure has proven challenging.
We tested 2.5m genotyped and imputed SNPs for association with systolic and diastolic blood
pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed
up findings with direct genotyping (N<71,225 European ancestry, N=12,889 Indian Asian
ancestry) and /n silico comparison (CHARGE consortium, N=29,136). We identified association
between systolic or diastolic blood pressure and common variants in 8 regions near the CYP17A1
(P=7x10724), CYPIAZ (P=1x10"23), FGF5 (P=1x10721), SH2B3 (P=3x10718), MTHFR
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(P=2x10713), c100rf107 (P=1x107%), ZNF652 (P=5x107%) and PLCD3(P=1x1078) genes. All
variants associated with continuous blood pressure were associated with dichotomous
hypertension. These associations between common variants and blood pressure and hypertension
offer mechanistic insights into the regulation of blood pressure and may point to novel targets for
interventions to prevent cardiovascular disease.

The World Health Organization estimated that, in 2005, the annual death toll from
cardiovascular disease reached 17.5 million worldwide1™3. Increases in systolic and
diastolic blood pressure (SBP, DBP), even within the normal range, have a continuous and
graded impact on cardiovascular disease risk and are major contributors in half of all
cardiovascular deaths 2:3. Lifestyle influences, including dietary sodium intake, alcohol
excess, elevated body mass index and lack of exercise, are known to increase blood
pressure4. Studies of familial aggregation suggest that there is also a substantial heritable
component to blood pressure5. Studies of rare Mendelian disorders of hypertension and
hypotension have produced the most significant progress toward understanding the heritable
basis of blood pressure, showing that mutations in genes influencing renal salt handling can
have a severe impact on blood pressure6. Detailed study of these genes has identified rare
variants (minor allele frequency [MAF] <0.1%) that impact blood pressure in the general
population7 and evolving evidence suggests a potential role for common variation in some
of the same genes8™10.

Identification of common variants affecting blood pressure using genome-wide association
studies (GWAS) has proved challenging, compared to other common complex
disorders11:12. However, meta-analysis of multiple studies with large total sample sizes has
the potential to facilitate detection of variants with modest effects. We therefore formed the
Global Blood Pressure Genetics (Global BPgen) consortium and conducted meta-analysis of
GWAS in 34,433 individuals of European ancestry with SBP and DBP measurements (stage
1), followed by large-scale direct genotyping (stage 2a) and /n sifico (stage 2b) analyses
(Supplementary Figure 1). Our analyses identified eight loci demonstrating genome-wide
significant association with systolic or diastolic blood pressure, with each locus also
providing substantial evidence for association with hypertension.

RESULTS

Genome-wide association for blood pressure

Global BPgen includes 17 cohorts of European ancestry ascertained through population-
based sampling or case-control studies. In our primary analysis (stage 1), we examined
individuals aged <70 years from 13 population-based studies and from control groups from
4 case-control studies (Table 1). Individuals treated for hypertension were imputed to have
15 mm Hg higher SBP and 10 mm Hg higher DBP than the observed measurementsas this
has been shown to reduce bias and improve statistical power13. SBP and (separately) DBP
measures were each adjusted for age, age2, body mass index and any study-specific
geographic covariates within cohort- and gender-specific regression analyses. Genome-wide
SNP genotyping was performed on a variety of platforms and subjected to standard quality
control measures (Methods, Supplementary Table 1). Genotypes for ~2.5M autosomal SNPs
in the HapMap CEU sample were then imputed in each study and tested for association
under an additive genetic model with SBP and DBP separately. Test statistics from
association analysis of SBP and DBP from each cohort were adjusted using genomic
control14 to avoid inflation of results due to inter-individual relatedness or residual
population stratification, and to ensure good calibration of test statistics. Meta-analysis of
results was performed using inverse variance weights. Test statistic inflation post-meta-
analysis was modest (Agc = 1.08 SBP; Agc = 1.07 DBP); genomic control correction was
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applied again. The plots of test statistics against expectations under the null suggest an
excess of extreme values (cohort-specific and meta-analysis quantile-quantile plots are
presented in Supplementary Figure 2).

On meta-analysis of results from 34,433 individuals in stage 1, we observed 11 independent
signals with £< 107> for SBP and 15 for DBP, with two results attaining A< 5x1078,
corresponding to genome-wide significance when adjusting for ~1m independent common
variant tests estimated for samples of European ancestry (Supplementary Figure 3)15.

Follow-up of strongest SBP and DBP signals in additional samples

To strengthen support for association we undertook two analyses. First, we selected 12 SNPs
for follow-up genotyping in up to 71,225 individuals drawn from 13 cohorts of European
ancestry and up to 12,889 individuals of Indian Asian ancestry from one cohort (stage 2a,
Table 1, Supplementary Figure 1, Supplementary Table 2). Second, we performed a
reciprocal exchange of association results for 10 independent signals each for SBP and DBP
(stage 2b, Supplementary Figure 1, Supplementary Table 3) with colleagues from the
Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) blood pressure
consortium who had recently meta-analyzed GWAS data for SBP and DBP in 29,136
individuals, independent of Global BPgen (Table 1). Meta-analysis of the stage 1 Global
BPgen GWAS and stage 2a direct and stage 2b /in-silico association results identified
genome-wide significant (P < 5x1078) associations at eight loci: 1p36 in MTHFR, 10q24
near CYPI17AI1and 17921 in PLCD3with SBP, 4921 near FGF5, 10921 in C100rf107,
12924 near SHZB3, 15924 near CYP1AZ, and 17921 near ZNF652 with DBP (Table 2,
Figure 1, Supplementary Table 2, Supplementary Table 3, Supplementary Figure 3). Three
of these loci overlap with genome-wide significant loci identified in the CHARGE analyses
(10g24 for SBP and 12924 and 15q24 for DBP).

For SBP, the strongest evidence for association was at 10g24 (rs11191548, MAF = 0.09,
1.16 mm Hg higher per major allele, = 7x10724, Table 2, Figure 1b). This SNP is part of a
large cluster of associated SNPs spanning a ~430Kb region at 10q24 showing association in
our GWAS meta-analysis. The locus includes six genes, most notably CYP17A1, which
encodes the cytochrome P450 enzyme CYP17A1 (also known as P450c17) that mediates
steroid 17a-hydroxylase and 17,20-lyase activity. The first enzymatic action is a key step in
the biosynthesis of mineralocorticoids and glucocorticoids that affect sodium handling in the
kidney and the second is involved in sex-steroid biosynthesis. Missense mutations in
CYP17A1 cause one form of adrenal hyperplasia characterized by hypertension,
hypokalemia, and reduced plasma renin and aldosterone levels16:17. None of the five other
genes/transcripts in the region (Figure 1b) is an obvious candidate for blood pressure
regulation.

The second locus associated with SBP was at 1p36 (rs17367504, MAF 0.14, 0.85 mm Hg
lower SBP/minor allele, A= 2x10713 Table 2, Figure 1a). This SNP is located in an intron
of the MTHFR (methylenetetrahydrofolate reductase) gene in a region with many plausible
candidate genes, including: MTHFR, CLCN6, NPPA, NPPB, and AGTRAP. The strongest
signal in the locus is 6.4kb away from and uncorrelated with rs1801133 (C677T, A222V r2
CEU =0.06), a coding variant that has been related to higher plasma homocysteine
concentration18, pre-eclampsial9, and variably hypertension20. In Global BPgen rs1801133
was associated with 0.08 mm Hg higher SBP/T allele (P= 0.56), 0.24 mm Hg higher DBP
(P=0.01) and an odds ratio for hypertension of 1.00 (95% CI 0.94-1.05, = 0.90).

The natriuretic peptides encoded by NMPPA and NPPB, also located within the 1p36
associated interval, have vasodilatory and natriuretic properties and the NPPA knockout
mouse has salt-sensitive hypertension21. A recent study found that the minor allele of
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rs5068 (43 kb from rs17367504, r2 CEU = 0.26), in the 3" untranslated region of NPPA, is
associated with higher plasma atrial natriuretic peptide and B-type natriuretic peptide, as
well as lower SBP, DBP and odds of hypertension22. In the Global BPgen stage 1 meta-
analysis we confirmed association of the minor allele of rs5068 with 0.97 mm Hg lower
SBP (P=3x107%), 0.60 mm Hg lower DBP (P = 1 x 1073) and 10% lower odds of
hypertension (P= 0.04). Whether the associations of rs5068 and rs17367504 reflect the
same or different underlying signals remains to be established. The less well-characterized
gene CLCNE, also at the 1p36 locus, encodes a neuronally-expressed chloride channel that
has not previously been implicated in blood pressure physiology, although rare mutations in
other renally-expressed chloride channels have been associated with extremes of blood
pressure23:24. Lastly, AGTRAP (encoding angiotensin Il receptor-associated protein)
negatively regulates angiotensin 1l signaling by interacting with the angiotensin Il type 1
receptor, a critical component of the renin-angiotensin-aldosterone system and a target of
antihypertensive therapy25.

The third locus associated with SBP was at 17921 (rs12946454, MAF 0.28, 0.57 mm Hg
higher SBP/minor allele, = 1x1078, Table 2, Figure 1c). This SNP is located in an intron in
PLCD3 (phospholipase C-delta isoform), and is part of a cluster of associated SNPs. PLCD3
is a member of the phospholipase C family of enzymes; these are important in vascular
smooth muscle signaling and are activated by the vasoactive peptides angiotensin Il and
endothelin26. Other genes of interest in the region include: HEXIM1 and HEXIMZ
(encoding hexmethylene bis-acetamide inducible proteins 1 and 2). Both have been
implicated in myocardial growth27, cardiac hypertrophy and inflammation28.

The DBP SNP with the strongest association evidence on joint analysis is rs1378942 (MAF
=0.36, 0.43 mm Hg higher/minor allele, = 1x10723, Table 2, Figure 1g), which is in an
intron of CSKat 15q24. This is one of a cluster of associated SNPs spanning ~72kb. Genes
in the region include CYP1AZ (cytochrome P450 enzyme), CSK (c-src tyrosine kinase),
LMANIL (lectin mannose-bindingl like) and AR/D3b (encoding AT Rich Interacting
Domain protein). Other nearby genes include CYP1A1 (~60kb) and C YP11AI (~418kb).
Cytochrome P450 enzymes are responsible for drug and xenobiotic chemical metabolism in
the liver and cellular metabolism of arachidonic acid derivatives29, some of which influence
renal function, peripheral vascular tone and blood pressure. CYP1AZis widely expressed,
representing 15% of CYP450 enzymes produced in the liver and mediating the metabolism
of multiple medications (http://www.medicine.iupui.edu/Flockhart/table.htm). A correlated
SNP, rs762551 (MAF = 0.31, r2 = 0.63, HapMap CEU) in an intron of CYP1AZ2has been
found to influence caffeine metabolism and recently association has been suggested between
myocardial infarction risk and the allele associated with slow caffeine metabolism30. The
ARID3B gene is embryonic lethal when knocked out in mouse, with branchial arch and
vascular developmental abnormalities31, but is potentially interesting because of the
presence of AR/D5B at the 10921 locus described below.

The second DBP SNP is rs16998073 (MAF = 0.21, 0.50 mm Hg higher/minor allele, P=
1x10721, Table 2, Figure 1d) which lies 3.4kb upstream of FGF5 (fibroblast growth factor 5)
on 4g21. The FGF5 protein is a member of the fibroblast growth factor (FGF) family that
stimulates cell growth and proliferation in multiple cell types, including cardiac myocytes,
and has been associated with angiogenesis in the heart32.

The third DBP SNP, rs653178 (MAF = 0.47, 0.46 mm Hg lower DBP/major allele, P=
3x10718, Table 2, Figure 1f) at 1224 is in an intron in the A 7XNZ2 (Ataxin) gene. The SNP
is in a cluster of strongly associated SNPs spanning 200kb. This SNP is perfectly correlated
with a missense SNP in SH2B3 (rs3184504, R262W, r2 in CEU to rs653178 = 1.0, DBP P=
3x1077 in stage 1 GWAS, change in log10(P) = 0.3 compared to rs653178). The minor
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allele of rs3184504, which is associated with higher DBP, has recently been associated with
increased odds of type 1 diabetes33:34, celiac disease33:34, and most recently with
eosinophil count, myocardial infarction, with a weak association with hypertension35. The
SH2B3 protein (also known as lymphocyte-specific adapter protein, LNK) is one of a
subfamily of SH2 domain-containing proteins and is implicated in growth factor, cytokine,
and immunoreceptor signaling. In mice, it is primarily expressed in hematopoietic precursor
cells, brain, testis and muscle36. There is some support for hypertension having an
inflammatory component, possibly involving the adaptive immune system37. There are no
prior studies linking blood pressure with type 1 diabetes or celiac disease. To explore this
further, we looked up SNPs reported to be associated with T1D, celiac disease or myocardial
infarction in the Global BPgen GWAS results and failed to find convincing association other
than that for the SH2B3 missense SNP (data not shown). It is possible that the SH2B.3
missense SNP impacts blood pressure through an action specific to cells outside of the
immune system and that no direct link between blood pressure and autoimmune diseases
exists.

The fourth DBP SNP, rs1530440 (MAF = 0.19, 0.39 mm Hg lower/minor allele, P=
1x1079, Table 2, Figure 1e) at 10q21 is intronic and one of a cluster of SNPs in C100rf107,
an open reading frame of unknown function. Nearby genes include AR/D5B (AT rich
interactive domain 5B (MRFL1 like)), TMEMZ6 (transmembrane protein 26), RKTKNZ2 (RhoA
GTPase effector, rhotekin-2) and RHOBTBI1 (RhoBTB GTPase). The Rho family of
GTPases converts guanine triphosphate to inactive guanine diphosphate. The actions of
other GTP-modulating enzymes may modulate salt-sensitive hypertension38:39. The
ARID5B gene is a member of the AT-rich interaction domain family of transcription factors
and is highly expressed in cardiovascular tissue and involved in smooth muscle cell
differentiation40.

The fifth DBP SNP, rs16948048 (MAF 0.39, 0.34 mm Hg higher DBP/minor allele, P=
5x1079, Table 2, Figure 1h) at 1721 is upstream of ZNF652 (zinc finger protein 652) and
PHB (prohibitin). Neither gene has previously been implicated in hypertension or other
cardiovascular phenotypes.

We observed no significant interaction between the eight genome-wide significant SNPs and
gender (P> 0.01, Supplementary Table 5). There was also no evidence of heterogeneity of
effect across the samples examined for the eight SNPs (Q-statistic £> 0.05).

While we describe here promising candidates at each locus identified, the causal gene could
be any of the genes around the association signal in each locus (Figure 1). Fine mapping and
resequencing will be required to refine each association signal and to identify likely causal
genetic variants which could be studied further in humans and in animal models.

All variants are related to both blood pressure traits

It remains to be clarified whether SBP or DBP is the better target for genetic investigation of
blood pressure. The two traits are correlated and heritable, and both show strong increases
with age, with DBP starting to plateau and in some individuals fall at ages above 60-65.
Some have advocated the study of pulse pressure (SBP-DBP), which increases with
advancing age, and is correlated positively with SBP and negatively with DBP and also
shows evidence of heritability. In our GWAS and follow up, we chose a priorito consider
SBP and DBP as separate traits. Thus, validation was only attempted for either SBP or DBP,
according to the trait for which the stage 1 P value was lowest. Because SBP and DBP are
correlated (r~0.50-0.70), it is perhaps not surprising to see that all eight genome-wide
significant SNPs are associated with both SBP and DBP with the same directions of effect
(Table 3, Figure 2). Thus, our presentation of results as SBP- or DBP-associated is
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somewhat arbitrary. The observation that each SNP shows stronger association with one trait
or the other (typically by 1-2 orders of magnitude) could reflect sampling variation, small
effect sizes or true differences in the underlying biologic basis of one trait or the other. A
study designed to examine pulse pressure would be expected to show weaker (if any)
association signals for the variants identified which all showed concordant effects on SBP
and DBP.

All variants are related to hypertension

We did not perform a global GWAS of hypertension, which is expected to be underpowered
to detect common variants of modest incremental effects on continuous blood pressure. For
the eight SNPs that were genome-wide significant in continuous trait analysis, we examined
the association with hypertension (SBP = 140 mm Hg or DBP = 90 mm Hg or
antihypertensive medication use) compared to normotension (SBP < 120 mm Hg and DBP <
85 mm Hg and no antihypertensive medication use) in planned secondary analyses (N range
=57,410 — 99,802). All alleles associated with continuous blood pressure were also
associated with odds of hypertension in directions consistent with the continuous trait effect
(Table 4, Figure 2). The relative yields of the two approaches remain to be fully evaluated
and will only become clearer upon completion of large ongoing GWA studies of
dichotomous hypertension case-control samples. However, when we examined the
hypertension association of each of the 8 SNPs genome-wide significantly associated with
continuous SBP or DBP in just the stage 1 Global BPgen samples, 4 had 0.01 < P <0.10.
These SNPs would not have been selected for follow-up genotyping had these tests been
conducted as part of a hypertension GWAS. Thus, the study of continuous blood pressure
allowed us to identify effects on risk of hypertension that would not have been readily
discovered in a GWAS of hypertension drawn from these samples.

Extension to non-European samples

To date, the majority of complex disease association signals reaching genome-wide
significance have been concentrated in populations of European ancestry, and it remains
unclear whether these findings will transfer to individuals with other genetic backgrounds.
We genotyped all stage 2a SNPs (four of which were not confirmed in the European
ancestry analyses) in a separate Indian Asian sample of up to 12,889 individuals. We
replicated the association of the SNP at 4921 near FGF5 (rs16998073, P=5x107%,
Supplementary Table 2) and the SNP at 10924 near CYP17A1 (rs11191548, P= 0.008,
Supplementary Table 2). We did not replicate association of the SNP rs1378942 at CYP1AZ
(P=0.17, same direction), which could reflect limited power to detect the modest effect
size, differences in linkage disequilibrium patterns in Indian Asians compared to Europeans,
or simply lack of association in individuals of Indian Asian ancestry. The marked allele
frequency differences between the European samples (C allele frequency ~0.35), the Indian
Asian samples (0.77) and HapMap YRI (1.00) suggest distinct patterns of genetic variation
at this locus across populations. A signal of positive selection has been suggested at the
locus41 raising the potential functional importance of genetic variation in the region.

DISCUSSION

The eight loci described here and the additional loci reported by our colleagues in the
CHARGE consortium are among the first confirmed associations between common genetic
variants and blood pressure. Each association explains only a very small proportion of the
total variation in SBP or DBP (~0.05-0.10%, approximately 1 mm Hg/allele SBP or 0.5 mm
Hg/allele DBP, Table 2). However, the variants identified here have an aggregate effect on
blood pressure, acting throughout the range of values (not just hypertensive), which has been
shown to produce meaningful population changes in cardiovascular and stroke risk. For
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example, 2 mm Hg lower SBP, across the range of observed values, has been estimated to
translate into 6% less stroke and 4% less coronary heart disease.42

Given the modest effects observed here and the limited power of this study to detect such
effects, it is likely that many more common variants exist with weak effects upon blood
pressure. This study illustrates the value of well-powered meta-analysis and follow-up
genotyping, accompanied by /n silico analysis, requiring the coordinated efforts of
investigators across multiple studies, to establish definitively the relationship of these loci
with blood pressure regulation in the general population.

In a companion paper, the CHARGE consortium reports as genome-wide significant 3 of the
8 loci that reached genome-wide significance in our Global BPgen joint analysis of stages
1+2. CHARGE also reports common variants at 5 additional genome-wide significant loci
at: 11p15 (Global BPgen £=0.009), 3p22 (P=0.01), 12921 (P= 0.008), 12q24 (P = 0.05),
and 10p12 (P = 0.004, see companion CHARGE paper). While these SNPs did not appear
among our top 10 SNPs for either blood pressure trait, the Global BPgen results from /n
sifico exchange and for the same alleles are clearly consistent with the conclusions of the
CHARGE investigators. Among the 10 SBP and 10 DBP loci at the top of the Global BPgen
results, five loci were represented in the CHARGE top 10 results (Supplementary Table 3).
With the modest effect sizes we observed, it is not surprising that the top 10 loci for each
blood pressure trait would exhibit only partial overlap.

We acknowledge that some limitations apply to our study. The participants in the individual
studies comprising Global BPgen and our follow-up cohorts were ascertained using diverse
criteria, had their blood pressure measured in a variety of ways, and exhibited a broad range
of age and treatment profiles. Even small differences in these factors could reduce power to
detect the association of genetic variants with modest effect, although such heterogeneity
should not increase the false-positive rate. Even though SBP and DBP are dynamic
phenotypes resulting from multiple competing influences, estimates of the test-retest
reliability of blood pressure measurements are approximately 0.65-0.75 in studies focused
on blood pressure43:44. Moreover, a graded relationship between BP measures and
cardiovascular risk has been consistently observed, despite variability in BP measures2. At
the individual level, genetically-determined alteration of 1 mm Hg SBP or 0.5 mm Hg DBP
would be difficult to detect in the clinic, but large sample sizes use group-level differences
in means to detect small genetic effects.

Exposures such as dietary sodium and potassium intake or excessive alcohol use also
contribute to inter-individual differences in blood pressure. These were measured in a
minority of our samples and thus we could not meaningfully adjust for these in our study.
Under the assumption that these do not alter blood pressure systematically by genotype, we
would only expect this omission to reduce power slightly.

We chose a priorito adjust for body mass index, which explains ~6-8% of the total variation
in SBP and DBP, with the goal of reducing potential non-genetic contributions to blood
pressure variability. Genetic variants could influence blood pressure acting through BMI as
an intermediate, but such variants are best identified through BMI GWA studies such as
those recently reported by Loos et al45 and Willer et al46.

We adjusted for use of antihypertensive therapy by adding 15 mm Hg and 10 mm Hg to SBP
and DBP, respectively. This approach has been shown to be superior to ignoring
antihypertensive treatment or to excluding individuals on therapy13. However, it is clear
that factors such as medication number and dosage, and variation in prescription patterns in
different countries and time periods make this adjustment scheme an oversimplification.
Again, such effects should generally bias our findings toward the null.
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There are many classes of widely used therapies with strong antihypertensive effects. We
examined the association of common variants at the loci extending 100kb on either side of
the genes encoding the targets for thiazide diuretics (MCCT), loop diuretics (VKCC2), ACE
inhibitors (ACE), angiotensin Il receptor type 1 blockers (AGTR1), beta adrenoreceptor
blockers (ADRB1, ADRBZ2), alpha adrenoreceptor antagonists (ADRAIA, ADRA1B,
ADRA1D), calcium channel blockers (CACNALS, CACNAIC, CACNAID, CACNAIF),
and aldosterone antagonists (CYP11B2). No results exceeded chance expectations. This
does not exclude the existence of variants of weaker effects or variants that were missed
because they were not covered by existing arrays. Obviously, it would be interesting to
examine the impact of common variants in these genes on individual responses to therapies,
which we have not done.

Moreover, the strength of association of variation in a gene with a trait (or lack thereof) says
nothing about the potential strength of a drug designed to agonize or antagonize the product
of that gene. For example, a common variant in HMGCR has only a modest effect on fasting
lipids,47 yet statin therapy, which inhibits the HMGCR enzyme to lower LDL cholesterol,
substantially lowers risk of cardiovascular disease. Thus, the implication of modest common
variant genetic effects is not just a function of the ability to identify tendency toward higher
or lower blood pressure in carriers of alternate alleles, but also the ability to recognize
relevant targets for therapy that have defined /n vivo relevance in human beings.

While targeted pharmacotherapy has theoretical appeal, clinical trials to demonstrate the
utility and cost-effectiveness of such approaches will be required before such personalized
medicine could be endorsed. The association signals identified here will need to be refined
through fine mapping, and resequencing will be needed to define more fully the allelic
spectrum of variants at each locus that contributes to inter-individual differences in blood
pressure. Our findings offer initial insights into the genetic basis of a problem of global
proportions and the potential for an improved understanding of blood pressure regulation.
These loci may point to new targets for blood pressure reduction and ultimately additional
opportunities to prevent the growing public health burden of cardiovascular disease.

Overall study design

An expanded description of the methods is provided in the Supplementary Methods. The
study comprised two staged analyses performed separately for SBP and DBP. Stage 1 was a
meta-analysis of directly genotyped and imputed SNPs from individuals of European
descent in 17 samples drawn from population-based or control samples in case-control
studies in the Global BPgen consortium. In stage 2a, we selected 12 SNPs for genotyping in
up to 71,225 individuals of European descent from 13 studies and up to 12,889 individuals
of Indian Asian ancestry from one study. In stage 2b, we selected 20 SNPs (10 SBP, 10
DBP) for in silico analysis in 29,136 individuals of European descent from the CHARGE
consortium (stage 2b, see Supplementary Figure 1).

Stage 1 samples

The Global BPgen consortium comprises 17 GWAS studies: the Baltimore Longitudinal
Study of Aging (BLSA), British 1958 Birth Cohort (B58C-T1DGC and B58C-WTCCC),
Cohorte Lausannoise (CoLaus), Diabetes Genetics Initiative (DGI), European Prospective
Investigation of Cancer-Norfolk-Genome Wide Association Study (EPIC-Norfolk-GWAS),
Fenland Study, Finland-United States Investigation of NIDDM Genetics (FUSION) study,
Invecchiare in Chianti (INCHIANTI), Kooperative Gesundheitsforschung in der Region
Augsburg (KORA), the Myocardial Infarction Genetics Consortium (MIGen), Northern
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Finland Birth Cohort of 1966 (NFBC1966), SardiNIA, Study of Health in Pomerania
(SHIP), the Precocious Coronary Artery Disease (PROCARDIS), Supplementation en
Vitamines et Mineraux Antioxydants (SU.VI.MAX), and TwinsUK. We excluded
individuals >70 years of age and individuals ascertained on case status for type 1 or 2
diabetes (DGI, FUSION), coronary artery disease (Mlgen, PROCARDIS) or hypertension
(BRIGHT), leaving 34,433 individuals for analysis (Table 1). A detailed description of the
study design and phenotype measurement for all cohorts can be found in the Supplementary
Methods.

Genome-wide genotyping

Imputation

Genotyping arrays and quality control filters are provided in Supplementary Table 1.

Imputation of allele dosage of ungenotyped SNPs in HapMap CEU v21a or v22 was
performed using MACH48 or IMPUTE49 with parameters and pre-imputation filters as
specified in Supplementary Table 1. SNPs were excluded from analysis if the cohort-
specific imputation quality as assessed by r2.hat (MACH) or .info (IMPUTE) metrics was
<0.30. In total, up to 2,497,993 genotyped or imputed autosomal SNPs were analyzed.

Phenotype modeling

In individuals taking antihypertensive therapies, blood pressure was imputed by adding 15
mm Hg and 10 mm Hg for SBP and DBP, respectively13. Continuous SBP and DBP were
adjusted for age, age2, body mass index, and any study-specific geographic covariates in
gender-specific linear regression models. In FUSION and SardiNIA, which included family-
based samples, gender-pooled linear regression was performed with the addition of gender
as a covariate. Residuals on the mm Hg scale were used as univariate traits in genotype-
phenotype analysis.

In secondary analyses, hypertension was defined by the presence of SBP > 140 mm Hg or
diastolic blood pressure =90 mm Hg or self-report of taking a medication for the treatment
of hypertension. Normotensive controls were defined as individuals not taking any anti-
hypertensives andhaving a SBP <120 mm Hg anda DBP <85 mm Hg.

Genotype-phenotype association analysis

Genotype-phenotype association of SBP and DBP residuals was performed under an
additive model using software as specified in Supplementary Table 1. Analysis of
hypertension for eight genome-wide significant continuous blood pressure loci was
performed using logistic regression to adjust for age, age2, gender, body mass index.

Meta-analysis of stage 1 samples

All cohort-specific effect estimates and coded alleles were oriented to the forward strand of
the NCBI35 reference sequence of the human genome, using the alphabetically higher allele
as the coded allele. For example, for a G/T SNP coded GG=0, GT=1, TT=2, the coded allele
would be T. To capture the power loss due to imperfect imputation, we estimated “N
effective”, which was the sum of the sample-specific products of the imputation quality
metric and the sample size. No filtering on minor allele frequency was used. Genomic
control14 was performed on cohort- and gender-specific test statistics. Lambda estimates are
given in Supplementary Table 1; quantile-quantile plots are shown in Supplementary Figure
2. Meta-analysis in stage 1 was performed using inverse variance weights. Stage 1 meta-
analysis results were genomic controlled.
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Selection of SNPs for stage 2

12 SNPs were selected for follow-up in stage 2a from among the results with < 107>
during interim analyses. For /n silico exchange with the CHARGE consortium (stage 2b),
we identified the top independent loci to select 10 SBP and 10 DBP SNPs. If a SNP in one
top 10 list was also among the top 10 for the alternate blood pressure trait, we kept the locus
with the lower p-value and went to the next locus on the list for the alternate blood pressure
trait. Because a SNP at the 3926 locus (MDS1) was selected in an interim analysis for direct
genotyping, it was retained as the tenth locus for DBP even though its significance was
reduced in the final stage 1 DBP GWAS analysis.

Stage 2a samples

We genotyped 12 SNPs in up to 71,225 individuals of European descent from 13 studies —
Utrecht Atherosclerosis Risk in Young Adults (ARYA), British Genetics of Hypertension
(BRIGHT), EPIC-Italy, EPIC-Norfolk-REP, Finrisk97, FUSION2, London Life Sciences
Population (LOLIPOP), Malmd Diet and Cancer-Cardiovascular Cohort (MDC-CC),
Metabolic Syndrome in Men (METSIM), Malmo Preventive Project (MPP), The Prevention
of REnal and Vascular ENd stage Disease (PREVEND), Prospect-EPIC, and the Utrecht
Health Project (UHP) —and in up to 12,889 individuals of Indian Asian ancestry from the
LOLIPOP study. Summary demographics are shown in Table 1 and cohort information in
the Supplementary Methods).

Stage 2a follow-up genotyping

For genotyping methods and platforms see Supplementary Methods.

Stage 2b in silico samples

We obtained results based on the analysis of the Cohorts for Heart and Aging Research in
Genome Epidemiology (CHARGE) consortium, which comprises 29,136 samples from five
population-based cohorts.

Pooled analysis of first and second stage samples

Meta-analysis of stage 1, 2a and 2b results was performed using inverse variance weighting.
Standard errors were multiplied by the square root of the lambda estimate for genomic
control and are presented throughout the text. Nominal P values after genomic control14 are
presented. We considered associations genome-wide significant if they exceeded P=
5x1078, a Bonferroni correction for the estimated 1M independent common variant tests in
the human genome of European-derived individuals14:15.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Regional association plots of eight blood pressure loci. For each locus, we show the region
extending to within 500kb of a SNP with P < 107 on either side. Statistical significance of

associated SNPs at each locus are illustrated on the - logyo(P) scale as a function of

chromosomal position (NCBI Build 35). The sentinel SNP at each locus is shown in red.
The correlation of the sentinel SNP to other SNPs at the locus is shown on a scale from
minimal (gray and blue), to maximal (red). The meta-analysis result for stage 1 is shown
with a red square. The joint analysis result (combined P) for stage 1+2a+2b is shown with an
arrow. Fine-scale recombination rate from Myers et al50 is plotted in aqua.
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Figure 2.

Relationship of genome-wide significant loci to SBP, DBP and hypertension. Shown are the
effects of each variant on continuous SBP and DBP and on the odds ratio for dichotomous
hypertension compared to normotension (see Methods). For comparability, SBP and DBP
effects are shown on the standard deviation scale (SBP SD = 16.6 mm Hg, DBP SD =10.9

mm Hg). Alleles are coded as shown in Table 2.
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