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Abstract

Background: In differentiating myoblasts, the microtubule network is reorganized from a centrosome-bound, radial array
into parallel fibres, aligned along the long axis of the cell. Concomitantly, proteins of the centrosome relocalize from the
pericentriolar material to the outer surface of the nucleus. The mechanisms that govern this relocalization are largely
unknown.

Methodology: In this study, we perform experiments in vitro and in cell culture indicating that microtubule nucleation at
the centrosome is reduced during myoblast differentiation, while nucleation at the nuclear surface increases. We show in
heterologous cell fusion experiments, between cultures of differentiating mouse myoblasts and human cells of non-
muscular origin, that nuclei from non-muscle cells recruit centrosome proteins once fused with the differentiating
myoblasts. This recruitment still occurs in the presence of cycloheximide and thus appears to be independent of new
protein biosynthesis.

Conclusions: Altogether, our data suggest that nuclei of undifferentiated cells have the dormant potential to bind
centrosome proteins, and that this potential becomes activated during myoblast differentiation.
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Introduction

Muscle fibres are syncytia formed by fusion of differentiating

myoblasts. During differentiation, the cytoskeleton of myoblasts is

profoundly remodelled. Skeletal actin and myosin are organized

into contractile sarcomeres. Several groups have postulated that

this process depends on an initial reorganization of the

microtubule network [1–4]. Microtubules, emanating in a radial

pattern from the centrosome, are realigned into an array of fibres

running parallel to the long axis of the cell [5]. Concomitantly, a

large percentage of centrosome proteins are relocated from the

pericentriolar material to the surface of the nucleus [6–8] where

they form a dense, fibrillar matrix surrounding the outer nuclear

membrane [8]. The residual centrosome proteins appear to

remain bound to the pericentriolar material, and part of these

proteins are also seen finely dispersed in the cytoplasm [7].

Clusters of ‘‘centrosomal elements’’ are sometimes found around

the nuclei in fused myotubes, and these ‘‘centrosomal elements’’

are believed to retain centrioles [7]. During differentiation,

relocation of proteins from the pericentriolar material to the

nucleus starts at an early stage, before fusion of myoblasts into

myotubes [8]. It is conceivable that the relocalization of

centrosome proteins is a prerequisite for the reorganization of

the microtubule network. So far, the molecular mechanisms

leading to the relocalization of centrosome proteins are not

understood. In this study, we investigate how cytoplasmic factors

of undifferentiated and differentiated myoblasts affect the

centrosome, using in-vitro-assays and heterologous cell fusion.

Results

The Nuclear Surface Becomes the Predominant Site of
Microtubule Nucleation in Differentiating Myoblasts

To investigate whether centrosomes in myoblasts are capable of

nucleating microtubules after differentiation, we used cultured

mouse H-2Kb-tsA58 myoblasts, carrying a thermolabile T-antigen,

which permits differentiation upon a temperature shift from 33 to

37uC [9–10]. These cells were induced to differentiate for three

days. As shown previously, a variety of centrosome proteins

relocalizes to the nuclear surface during this differentiation

process, even prior to fusion into myotubes (Fig. 1A, B) [8]. We

investigated the sites of microtubule re-growth following cold-

induced depolymerization (0uC for 3 hours).

In myoblasts (Fig. 1A), the microtubule network of untreated,

undifferentiated myoblasts is organized by the centrosome. Cold

treatment led to the disappearance of most microtubules, except

for a small number of resistant, stable microtubules. Upon shifting
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the cells to 37uC for several seconds, new microtubule asters were

nucleated by the centrosome (Fig. 1A). In comparison, differen-

tiated H-2Kb-tsA58 cells that had fused into myotubes showed

longitudinally oriented microtubules prior to depolymerization.

Likewise, these microtubules disappeared after cold treatment.

After re-warming, the highest density of re-growing microtubules

was seen around the surface of each nucleus (Fig. 1B), consistent

with a previous report [6]. The pattern of re-growing microtubules

was reminiscent of sun-like arrays (Fig. 1B).

Since centrosome proteins accumulate at the nuclear surface in

these differentiating cells [6–8], we investigated whether nuclei

represented the sole microtubule organizing centres and whether

the residual ‘‘centrosomal elements’’ (i.e. centriole-containing

clusters as described in [7]) had lost their original potential of

microtubule nucleation. This idea was tested in experiments using

purified centrosomes and cell extracts. Since microtubule-

nucleating factors can be stripped from the centrosome by

treatment with high salt, we tested whether cytoplasmic extracts

from undifferentiated or differentiated H-2Kb-tsA58 and C2C12

cells, 120 hours post induction of differentiation, reconstituted the

microtubule-nucleating potential.

Treatment with 1M potassium iodide for one hour removed

nearly all of gamma-tubulin from purified centrosomes (Fig. 2A),

whereas pericentrin remained largely bound (Fig. 2B, C). This is

consistent with a proteomic analysis of the centrosome [11],

demonstrating that various centrosome proteins are extracted

differentially by high salt-treatment. The stripped centrosomes

were unable to nucleate microtubules in a solution of purified

tubulin, whereas unstripped centrosomes induced the formation of

microtubule asters (Fig. 2B, C), underlining the importance of

gamma-tubulin for centrosomal microtubule nucleation. However,

incubation of stripped centrosomes with cytoplasmic extracts from

either undifferentiated myoblasts or from myotubes restored

microtubule nucleation and the formation of microtubule asters

(Fig. 2C). The number of microtubules per aster, as well as the

length of microtubules were similar under the different conditions

(Fig. 2D): purified centrosomes tended to aggregate into clusters,

which had diameters of multiple mm. These were nucleating 24 to

30 microtubules/2 mm cluster in a focal plane, with an average

microtubule length of 9 to 12 mm.

These experiments suggested that the cytoplasm of myotubes

retained all factors necessary for microtubule nucleation. We

therefore examined directly whether centrosomes maintain their

potential to nucleate microtubules in living myotubes, using

deconvolution microscopy. We reported previously that at early

stages of differentiation, the centrosome proteins pericentrin, PCM-

1 and cdk5rap2 repartition between the pericentriolar material and

the outer nuclear surface [8]. In such cells, small asters of re-growing

microtubules were seen at pericentrin foci, reminiscent of

centrosomes (or ‘‘centrosomal elements’’ as described by [7]), in

addition to microtubules emanating from the perinuclear surface,

and free cytoplasmic microtubules (Fig. 3A). To determine the

relative percentage of microtubules nucleated from the centrosome,

from the nuclear surface, or from the cytoplasm, we counted

growing microtubule plus-ends identified by EB3 labelling [12],

after recovery from cold-induced depolymerization (Fig. 3B). We

found that in undifferentiated myoblasts, there was predominant

nucleation of microtubules from the centrosome (49%), whereas in

differentiating cells, nucleation from the centrosome was gradually

reduced from 17% to 7% after fusion into myotubes. At the same

time, the nuclear surface became the dominant site of microtubule

nucleation (60%).

To gain further insights, we tested whether the nucleation

capacity of the nuclear surface correlated with the amount of

accumulated centrosome protein (Fig. 3C). Immunofluorescence

microscopy of myoblasts at early stages of differentiation showed

that they contained nuclei that had accumulated pericentrin only on

part of their surface, indicating that re-growing microtubules

emanated mainly from areas with the highest amounts of

pericentrin. Subsequently, we quantified the amount of EB3 comets

emanating from the nucleus and plotted these against the intensity

of pericentrin immunofluorescence at the respective nuclear surface

(Fig. 3C, right). We found that perinuclear staining of pericentrin

Figure 1. In myotubes, microtubules are nucleated from the
nuclear surface. (A) Immunofluorescence of undifferentiated H-2Kb-
tsA58 mouse myoblasts, and (B) differentiated, fused H-2Kb-tsA58
myotubes, stained for tubulin (green), and for the centrosome protein
PCM-1 (red). Left: cells at 37uC, displaying an intact microtubule
network. Middle: depolymerization of microtubules after treatment on
ice for three hours. Right: microtubule re-growth, 20 seconds after
shifting cells to 37uC. A small centrosomal microtubule aster is seen in
the undifferentiated cell (A), whereas sun-like rays of microtubules
emanating from the nuclear surface are seen in myotubes (B). Bar in B,
10 mm. Identical magnifications in A and B.
doi:10.1371/journal.pone.0008303.g001

Centrosomes in Myoblasts
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increased during the differentiation process, correlating with an

increase of the number of EB3 comets within 2 mm of the nuclear

envelope, from 15611 (SD) in undifferentiated cells to 72640 in

unfused, differentiated cells. After fusion into myotubes, we detected

a further increase to 187672 comets of EB3 per nuclear surface.

Although the data varied from cell to cell, overall they suggest that

the number of microtubules grown off the nucleus is proportional to

the amount of centrosomal material.

Nuclei of Non-Muscle Cells Acquire Centrosome Proteins
upon Experimentally Induced Cell Fusion with Myotubes

Myoblasts lose their centrosome-dependent radial microtubule

organization during the differentiation process. Although it was

reported that the centriole marker centrin remained present at

‘‘centrosomal elements’’ in mouse myotubes fused in culture [7],

centrioles were described to disappear almost completely after

fusion of chick myoblasts into myotubes [13–14]. Because we

observed gradual redistribution of the majority of centrosome

marker proteins onto the nuclear surface in differentiating

myoblasts from mice [8], we studied the potential mechanisms

of altering centrosome protein localization. In particular we

wanted to address the following question: is there competition

between the pericentriolar area and the nuclear surface for the

binding of centrosome proteins during the differentiation

process? If this is the case, then can re-introduction of new, fully

assembled centrosomes into differentiated myotubes reverse

Figure 2. Nucleation of microtubules from salt-stripped centrosomes is restored by cytoplasmic extract of myotubes. (A) Isolated
centrosomes from Jurkat cells, treated with 1M potassium iodide (KI) to strip the pericentriolar material. An immunoblot is shown, probed for gamma-
tubulin in unstripped centrosomes (centr.), as well as in centrosomes after KI-treatment for 15, 30, 45, and 60 minutes. Treated centrosomes were
fractionated by centrifugation, to separate the extracted pericentriolar material (supernatants, S), and the insoluble centrioles (pellets, P). (B) Purified
centrosomes, centrifuged onto glass coverslips and stained for immunofluorescence of pericentrin (B1) and gamma-tubulin (B2). Centrosomes were
incubated with purified tubulin at 5 mg/ml for 10 minutes, either directly (B3), or following incubation with cytoplasmic extract from undifferentiated
myoblasts (B4) or from myotubes (B5). (C) Equivalent experiments as in (B), using centrosomes that had been stripped with KI for one hour. (D) The
number of microtubules/aster in a focal plane, as well as the average microtubule length were quantified in each case (n$34). Bar in (C), 10 mm.
doi:10.1371/journal.pone.0008303.g002

Centrosomes in Myoblasts
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Figure 3. Microtubule nucleation from the centrosome is reduced in the differentiation process. (A) Deconvolved optical sections of
differentiated muscle cells after re-growth of microtubules for 20 seconds, stained for immunofluorescence of (left) microtubules, (middle) the
centrosome protein pericentrin, and (right) stained with the DNA marker DAPI. In a myotube early after fusion, pericentrin is visible both around the
nuclear surface and on the centrosomes (arrows). Microtubule re-growth is seen from these centrosomes, in addition to perinuclear and cytoplasmic
sites. (B) Myotube, after cold-induced depolymerization of microtubules and re-growth for 10 seconds. Immunofluorescence of the plus-end-binding
protein EB3 and of pericentrin are shown. Cytoplasmic, nuclear, and centrosomal sites of emerging EB3 comets are indicated on the left. The table
indicates the percentage of EB3 comets growing from cytoplasmic, nuclear, and centrosomal locations in undifferentiated cells (n = 6), as well as in
differentiating cells before fusion (mononucleate, n = 15), and after fusion (n = 12). The total number of EB3 comets per cell ranged from 39
(undifferentiated) to 1151 (differentiated, fused). (C) Left: nucleus of a myoblast at an early stage of differentiation, stained for pericentrin (top) and
microtubules (bottom), recovering for 10 seconds from cold-induced depolymerization. The number of microtubules grown from the nuclear surface
was quantified by counting EB3 comets as in (B). The results for each nucleus were plotted against the intensity of perinuclear pericentrin (arbitrary
values, after subtraction of background) in undifferentiated cells (n = 6), and in mononucleate (n = 15) and fused differentiated cells (n = 22).
Horizontal and vertical bars indicate standard deviations of pericentrin intensity and of the number of EB3 comets, respectively, in differentiated
mononucleate and fused cells. Bar in (A), 10 mm; identical magnification in (B), (C).
doi:10.1371/journal.pone.0008303.g003
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microtubule organization and re-establish a centrosome-depen-

dent microtubule network? Alternatively, are centrosomes

gradually deactivated in the myotube, at later stages of the

differentiation process?

To answer these questions, we designed an experiment in which

we fused differentiated H-2Kb-tsA58 cells with non-muscle cells

containing an active centrosome. We chose cells of the human

osteosarcoma line U2OS, a cell type with distinct radial

microtubule organization from the centrosome, indicating a

pronounced centrosomal activity [15]. Cell fusion was induced

with polyethylene glycol. In fused cells we distinguished human

nuclei from mouse H-2Kb-tsA58 nuclei by the selective reactivity of

a monoclonal antibody against the human form of the nuclear

protein NuMA. In cultures of unfused H-2Kb-tsA58 and U2OS

cells, the antibody stained specifically the nuclei of the human

U2OS cells, but did not cross-react with the nuclei of mouse H-

2Kb-tsA58 cells (Fig. 4A). The mouse nuclei were also recognizable

by their distinct pattern of heterochromatin, which is organized in

several dense spots (Fig. 4A). The cells were further stained for

immunofluorescence of the centrosome proteins PCM-1 and

pericentrin.

In differentiated cells of the H-2Kb-tsA58 cell line, PCM-1 and

pericentrin accumulated around the nucleus, whereas in U2OS cells

they marked the pericentriolar area prior to fusion (Fig. 4A).

However, after fusion into heterokaryons, we observed that the

nuclei of human origin also started to acquire PCM-1 and

pericentrin at the nuclear surface (Fig. 4B, C). Early after fusion

(six hours), only small amounts of PCM-1 or pericentrin

accumulated around the human nuclei (Fig. 4C, D), whereas a

more continuous perinuclear layer of these centrosome proteins was

visible in many cells after 24 to 48 hours (Fig. 5A). Photometric

analysis revealed that at 6 hours, human nuclei had acquired

1368% of perinuclear pericentrin, as compared to mouse nuclei in

the same heterokaryon. This amount increased to 36616% after

24 hours, and remained at this level at 48 hours post fusion

(40619%; Fig. 4D). This suggests that perinuclear recruitment of

centrosome proteins occurs rapidly within 24 hours, but reaches a

plateau afterwards, and that recruitment is less efficient around the

foreign nuclei than around the endogenous ones.

We performed microtubule re-growth experiments after cold-

treatment, as described above, to test whether human nuclei that

were surrounded by centrosome proteins were able to support

Figure 4. Centrosome proteins are recruited to the nuclear surface of non-muscle cells, after fusion with differentiated muscle cells.
(A) Co-culture of H-2Kb-tsA58 mouse muscle cells with human U2OS cells. Top left: phase contrast; top middle: immunofluorescence of the
centrosome protein PCM-1; top right: staining of the DNA with DAPI; bottom left: immunofluorescence of the human form of the nuclear protein
NuMA; bottom right: merge of PCM-1 (green) and NuMA (red) staining. Note that NuMA staining is exclusively visible in nuclei of the human U2OS
cells. Mouse nuclei (m) show characteristic condensation of heterochromatin in discrete nucleoplasmic punctuate staining that is absent from the
surrounding human nuclei. (B) Heterokaryon, formed by fusion of a human U2OS cell with a mouse H-2Kb-tsA58 cell. A cell is shown at 48 hours after
induction of fusion with polyethylene glycol. Staining and microscopy as in (A). The human nucleus, as identified by NuMA immunofluorescence,
shows accumulation of perinuclear PCM-1. (C) Heterokaryon, 6 hours after induction of fusion, stained for pericentrin (red), tubulin (green), and DNA
(blue). ‘‘m’’ and ‘‘h’’ indicate the nuclei contributed from the mouse H-2Kb-tsA58 cell, or from the human U2OS cells, respectively. Insets show an
enlarged area of the cytoplasm, containing remnants of the centrosomes. (D) Histograms, showing PCM-1 intensity at human nuclei in heterokaryons,
as a percentage of PCM-1 immunofluorescence levels around mouse nuclei from the same heterokaryon (6 h: n = 20; 24 h: n = 45; 48 h: n = 22). Bars in
(B), (C), 10 mm.
doi:10.1371/journal.pone.0008303.g004
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microtubule nucleation. We found that re-polymerizing microtu-

bules were indeed seen around these nuclei (Fig. 5B). In some

heterokaryons, large pericentrin foci were seen in the cytoplasm,

resembling centrosomes (Fig. 4C, Fig. 5A, B, arrowheads).

Microtubule nucleation also occurred from these foci, as already

described for early H-2Kb-tsA58 myotubes (Fig. 3A, Fig. 5C,

arrowheads). After full polymerization of microtubules, non-radial

orientation of microtubules was seen, with a preferential alignment

along the long axis of the cytoplasm of the heterokaryon, as in

regular myotubes (Fig. 5D). Although pericentrin foci were present

in heterokaryons (Fig. 4C, Fig. 5A, C, arrowheads), no dominant

centrosomal organization centres were detected (Fig. 4C, Fig. 5D).

Moreover, the centrosome protein PCM-1 was absent from these

foci (Fig. 5A).

Perinuclear Accumulation of Centrosome Proteins Occurs
Independently of Translation

To examine whether the newly accumulated centrosome

proteins around the human U2OS nuclei represented newly

translated material or whether these proteins were recruited from

the cytoplasmic pool of the heterokaryon, we repeated fusion

experiments in the presence of the translation inhibitor cyclohex-

imide (Fig. 6A). We discovered that even under these conditions,

the centrosome protein PCM-1 accumulated at the perinuclear

surface of U2OS nuclei upon fusion with differentiated H-2Kb-

tsA58 cells, although slightly less efficiently: we found centrosome

protein relocalization to the human nuclei in 5569% (n = 33) of

the heterokaryons treated with cycloheximide, in comparison to

7166% (n = 63) of non-treated heterologous fusions.

In a first step towards identifying putative mechanisms of

centrosome protein relocalization, we investigated the role of

cytoskeletal elements such as microtubules and actin, to see

whether perinuclear accumulation of centrosome proteins re-

quired cytoskeleton-dependent transport. As shown in Fig. 6(B, C),

neither the depolymerization of microtubules by nocodazole, nor

the depolymerization of actin with cytochalasin B or D prevented

perinuclear assembly of PCM-1 in differentiating H-2Kb-tsA58

cells, suggesting that this assembly is independent of the

cytoskeleton.

Discussion

In this study, we provide insights into the mechanisms of

centrosome reorganization in differentiating muscle cells. Large

amounts of centrosome proteins relocalize to the nuclear surface at

the onset of differentiation [6–8]. While the centrosome remains

visible during the first few days of differentiation, with marker

proteins such as pericentrin remaining partly at the pericentriolar

material, the relative amount of microtubules nucleated from the

centrosome diminishes. In contrast, in differentiating cells

approximately 60% of microtubules are nucleated from the

surface of the nucleus. This percentage remains stable during

fusion of differentiating myoblasts into myotubes, whereas the

percentage of centrosomal microtubules diminishes further. The

loss of centrosomal nucleation may be due to loss of proteins from

the pericentriolar material that are responsible for microtubule

nucleation, and relocation of these proteins to the nuclear surface.

This transfer may occur by dynamic exchange with a cytoplasmic

pool of centrosomal proteins, as described in non-muscle cells [16–

18]. Future work will be necessary to determine what nucleation

factors, in addition to gamma-tubulin, are relocated to the nucleus

[7].

Consistently, we find that salt-treated centrosomes, lacking

microtubule nucleating factors, can be reconstituted by incubation

with cytoplasmic extracts from myotubes. Thus, all components

necessary for centrosomal nucleation are still present in the

cytoplasm of differentiated cells. In addition to nuclear and

centrosomal sites of microtubule nucleation, approximately one

third of the microtubules in the cell seem to emanate from

cytoplasmic sites. This is consistent with a previous report [10],

describing microtubule nucleation in myotubes from multiple

cytoplasmic sites.

During the process of differentiation, microtubule organization

in differentiating myoblasts changes from a radial into a

longitudinal, non-centrosomal orientation. In part, this may be

directly due to reduced centrosomal nucleation. In addition, this

may also be explained by loss of microtubule anchoring to the

centrosome. This hypothesis is supported by the observation that

centrosomal foci in myotubes and heterokaryons show accumu-

Figure 5. Microtubule nucleation from non-myoblast nuclei
after fusion into heterokaryons with muscle cells. (A) Immuno-
fluorescence of a heterokaryon of fused U2OS and H-2Kb-tsA58 cells,
containing two mouse nuclei (m) and two human nuclei (h), as
identified by chromatin morphology. The centrosome proteins PCM-1
and pericentrin are stained with antibodies, displayed in the merged
image in green and red, respectively. Centrosomal foci of pericentrin
are visible (arrowheads), in addition to perinuclear pericentrin staining.
DNA is marked with DAPI (blue). (B, C) Microtubule re-growth is shown
in heterokaryons at 48 hours after fusion, containing one human (h)
and one mouse nucleus (m). Microtubules were re-grown for 20
seconds after cold-induced depolymerization. Immunofluorescence of
PCM-1 (green), and tubulin (red) is shown. DNA (blue) is stained with
DAPI. The arrowhead in (C) indicates the position of a centrosomal
pericentrin focus, nucleating microtubules. (D) Immunofluorescence of
a heterokaryon after full microtubule polymerization, stained as
indicated in (B, C). Bars in (A), (D), 10 mm.
doi:10.1371/journal.pone.0008303.g005
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lation of the protein pericentrin, but not PCM-1 ([8], Fig. 5A).

Since it has previously been shown that in the absence of PCM-1

centrosomal anchoring of microtubules is prevented [15], it is

possible that centrosomes in differentiating myoblasts lose a

specific subset of proteins from their pericentriolar material, thus

impeding them from anchoring microtubules, besides reducing

their capacity of nucleation.

Moreover, our results on heterologous cell fusion between

muscular and non-muscular cells demonstrate that the centro-

somes of the undifferentiated non-muscle cells do not play a

dominant role as microtubule organizing centres in the hetero-

karyons. Rather, our data suggest that nuclei of non-muscular

origin acquire the potential to bind centrosome proteins, once

exposed to a differentiated, muscular environment. Our experi-

ments with the inhibitor cycloheximide indicate that in fused cells,

centrosome proteins are recruited to the nuclear envelope

independent of any additional transcriptional/translational event:

(i) either by transfer from centrosomes or other nuclei that have

already enriched these proteins, or (ii) from a cytoplasmic pool.

Several centrosome proteins in non-muscle cells, including centrin

and gamma-tubulin, are known to repartition between both a

soluble, cytoplasmic pool, and an insoluble, centrosome-bound

pool [16–17]. The soluble pool contains 80% or more of the

respective protein, and soluble protein is in dynamic exchange

with centrosome-bound protein [18]. Likewise, in a differentiating

muscular cell, the nuclear surface may recruit centrosome proteins

from the large cytoplasmic pool. Moreover, the nuclear surface

may represent a default site of centrosome protein accumulation

and microtubule nucleation, such as seen in other biological

systems such as plant cells [19].

In addition, our experiments indicate that any factors triggering

nuclear recruitment of centrosome proteins must have been

restricted to the differentiated H-2Kb-tsA58 cell prior to fusion,

since no perinuclear accumulation of centrosome proteins was

seen in unfused human U2OS cells or in undifferentiated

myoblasts. We therefore propose two possible mechanisms: (1)

upon differentiation, muscle cells express ‘receptors’ that are

anchored to the nuclear surface and that bind centrosome proteins

(Fig. 7A). In our fusion experiments, these ‘receptors’ may be

present in abundance in myotubes, but absent from non-muscle

cells. Fusion would permit these receptors to associate with the

nuclear envelope of the non-muscle nucleus and to recruit

centrosome proteins. (2) A second possibility would be that

undifferentiated cells, independent of their origin, possess putative

‘receptors’ for centrosome proteins at the outer surface of the

nucleus, and that in a differentiating environment of a muscle cell,

the recruitment of centrosome proteins would be stimulated by

activating these receptors with the help of differentiation-specific

factors, such as kinases or other proteins involved in posttransla-

tional modification (Fig. 7B). Moreover, specific transport or

docking proteins may be involved in the relocalization of

centrosome proteins. In future experiments, it will be important

to identify putative factors and nuclear receptors involved in

centrosome protein relocation, since the reorganization of

microtubules and microtubule-organizing proteins has been shown

to be an important event in myoblast differentiation, elongation

and fusion [12,20].

Materials and Methods

Cell Culture and Fusion Experiments
U2OS cells were grown in Dulbecco’s modified Eagle’s

medium, containing 10% fetal calf serum. C2C12 cells were

grown as described [8]. Mouse H-2Kb-tsA58 myoblasts carrying a

thermolabile T-antigen were grown at 33uC in Dulbecco’s

modified Eagle’s medium, 2% chicken embryonic extract, 20%

Figure 6. Recruitment of centrosome proteins to the perinuclear area occurs independently of new protein translation, or
polymerized microtubules, or F-actin. (A) Heterokaryon of a fused U2OS cell with a differentiated H-2Kb-tsA58 cell, in the presence of 10 mM
cycloheximide. Immunofluorescence of PCM-1 (green) and human NuMA (red) is shown. ‘‘m’’ and ‘‘h’’ indicate the nuclei contributed from the mouse
H-2Kb-tsA58 cell, or from the human U2OS cell, respectively. A significant amount of the centrosome protein PCM-1 is seen accumulating around the
human nucleus in the heterokaryon, but not in the unfused human U2OS cells. DNA is stained with DAPI (blue). (B) Left: differentiating control H-2Kb-
tsA58 cell, stained for microtubules (red), and PCM-1 (green). Right: H-2Kb-tsA58 cell that differentiated for two days in the presence of 1 mM
nocodazole, to depolymerize microtubules. (C) Left: differentiating control H-2Kb-tsA58 cell, stained with rhodamine-labelled phalloidin for
polymerized actin (red), and with an antibody against PCM-1 (green). Right: two H-2Kb-tsA58 cells that differentiated for two days in the presence of
10 mg/ml cytochalasin B, to depolymerize actin. Bar in (c), 10 mm.
doi:10.1371/journal.pone.0008303.g006
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fetal calf serum and 20 I.U. interferon-gamma [10]. Differentia-

tion of H-2Kb-tsA58 cells was induced by temperature shift to

37uC and simultaneous serum starvation, by replacing the regular

growth medium with Dulbecco’s modified Eagle’s medium

containing only 2% fetal calf serum. H-2Kb-tsA58 cells were

differentiated for five days, to obtain a high yield of differentiated

myotubes. After removal of the culture medium, cells were treated

with 1x Trypsin/EDTA (Gibco) for several seconds, leading to

selective detachment of myotubes. Detachment was monitored by

phase contrast microscopy. Detached cells were collected and

trypsin was neutralized by addition of growth medium. Cells were

then seeded with exponentially growing U2OS cells. The following

Figure 7. Potential mechanisms of centrosome protein relocalization in differentiating muscle cells. Model 1: during differentiation of
myoblasts, ‘receptor’ proteins (green) are expressed that bind to the nuclear surface and that recruit centrosome proteins (red). Centrosome proteins
that are found enriched at the pericentriolar material prior to differentiation are transferred to the nuclear surface via dynamic exchange through a
soluble cytoplasmic pool. Because the sequestration of centrosome proteins to the nuclear surface lowers the concentration of the soluble
cytoplasmic pool, and because this pool is in an equilibrium with centrosome proteins at the pericentriolar material, sequestration to the nucleus will
indirectly lead to the disassembly of the pericentriolar material (small arrows), and finally to the loss of centrosomal activity. Model 2: in
undifferentiated myoblasts (top), nuclei possess putative ‘receptor’ proteins (green) at their outer surface that become activated only at the onset of
differentiation (bottom). (1) This activation may be mediated by specific kinases, or by other factors involved in posttranslational modification (stars).
(2) As a consequence, the receptors are now competent to bind centrosome proteins to the nuclear surface (3).
doi:10.1371/journal.pone.0008303.g007
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day, cells were washed three times with pre-warmed phosphate-

buffered saline (PBS), then incubated one minute with pre-warmed

polyethylene glycol 1500 (Boehringer Mannheim) to induce cell

fusion. Polyethylene glycol was removed by washing extensively

with PBS, and the cells were then grown in Dulbecco’s modified

Eagle’s medium, containing 5% fetal calf serum.

Immunofluorescence Staining
Cells were grown on glass coverslips and fixed in methanol at –

20uC for 10 minutes. Immunofluorescence was performed using

standard procedures. Antibodies used in this study were from

rabbit and mouse against PCM-1 [15], rabbit anti-EB3 [12],

mouse monoclonal anti-pericentrin [15], rabbit polyclonal anti-

pericentrin (Covance), monoclonal antibody GTU-88 against

gamma-tubulin (Sigma), monoclonal antibody DM1a against

alpha-tubulin (Sigma), and monoclonal antibody Ab-2 against

NuMA (Calbiochem). DNA was stained with 49,6-diamidino-2-

phenylindole (DAPI).

Quantification of microtubule nucleation was performed in cells

recovering from cold treatment (3 to 4 hours on ice), at 10 seconds

after shifting the temperature to 37uC. For this, cells were fixed

and stained for immunofluorescence of EB3 and pericentrin.

Three-dimensional data sets of entire cells were acquired with a

Deltavision RT microscope (Applied Precision), using Olympus

100x/NA 1.40, 60x/NA 1.42, and 40x/NA 1.30 lenses. Optical

stacks were recorded at 0.2 mm intervals, and deconvolved using

Softworx 3.5.0 software (Applied Precision). Comets of EB3 were

tracked and counted on a sheet of transparent plastic attached to

the computer screen, using coloured marker pens to record

nuclear, centrosomal, and free cytoplasmic EB3, while scrolling

through the stack. Pericentrin immunofluorescence was quantified

within a rim of 1 mm at the nuclear envelope, using the ‘select’ tool

and the histogram function of Adobe Photoshop.

Nucleation of Microtubules In Vitro
Centrosomes were purified from Jurkat cells as described

previously [21]. Purified centrosomes were incubated in 1 M

potassium iodide (KI) at 4uC in the dark for 15, 30, 45, and 60

minutes, then centrifuged at 120,000 g for 30 minutes at 4uC. The

KI-soluble material was then concentrated and filtered using a

Centricon YM-10 (Millipore) device. The retained proteins were

recovered, boiled for 5 minutes in protein sample buffer and stored

at –80uC until loading onto 7.5% Tris-glycine polyacrylamide gels.

For the preparation of cytoplasmic extracts from muscle cells, H-

2Kb-tsA58 cells or C2C12 cells were used. The degree of

differentiation was assessed by immunofluorescence of the marker

embryonic myosin (data not shown). Undifferentiated cultures and

cultures after 5 days of induction, containing at least 81% of

differentiated cells, were processed. To prepare cytoplasmic

extracts, H-2Kb-tsA58 cells or C2C12 cells were washed twice in

cold PBS. Subsequently, the cells were washed in 50 ml of cold

KPN buffer (50 mM KCl, 50 mM PIPES pH 7.0, 10 mM EGTA,

1.92 mM MgCl2, 1 mM DTT, 100 mM PMSF, 20 mM cytocha-

lasin B, 10 mg/ml of leupeptin, pepstatin, chymostatin), then in

1 ml of KPN buffer. After centrifugation at 800 g, the pellet of

cells was frozen in liquid nitrogen. Cells were lysed by three cycles

of thawing-freezing, and ground using a pellet pestle. The lysate

was then separated by ultra-centrifugation at 120,000 g for 45

minutes at 4uC, and the soluble supernatant was collected.

Centrosomes were spun onto glass coverslips of 12 mm diameter

as described [22]. Coverslips were incubated on ice for one hour

with 20 ml of cytoplasmic supernatant from myoblasts, myotubes,

or with buffer alone. After removal of the extract or buffer,

coverslips were incubated for 10 minutes with pure porcine brain

tubulin at 5 mg/ml (Cytoskeleton Inc.), supplemented with

rhodamine-labelled tubulin (Cytoskeleton Inc.). Microtubules were

fixed as described [22], and viewed under a fluorescence

microscope.
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