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The formation of heterochromatin at the centromeres in fission

yeast depends on transcription of the outer repeats. These

transcripts are processed into siRNAs that target homologous

loci for heterochromatin formation. Here, high throughput

sequencing of small RNA provides a comprehensive analysis

of centromere-derived small RNAs. We found that the centro-

meric small RNAs are Dcr1 dependent, carry 50-monopho-

sphates and are associated with Ago1. The majority of

centromeric small RNAs originate from two remarkably well-

conserved sequences that are present in all centromeres. The

high degree of similarity suggests that this non-coding

sequence in itself may be of importance. Consistent with this,

secondary structure-probing experiments indicate that this

centromeric RNA is partially double-stranded and is processed

by Dicer in vitro. We further demonstrate the existence of small

centromeric RNA in rdp1D cells. Our data suggest a pathway

for siRNA generation that is distinct from the well-documented

model involving RITS/RDRC. We propose that primary tran-

scripts fold into hairpin-like structures that may be processed

by Dcr1 into siRNAs, and that these siRNAs may initiate

heterochromatin formation independent of RDRC activity.
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emboj.2009.351; Published online 26 November 2009

Subject Categories: chromatin & transcription; RNA

Keywords: centromeres; RNAi; small RNA; S. pombe

Introduction

Small RNA molecules are the effectors of RNA interference

(RNAi), in which gene expression is regulated either on the

transcriptional or the post-transcriptional level (Fire et al,

1998; Hamilton and Baulcombe, 1999; Volpe et al, 2002).

RNAi typically involves the enzymes Dicer and Argonaute,

and in some systems RNA-directed RNA polymerases.

Animals and plants encode several isoforms of the Dicer

and Argonaute enzymes, and small RNAs can be classified

depending on their origin and the pathway in which they

function (for review, see Djupedal and Ekwall (2009)). The

three major classes are microRNA (miRNA), short interfering

RNA (siRNA) and Piwi-interacting RNA (piRNA). In general,

post-transcriptional silencing of genes is accomplished by

miRNA, whereas siRNA can induce silencing of genes by

recruitment of factors required for heterochromatin forma-

tion. The mechanism of transcriptional silencing has been

extensively studied in the yeast Schizosaccharomyces pombe.

This organism is a well-established model organism for the

study of heterochromatin and has single genes coding for

Dicer (dcr1þ ) and Argonaute (ago1þ ) (Volpe et al, 2002),

which function in both transcriptional and post-transcrip-

tional gene silencing (Sigova et al, 2004).

The current model for the RNAi-dependent formation of

heterochromatin at the centromeres of S. pombe has been

described as a self-reinforced feedback loop (Noma et al,

2004; Sugiyama et al, 2005) with siRNA, Ago1, Dcr1 and the

RNA-directed RNA polymerase, Rdp1, as integral components

(Volpe et al, 2002; Verdel et al, 2004). The RNA-induced

initiation of transcriptional silencing (RITS) complex, which

includes siRNA, Ago1, Tas3 and Chp1 (Verdel et al, 2004),

is targeted to centromeres by dual mechanisms: through the

recognition of nascent RNA transcripts by complementary

siRNA and through Chp1 binding to the canonical hetero-

chromatin mark, H3K9me. The RITS complex permits recruit-

ment of the Clr4 complex (ClrC) (Motamedi et al, 2004;

Zhang et al, 2008) that contains the histone methyl transferase

(HMTase) Clr4KMT1, which is specific for lysine 9 of histone

H3 (H3K9me) (Rea et al, 2000). ClrC creates new H3K9me

marks that are specifically bound by chromodomain proteins,

such as Swi6 and Chp2, homologues of metazoan hetero-

chromatin protein 1 (Lorentz et al, 1994; Bannister et al,

2001), in addition to Chp1 (RITS) and Clr4 itself. The RITS

complex also allows association of the RNA-directed RNA

polymerase complex (RDRC) containing Rdp1, which can

produce double-stranded (ds) RNA from nascent transcripts

(Motamedi et al, 2004; Sugiyama et al, 2005). Dcr1 cleaves

dsRNA into additional siRNAs, causing amplification of

siRNAs and further increasing H3K9me levels. In this

manner, both siRNAs and H3K9me are required for assembly

of heterochromatin.

Heterochromatin, characterized by binding of chromo-

domain proteins to H3K9me and transcriptional silencing of
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embedded genes, is necessary at the centromeres of S. pombe

for proper segregation of chromosomes during cell division

(Ekwall et al, 1995; Bernard et al, 2001). The DNA sequences

of the three centromeres consist of a central core domain

(cnt) flanked by arrays of non-coding, inverted repeats of low

GC content, which are interspersed with tRNA genes (Clarke

et al, 1986; Nakaseko et al, 1986, 1987; Fishel et al, 1988;

Chikashige et al, 1989; Takahashi et al, 1991, 1992; Wood

et al, 2002). The repeats are divided into innermost repeats

(imr) and outer repeats (otr), which are further subdivided

into dg and dh elements. The smallest endogenous S. pombe

centromere, cen I, has single copies of dg and dh elements on

each chromosome arm, whereas cen III is estimated to have

12 copies of dg and dh elements in total (Wood et al, 2002).

The copy number of dg and dh elements at the centromeres

can vary in distinct S. pombe isolates as well as in different

laboratory strains (Steiner et al, 1993). The use of plasmid-

based constructs demonstrated that cnt together with a

2.1-kb fragment from the dg element is required to allow

the formation of a mitotically functional centromere (Baum

et al, 1994; Wood et al, 2002).

Analyses of RITS- and Ago1-associated siRNAs from

S. pombe have revealed that a sizeable fraction of the

siRNA originates from the dg and dh elements at the

centromeres (Cam et al, 2005; Buhler et al, 2008).

According to the current model for RNAi-dependent hetero-

chromatin formation, RITS is guided by the encapsulated

siRNAs to nascent RNA polymerase II transcripts from

the centromeres. Transcription of the dg and dh elements

has been shown to occur predominantly in the S-phase of

the cell cycle when the non-permissive, heterochromatic

structure is dispersed after DNA replication (Chen et al, 2008;

Kloc et al, 2008). Hence, RNAi is involved in the maintenance

of heterochromatin after DNA replication in each cell cycle.

In unsynchronized, wild-type (WT) cells, transcripts derived

from the ‘reverse’ strand of the DNA are more easily detected

(Volpe et al, 2002) and a strong promoter upstream of this

transcript has been mapped (Djupedal et al, 2005). As a result

of heterochromatin formation the expression of reporter

genes inserted into the dg and dh elements is silenced in

WT cells (Allshire et al, 1995). In strains defective for RNAi,

such as ago1D and dcr1D, transcripts derived from both

strands accumulate and reporter genes in dg or dh elements

are not silenced (Provost et al, 2002; Volpe et al, 2002),

probably due to the absence of heterochromatin at the

centromeric region.

Here, we have performed high-throughput pyrosequencing

of S. pombe size-selected small RNA to gain insight into the

role of RNAi in this organism. We found that most centro-

meric small RNA are produced from two types of small RNA

clusters that share a high degree of sequence identity, and we

present a detailed description of these loci. Most small RNAs

are found within regions of perfect sequence identity between

repeats from all three centromeres, indicating functional

conservation of these sequences. The predominant sequence

class of small RNAs was validated by northern blots and has

the characteristics of bona fide siRNAs. In addition, we have

determined the in vitro secondary structure of a portion of the

transcript from one of the small RNA clusters and have

shown that it forms a partially double-stranded secondary

structure that is processed by recombinant human Dicer.

Furthermore, we demonstrate that a small fraction of centro-

meric small RNAs is synthesized independently of Rdp1,

including small RNA corresponding to the experimentally

determined hairpin. Therefore, we propose that the ability

of nascent centromeric transcripts to fold into double-

stranded ‘hairpin’ structures may permit their Dcr1-depen-

dent processing into siRNAs, which in turn contributes to the

establishment of heterochromatin at the centromeres.

Results

Small RNA in S. pombe

With high-throughput 454 sequencing, 21 776 sequenced

small RNAs were determined from WT S. pombe cells

(Table I). In addition, sequences of small RNA were deter-

mined from rpb7G150D cells that carry a point mutation in

the RNA polymerase II subunit Rpb7, which causes lower

levels of transcription of centromeric siRNA precursors

(Djupedal et al, 2005). A large percentage of sequences

mapped to the transcribed region of tRNA or rRNA genes

and were, together with reads without perfect match to the S.

pombe genome, excluded from further analysis. Nearly half of

the remaining 3552 WT sequences begin with a uracil (U),

with lesser representation of A and C as a first base and

strong selection against G (Figure 1A). Although this is a

significant deviance from the genome average, Ago1-asso-

ciated siRNAs (Buhler et al, 2008; subjected to the same

matching and filtering as WT) show a strong bias for uracil in

the first position (485%; Figure 1A). Similarly, Ago1-asso-

ciated siRNAs are primarily 22–23 nucleotides (nt) in length

(Figure 1B; Buhler et al, 2008), whereas our WT small RNAs

range in size from 20 to 30 nt, with most being between 22

and 25 nt (Figure 1B). These data indicate that Ago1 has a

preference for 22–23-nt siRNAs that begin with U, and that it

selects these siRNAs from a more diverse population

generated in the cell. Interestingly, in the rpb7G150D mutant,

there is a shift in the size of small RNAs with a larger

proportion of short small RNAs than in the WT sample,

combined with a lower preference for small RNAs that

begin with U (Figure 1A and B).

Excluding sequences from transcribed structural RNAs,

which are likely degradation products, the genomic regions

that generate most small RNAs are centromeric repeats and

protein-coding genes (Figure 1C). At the centromeres, hun-

dreds of small RNAs cluster within the dg and the dh

elements. In WT, 100 genes had three matching small RNA

Table I Compilation of 454 deep sequencing analysis of small RNA
from wild-type (WT) and the rpb7G150D mutant strain

Total
number
of reads

Genome-
matching

readsa

Filtered
matching

readsb

Genome
matches/

read

972 (WT) 21 776 16 341 3531 4.9
rpb7G150D 51 894 36 990 11081 1.5
Ago1-associated
siRNAsc

349 251 257 629 197170 6.3

aReads with a perfect match in the Schizosaccharomyces pombe
genome.
bGenome-matching reads after removal of structural RNAs (tRNA,
rRNA, snoRNA, and snRNA).
cData are extracted from a study by Buhler et al (2008); GEO
accession number: GSE12416.
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reads or more. Nearly all of these genes (98 genes) were also

retrieved in the small RNA sample from the rpb7G150D

mutant. The rpb7G150D sample, which generated nearly

three times as many sequences as the WT sample in combi-

nation with a depletion of centromeric small RNAs, resulted

in retrieval of over 600 genes with matching small RNA (cut-

off: X3 small RNAs per gene). All small RNAs towards genes

were of the sense orientation, with the exception of the tlh1

gene (SPAC212.11) that has homology to the dh repeat and in

which small RNAs of both orientations were abundant. The

most likely explanation is that these sense-oriented small

RNAs represent mRNA degradation products. However, Dcr1,

Ago1, and Rdp1 were shown to mediate post-transcriptional

silencing of an exogenous hairpin (Sigova et al, 2004).

Furthermore, investigations of the proteome of dcr1D cells

demonstrated increased protein levels of Hsp16, Pgk1, Tpx1,

and Hsp104, whereas protein levels of Hxk2, Eno1, and Thi3

were decreased, with or without concomitant alterations of

mRNA levels (Gobeil et al, 2008). We detected small RNAs

homologous to six of these genes (Supplementary Figure S1).

Thus, it is possible that these sense small RNAs somehow

contribute to gene regulation. Although we did not carry out

a systematic analysis of small RNAs in intergenic regions, we

did notice 14 copies of a single small RNA in the intergenic

downstream region of the convergent gene pair mei4þ–

act1þ (Supplementary Figure S1). This locus has been

reported to be coated with heterochromatin factors (Cam

et al, 2005) and these small RNAs are probably involved in

controlling transcription termination in this intergenic region,

as suggested by Gullerova and Proudfoot (2008).

Characterization of centromeric small RNA clusters

All clusters abundant for small RNA overlap the dg and dh

elements that constitute the centromeric outer repeats

(Figure 2A). These clusters are between 2000 and 3000 bp

long with up to 1000 matching sequence reads. In general,

there are two recurring sequences that produce small RNAs

in the centromeres. The dg cluster overlaps the 30-end of the

dg repeat, including the fragment necessary for centromere

function (Baum et al, 1994). The dh cluster is situated within

the second half of the dh repeat. Alignment of these se-

quences from all centromeres reveals a high degree of con-

servation across both the dg and the dh clusters

(Supplementary Figure S2A and B). The dg element has

previously been reported to have 97% homology between

different centromeres, whereas the homology of the dh
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element from centromere I, II, and III was reported to have

48% identity (Wood et al, 2002). If deletions of the dh

elements are taken into account, the remaining dh sequences

have up to 99% sequence identity between dhI and dhII

(Nakaseko et al, 1987). The clusters are found at all centro-

meres. A 300-bp translocation from dh to dg (Chikashige

et al, 1989) is common to both the dg and dh clusters.

Although small RNAs match both strands of the centro-

meric clusters, there is a preference for small RNAs from the

reverse strand of the repeat, with stronger bias at the dh

cluster than at the dg cluster (Figure 2B). No strand bias is

expected according to the current models for RNAi-depen-

dent heterochromatin formation at the centromeres in

S. pombe because cleavage of Rdp1-derived dsRNA will

produce equal amounts of plus- and minus-stranded

siRNAs. Interestingly, a direct comparison with Ago1-asso-

ciated siRNAs (Buhler et al, 2008) from these clusters showed

no minus strand bias. Instead there was a small but signifi-

cant enrichment for the positive strand. Consistent with this,

25 nt small RNAs from WT, which are unlikely to associate

with Ago1 due to the size, show the strongest minus strand

bias (410-fold).

The accumulation of small RNAs is not equal across the

clusters, resulting in several hotspots of small RNAs. The 26

most abundant small RNA hotspots were named with roman

numerals (Figure 2C). The most abundant centromeric small

RNA hotspot, small RNA IV, was sequenced 400 times, with

the length of the small RNA varying by a few nucleotides. The

GC content of the small RNAs is significantly higher than in

the surrounding sequence (Supplementary Figure S3). As the

small RNAs are homologous to regions in which the sequence

is identical in most or all copies of the dg and dh elements,

it is not possible to determine from which centromeric repeat

copy these small RNAs originate.

Hotspot small RNAs are Dcr1 dependent, carry a

5 0-monophosphate, and are associated with Ago1

To verify the occurrence of small RNA hotspots, single

oligonucleotide probes corresponding to four of the most

abundant sequenced small RNAs were synthesized and

used as probes on northern blots of small RNA preparations.

In addition, control sense oligonucleotides or oligonucleo-

tides homologous to neighbouring sequence with few match-

ing small RNAs were used. In accordance with the small RNA

distribution determined by sequencing, the four hotspot

small RNA probes (anti-VII, anti-XII, anti-XXII, and anti-VI)

readily detected small RNAs by northern analyses, whereas

little or no signal was detected with sense probes (sense XII

and sense XXII) or nearby control probes (þ 35-anti-XII

and 50-anti-XXII). No signals were detected in small RNA

preparations from dcr1D cells (Figure 3A).

W
T

W
T

W
T

W
T

W
T

W
T

W
T

W
T

Δ 
dc

r

Δ 
dc

r

Δ 
dc

r

Δ 
dc

r

Δ 
dc

r

Δ 
dc

r

Δ 
dc

r

Δ 
dc

r

25 −

30 −

20 −

Anti-VII Anti-XII Sense XII +35 anti-XII Anti-XXII Sense XXII –50 anti-XXII Anti-VI

snoRNA 58

siRNA probes:

G
Ta

se

G
Ta

se
Te

rm
in

at
or

– G
Ta

se

– G
Ta

se

–

siRNAs PPP P       X

dh + dg
siRNAs

siRNAs V

Te
rm

in
at

or

– Te
rm

in
at

or

– Te
rm

in
at

or

–

siRNAs PPP P       X

dh + dg
siRNAs

siRNAs
VI + XII
+ XXII

siRNAs
VI + XII

+ XXII

G
Ta

se

Te
rm

in
at

or
 

–

Flag-ago 
purified siRNAs

dh + dg
siRNAs

A

B C D

Figure 3 Validation and analyses of siRNAs by northern blots. (A) Single oligonucleotide probes, antisense, sense, or nearby to siRNAs IV, XII,
XXII and VI were used for detection of small RNAs from wild-type or dcr1D cells. SnoRNA 58 was used as loading control. (B) and (C) Analyses
of 50-termini of small RNAs by enzymatic reactions followed by northern blots. (B) Terminator exonuclease digests monophosphorylated
50-termini and (C) guanylyltransferase (GTase) caps di- or triphosphorylated 50-termini. The control oligonucleotides are 50-triphosphorylated
RNA oligonucleotide (PPP—) and 50-monophosphorylated RNA oligonucleotide with a blocked 30-end (P—X) (Ule et al, 2005). The blots were
probed sequentially with specific oligonucleotide probes and with a random-primed probe spanning the whole siRNA cluster (dh þdg
siRNAs). (D) Analysis of Ago1-purified siRNA 50-ends by enzymatic reactions followed by northern blot as described above.

Analysis of S. pombe centromeric siRNAs
I Djupedal et al

The EMBO Journal VOL 28 | NO 24 | 2009 &2009 European Molecular Biology Organization3836



Sequencing of Ago1-associated siRNAs in S. pombe indi-

cates that 50-monophosphate siRNAs are present (Buhler

et al, 2008). Our analysis corroborated this as we prepared

small RNA libraries in a 50-monophosphate-dependent man-

ner. However, in Caenorhabditis elegans, 50-monophosphate

siRNAs are a minority. The majority of siRNAs have been

reported to have 50-triphosphates in accordance with being

products of an RNA-directed RNA polymerase (Pak and Fire,

2007; Sijen et al, 2007). To determine if 50-triphosphate

siRNAs were also present in S. pombe, we treated small

RNAs with Terminator exonuclease, a 50-exonuclease that

digests RNA with 50-monophosphates. Small RNAs comple-

tely disappear from the centromere after treatment with

Terminator exonuclease, whereas a 50-triphosphate control

oligonucleotide was unaffected (Figure 3B). Furthermore,

small RNAs were not capped by guanylyltransferase

(GTase) that caps 50-di- or triphosphorylated RNA and pro-

duces approximately two-nucleotide slower gel migration. In

addition, GTase-treated small RNAs were digested with

Terminator exonuclease, which cannot digest if a 50-cap is

present (Figure 3C). Finally, in RNA samples purified from

Ago1–FLAG (Buhler et al, 2007), single oligonucleotide

probes, as well as random-primed probes that detect all

small RNAs, detected small RNA with 50-monophosphates

(Figure 3D). These data indicate that sequenced S. pombe

centromeric small RNAs reported here are Dcr1 dependent,

possess 50-monophosphates, and associate with Ago1 in vivo

and thus seem to be true siRNAs.

The 5 0-end of the transcript from the dg cluster forms

a partially double-stranded RNA structure and is

processed by human recombinant Dicer in vitro

The high degree of sequence identity at the centromeric dg

and dh elements could be caused by frequent events of

homologous recombination. Alternatively, functional conser-

vation could maintain important features of the sequence,

such as the ability to form secondary structures. Within the

transcripts from the dg and dh clusters, siRNAs are derived

from several hotspots with intervening cold spots. One

possible explanation is that the transcript itself folds into a

secondary structure that provides a substrate for siRNA

generation. The hotspots would correspond to double-

stranded regions whereas the cold spots would represent

unstructured regions, and the preservation of such a structure

would presumably be selected for in all copies of these

repeats. We decided to investigate the hypothesis that tran-

scripts from the centromeres can form double-stranded struc-

tures, which could be processed by Dcr1, and thereby initiate

siRNA production at the centromeres. To test this, we initially

used M-fold (calculates secondary structures with minimal

free energy) to predict the presence of structured RNA (Zuker,

2003). These analyses encouraged us to directly test for

secondary structure and we selected the 50-end of the tran-

script originating from the dg cluster for secondary structure

probing. The in vitro transcribed fragment, which we call

RevCen, is 432-nt long and starts immediately downstream of

a strong promoter that has been previously characterized

(Djupedal et al, 2005). High-throughput sequencing data

from the rpb7G150D mutant, in which transcription from

the promoter is severely compromised, reveal a sharp reduc-

tion in the number of centromeric siRNAs, including the

downstream dg cluster and the RevCen fragment (Figure 4A

and B). The promoter was originally mapped to the left arm

of centromere I, within the imrIL element. However, the

promoter region is perfectly conserved, present and probably

functional at all outer repeats except from the otr2R-dg

(Figure 4C). The RevCen fragment traverses a 300-bp translo-

cation (Chikashige et al, 1989) from within the dh cluster

(Figure 4D), and siRNAs originating from this extremely well-

conserved sequence are complementary to 10 out of 12 dg

and dh clusters (Figure 4D). The WT levels of transcription of

the reverse strand of the dg cluster, therefore, seem to be

necessary for accumulation of siRNAs from both strands

of the DNA.

The secondary structure of the 432-nt long RevCen RNA

was assessed by enzymatic and chemical probing. The ribo-

nucleases T1, T2, and V1 cleave after unpaired guanosines,

unpaired adenosines and paired/stacked nucleotides, respec-

tively. Lead (II) acetate cleaves the RNA backbone in un-

structured regions without sequence preference. Partial

cleavages were obtained using end-labelled RevCen

(Figure 5A). The method gave structural information cover-

ing the 50-most 350 nucleotides, consistent with a partially

double-stranded hairpin-like structure (Figure 5B). The

siRNA hotspots VIII and VII, of which siRNA VII has been

validated by northern analysis in vivo (Figure 3A), map

within the double-stranded regions of RevCen, and are

indicated in Figure 5B. Less abundantly sequenced siRNAs

(o5 reads per sequence) map along the basic stem loop.

The siRNAs VI and IX correspond to the opposite strand of

the DNA and are not labelled in the figure. Next, we wanted

to test whether this sequence could be a substrate for

Dcr1-mediated cleavage. Indeed, incubation of internally

labelled, in vitro transcribed RevCen with recombinant

Dicer leads to the appearance of small RNA species of the

expected sizes (Figure 5C). Hence, the 50 region of the siRNA

precursor from the dg cluster has the ability to fold into

a partially double-stranded secondary structure that is

recognized and processed by human recombinant Dicer

in vitro.

If Dcr1 processing of primary transcripts contributes to

centromeric silencing in vivo, small RNAs should be synthesized

independently of RDRC activity. Deep sequencing of small RNAs

in rdp1D cells with an Illumina Genome Analyzer (F Simmer

et al, unpublished data), reveals the presence of small centro-

meric RNAs (Figure 6). The total number of centromeric small

RNAs are drastically reduced as compared with WT (Supple-

mentary Figure S4), which reflects the degree of amplification of

the siRNA signal maintained by Rdp1 in WT cells. A fraction of

centromeric small RNAs matching both strands of the DNA

are synthesized independently of Rdp1, of which a few

correspond to the experimentally determined hairpin in

RevCen. These siRNAs show base composition and size

distribution similar to WT and rpb7G150D (Supplementary

Figure S5). Furthermore, the distribution pattern over the

centromeric clusters shows peaks and deserts similar to WT

but with lower amplitude (compare Supplementary

Figure S6 and S7). Thus, small RNA produced in rdp1D
cells resembles those of WT cells.

Production of small RNA from centromeric clusters

is independent of heterochromatin

Small RNA production from centromeres has been suggested

to result from targeting of RITS/RDRC through interactions
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between the chromo-domain of the RITS component Chp1

and H3K9me (Petrie et al, 2005). As Rdp1 is not required for

low levels of siRNA production, we tested whether H3K9me

was also dispensable for this process. We used a strain

carrying a point mutation in the histone H3 gene (H3K9R),

which abolishes methylation of lysine 9 (Mellone et al, 2003).

This strain and isogenic WT were subjected to high-through-

put 454 sequencing and the centromeric regions were exam-

ined (Figure 7). The siRNAs could be detected using this

method but there was a clear relative reduction versus WT

similar to that observed for rpb7G150D. Hence siRNAs are

produced even in the absence of heterochromatin.
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Figure 4 The RevCen fragment. (A) Representation of siRNA from wild type (WT) and rpb7G150D cells at otr2L-dg according to their position
and orientation. (B) Histogram of siRNA size distributions from WT and rpb7G150D cells, siRNA length in nucleotides on x-axis, and
percentage of number of siRNA on y-axis. (C) Sequence alignment of the RevCen promoter region characterized in Djupedal et al (2005) in the
dg repeats from all centromeres. Coordinates are: otr1L-dg from 3752406, otr1R-dg from 3778228, otr2L-dg from 1604242, otr3L-dg from
1073094, and otr3R-dg from 1137620. The region is not present in otr2R-dg. The arrow indicates the direction of transcription. (D) Sequence
alignment showing the 340-nt translocation present in all dh and dg elements from the three centromeres, one dh and dg repeat per
chromosome arm is shown as they are identical. The siRNAs VII and VIII are shown in boxes with orientation. Coordinates are: otr1R-dh from
3781697, otr2L-dh from 1611493, otr2R-dh from 1636391, otr3L-dh from 1088967, otr3R-dh from 1109980, otr1L-dg from 3763484, otr1R-dg from
3784652, otr2L-dg from 1604792, otr3L-dg from 1082192, and otr3R-dg from 1116691. The region is not found in otr1L-dh and otr2R-dh.
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Discussion

Small RNAs mediate complex networks of gene regulation in

plants and animals. The yeast S. pombe has one of the most

basic RNAi systems, which function in both post-transcrip-

tional and transcriptional gene silencing. S. pombe is an

established model organism for the study of the latter.

Here we present a deep sequence analysis of small RNA in

S. pombe. As in previous analyses of Ago1- or RITS-asso-

ciated siRNAs (Cam et al, 2005; Buhler et al, 2008), large

fractions of WT small RNAs match the repetitive regions

of the centromeres and protein-coding genes. The deep
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Figure 5 Secondary structure determination of RevCen. (A) Secondary structure probing of in vitro transcribed, [g-32P]ATP 50-end-labelled
RevCen RNA analysed on polyacrylamide gels. Partial RNA cleavages were performed as described in Materials and methods section. An OH
ladder and a T1 ladder were used to assess cleavage positions. The positions of G residues are marked on the right. (B) Refined prediction of the
RevCen secondary structure using the Mfold software using constraints from structural probing data in (A). The siRNAs VII and VIII are
indicated in light and dark orange. The grey shade indicates the part of RevCen, which could not be resolved. Nucleotides are highlighted with
different colours to show probe-dependent cleavage, as indicated in the colour key. (C) Cleavage of RevCen by human Dicer in vitro. RNA
fragments ranging from 21–33 nt were formed when treating RevCen with recombinant human Dicer. RNA was labeled after incubation. The
increasing dose of Dicer is indicated. Incubation times were as follows: 5 min for lanes 1 and 4; 30 min for lanes 2 and 5; 2 h for lanes 3, 6 and 7.
Concentrations of Dicer: lane 7: 0 units; lanes 1–3: 0.1 units and lanes 4–6: 1.0 units.
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sequence analysis of small RNA from the rpb7G150D mutant

strain resulted in a larger number of sequences and relatively

few small RNA from the repetitive regions of the centromeres,

and thus more genes with matching small RNA were found.

Nearly all protein-coding genes with small RNA matches in

the WT sample also match small RNAs in the mutant sample,

which supports the existence of these molecules in vivo. It

has been shown previously that most siRNA-matching genes

are sense to gene direction (Cam et al, 2005; Buhler et al,

2008). In this study, all small RNAs that matched genes were

WT

VIII VIIotr2L-dg
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Figure 6 Reduction of centromeric siRNAs in rdp1D cells compared with wild type (WT), here displayed at otr2L-dg. Representation of the
RevCen stem loop, in sense orientation, containing the siRNAs VII and VIII. Matching sequenced siRNAs in wild type and in rdp1D
are represented by arrows according to their position, orientation, and length; pink¼ 14–19 bases, red¼ 20–21 bases, green¼ 22–23 bases,
blue¼ 24–25 bases, and grey 425 bases. Each arrow represents a region with a matching siRNA; thicker arrows indicate regions with multiple
siRNAs on a log scale.

Figure 7 Detection of centromeric siRNAs in H3K9R cells as compared with isogenic wild type at cen I otr1L-dg. Each arrow represents a
sequenced RNA, colour code as in Figure 2C. Position within chromosome on x-axis is given in kb. Location of RevCen is marked with red arrow.
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sense to gene direction, indicating that they may be processed

from mRNA transcripts. It has been reported that siRNAs

have an additional role in the regulation of transcriptional

termination at convergent transcribed genes (Gullerova and

Proudfoot, 2008). Double-stranded RNA was detected and

transient RNAi-dependent heterochromatin was shown to

form in the intergenic region of three convergently tran-

scribed gene pairs. Under the growth conditions used here,

both genes are actively transcribed at only one of these gene

pairs and we detected small RNAs at this gene pair

(Supplementary Figure S1). However, more specific condi-

tions may be required to detect more small RNAs at such

regions, for example, before, during, and after the S-phase.

The deep sequence analysis of small RNA from S. pombe

presented here is not likely to be saturated. A higher number

of sequenced small RNA from WT cells should reveal rare

small RNAs that are not covered by this analysis.

Furthermore, RNA samples from different growth conditions

or from cells that are synchronized in different phases of the

cell cycle would probably generate different small RNA

profiles as a reflection of the active regulatory mechanisms.

Being a genetically tractable organism, S. pombe may also

serve as an excellent model for understanding the basis of

post-transcriptional RNAi.

The repetitive, heterochromatic centromeres of S. pombe

were previously shown to be transcribed and abundant for

siRNAs (Volpe et al, 2002; Cam et al, 2005; Sugiyama et al,

2005; Buhler et al, 2008). We provide a detailed description of

these centromeric sequences. Two types of small RNA clus-

ters, 2.1- and 2.3-kb long and overlapping the dg and dh

elements, are reiterated two or more times at each centro-

mere and account for most of the small RNAs in WT cells.

A promoter upstream of the dg cluster has been characterized

and northern blots probed for dg or dh reveal centromeric

transcripts to be up to 2.4 kb in size (Volpe et al, 2002;

Djupedal et al, 2005). Therefore, these clusters seem to

correspond to transcription units, whose transcripts are pro-

cessed into siRNAs. Furthermore, the dg cluster traverses the

2.1-kb fragment that was demonstrated to be required for

centromere function (Baum et al, 1994). In conclusion, only

specific regions of the dg and dh elements are transcribed and

subsequently processed into siRNAs, and at least one such

region is required for centromere function.

A 300-bp translocation is common to both small RNA

clusters and most siRNAs are found in regions of perfect, or

near perfect, sequence identity in between dg and dh ele-

ments from the centromeres. It would therefore be possible

for one such siRNA to recruit RITS in trans to all peri-

centromeric heterochromatin loci in S. pombe. Conse-

quently, siRNA production at one cluster could suffice to

direct formation of heterochromatin to all centromeres.

Trans-activity of siRNAs could be facilitated by the clustering

of the centromeres throughout the cell cycle (Funabiki et al,

1993; Appelgren et al, 2003), causing accumulation and high

local concentrations of centromere-specific siRNAs at these

compartments. If trans-activity is an important function for

centromeric siRNAs in S. pombe, high degrees of sequence

identity between dg and dh elements at the centromeres

would be selected and maintained.

How are centromeric transcripts processed into siRNA?

Each type of cluster has a distinct pattern of siRNAs. There is

a non-random distribution of siRNAs within the clusters and

siRNAs have significantly higher GC content than the sur-

rounding sequence (Supplementary Figure 3). This may

indicate that the stability of base pairs formed is relevant

for the selection or accumulation of siRNAs. Detailed analysis

of the deep sequencing data reveals accumulation of small

RNAs with the same basic sequence, but of variable length

due to different start and/or stop nucleotides. This indicates

that S. pombe Dcr1 does not cleave at specific nucleotides.

The dcr1 gene lacks the PAZ domain, a typical feature of Dicer

proteins. The distance between the PAZ and the RNase III

domains determines the length of the siRNAs (Lingel et al,

2003; Macrae et al, 2006). The size specificity of Dcr1 was,

therefore, suggested to be determined by additional factors

in vivo (Colmenares et al, 2007). We have observed a few

examples of sequential Dcr1 cleavage, in which the

30-end of one abundant siRNA is adjacent to the 50-end of

another siRNA. Similarly, we have observed examples of

siRNAs of opposite orientation with the typical two-nucleo-

tide 30 overhang that is expected of Dcr1 cleaving double-

stranded siRNA precursors. However, there does not seem to

be a general defined sequential cleavage of siRNA precursors

by Dcr1, as there is very little accumulation of phased siRNAs

or siRNA passenger strands from the centromeres. Instead,

we observe a few specific siRNAs from within the clusters that

accumulate in high number. In conclusion, highly abundant

siRNAs neighbour regions with no or very few siRNAs.

Are there different classes of small RNAs in S. pombe?

Unlike the two previous studies, which reported RITS-asso-

ciated small RNA to be 20–22 nt long (Cam et al, 2005) and

Ago1-associated small RNA to be 21–23 nt long (Buhler et al,

2008), we found the size distribution of total, WT small RNA

to be between 21 and 25 nucleotides (Figure 1A). The size

distribution of small RNAs from the rpb7G150D sample has a

statistically significant increase in small RNAs p21 nt versus

small RNAs X22 nt as compared with the WT sample. This

could, in part, be due to the depletion of centromeric siRNAs

that are predominantly 22–23 or 25 nt in length in the WT

(Figure 4B). The difference in size between the WT small

RNAs from our study and siRNAs reported to associate with

Ago1 could be due to different experimental techniques.

However, Ago1-associated siRNAs were also reported to

have a much stronger bias towards uridine as the 50-starting

nucleotide (Buhler et al, 2008). The smaller size and 50-

uridine may be preferred features for Ago1 loading and/or

retention. We have, however, validated the most frequently

sequenced centromeric small RNAs by northern blots and

also detected these in association with Ago1. As described

above, small RNAs of different lengths are produced from the

same sequence and northern analyses of centromeric siRNAs

from several studies show siRNA signals of up to 25 nt in

S. pombe (Motamedi et al, 2004; Li et al, 2005; Buhler et al,

2006, 2007). If 21–23 nt length and 50-uridines are preferred

by Ago1, we conclude that small RNAs of variable size and

start/stop nucleotide are synthesized and accumulate in WT

S. pombe cells.

In C. elegans, two classes of siRNAs have been reported:

rare primary siRNAs that are generated by Dicer cleavage and

abundant secondary siRNAs that are short products of an

RNA-directed polymerase, and as such have triphosphory-

lated 50-termini (Pak and Fire, 2007; Sijen et al, 2007). As in

C. elegans, the RNA-dependent polymerase Rdp1 is necessary

for detectable siRNA accumulation and transcriptional
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silencing in S. pombe (Volpe et al, 2002; Motamedi et al,

2004; Sugiyama et al, 2005). To determine whether S. pombe

siRNAs are synthesized in the same pathways as in

C. elegans, we investigated the structure of the 50-termini of

small RNAs and found the majority of small RNAs to have

50-monophosphate groups. Therefore, most small RNAs in

S. pombe seem to be products of Dcr1 cleavage of double-

stranded siRNA precursors. We conclude that unlike the RNA-

directed RNA polymerases in C. elegans, which generate

several short transcripts along the length of the RNA tem-

plate, Rdp1 of S. pombe predominantly generates full-length

double-stranded RNA that is subsequently cleaved into

siRNAs by Dcr1. If there are primary and secondary siRNAs

in S. pombe, these have routes of synthesis different from

those in C. elegans.

The reduction in size of small RNAs in the sample from the

rpb7G150D mutant may, however, indicate that there are

different classes of small RNAs in S. pombe, the ‘longer’

small RNAs, 24–25 nt in length, which are produced through

transcription of centromeric repeats, and shorter small RNAs

that are produced through a distinct pathway. We suggest that

primary siRNAs could be produced by direct Dcr1-mediated

cleavage of nascent transcripts that are folded into hairpin-

like structures, whereas secondary siRNAs originate from

Dcr1-mediated processing of Rdp1-generated double-

stranded RNA. This would be similar to the production of

trans-acting (ta-)siRNAs in Arabidopsis thaliana, whereby

miRNA cleavage triggers production of dsRNA and ta-

siRNAs (Chapman and Carrington, 2007). Unlike miRNAs,

which cleave the ta-siRNA precursor transcript in trans,

primary siRNAs in S. pombe could function both in cis and

in trans. For example, siRNA VII and VIII could represent

primary siRNAs whereas siRNA VI and IX, which are of the

opposite orientation, could be secondary siRNA products

(Figure 2A). In WT, there was a bias for centromeric

siRNAs from the more highly transcribed reverse strand,

whereas siRNAs associated with Ago1 (Buhler et al, 2008)

were slightly biased for the opposite strand. The shift in

strand bias could be due to differences in routes of synthesis

whereby Dcr1-mediated cleavage of nascent transcripts to

generate minus-strand-biased primary siRNAs might occur

before Ago1 localization to these loci and subsequent produc-

tion of secondary siRNAs from both strands. Alternatively,

production of primary siRNAs by cleavage of the nascent

transcript may occur at some distance from the chromatin

and be unavailable for association with Ago1. The slight bias

for the positive strand among Ago1-associated siRNAs is

logical if the reverse strand, which accumulates more highly,

is the primary target for Ago1-mediated transcript cleavage.

Do transcripts from centromeric small RNA clusters form

double-stranded secondary structures? In plants and animals,

miRNAs are processed from transcripts that fold back

on themselves to form double-stranded hairpin structures.

In S. pombe long inverted repeats form hairpin structures that

are processed into siRNAs, which mediate post-transcrip-

tional (Raponi and Arndt, 2003), as well as transcriptional

gene silencing (Iida et al, 2008). By using the M-fold algo-

rithm on the first 500 nucleotides from the dg cluster, a

hairpin-like structure was predicted and we therefore decided

to experimentally determine the secondary structure of the

transcript. Owing to the difficulty of experimentally determin-

ing the full length transcript of 42 kb, we selected for

structural probing a 432-nt sequence immediately down-

stream of the characterized promoter that traverses the

translocation common to both types of small RNA clusters.

The tentative secondary structure of the 350-nt region that

was resolved was partially double-stranded and reminiscent

of the structures of the pre- and pri-miRNA substrates of

Dicer and Drosha. This sequence was recognized by human

recombinant Dicer and processed into small RNA in vitro.

Furthermore, small RNAs from within the double-stranded

structure are present in rdp1D cells. This demonstrates a

route of synthesis that does not involve secondary strand

production by this RNA-directed polymerase, but rather by

Dcr1 cleavage of primary transcripts. These primary tran-

scripts may be folded into hairpins or, alternatively, primary

transcripts from opposite strands may be paired. We suggest

the former alternative, which is in accordance with the

reported strand bias of centromeric small RNAs. This model

is consistent with the finding that siRNA can be produced at

low levels even in the absence of heterochromatin, as RITS/

RDRC targeting by H3K9me would not be required. All that

would be necessary for siRNA production is transcription

of centromeres by RNA pol II, RNA folding, and Dicer

processing.

Finally, there is strong experimental support for the current

model of a positive feedback loop (Noma et al, 2004;

Sugiyama et al, 2005), in which siRNAs are produced from

Rdp1-generated double-stranded siRNA precursors in cis to

transcription. We propose that, in addition to the current

model, information in the primary sequence of the DNA may

help de novo formation of heterochromatin in situations in

which both H3K9me and centromere-specific siRNA are lost.

The half-life of siRNAs in S. pombe is not known, and if these

are only produced in a short window of the cell cycle after

replication of the DNA (Chen et al, 2008; Kloc et al, 2008),

it is plausible that there may be depletion of siRNAs when

cells have been in stationary phase for long periods of time

or when spores are re-entering the cell cycle after quiescence.

It remains to be proven, however, that the secondary struc-

ture formed in vitro has a biological role in heterochromatin

formation in vivo.

Materials and methods

Yeast strains and medium
Yeast strains, listed in Supplementary Table S1, were grown in YEA
medium and were collected in log phase.

Small RNA library preparation. Total nucleic acid was extracted
from cells in log phase, and purified according to the method given
by White and Kaper (1989). The siRNAs (15–30 nt), from 500mg of
total nucleic acid, were excised from a 15% denaturing acrylamide
gel (0.5� TBE, 0.42 g/ml urea, 15% 19:1 acrylimide:bisacryli-
mide). After elution from the gel (twice incubated with rotation at
41C in 0.3 M NaCl for several hours), small RNAs were precipitated
with glycogen, sodium acetate and ethanol. A 50-adapter (TGGGAAT
TCCTCACTaaa, lowercase bases are RNA) was ligated to the small
RNA (20 mM adapter, 15% DMSO, 50 mM Tris–HCl (pH 7.6), 10 mM
MgCl2, 10 mM 2-ME, 0.2 mM ATP, 0.1 mg/ml BSA, 1 U/ml T4 RNA
ligase and 1 U/ml RNase inhibitor) before gel extraction (30- to 50-nt
fragments) and elution as above. After precipitation, a 30 adapter
(uuuCAATCCATGGACTGT) was ligated in the same manner, gel
extracted (50–70 nt), eluted and precipitated. The adapter-ligated
small RNA was subjected to reverse transcription using standard
protocols and SuperScript RT II (Invitrogen). Reverse transcription
reactions were stopped by addition of 150 mM KOH, 20 mM Tris
base and neutralized with HCl (final volume approximately 180ml).
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50ml of this was used as template for PCR (50-GCCTCCCTCGCGCC
ATCAGTGGGAATTCCTCACT-30 and 50-GCCTTGCCAGCCCGCTCAGA
CAGTCCATGGATTG-30). PCR products were gel extracted on a
native polyacrylamide gel (0.5� TBE, 10% 19:1 acrylimide:
bisacrylamide). The 90–105-nt products were excised and
eluted. Purified amplicons were sent to 454 Life Sciences for
pyrosequencing.

Sequence analysis. Raw sequences were searched for adapter
motifs. Where both adapters were identified, the sequence in
between was extracted and positioned on the S. pombe genome
(GeneDB) using a local alignment script. Only small RNAs with a
perfect genomic match were included in further analyses and small
RNAs matching the transcribed strand of tRNA, rRNA, or other
structural RNAs were removed from further analyses. Genome
annotation was collected from geneDB, http://www.sanger.ac.uk/
Projects/S_pombe. Analyses of small RNA size and strand bias were
performed using Perl scripts (available on request). Sequence
alignments were performed using DNAMAN 4.13.

Northern blots
The RNA extraction was carried out as described above. Small
RNAs were concentrated by precipitating away large RNAs with 7%
PEG 8000, 0.5 M NaCl, and then by ethanol precipitation.

For Ago1-associated small RNA preparation S. pombe cultures
(3� Flag-ago1:KanMX6) were grown to a cell density of 108 cells
per ml in 4� concentrated YES medium. For each sample 10 g of
cells were lysed in solid phase in the presence of liquid nitrogen
using a mortar grinder (Retsch) for 30 min. Extracts were prepared
by dilution of the crushed cells in 20 ml lysis buffer (50 mM HEPES-
NaOH (pH 7.5), 150 mM NaCl, 2 mM MgCl2, 0.1% NP-40, 5 mM
DTT, yeast protease inhibitors (Sigma), Superasin (Ambion), and
0.2 mM PMSF), and filtered through GD/X 1.6mm (Whatman).
Immunoprecipitations were performed using 20 mg of M2 anti-Flag
antibody (Sigma) coupled to 4 ml protein G Dynabeads resin
(Invitrogen) for 15 min. The RNA samples bound to Dynabeads
were washed with lysis buffer, treated with 200 ng/ml proteinase K
(Sigma) for 2 h in TENS/2 buffer (25 mM Tris–HCl (pH 7.5), 5 mM
EDTA, 50 mM NaCl, and 0.5% SDS) at 371C, extracted with phenol/
chloroform (5:1; pH 4.7), and ethanol precipitated.

Enzymatic reactions: the small RNAs were further purified on
12% polyacrylamide, 8 M urea gel in 1� TBE, eluted, precipitated
and desalted. Enzymatic reactions were performed according to the
manufacturer’s instruction: guanylyltransferase (Epicentre), Termi-
nator exonuclease (Epicentre) and T4 RNA ligase (New England
Biolabs).

Northern blot: the RNAs were run on denaturing polyacrylamide
gels as above, electrotransferred onto Hybond-NX membranes
(Amersham) and UV-cross-linked. Membranes were hybridized
overnight at 421C in 0.5 M NaPO4 (pH 7.2), 7% SDS, and 1 mM
EDTA. Probes were either radioactively phosphorylated oligos or
random-primed dh or dg PCR fragments (see Supplementary Table
S2 and S3). Membranes were washed twice at 421C in 2� SSC,
0.2% SDS.

Structural probing
Genomic DNA was used as template for amplification of the RevCen
sequence (432 bp) from chromosome I using High Fidelity Expand
Polymerase (Roche Applied Science) and the forward primer
containing a T7 RNA polymerase promoter (underlined); RevCenF
(50-GAAATTAATACGACTCACTATAGCGGTTTTCATTGTGTATCATCTT
CCTGG-30). Reverse primer: RevCenR (50-ATGGTACCAAAGCTCG

AACATAGAAAGAAATCC-30). The PCR product was purified using a
Qiagen gel purification kit.

The PCR product carrying the T7 promoter was in vitro
transcribed using T7 RNA polymerase (Ambion). Removal of the
DNA template was performed using DNase I Amp Grade (Invitrogen)
and stopped with 2.5 mM EDTA. The RevCen RNA was purified on an
8% polyacrylamide, 7 M urea, 1� TBE gel. The RNA was excised
and eluted from the gel in a shake incubator overnight at 41C. The
eluted RNA was precipitated and re-suspended in 50ml RNase-free
water. About 10 pmol of RevCen RNA was dephosphorylated by 1 U of
shrimp alkaline phosphatase (Fermentas), phenol-extracted and
precipitated. About 10 pmol dephosphorylated RevCen RNA were
incubated in 10 U T4 polynucleotide kinase (PNK) (Fermentas) and
20mCi [g-32P]ATP (Perkin Elmer) for 15 min at 371C. The labelled
RNA was purified from an 8% denaturing polyacrylimide gel as
described above. Secondary structure probing was performed using
50-end-labelled RevCen RNA. For each reaction, 0.1 pmol RNA was
denatured before addition of 1mg yeast tRNA (Ambion) and TMN
buffer (to a concentration 20 mM Tris–Cl (pH 7.6), 100 mM Na
acetate, 5 mM Mg acetate) to a final volume of 10ml. The reaction
mixture was incubated for 5 min at 301C before addition of
ribonuclease T1, V1 (Ambion), or T2 (Invitrogen), or lead (II)
acetate (Merck). Ribonucleases were used at concentrations of
2�10�3 and/or 4�10�3 U/ml for 5 min at 301C. Lead (II) acetate,
prepared fresh, was added in a final concentration of 2 mM and
incubated for 30 s, 1 min and 5 min at 301C. All reactions were
stopped by the addition of 50 mM EDTA and 1 volume of denaturing
loading dye. T1 ladders (G-specific cleavages) used as markers were
obtained under denaturing conditions (Brunel and Romby, 2000),
and alkaline hydrolysis ladders were obtained according to the
manufacturer’s protocol (Ambion). Samples were analysed on 6, 8,
or 15% denaturing polyacrylamide gels. Gels were dried and exposed
to PhosphoImager screens, and analysis was performed using
ImageQuaNT software.

Sequence analysis and RNA secondary structure prediction
RNA secondary structure predictions were performed using Mfold
version 2.3 with constraints based on the results from structural
probing.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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