Dgp71WD is required for the assembly of the acentrosomal meiosis I spindle, and is not a general targeting factor for the -TuRC

Citation for published version:
Reschen, R, Colombie, N, Wheatley, J, Dobbelaere, J, St Johnston, D, Ohkura, H & Raff, J 2012, ‘Dgp71WD is required for the assembly of the acentrosomal meiosis I spindle, and is not a general targeting factor for the -TuRC’ Biology Open, vol 1, no. 5, pp. 422-429. DOI: 10.1242/bio.2012596

Digital Object Identifier (DOI):
10.1242/bio.2012596

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Biology Open

Publisher Rights Statement:
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the γ-TuRC

Richard F. Reschen 1, Nathalie Colombie 2, Lucy Wheatley 3, Jeroen Dobbelaere 4, Daniel St Johnston 3, Hiro Ohkura 2 and Jordan W. Raff 1,*

1Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
2Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
3Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QH, UK
4Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria

*Author for correspondence (jordan.raff@path.ox.ac.uk)

Summary
Dgp71WD/Nedd1 proteins are essential for mitotic spindle formation. In human cells, Nedd1 targets γ-tubulin to both centrosomes and spindles, but in other organisms the function of Dgp71WD/Nedd1 is less clear. In Drosophila cells, Dgp71WD plays a major part in targeting γ-tubulin to spindles, but not centrosomes, while in Xenopus egg extracts, Nedd1 acts as a more general microtubule (MT) organiser that can function independently of γ-tubulin. The interpretation of these studies, however, is complicated by the fact that some residual Dgp71WD/Nedd1 is likely present in the cells/extracts analysed. Here we generate a Dgp71WD null mutant lacking all but the last 12 nucleotides of coding sequence. The complete loss of Dgp71WD has no quantifiable effect on γ-tubulin or Centrosomin recruitment to the centrosome in larval brain cells. The recruitment of γ-tubulin to spindle MTs, however, is severely impaired, and spindle MT density is reduced in a manner that is indistinguishable from cells lacking Augmin or γ-TuRC function. In contrast, the absence of Dgp71WD leads to defects in the assembly of the acentrosomal female Meiosis I spindle that are more severe than those seen in Augmin or γ-TuRC mutants, indicating that Dgp71WD has additional functions that are independent of these complexes in oocytes. Moreover, the localisation of bicoid RNA during oogenesis, which requires γ-TuRC function, is unperturbed in Dgp71WD 29 mutants. Thus, Dgp71WD is not simply a general cofactor required for γ-TuRC and/or Augmin targeting, and it appears to have a crucial role independent of these complexes in the acentrosomal Meiosis I spindle.

© 2012. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Key words: Dgp71WD, Centrosome, Mitosis, Meiosis

Introduction
Bipolar spindle formation depends on MT polymerisation occurring in a spatially and temporally controlled manner. In many cell types, centrosomes are the primary MT organising centres, however centrosomes are not the only location where MTs are generated. During mitosis MTs are nucleated from at least 3 main sources: (1) from centrosomes (Bettencourt-Dias and Glover, 2007); (2) from an area around the chromosomes and kinetochores (Gadde and Heald, 2004); (3) from within the spindle via the newly discovered Augmin pathway (Goshima and Kimura, 2009). Surprisingly, neither the centrosomal pathway (Basto et al., 2006; Khodjakov et al., 2000; Megraw et al., 1999) nor the Augmin pathway (Goshima et al., 2008; Meireles et al., 2009; Wainman et al., 2009) are essential for mitosis in Drosophila, although spindle assembly is severely disrupted in cells that lack both pathways (Goshima et al., 2008; Meireles et al., 2009; Wainman et al., 2009). In contrast, the chromosomal pathway appears to be essential for mitosis, as mutations in the Drosophila gene misato (which abolishes chromosome-dependant MT nucleation) result in lethality (Mottier-Pavie et al., 2011). Complexes containing γ-tubulin are important for MT nucleation in all three pathways in mitosis (Goshima et al., 2008; Goshima et al., 2007; Hannak et al., 2002; Joshi et al., 1992; Lüders et al., 2006; Sunkel et al., 1995). These complexes broadly fall into two classes: a γ-tubulin small complex (γ-TuSC) and a larger γ-tubulin ring complex (γ-TuRC) that contains several copies of the γ-TuSC and several additional proteins such as Dgrip75, Dgrip128 and Dgrip163 in Drosophila (Lüders and Sterns, 2007; Wiese and Zheng, 2006). In Drosophila, γ-TuSC mutants exhibit severe spindle defects and are lethal (Barbosa et al., 2000; Colombie et al., 2006; Sunkel et al., 1995), whereas γ-TuRC mutants exhibit more moderate spindle defects and are viable (though male and female sterile), and have defects in male meiosis, female meiosis II, and in bicoid (bcd) mRNA localisation during oogenesis (Schnorrer et al., 2002; Verollet et al., 2006; Vogt et al., 2006). This has led to the proposal that, in flies, the γ-TuRC is only essential for the nucleation of specific subsets of MTs that are required for certain developmental processes (Schnorrer et al., 2002; Verollet et al., 2006; Vogt et al., 2006).
Unlike the formation of the mitotic spindle, the formation of the meiosis I spindle is less well understood, and the occurrence of centrosomes in species like Drosophila and Xenopus (McKim and Hawley, 1995; Waters and Salmon, 1997). MTs are initially nucleated around the DNA before being organised into a bipolar spindle by motor proteins such as Ncd and Subito, and bundling/stabilising proteins such as DTACC and MspS (Cullen and Ohkura, 2001; Gadde and Heald, 2004; Giunta et al., 2002; Matthies et al., 1996; McKim and Hawley, 1995). Until recently, the role of γ-tubulin 37C — the form of γ-tubulin found in the oocyte (Tavosanis et al., 1997) — in the formation of the meiosis I spindle was controversial (Tavosanis et al., 1997; Wilson and Borisy, 1998). Recent data has, however, confirmed that γ-tubulin has a crucial role in bipolar spindle formation and kinetochore MT attachment in meiosis I (Hughes et al., 2011). The Augmin complex and the γ-TuRC appear to have minor roles in meiosis I spindle assembly, as the Augmin mutant was viable but female sterile when homozygous or hemizygous over a deficiency that removed the Dgp71WD gene. Coding sequences are indicated in green and UTRs in blue; the inverted triangle represents the insertion site of the P-element. The dotted line represents the region deleted in the Dgp71WD120 mutant. Coloured arrows refer to PCR primer pairs used for the PCRs shown in (B) - red = reaction (i), purple = reaction (ii). (B) Agarose gel of the PCR products from the WT and Dgp71WD120 genomic DNA. (C) Western blots of WT and Dgp71WD120 3rd instar larval brain extracts at two different exposure levels. In WT extracts a double band can be seen below the 84 kDa marker. The higher band is nonspecific-background whereas the lower band represents Dgp71WD. The lower band is absent in the mutant, indicating that Dgp71WD120 is likely a protein null. (D) WT and Dgp71WD120 3rd instar larval brain cells stained with anti-Cnn (green) and anti-Dgp71WD (red) antibodies; DNA (blue). Scale bar represents 2.5 μm.

Dgp71WD function in Drosophila

Results

Dgp71WD120 is a null mutant

A Dgp71WD mutant fly line Dgp71WDGE30807 has been previously characterised (Verollet et al., 2006). This line contains a P-element insertion in the 5′UTR of the Dgp71WD gene. We therefore attempted to generate a null mutant by imprecise excision of this P-element (see Materials and Methods). We screened 384 potential lines using PCR and recovered two alleles that contained deletions in the Dgp71WD CDS. PCR and sequencing showed that the entire CDS apart from the last 12bp had been deleted from the Dgp71WD120 line without affecting the UTRs or CDS of any neighbouring genes (Fig. 1A,B). Western blotting and immunofluorescence experiments confirmed the absence of detectable Dgp71WD protein in this line (Fig. 1C,D). We conclude that Dgp71WD120 is likely a null mutation.

We found that, like the original Dgp71WDGE30807 mutation, Dgp71WD120 was viable but female sterile when homozygous or hemizygous over a deficiency that removed the Dgp71WD gene (Df(2L)Exel7071). It was previously reported that Dgp71WDGE30807 mutant flies have abdominal abnormalities and a dramatically shortened lifespan (Verollet et al., 2006), and this was also true in our hands. Dgp71WD120 homozygous or hemizygous adult flies, however, did not show the same reduced lifespan or any morphological abnormalities, suggesting that these phenotypes are not the result of a lesion in the Dgp71WD gene. Interestingly, Dgp71WD120 homozygous or hemizygous adult flies were male fertile, unlike known γ-TuRC mutants (Schmoller et al., 2006).

Fig. 1. Dgp71WD120 is a null mutant. (A) Schematic view of the Dgp71WD gene. Coding sequences are indicated in green and UTRs in blue; the inverted triangle represents the insertion site of the Dgp71WDGE30807 P-element. The dotted line represents the region deleted in the Dgp71WD120 mutant. Coloured arrows refer to PCR primer pairs used for the PCRs shown in (B) - red = reaction (i), purple = reaction (ii). (B) Agarose gel of the PCR products from the WT and Dgp71WD120 genomic DNA. (C) Western blots of WT and Dgp71WD120 3rd instar larval brain extracts at two different exposure levels. In WT extracts a double band can be seen below the 84 kDa marker. The higher band is nonspecific-background whereas the lower band represents Dgp71WD. The lower band is absent in the mutant, indicating that Dgp71WD120 is likely a protein null. (D) WT and Dgp71WD120 3rd instar larval brain cells stained with anti-Cnn (green) and anti-Dgp71WD (red) antibodies; DNA (blue). Scale bar represents 2.5 μm.
Dgp71WD has no detectable role in centriole duplication or recruiting γ-tubulin to centrosomes in larval brain cells

In human cells, Nedd1 has a role in centriole duplication (Haren et al., 2006; Lüders et al., 2006), and depleting Dgp71WD from Drosophila cultured cells using RNAi leads to a partial loss of both γ-tubulin and other PCM components from centrosomes (Dobbelare et al., 2008; Verollet et al., 2006). To test whether Dgp71WD is required for γ-tubulin and/or PCM recruitment in vivo, we quantified the levels of PCM in WT and Dgp71WD

mutant larval brain cells. We also included Dgrip75

(a null mutation in the gene encoding the Dgrip75 component of the γ-TuRC) mutant brain cells in this analysis as this mutation strongly disrupts the formation of the γ-TuRC (Vogt et al., 2006), allowing us to test whether γ-TuRC formation is required for γ-tubulin or PCM recruitment. To our surprise, the centrosomal localisation of Cnn (Fig. 2A,D) — an upstream component in the PCM recruitment pathway (Lucas and Raff, 2007; Megraw et al., 1999; Terada et al., 2003; Zhang and Megraw, 2007) — or γ-tubulin (Fig. 2B,D) was not detectably perturbed in either the Dgp71WD

mutant brain cells. We also examined the localisation of the centrosomal proteins Asterless (Asl) and Dsp2 — both upstream components in the PCM recruitment pathway (Blachon et al., 2008; Bonaccorsi et al., 2000; Conduit et al., 2010; Dobbelare et al., 2008; Dzhindzhikova et al., 2010; Gomez-Ferreria et al., 2007; Zhu et al., 2008a) — in Dgp71WD

mutant brain cells, and found that levels of these proteins were also not perturbed (R.F.R., unpublished observations). We further confirmed the γ-tubulin result by quantifying the centrosomal levels of γ-tubulin-GFP (Hallen et al., 2008) in living WT and mutant brain cells. Again, we could detect no obvious difference in the amount of γ-tubulin recruited to centrosomes in WT, Dgp71WD

mutant brain cells (Fig. 2C,D). Taken together, these data suggest that Dgp71WD and Dgrip75 do not have a major role in the centrosomal recruitment of γ-tubulin or the PCM in vivo in larval brain cells.

Dgp71WD is required for robust spindle assembly, but it is not essential for cell division in vivo

In human cells, Nedd1 also targets the γ-TuRC to the spindle MTs (Lüders et al., 2006) where it seems to cooperate with the Augmin complex to nucleate MTs within the spindle (Johmura et al., 2011; Uehara et al., 2009; Zhu et al., 2008b). In fly cells, Dgp71WD is also required to recruit γ-tubulin to the mitotic spindle (Verollet et al., 2006) and the localisation of Dgp71WD to the spindle also appears to require the Augmin complex (Wainman et al., 2009). To confirm the potential relationship between Dgp71WD, the γ-TuRC and the Augmin complex in vivo we examined MT behaviour in living WT, Dgp71WD

Dgrip75

and wac — a gene encoding a component of the Augmin complex (Meireles et al., 2009) — mutant 3rd instar larval brain neuroblasts that expressed Jupiter-GFP — a MT-associated protein whose behaviour has been shown to accurately reflect MT behaviour (Karpova et al., 2006). Importantly, all of these alleles are reported to be null alleles (Meireles et al., 2009; Schnorrer et al., 2002).

We filmed neuroblasts from before the onset of Nuclear Envelope Breakdown (NEB) until late telophase. Upon NEB, WT neuroblasts rapidly established a robust metaphase spindle with well-defined kinetochores (k)-fibres surrounded by a more diffuse array of MTs (Fig. 3A; supplementary material Movie 1). These cells then underwent a characteristic asymmetric division, with prominent central spindle microtubules clearly visible between the dividing halves of the spindle (white arrowheads, Fig. 3A). In contrast, Dgp71WD

Dgrip75

and wac mutant neuroblasts took much longer to establish a metaphase plate, and the MTs appeared to have difficulty in capturing and aligning the chromosomes (Fig. 3B–D; supplementary material Movies 2–4). Even when formed, the metaphase spindle was clearly abnormal; the k-fibres did not appear to be reinforced by the formation of additional MTs within the spindle, and MT density within the spindle remained low (Fig. 3F). The whole spindle structure was unstable, often flexing and bending, and in all cases the metaphase spindles were longer than normal (Fig. 3E; WT=9.0±0.34 mm; Dgp71WD

=11.4±0.33 mm (p<0.001); Dgrip75

=10.7±0.43 mm (p=0.006); wac=10.6±0.40 mm (p=0.01)). Unsurprisingly, the mutant cells were delayed in exiting mitosis (Fig. 3E); time from NEB - Anaphase B onset in WT=8.0±0.7 mins; Dgp71WD

=21.3±2.3 mins (p<0.001); Dgrip75

=22.4±3.14 mins (p<0.001); wac=15.1±1.6 mins (p<0.001). Although wac mutant spindles appeared to divide slightly faster than Dgp71WD

or Dgrip75

mutants, this difference was not significant (p=0.058 and p=0.078, respectively). When the mutant spindles eventually exited mitosis they underwent an
apparently normal asymmetric division, although the formation of a robust central spindle in late anaphase was severely impaired in the mutant neuroblasts (red arrows, Fig. 3B–D). This spindle phenotype is similar to that reported in S2 cells depleted of Dgp71WD, Augmin components or γ-TuRC components (Goshima et al., 2008; Verollet et al., 2006).

The remarkable similarity in these phenotypes strongly suggests that Dgp71WD, Dgrip75 and Wac all function in the same pathway to drive robust spindle and central spindle formation in larval brain cells. This pathway is clearly not essential for viability in flies, as Dgp71WD mutants (this study and (Verollet et al., 2006), γ-TuRC mutants (Schnorrer et al.,

Fig. 3. Dgp71WD120, Dgrip75175 and wac NBs have severe spindle defects, yet successfully complete bipolar asymmetric divisions. (A–D) WT and mutant 3rd instar larval neuroblasts (NBs) expressing Jupiter-GFP were filmed from before NEB to the onset of cytokinesis. Representative WT (A), Dgp71WD120 (B), Dgrip75175 (C) and wac (D) NBs are shown. Time is shown as min:sec. Time point 00:20 represents one time point before NEB; the asterisk (*) marks the time of the metaphase to anaphase transition. Mutant spindles at the metaphase-anaphase transition consist of only a few k-fibre bundles unlike WT cells, where spindle density is higher (third row). Central spindle formation is strongly impaired in mutant spindles (red arrowheads) compared to WT spindles (white arrowheads). (E) Spindle length was measured over time from NEB to the onset of cytokinesis in WT (n=11), Dgp71WD120 (n=9), Dgrip75175 (n=10), and wac (n=7) NBs. Data was aligned to Anaphase B onset (time = 0 on the graphs). Mutant cells take significantly longer to undergo division, and have significantly longer spindles than WT NBs at Anaphase-B onset. (F) The density of Jupiter-GFP (as a proxy for MT density) was calculated at spindles in WT (n=11), Dgp71WD120 (n=9), Dgrip75175 (n=8) and wac (n=5) NBs. Spindle Jupiter-GFP intensity is significantly lower in mutant neuroblasts. Significance testing was conducted using a Student’s t-test. Scale bar represents 5 μm.
Dgp71WD function in *Drosophila*

426

2002; Verollet et al., 2006; Vogt et al., 2006) and Augmin mutants (Meireles et al., 2009; Wainman et al., 2009) are all viable. It has previously been shown, however, that the Augmin pathway is essential for spindle formation in the absence of properly functioning centrosomes, indicating that the chromatin pathway cannot support robust spindle formation in the absence of both the centrosome and Augmin pathways (Goshima et al., 2008; Wainman et al., 2009). We confirmed that Dgp71WD and Dgrip75 are also essential for viability in the absence of centrosomes by combining the *Dgp71WD* and *Dgrip75* alleles with a mutation in the *D Sas* gene, which is essential for centriole duplication (Basto et al., 2006). *Dgp71WD*; *D Sas*; *Dgrip75*; *Das* double mutants were all not viable and died during pupal stages of development (Table 1). In contrast, *Dgp71WD*; *Dsas*; *Dgrip75* and *Dgp71WD*; *wac* double mutant combinations were all viable but female sterile (Table 1; see Materials and Methods), supporting the hypothesis that these proteins act together in the same pathway.

Dgp71WD is not an essential cofactor for the γ-TuRC

Dgp71WD was initially identified as a component which associates with the γ-TuRC (Gunawardane et al., 2003), and our results in brain cells are consistent with the previous reports that Dgp71WD normally cooperates with the γ-TuRC and Augmin complex to drive robust spindle assembly (Uehara et al., 2009; Verollet et al., 2006; Wainman et al., 2009). We wondered, therefore, whether Dgp71WD might act as an essential co-factor for the γ-TuRC. Two previous studies have shown that the γ-TuRC components Dgrip75 and Dgrip128 (as well as γ-tubulin 37C) are required to localise *bcd* mRNA to the anterior of the oocytes from stage 10b/11 onwards (Schnorrer et al., 2002; Vogt et al., 2006). The correct localisation of *bcd* mRNA is required to help pattern the anterior-posterior axis of the *Drosophila* embryo (Riechmann and Ephrussi, 2001), and it has been suggested that the γ-TuRC nucleates a specific subset of MTs (that cannot be nucleated by the γ-TuSC) that are required for proper *bcd* localisation. We therefore examined whether Dgp71WD was also required for the proper localisation of *bcd*. In WT oocytes, *bcd* was localised to the anterior end of stage 11/12 oocytes (Fig. 4A,D), but this localisation was disrupted in *Dgrip75* mutant oocytes (Fig. 4C,D), as expected (Schnorrer et al., 2002; Vogt et al., 2006). In contrast, *bcd* localised normally in *Dgp71WD* mutant oocytes at stage 11/12 (Fig. 4B,D). Thus, Dgp71WD cannot be an essential co-factor for all aspects of γ-TuRC function.

Table 1. Phenotypic analysis of *Dgp71WD*; *Dgrip75* and *wac* mutant combinations.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dgp71WD; wac</td>
<td>Female sterile</td>
</tr>
<tr>
<td>Dgp71WD; Dgrip75</td>
<td>Male & female sterile (Schnorrer et al., 2002; Vogt et al., 2006)</td>
</tr>
<tr>
<td>wac</td>
<td>Female sterile (Meireles et al., 2009)</td>
</tr>
<tr>
<td>D Sas</td>
<td>Adults die after eclosion (Basto et al., 2006)</td>
</tr>
<tr>
<td>Dgp71WD; D Sas</td>
<td>Pupal lethal</td>
</tr>
<tr>
<td>Dgrip75; D Sas</td>
<td>Pupal lethal</td>
</tr>
<tr>
<td>wac; D Sas</td>
<td>Pupal lethal</td>
</tr>
<tr>
<td>Dgp71WD; Dgrip75</td>
<td>Male and female sterile</td>
</tr>
<tr>
<td>Dgp71WD; wac</td>
<td>Female sterile</td>
</tr>
</tbody>
</table>

Dgp71WD has a crucial role in the formation of the Meiosis I spindle

Embryos laid by mothers lacking γ-TuRC or Augmin components fail to develop, and this appears to be due to earlier defects in the assembly of the acentrosomal female meiotic spindles – although in neither case is spindle assembly completely suppressed (Meireles et al., 2009; Vogt et al., 2006; Wainman et al., 2009). We examined embryos laid by *Dgp71WD* homozygous mothers and found that they also failed to show any signs of development (R.F.R., unpublished observations), although the embryos appeared to have been fertilised. We therefore examined Meiosis I spindles in mature WT and *Dgp71WD*; *D Sas*; *Dgrip75* oocytes. *bcd* mRNA localises normally to the anterior end of the oocyte in WT and *Dgp71WD* mutants but is mislocalised towards the posterior in *Dgrip75* mutants (white arrowhead).

![Fig. 4. *bcd* mRNA localises normally in *Dgp71WD* oocytes. (A–C) *bcd* mRNA fluorescent in situ hybridisation in representative stage 11/12 WT, *Dgp71WD*; *Dgrip75* and *Dgp71WD*; *wac* mutant combinations. (D) Quantification of *bcd* mRNA localisation defects in WT, *Dgp71WD* and *Dgp71WD*; *wac* double mutant combinations.](image)

Interestingly, these phenotypes are quite distinct from those observed in the Augmin mutant *wac*, which does not appear to have a reduced spindle area, where no defects in D-TACC localisation are apparent, but where chromosome alignment is disrupted (Meireles et al., 2009). They are also more severe than those observed in the γ-TuRC mutants *Dgrip75* and *Dgrip128*, where there are no detectable defects in Meiosis I spindle assembly but there are defects in Meiosis II spindle assembly.
Fig. 5. *Dgp71WD*Δ120 mutant oocytes have defective Meiosis I spindles. (A) WT (n = 38) and hemizygous *Dgp71WD*Δ120/Df(2L)ED119 Meiosis I spindles (n = 40) from non-activated oocytes were fixed and stained with anti-DTACC (red) and anti-α-tubulin (green) antibodies; DNA (blue). (B) *Dgp71WD*Δ120 meiosis I spindles have a significantly reduced spindle area and width compared to WT spindles. (C) *Dgp71WD*Δ120 meiosis I spindles do not have any significant alteration in spindle length or chromosome positioning. (D) Quantification of the percentage of WT or *Dgp71WD*Δ120 spindles lacking DTACC polar staining or showing only very weak staining. Significance testing was conducted using Student’s t-tests (B,C) and a Chi-squared test (D). Error bars are SEM. Scale bar represents 5 μm. (E) Schematic showing how spindle length and chromosome distance were measured in (C).

(Vogt et al., 2006). Indeed the Meiosis I spindle phenotype in the *Dgp71WD*Δ120 mutant is almost as severe as that seen in γ-tub37C mutants (Hughes et al., 2011; Tavosanis et al., 1997). Taken together, these observations suggest that Dgp71WD may have functions in the Meiosis I spindle that are independent of Augmin and γ-TuRC function, while Augmin may have a role in aligning meiotic chromosomes that is independent of Dgp71WD and the γ-TuRC.

Discussion

In this study we have generated a near complete deletion of the *Dgp71WD* gene, allowing us to analyse how cells in vivo cope with the absence of this protein. We find that Dgp71WD has no discernable role at the centrosome in larval brain cells. Instead, Dgp71WD is required for normal spindle and central spindle formation in these cells, where it seems to cooperate with the γ-TuRC and the Augmin complex to nucleate MTs within the forming mitotic spindle. Dgp71WD is not, however, an essential cofactor for the γ-TuRC, as, in contrast to other γ-TuRC components (Schnorrer et al., 2002; Vogt et al., 2006), it is not required for the proper localisation of bcd mRNA during oogenesis, and a *Dgp71WD* null mutant is male fertile, unlike γ-TuRC mutants. Although Dgp71WD is not essential for cell division in larval brain cells, it is essential for the proper formation of the acentrosomal female meiosis I spindle, where it seems to have functions that are independent of the γ-TuRC and Augmin complexes.

Our finding that Dgp71WD has no detectable function at centrosomes in fly larval brain cells is perhaps surprising. In humans, Nedd1 is essential for recruiting γ-tubulin to centrosomes (Haren et al., 2006; Lüders et al., 2006), and this is also the case in Zebrafish (Manning et al., 2010). Previous studies in *Drosophila* have indicated that γ-tubulin recruitment to centrosomes is partially disrupted when Dgp71WD is depleted from S2 cells or in brain cells from the original *Dgp71WD*ΔE30807 mutant (Dobbelare et al., 2008; Verollet et al., 2006). While our assays cannot rule out that Dgp71WD has a minor role in γ-tubulin or PCM recruitment in these cells, it seems clear that Dgp71WD cannot act as an essential factor for targeting γ-tubulin to centrosomes in flies. In this light, it is interesting to note that we could also detect no decrease in the amount of γ-tubulin recruited to centrosomes in Dgrip75Δ175 mutant cells, where the formation of the γ-TuRC is disrupted (Vogt et al., 2006). Interpreting this result is not straightforward, as although Dgrip75 depletion abolishes γ-TuRC formation in S2 cells (Verollet et al., 2006), γ-TuRC formation appears to be only partially disrupted in the Dgrip75Δ175 mutant *in vivo* (Vogt et al., 2006); thus, some residual γ-TuRC complexes may still be present in Dgrip75Δ175 mutant cells. Nevertheless, it is an intriguing possibility that a significant fraction of the centrosomal γ-tubulin in flies may be in the form of the γ-TuSC, rather than the γ-TuRC.

Although it plays at most only a minor part at the centrosome in fly brain cells, Dgp71WD is required to recruit γ-tubulin to the spindle MTs in these cells and it clearly has an important role in forming the mitotic spindle. During mitosis in living WT cells, k-fibres appear to be rapidly reinforced by the formation of additional spindle MTs, a process that appears to be lacking in Dgp71WD, Augmin and γ-TuRC mutant cells. Similar observations have been made in *Drosophila* S2 cells (Goshima et al., 2008). These observations support the hypothesis that the role of Dgp71WD at the mitotic spindle in flies is to target the γ-TuRC to the spindle Augmin complex, thus reinforcing spindle MT density (Wainman et al., 2009), similar to the role of Nedd1 in human cells (Uehara et al., 2009; Zhu et al., 2008b). In addition to their role in bipolar spindle formation, our data suggests that Dgp71WD, Wac and Dgrip75 are necessary for the formation of a normal central spindle, as is also the case in human cells in culture (Uehara and Goshima, 2010) and *Drosophila* S2 cells (J.G. Wakefield, personal communication).

Our data shows that Dgp71WD has an important role in the assembly of the acentrosomal female meiosis I spindle. Interestingly, the absence of Dgp71WD results in a more severe spindle phenotype than that caused by the absence of either the Augmin component Wac, or the γ-TuRC components Dgrip75 or Dgrip128 (Meireles et al., 2009; Vogt et al., 2006). Whilst Meiosis I spindles in the Augmin mutant wac have a relatively normal MT density but show defects in chromosome alignment, (Meireles et al., 2009), the *Dgp71WD*Δ120 mutant spindles have a low MT density and normal chromosome alignment. It is important to note, however, that while the wac and Dgrip75Δ175 mutations are nulls, the lack of either protein may not completely abolish Augmin or γ-TuRC function, respectively. It is possible, therefore, that meiosis I spindles...
that completely lacked Augmin or γ-TuRC function would have a similar phenotype to that seen in Dgp71WD or γ-tub37C null mutants.

Intriguingly, a recent study has shown that γ-tub37C mutant spindles have both a low MT density and chromosome alignment defects (Hughes et al., 2011). It is thus tempting to speculate that γ-tubulin 37C may act primarily with Dgp71WD to increase spindle MT density, and with Augmin to drive chromosome alignment. It is also striking that an absence of Dgp71WD (this study) or γ-tubulin 37C (Hughes et al., 2011) but not Wac (Meireles et al., 2009) leads to a severe loss of D-TACC from the meiosis I spindle. TACC proteins are known to stabilise MTs in several situations through their association with the Msps/ch-TOG family of MAPs (Cullen et al., 1999; Gergely et al., 2003; Lee et al., 2001). This could suggest that Dgp71WD or γ-tubulin are necessary to recruit D-TACC to the spindle, although we could find no evidence of any interaction between Dgp71WD and DTACC via co-immunoprecipitation (R.F.R., unpublished observations). Alternatively, the very low density of spindle MTs in immunoprecipitation (R.F.R., unpublished observations). any interaction between Dgp71WD and DTACC via co-

Materials and Methods

Fly stocks
Standard fly techniques were used (Ashburner et al., 2005). w1118 flies were used as controls in all experiments. Dgp71WD mutants were generated by mobilisations of a P-element inserted upstream of the Dgp71WD gene in the Dgp71WD1G08007 stock (Verollet et al., 2006). γ-tubulin-GFP (Hallen et al., 2008) and Jupiter-GFP (Karpova et al., 2006), were introduced into the Dgp71WD1G08007 (this study), Dypri75C (Schnorrer et al., 2002) and wac (Meireles et al., 2009) genetic backgrounds using standard genetic crosses. Double mutants with Dyps1G2214 (Basto et al., 2006), Dypri75C (Schnorrer et al., 2002; Vogt et al., 2006) and wac were created using standard crosses or recombinations. Most double mutant combinations were examined as homozygotes, however Dgp71WD1G08007;wac was also examined as hemizygotes over the appropriate deficiencies (Df(2L)Exel7071 or Df2L6821wi941) which uncover Dgp71WD1G08007 and Df6;3L6821wi941 which uncovers wac; Bloomington stock centre, Bloomington, Indiana, USA).

Western blotting and immunofluorescence analysis
Samples were subjected to standard SDS-PAGE using 3–8% pre-cast NuPAGE polyacrylamide gels (Invitrogen, Paisley, UK) and a Mini Trans-Blot cell (BioRad, Hemel Hempstead, Herts, UK). Western blotting was conducted using PVDF membrane (GE Healthcare, Amersham, UK). Membranes were probed with appropriate primary antibodies, washed, probed with appropriate HRP-conjugated secondary antibodies (GE Healthcare), incubated with Supersignal chemiluminescent reagent (Thermo Fisher Scientific/Pierce, Rockford, IL, USA) and then exposed to X-ray film (GE Healthcare).

Preparation, fixation, and staining of squashed third instar larval brains was carried out as described previously (Martinez-Campos et al., 2004). Appropriate Alexa Fluor secondary antibodies were obtained from Invitrogen, and DNA was labelled with Hoechst 33342 (Invitrogen). The following primary antibodies were used for western blotting and immunofluorescence: 1:400 anti-Dig71R (Verollet et al., 2006), 1:500 anti-γ-tubulin (GTU88; Sigma, St Louis, MO, USA), 1:500 anti-Cnn (Lucas and Raff, 2007), 1:500 anti-Dsp2 (Dix and Raff, 2007), 1:500 anti-Asl (Conduit et al., 2010), 1:1000 anti-actin (Sigma), and 1:500 Dm1 anti-α-tubulin (Sigma). Imaging of fixed brains was performed on an Olympus Fluoview FV1000 IX81 confocal microscope system using a 60 × oil immersion lens and Olympus FV1000 software (Olympus, Southend-on-Sea, Essex, UK).

To quantify the amount of centrosomal PCM components, optical sections were reconstructed in 3D using Velocity software (Perkin Elmer/Improvision, Waltham, MA, USA). Centrosomes were identified semi-automatically using Velocity by finding objects above a minimum volume with an intensity > 3 standard deviations from the mean intensity of the image. The intensity of every centrosomal pixel was then summed to produce an intensity score. To quantify spindle fluorescence, maximum intensity Z projections were first generated using Velocity. A triangle was then drawn around each half spindle, and pixel intensities for the relevant channel in this area summed. These two values were then averaged to produce an intensity score for that spindle. A Student’s t-test was then used to test for significant differences between genotypes. Centrosomes or spindles in at least 7 cells per a minimum of 5 brains were quantified per genotype.

Dgp71WD function in Drosophila

Live imaging
Live imaging of live 3rd instar neuroblasts was performed as described previously (Basto et al., 2006), but with a Perkin Elmer ERS Spinning Disk Confocal system (Perkin Elmer, Waltham, MA, USA) mounted on a Zeiss Axiosvert 200M microscope using a 63 ×, 1.4NA oil objective (Zeiss, Welwyn Garden City, Herts, UK). The entire depth of the cell was imaged by taking Z-stacks spaced 0.5 mm apart at 20 second intervals from before Nuclear Envelope Breakdown (NEB) until telophase. To quantify the amount of γ-tubulin-GFP at the centrosome, sections were reconstructed in 3D using Velocity software. Centrosomes were identified semi-automatically based on their difference from the background value, and all centrosome voxels were then summed to produce an intensity score. To measure the density of Jupiter-GFP at the spindles (as a proxy for MT density), we used a method adapted from Goshima et al. (Goshima et al., 2008). Fiji software (EMBL, Heidelberg, Germany) was used to draw a line intensity profile between the poles. The values at 1/4 and 3/4 along the line were taken to be the spindle values. These values were then averaged to create a value for that individual spindle, and these values averaged across spindles. To measure the length of spindles, we used Fiji to draw a line between the two poles. Student’s t-tests were used to test for significances between genotypes.

Analysis of bicoid localisation in oocytes
RNA probes were generated from in vitro transcription of linearised full length bcd cDNA plasmid, obtained from (Driever et al., 1990). T7 was then used with a Digoxigenin RNA labelling mix (Roche, Basel, Switzerland) to in vitro transcribe labelled RNA. Ovaries were dissected in PBT (PBS + 0.1% Triton), then fixed in 8% formaldehyde for 10 minutes, before being washed with PBT and methanol. For the hybridisation, oocytes were rehydrated in 1:1 methanol/PBT for 5 minutes followed by several washes in PBT. They were then washed for 15 minutes in 1:1 PH:PBT, followed by a 20 minute wash in PH at 70°C (PH= Prehybridisation solution: 50% deionised Formamid, 5 × SSC in ddH2O, adjusted to pH 6.8 with HCl). Oocytes were then prehybridised in 100 μl hybridisation solution (10 ml PH plus 20 μl RNA (20 mg/ml), 10 μl dsDNA (10 mg/ml), 5 μl Heparin (50 mg/ml) at 70°C for one hour before the addition of 1 μl of RNA probe. Hybridisation was allowed to take place at 70°C overnight, followed by 30 minute washes at 70°C with PH, 1:1 PH:PBT and then several 20 minute washes of PBT at room temperature. Oocytes were then incubated with 1:200 mouse anti-Digoxigenin (Roche) conjugated with Cy3 in PBT for 1 hour at room temperature, or overnight at 4°C. Antibody solution was then washed off with PBT before addition of Vectashield (Vectorlabs, Peterborough, UK) mounting media and storage at ~20°C prior to imaging. Imaging was conducted on a Zeiss 510 Meta Multichannel Confocal using LSM 510 image capture software (Zeiss, Welwyn Garden City, Herts, UK). bicoid localisation and the length of the oocyte axis was measured using the ruler function in ImageJ (NIH, Bethesda, MD, USA).

Analysis of Meiosis I spindles
Preparation, fixation and immunostaining of Meiosis I spindles in non-activated oocytes was described previously (Cullen and Ohkura, 2001). Images were taken as Z-stacks and maximum intensity projections were generated using a LSM 510 Zeiss confocal microscope and software (Zeiss). Velocity was used for quantification. The line measurement tool was used to measure spindle length and width and chromosome distance (chromosome mass length, including the 4th chromosome). The freehand ROI tool was used to measure spindle area.

Acknowledgements
We thank Brigitte Raynaud-Messina for generously providing antibodies, and Alan Wainman for advice on microscopy and critical comments on the manuscript. Supported by grants from the MRC to R.F.R., from CR-UK to J.W.R. and from the Wellcome Trust to H.O. and N.C. (081849, 092076). J.D. was supported by a postdoctoral fellowship from the Human Frontier Science Program and the Austrian Science Fund (FWF) M1293. L.W. and D.S.J were supported by the Wellcome Trust.

Competing Interests
No competing interests declared.
References

