
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A DNA Polymerase alpha Accessory Protein, Mcl1, Is Required
for Propagation of Centromere Structures in Fission Yeast

Citation for published version:
Natsume, T, Tsutsui, Y, Sutani, T, Dunleavy, EM, Pidoux, AL, Iwasaki, H, Shirahige, K, Allshire, RC &
Yamao, F 2008, 'A DNA Polymerase alpha Accessory Protein, Mcl1, Is Required for Propagation of
Centromere Structures in Fission Yeast' PLoS One, vol 3, no. 5, e2221, pp. -. DOI:
10.1371/journal.pone.0002221

Digital Object Identifier (DOI):
10.1371/journal.pone.0002221

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS One

Publisher Rights Statement:
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28967238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1371/journal.pone.0002221
http://www.research.ed.ac.uk/portal/en/publications/a-dna-polymerase-alpha-accessory-protein-mcl1-is-required-for-propagation-of-centromere-structures-in-fission-yeast(5e43003f-346d-48b3-ac4f-d363bde98173).html


A DNA Polymerase a Accessory Protein, Mcl1, Is Required
for Propagation of Centromere Structures in Fission
Yeast
Toyoaki Natsume1¤a, Yasuhiro Tsutsui1*, Takashi Sutani2, Elaine M. Dunleavy3¤b, Alison L. Pidoux3,

Hiroshi Iwasaki4, Katsuhiko Shirahige2, Robin C. Allshire3, Fumiaki Yamao1

1 Division of Mutagenesis, National Institute of Genetics, Mishima, Shizuoka, Japan, 2 Laboratory of Genome Structure & Function, Center for Biological Resources and

Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan, 3 Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences,

The University of Edinburgh, Edinburgh, Scotland, United Kingdom, 4 Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences,

Yokohama City University, Yokohama, Kanagawa, Japan

Abstract

Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms
involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin
domains: the central CENP-ACnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission
yeast Mcl1, a DNA polymerase a (Pola) accessory protein, is critical for maintenance of centromeric chromatin. In a screen
for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is
allelic to mcl1. The mcl1-101 mutation causes reduced CENP-ACnp1 in the central domain and an aberrant increase in histone
acetylation in both domains. These phenotypes are also observed in a mutant of swi7+, which encodes a catalytic subunit of
Pola. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pola. These results suggest that
Mcl1 and Pola are required for propagation of centromere chromatin structures during DNA replication.
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Introduction

The kinetochore is a multi-protein complex that assembles at

the centromere and mediates attachment of chromosomes to

spindle microtubules to ensure accurate chromosome segregation

at mitosis. The kinetochore is assembled on specialized chromatin

containing the histone H3 variant CENP-A and this domain is

flanked by pericentric heterochromatin. Pericentric heterochro-

matin–typified by underacetylation of histone tails and methyla-

tion of lysine 9 of histone H3–is bound by heterochromatin protein

1 (HP1) and is required for the recruitment of a high density of

cohesin and for the cohesion of sister centromeres.

The DNA sequences of centromeres are not conserved between

eukaryotes and, indeed, primary DNA sequence appears not to be

an absolute determinant of kinetochore position in most organisms

[1–3]. Thus, propagation of a particular epigenetic mark could

play a pivotal role in propagation of the site of kinetochore

assembly. A likely candidate for this mark is CENP-A. To precisely

transmit genomic information to daughter cells, these chromatin

structures must be maintained during the cell cycle. This is

especially the case upon DNA replication when these chromatin

structures must be disassembled and reassembled (for review, see

[4]). One possibility is that parental CENP-A is redistributed to

daughter strands during DNA replication, and the gap is

immediately replenished by newly synthesized CENP-A, to

reestablish a functional kinetochore. In this case, tight coupling

of CENP-A deposition to replication of centromeric DNA would

be required to avoid misincorporation of histone H3. However, in

both S. pombe and mammalian cells there is evidence that CENP-A

can be incorporated at centromeres outside S phase [5–9]. In S.

pombe, expression of Cnp1 peaks in G1-phase prior to canonical

histone H3 and centromeres are replicated in early S-phase

[10,11]. In humans, expression of CENP-A peaks in G2 phase [5]

and it has been demonstrated that newly synthesized CENP-A is

incorporated at centromeres in a discrete window in G1 [12]

Fission yeast centromeres resemble those of vertebrates in that

the kinetochore domain is found embedded in pericentric

heterochromatin. More precisely, fission yeast centromeres are

composed of two domains: the central core region (cnt), where the

kinetochore assembles and the outer repeat region (otr), which is

packaged as heterochromatin and bound by the HP1 equivalent

Swi6 [13,14]. S. pombe CENP-A (Cnp1) and some histone H3

containing nucleosomes that are dimethylated on lysine 4 of

histone H3 are associated with the central core domain. Central

domain chromatin structure is distinct; partial digestion with

micrococcal nuclease produces a smear pattern when hybridized
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with a central core probe in contrast to the canonical ladder

pattern observed for the rest of the genome. This unusual

chromatin structure correlates with a functional state of fission

yeast centromeres [11,15–17]. Marker genes inserted into fission

yeast centromeres are transcriptionally silenced [18,19] and

alleviation of silencing at either the central core or outer repeat

heterochromatin has been correlated with loss of centromere

function [19–22]. In addition, it has been observed that mutants

affecting silencing at the central core have no effect on silencing at

the outer repeats. Moreover, most mutants affecting silencing at

the outer repeats have little or no effect on silencing at the central

core. For example, cells lacking Swi6 display alleviation of

silencing at the outer repeats of the centromere with no effect

on the central core [19], whereas mutant alleles of the kinetochore

component mis6 alleviate silencing at the central core of the

centromere but silencing at outer repeat heterochromatin is

unperturbed [23]. Alleviation of central core silencing has been

used to identify kinetochore proteins and factors that affect Cnp1

incorporation in the central domain [9,22]; indeed, mutations in

cnp1 itself lead to alleviation of central core silencing [24].

Both central core and heterochromatin domains and their

associated proteins are required for full centromere activity [25].

The majority of mutants that alleviate silencing (and concomi-

tantly function) of the centromere are specific for only one of the

domains. In an effort to probe the functional relationships between

the two domains and the two types of chromatin we implemented

a screen to identify cos mutants (central core and outer repeat

silencing) which alleviate both central core and outer repeat

silencing. From this screen, several mcl1 mutants were identified.

We have further analyzed the role of Mcl1 and its binding partner,

Swi7 that is a catalytic subunit of DNA polymerase a (Pola), in

centromere chromatin structures. The mcl1 and swi7 mutants show

defective chromatin structure and impaired CENP-A association

at the kinetochore domain. Importantly, acetylation of N-terminus

tail of histone H4 was aberrantly increased in mcl1 and swi7

mutants, and some of mcl1 phenotypes were partially suppressed

by overexpression of some histone deacetylase genes. Finally, Mcl1

and Swi7 formed S-phase foci in the nucleus that overlapped with

the replication processivity clamp PCNA. These results suggest

that Mcl1 and Pola maintain the hypoacetylated state of

kinetochore domain leading to the efficient kinetochore reassem-

bly during DNA replication. We also observed alleviation of

transcriptional gene silencing and increased acetylation of histone

H4 at the heterochromatin domain, providing an important role

of DNA replication machinery in epigenetic inheritance of

centromere structures.

Results

Isolation of central core and outer repeat silencing (cos)
mutants

In order to identify candidate factors required for the

propagation of chromatin states at centromeres, a screen was

performed to isolate fission yeast mutants that alleviate silencing of

both central core (kinetochore) and outer repeat (heterochromatin)

domains of the centromere. UV-mutagenesis was performed on a

strain containing different marker genes inserted at various silent

chromatin domains: the central core of centromere 1 (cnt1:arg3+),

the outer repeat of centromere 2 (otr2:ura4+), respectively, and a

telomere (tel1L:his3+) (Figure 1A) [22]. Mutants were identified that

grew faster than wild-type on both -Arg plates and -Ura plates, but

did not grow on -His plates, indicating that central core and outer

repeat silencing was alleviated, but telomeric silencing remained

intact. Thirteen cos (central core and outer repeat silencing)

mutants were isolated which fell into 5 complementation groups,

cos1 to cos5 (data not shown). Further phenotypic characterization

of the cos1 mutants was performed. All cos1 mutants are

temperature sensitive and fail to form colonies at 36oC

(Figure 1B). cos1 mutants alleviate silencing of the ura4+ marker

in the centromere outer repeat of cen2 as evidenced by increased

growth on -Ura plates; reciprocally, they fail to grow well on the

counter-selective drug on 5-fluoroorotic acid (5-FOA). Outer

repeat silencing was also assessed in strains in which ade6+ was

inserted in centromere 1 (otr1R(SphI):ade6+); wild-type strains form

red colonies on media containing limiting adenine due to

transcriptional silencing, whilst heterochromatin mutants such as

rik1D strongly alleviate outer repeat silencing and form white

colonies [14,26]. All cos1 alleles produced a pale pink colour in this

assay suggesting that heterochromatin may not be completely

dismantled in these mutants (Figure 1C).

cos1 mutants display chromosome segregation defects
including lagging chromosomes

cos1 mutants were found to show sensitivity to the microtubule-

disrupting drug Thiabendazole (TBZ) (Figure 2A). Mutants in

centromere function are often impaired in their ability to interact

with microtubules and the presence of TBZ exacerbates this

defect, reducing cell viability, but has only a very mild effect on

wild type growth. Mutant strains that alleviate central core

silencing such as sim4 or outer repeat silencing, such as swi6D,

display defective chromosome segregation, with high rates of

lagging chromosomes on late anaphase spindles [19–22,27]. To

investigate whether cos1 mutations result in chromosome segrega-

tion defects or abnormal cell morphology, cos1 mutants and wild-

type strain were harvested from log phase cultures grown at

permissive and restrictive temperatures (6 hours at 36oC). Cells

were fixed and stained with anti-a-tubulin antibody to decorate

microtubules and 4-,6-diamidino-2-phenylindole (DAPI) to stain

for DNA. Cells were then viewed and analyzed for the presence of

segregation defects (n = 200). Segregation defects were rarely seen

in wild-type strain (approximately 0.5% at 25uC and 36uC). cos1

mutants displayed multiple forms of chromosome missegregation,

including lagging chromosomes at anaphase and unequal

segregation of DNA (Figure 2B). The frequency of lagging

chromosomes was determined for each cos1 mutant allele, with

cos1-7 showing the highest degree of segregation defects (13.4% at

25uC and 52% at 36uC) (Figure 2C). Lagging chromosomes and

unequal segregation may suggest a role for the cos1+ gene product

in establishing correct microtubule-kinetochore attachments or

biorientation of the centromere.

Cloning of cos1+ and identification of cos1 mutations
cos1+ was cloned by complementation of the temperature

sensitivity of cos1-86 using an S. pombe genomic library. The

complementing plasmid also reimposed silencing at both centro-

meric domains, and was found to contain two ORFs: one

encoding a putative DNA-directed RNA polymerase III complex

subunit, rpc82+ (SPAPB1E7.03) and a 2,548 bp ORF

(SPAPB1E7.02) encoding mcl1+[28]. The entire region covering

the rpc82 and mcl1 ORFs were sequenced in wild-type and cos1

mutants. cos1 mutants were found to have no mutation in the rpc82

ORF but the following mutations in the mcl 1 ORF: cos1-7, G242R

(G to A mutation); cos1-17, V233E (T to A mutation); cos1-22,

A574D (G to A mutation); cos1-38, G622E (G to A); cos1-86,

Q765STOP (C to T), indicating that cos1 is allelic to mcl1.

Mcl1 was previously identified in a screen for mutants that

exhibit frequent mini-chromosome loss. Mcl1 is a homologue of

budding yeast Ctf4 and is conserved from yeast to human and

Role of Mcl1 at Centromeres
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Figure 1. cos1 mutants alleviate central core and outer repeat silencing. (A) Schematic representation of FY3027 used to isolate mutants
defective in central core and outer repeat silencing. FY3027 contains arg3+ at the central core of centromere 1 (dark blue) to monitor alleviation of
central core silencing [cnt1:arg3+], ura4+ at the outer repeat of centromere 2 (green) to monitor alleviation of outer repeat silencing [otr2:ura4+], his3+

at telomere 1 (light blue) to monitor alleviation of silencing at telomeres [tel1L:his3+] and ade6+ at the central core of cen3 [cnt3:ade6+] [22]. Note that
the ade6+ marker gene was not used for analysis. (B) Tenfold dilutions were plated onto non-selective (N/S) EMM or appropriate plates. cos1 mutant
alleles alleviate silencing at the central core and outer repeats but do not affect silencing at the telomere. cos1 mutants are temperature sensitive for
growth and fail to form colonies on Phloxin B at 36uC. (C) cos1 mutants alleviate silencing of ade6+ gene inserted at otr1R. (upper panel) Schematic
diagram of the ade6+ gene inserted at the outer repeats of centromere 1. (lower panel) Strains were plated on low adenine supplemented YES plates.
In wild-type cells (FY1180), ade6+ is silenced and colonies are red in colour. cos1-86, cos1-7, cos1-22 and cos1-38 were found to partially alleviate
silencing at the outer repeats and were pink in colour.
doi:10.1371/journal.pone.0002221.g001

Role of Mcl1 at Centromeres
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Figure 2. Chromosome segregation defects in cos1/mcl1 mutants. (A) cos1 mutants are sensitive to the microtubule destabilizing drug TBZ.
Tenfold serial dilutions were spotted onto YES media containing 10 mg/ml TBZ. (B) Wild-type and cos1/mcl1 mutant cells were grown at 25uC or at
36uC for 6 hours before fixing and staining with anti-a-tubulin antibody (green) and DAPI stained DNA (red). Bar, 3 mm. (C) Frequency of lagging
chromosomes in cos1/mcl1 mutants. Lagging chromosomes were counted in cells with late anaphase spindles and are given as a percentage of total
number of cells in anaphase (n = 200). Lagging chromosomes were very rare in wild-type (0.5–0.58%) at both temperatures.
doi:10.1371/journal.pone.0002221.g002

Role of Mcl1 at Centromeres
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members of this family contain WD40 repeats in their N-terminus

that might provide a protein-protein interaction surface. The mcl1-

1 mutant shows aberrant mitosis such as unequal segregation and

lagging chromosomes, and exhibits a defect in sister chromatid

cohesion at centromeres that holds sister kinetochores together

until anaphase [28]. cos1 mutants isolated here showed similar

phenotypes (Figure 2).

In parallel, we performed a screen for mutants that are

synthetically lethal with the null mutation of the rad2+ gene (slr).

Rad2 is the S. pombe homologue of Rad27/FEN1 nucleases

involved in Okazaki fragment processing during lagging strand

synthesis. Among these slr mutants, the slr3-1 was found to be a

mutation in the mcl1 gene (mcl1-101) and this mutant showed

sensitivity to DNA damaging agents such as MMS and HU. In

addition, the mcl1+ gene displayed genetic and physical interac-

tions with the swi7+ gene that encodes the largest subunit of Pola,

suggesting Mcl1 is involved in lagging strand DNA synthesis [29].

Silencing is alleviated at the two distinct centromeric
domains in mcl1-101 and swi7 mutants

To determine whether the mcl1-101 has defects in centromeric

silencing like the other mcl1 mutant alleles, we introduced the mcl1-

101 mutation into indicator strains. Strain FY1193 harbors the

ura4+ and ade6+ genes inserted in the outer repeat imr and otr

elements of cen1, respectively [19]. The mcl1-101 mutant harboring

maker genes at the centromere was more sensitive to 5-FOA and

was pink on YE low adenine plate compared to the wild-type

strain which gave a red color (Figure 3A). The level of alleviation

in mcl1-101 cells was comparable to that of swi6D cells at imr

(FOA), but lower at otr (low ade). Previously we have revealed

strong interaction between mcl1-101 and swi7-H4, a temperature

sensitive allele of swi7+ [29]. Therefore we tested transcriptional

gene silencing at heterochromatic regions in this mutant. As

reported previously [30], swi7-H4 cells showed alleviation of

transcriptional gene silencing at heterochromatic regions

(Figure 3A). No dramatic reduction of the heterochromatic marks

Swi6 or H3K9me2 on centromeric sequences was apparent in mcl1

mutants (T.N., E.D., A.P., Y.T., and R.A., unpublished data).

Therefore, Mcl1 might function at this domain either indepen-

dently or downstream of Swi6. Recently, Mamnun et al. isolated

Mcl1 as an interacting partner of the F-box protein, Pof3, which is

a substrate adapter of the SCF ubiquitin ligase and is required for

genome integrity. They reported that only a slight change in Swi6-

GFP localization could be detected in an mcl1D mutant [31],

consistent with our observations. As the mcl1-101 mutation

genetically interact with rad2D or dna2-C2 mutations [29], we

examined transcriptional gene silencing in these mutants.

However, these mutants did not show any defect in heterochro-

matin silencing (data not shown), suggesting that Mcl1 and Swi7

might have a specific role in centromeric chromatin structures.

To examine whether the mcl1-101 and swi7-H4 mutations affect

the maintenance of the chromatin structure at the central core

region, each mutation was introduced into cnt1:ura4+ strain in

which ura4+ marker gene is inserted into cnt1 [19]. As shown in

Figure 3B, these mutants were defective in silencing at the

kinetochore domain. Thus, both mcl1-101 and swi7-H4 mutants

exhibit the cos phenotype.

mcl1 and swi7 mutants have defects in the specialized
chromatin structure at the kinetochore

The chromatin structure of the central core domain is known to

be unusual since partial micrococcal nuclease (MNase) digestion

results in a smeared pattern, rather than the ladder pattern that is

indicative of regular nucleosomal packaging [15,17]. This

specialized structure is only associated with a functional centro-

mere context [16]. Importantly, it is reported that integrity of this

structure correlates with that of central core silencing [22]. To

determine whether Mcl1 and Pola are required for the specialized

chromatin structure, chromatin was partially digested with MNase

and subjected to Southern hybridization (Figure 4B). In wild-type

cells, a typical nucleosomal ladder was observed with a probe

corresponding to the heterochromatic domain, outer repeat (otr1L,

Figure 4A). In contrast, smeared digestion patterns were detected

with probes to central core domain (cnt1 and imr1L, Figure 4A),

Figure 3. The mcl1-101 and swi7-H4 mutants display alleviation of transcriptional gene silencing at both central core and outer
repeat regions. (A) (upper panel) The schematic diagram of ura4+ and ade6+ genes inserted into imr1L and otr1R, respectively. Note that the ura4+

gene is inserted into heterochromatic domain, which is defined as outside of tRNA genes (vertical lines) [23]. (lower panel) Tenfold serial dilutions
were spotted. (B) (upper panel) The schematic diagram of the ura4+ gene inserted into cnt1. (lower panel) Tenfold serial dilutions were spotted.
doi:10.1371/journal.pone.0002221.g003

Role of Mcl1 at Centromeres
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Figure 4. The specialized chromatin structure and association of Cnp1 at central core region is impaired in mcl1-101 and swi7-H4
mutants. (A) Locations of probes used in Southern hybridization are depicted as horizontal lines. (B) The cells were harvested from cultures
incubated at 25uC or 37uC for 6 hrs and permeabilized by enzyme treatment and chromatin was partially digested with MNase. DNA was extracted,
separated on agarose gel, and subjected to Southern hybridization using probes shown in (A). Smeared digestion patterns characteristic of central
core region (cnt1 and imr1L) were partially replaced with ladder patterns in mcl1-101 and swi7-H4 mutants. Strains were wild-type (JY746), mcl1-101
(NYSPC41), swi7-H4 (TN310) and mis6-302 (NYSPL59). (C) ChIP was performed using the antiserum raised to Cnp1. The cells were incubated at 25uC or
37uC for 6 hrs and then fixed. The ratio of ChIPed DNA to input DNA was calculated as described in Materials and methods and average fold

Role of Mcl1 at Centromeres
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although wild-type cells shifted to 37uC showed a slightly ladder-

like pattern. In mcl1 cells, the smeared patterns of cnt1 and imr1L

were partially replaced with a ladder pattern at permissive

temperature and the ladder-like pattern of imr1L was significantly

enhanced at 37uC compared to wild-type cells. Similar results

were obtained in swi7 cells, but only at 37uC. Complete

replacement of the smeared pattern was observed in mis6-302

cells at 37uC as reported previously [32]. These data suggest that

Mcl1 and Pola are necessary for assembly of the specialized

chromatin structure at the central core domain.

Genetic interactions with kinetochore mutants
To further investigate the involvement of Mcl1 in the

kinetochore function, we examined genetic interactions with

kinetochore mutants. S. pombe Cnp1 is essential for faithful

chromosome segregation and constitutively associates with the

centromere central domain to assemble unique nucleosomal

structure [11]. The cnp1-FH allele was obtained by tagging C-

terminus of endogenous cnp1+ gene with 3x FLAG and 6x His

(FH). The cnp1-FH strain is viable but shows slow growth and

sensitivity to TBZ (data not shown). The mcl1-101 mutant was

crossed with the cnp1-FH, but the double mutant could not be

recovered even at permissive temperature, 25uC (Figure S1A),

suggesting that mcl1-101 and cnp1-FH are synthetically lethal.

Next, we examined genetic interactions with mutants deficient

in Cnp1 loading to kinetochores. In fission yeast it has been

proposed that two distinct pathways mediate Cnp1 loading: a

Mis6-dependent pathway and an Ams2-dependent pathway [7].

Mis6 is a homologue of vertebrate CENP-I that constitutively

localizes to kinetochores and is required for Cnp1 loading during S

and G2 phase [32]. Although the mcl1-101 mutation was viable in

combination with a temperature sensitive allele of mis6+, mis6-302,

the double mutant showed a decreased permissive temperature

compared to each single mutant (Figure S1B). Ams2 is a cell cycle

regulated GATA factor required for Cnp1 loading during S phase

[33]. Synthetic lethality was observed between mcl1-101 and a null

allele of ams2 (Figure S1C).

Mis16 is a homologue of human RbAp46 and RbAp48, which

are found in some histone deacetylase (HDAC) complexes and

CAF-1 complex. Mis18 is required for histone hypoacetylation at

the kinetochore domain and for the Mis6-dependent Cnp1-

loading pathway [34]. mis16 was tagged with myc at the

endogenous locus (mis16-myc) and showed no detectable phenotype

such as temperature sensitivity or TBZ sensitivity (data not shown).

However, construction of a mis16-myc mcl1-101 strain revealed that

myc-tagged Mis16 is not able to cover all the functions of the wild-

type Mis16 as the strain showed a drastic decrease in the growth

permissive temperature (Figure S1D), indicating that mis16 and

mcl1 have a synthetic phenotype. Thus, Mcl1 has close functional

relationships with Cnp1 and factors involved in its deposition.

Impaired association of Cnp1 to central core region in
mcl1 and swi7 mutants

Impaired chromatin structure (Figure 4B) and genetic interac-

tions with Cnp1 and its loading factors (Figure S1) suggested that

Mcl1 might be required for Cnp1 association with the central core

region. To determine whether Cnp1 association is impaired in

mcl1 cells, chromatin immunoprecipitation (ChIP) was performed

using antiserum raised to Cnp1 (Figure 4C). The fraction of cnt

DNA found in Cnp1 immunoprecipitates was 2-fold lower, even at

permissive temperature, in the mcl1 mutant compared to wild-

type, and was further decreased at restrictive temperature.

Decrease in cnt DNA in Cnp1 immunoprecipitates was also

observed in the swi7 mutant only at restrictive temperature. The

fraction of imr DNA was severely decreased regardless of growth

temperature in the mcl1 mutant and, to a lesser extent, in the swi7

mutant.

Loss of Cnp1 from the central core is accompanied by increase

of histone H3 in the ams2D mutant [33], indicating that histone

H3 is misincorporated instead of Cnp1. ChIP was also performed

using antibody against histone H3. cnt and imr sequences in histone

H3 immunoprecipitates were increased in the mcl1 and swi7

mutants indicating that histone H3 is misincorporated into central

core region in these mutants (Figure S2). These observations

suggest that Mcl1 and Pola are important for efficient Cnp1

incorporation into chromatin of the central core domain. Previous

observations that an mcl1D mutation affected formation of Cnp1-

GFP foci at centromeres also support our conclusion [31].

Aberrant acetylation of histone H4 at centromere in mcl1
and swi7 mutants

The acetylation of N-terminal tails of histone H3 and H4 is

maintained at a lower level in the central core region than in

coding regions. Here, mcl1 and, to a lesser extent, swi7 mutants

showed sensitivity to the HDAC inhibitor, Trichostatin A (Figure

S3), suggesting that Mcl1 and Pola might be required for

maintenance of histone hypoacetylation. To examine this

possibility, we performed ChIP-on-chip assays using antiserum

raised to a peptide corresponding to amino acid 2-19 of histone

H4 acetylated at K5, K8, K12, and K16 (H4-KN). We

determined the acetylation status of histone H4 across the entire

genome (Figure S4A). Acetylation of histone H4 was found at the

promoter regions of most genes, whereas H4 was hypoacetylated

at centromeric regions. Although acetylation peaks similar to those

in wild-type were observed at most genes in the mcl1 mutant,

histone H4 acetylation was elevated at the centromere region in

mcl1 mutant (Figure S4B). Comparison of H4-KN data obtained

from mcl1 and wild-type indicates that acetylation level was

increased at centromere and sub-telomeric regions in the mcl1

mutant (Figure 5A).

To confirm these results, we performed independent ChIP

analyses and quantified the precipitated DNA by quantitative real-

time PCR (qPCR). Consistent with the ChIP-on-chip data, the

level of H4-KN acetylation at the kinetochore domain was

increased in the mcl1 mutant compared to the wild-type strain. A

similar increase in acetylation was seen in the swi7 mutant

(Figure 5B). When we used the specific antibody against acetylated

H4-K16, acetylation at this residue was also increased in both

mutants at restrictive temperature and, to a lesser extent, at

permissive temperature in the mcl1 mutant (Figure 5C). These

results suggest that Mcl1 and Pola are required for the

hypoacetylated state of the histone H4 N-terminal tail including

K16 in the kinetochore domain of fission yeast centromeres.

enrichment compared to wild-type strain from three experiments is shown. Localization of Cnp1 was decreased even at permissive temperature in
the mcl1-101 mutant, and was further decreased at restrictive temperature. Decreased Cnp1-association was also seen at 37uC in the swi7-H4 mutant.
Error bars represent the standard deviation. Strains were same as described in (B).
doi:10.1371/journal.pone.0002221.g004
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Figure 5. Acetylation of histone H4 is aberrantly increased in the central kinetochore domain in mcl1 and swi7 mutants. (A) ChIP-on-
chip was performed using the antiserum raised to a peptide corresponding to amino acid 2–19 of histone H4 that is acetylated at K5, K8, K12, and K16
(AcH4-KN). The cells were prepared as described in Figure 4C. Values obtained from AcH4-KN in the mcl1 mutant were divided by those in wild-type
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Multicopy suppression of mcl1 phenotypes by histone
deacetylase genes

Increased acetylation of histone H4 in the mcl1 mutant raised

the possibility that Mcl1 might regulate HDAC(s) to maintain the

hypoacetylated state of the kinetochore domain. The S. pombe

genome encodes six HDACs that belong to three distinct classes.

Among these HDACs, Clr3, Clr6 and Hst4 are required for

transcriptional gene silencing at the central core region [35,36]. In

addition, the HDAC Sir2 preferentially localizes to the central

core region [37]. To examine whether these HDACs are

functionally related to Mcl1, multi-copy plasmids carrying each

of the HDAC genes were introduced into cnt1:ura4+ mcl1-101 cells,

and sensitivity to 5-FOA and TBZ, were examined. As shown in

Figure 6A, alleviation of silencing in the mcl1 mutant was partially

suppressed by multi-copy plasmids of sir2+ gene and, to a lesser

extent, of the clr3+ gene. Furthermore, TBZ sensitivity was

partially suppressed by the clr3+ plasmid and simultaneous

introduction of sir2+ and clr3+ genes further relieved the sensitivity

(Figure 6B). These results suggest that Mcl1 functionally interacts

with Sir2 and Clr3 HDACs in maintaining centromere integrity.

Localization of Mcl1 to replication foci
Mcl1 was previously shown to be a constitutive nuclear protein

that associates with chromatin from G1 to S phase [28]. To further

examine the nuclear localization of Mcl1, the endogenous mcl1+

gene was C-terminally tagged with the fluorescent marker Venus

Figure 6. Multi-copy suppression of mcl1-101 phenotypes by sir2+ and clr3+ HDAC genes. Wild-type and mcl1-101 mutant harboring the
ura4+ insertion at the cnt1 were transformed with multi-copy plasmid carrying sir2+, clr3+, or both, respectively. Tenfold serial dilutions were spotted
onto EMM-Leu and EMM-Leu containing 5-FOA (A) or EMM-Leu containing indicated concentration of TBZ (B). In panel A, sir2+ and, to a lesser extent,
clr3+ partially suppressed 5-FOA sensitivity of the mcl1-101 mutant. In panel B, clr3+ partially suppressed TBZ sensitivity of the mcl1-101 mutant, and
sir2+ also relieved the sensitivity only in the presence of clr3+.
doi:10.1371/journal.pone.0002221.g006

strain. The orange shading represents the binding ratio of loci that show significant enrichment as described previously [68]. Representative results
for subtelomeric and centromeric regions of chromosome I are shown. (B,C) ChIP was performed using AcH4-KN (B) and AcH4-K16 (C), respectively.
The cells were prepared as described in Figure 4C. Values obtained in the mutants were normalized to those obtained in wild-type strain. Values are
further normalized to euchromatic lys1 locus. Average fold enrichment compared to wild-type are obtained from two repetitions. Strains were wild-
type (JY879), mcl1-101 (NYSPC52), swi7-H4 (TN403).
doi:10.1371/journal.pone.0002221.g005
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[38]. The mcl1+-venus cell did not show any phenotypes such as HU

and MMS sensitivity (data not shown). Mcl1-Venus localized to

the nucleus throughout the cell cycle, and a portion of cells showed

a punctate (Figure 7A, top) or condensed pattern (Figure 7A,

middle) of Mcl1-Venus signal. To determine which stage of the

cell cycle shows such localization pattern, mcl1+-venus cells were

stained with Hoechst 33432 to visualize nucleus and septum, and

roughly classified into four cell cycle stages (Figure 7A). A diffuse

Mcl1-Venus signal was observed in the nucleus of most cells with a

single nucleus (G2-phase). Condensed localization of Mcl1-Venus

peaked in cells with a septum (G1/S-phase) and decreased in

separating cells (S/G2-phase). The punctate localization of Mcl1-

Venus increased from G1/S-phase and accounted for about half of

S/G2 cells. These results indicate that Mcl1 changes its nuclear

localization pattern during DNA replication.

In vertebrate cells, DNA polymerases and their accessory

proteins such as PCNA cluster together and form nuclear foci

called ‘‘replication factories’’ [39]. Similar nuclear structures are

also observed in budding and fission yeasts. In S-phase budding

yeast cells, POLa, POLe and PCNA tagged with GFP or EYFP

forms globular nuclear signals, and more importantly, DNA

replication actually occurs in these foci [40]. Fission yeast PCNA-

ECFP also forms foci during DNA replication [41]. Since Mcl1

physically interacts with Pola and associates with chromatin in a

G1/S-phase specific manner, we tested whether the Mcl1 foci

formed during S-phase corresponds to replication factories.

PCNA-ECFP was expressed from its native promoter together

with Mcl1-GFP. Multiple nuclear foci of ECFP-PCNA were

observed in S-phase cells as previously reported, and these PCNA

foci overlapped with those of Mcl1-GFP (Figure 7B). We also

examined cells expressing Swi7-GFP and ECFP-PCNA

(Figure 7C). Consistent with the physical interaction between

them, Mcl1 and Swi7 also colocalized in S-phase nuclei

(Figure 7D). Together, these observations strongly suggest that

Mcl1 localizes to the replication fork, interacting with Pola. We

also examined the relationship between kinetochores and Mcl1

foci formed during S-phase. ECFP-Cnp1 was expressed from

nmt41 promoter in mcl1+-GFP cells, but the signals did not

Figure 7. Mcl1 localizes to replication foci during S-phase. (A) Mcl1 changes its nuclear localization during S-phase. Cells expressing Mcl1-
Venus from the endogenous locus were classified into 4 cell cycle stages according to their morphology. The percentage of cells showing punctate
(closed bar), condensed (shaded bar), and dispersed (open bar) localization of Mcl1-Venus in various cell cycle stages are shown (left panel).
Representative photographs of each localization pattern are shown (right panel). (B–D) Mcl1 and Swi7 colocalize with PCNA in the S-phase nucleus.
Mcl1-GFP and ECFP-PCNA (B), Swi7-GFP and ECFP-PCNA (C), and Swi7-Venus and Mcl1-ECFP (D) are shown. Merged images are also shown.
doi:10.1371/journal.pone.0002221.g007
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colocalize in most cells (data not shown), which might reflect the

short time window in which centromeres are replicated.

Discussion

In this study, we identified several cos mutants, which alleviate

silencing at both the central kinetochore and outer heterochro-

matin regions of fission yeast centromeres. cos1 is allelic to mcl1

which was previously show to be important for chromosome

replication, segregation and sister chromatid cohesion. In addition,

we demonstrate that a mutant in the catalytic subunit of Pola,

Swi7, also shows the cos phenotype. In both mcl1 and swi7 mutants

the levels of the centromeric histone Cnp1 associated with the

central domain are reduced and there is partial loss of the unique

chromatin structure of this region. Although outer repeat silencing

was alleviated, no reduction of the heterochromatic marks Swi6 or

H3K9me2 on centromeric sequences was apparent (T.N., E.D.,

A.P., Y.T., and R.A., unpublished data). Interestingly, the

acetylation of histone H4 N-terminal tails was aberrantly increased

at both domains. Finally, we showed that Mcl1 co-localized with

both PCNA and Swi7 mainly during S-phase. From these results,

we propose that Mcl1 and Swi7 are involved in propagation of

centromereic chromatin structures during DNA replication by

regulating the level of histone acetylation. Our observation that

the overexpression of Sir2 and/or Clr3 partially suppressed some

of mcl1 phenotype suggests that Mcl1 might control these HDACs

during DNA replication.

The role of Mcl1 in regulation of specific chromatin
structures

Here we show that Mcl1 and Polahave roles in regulation of

specific chromatin structures: the central core and outer

heterochromatin regions of fission yeast centromeres. Evidence

presented here suggests that Mcl1 may act on central core

chromatin by ensuring that Cnp1 chromatin is established and

maintained at centromeres during replication. In fission yeast,

Cnp1 incorporation into centromeres depends on two distinct

pathways in S and G2; Mis6, a homologue of CENP-I in

vertebrates, is required in both S- and G2-phase loading [7,11]

and a cell cycle-regulated GATA factor, Ams2, is also critical for

Cnp1 loading during S-phase [7,33]. In addition, Mis16 that is

homologous to human RbAp46 and RbAp48, which are found in

some histone deacetylase (HDAC) complexes and with histone

chaperone CAF-1 [42–46], is also required for Cnp1 loading [34].

As the mcl1-101 mutation is synthetically lethal with both mis6-302

and ams2D and also shows genetic interactions with mis16, it may

be that Mcl1 performs a function in Cnp1 loading that is

independent of both S and G2 loading pathways.

Mcl1 may also regulate chromatin at centromeres by influenc-

ing the levels of histone acetylation at central core and

heterochromatin domains. In fission yeast, a global function in

chromatin regulation has also been reported for the CHD

(chromo-ATPase/helicase-DNA binding) domain-containing

chromatin remodeling factor, Hrp1 [47]. Interestingly, human

CHD proteins, CHD3 and CHD4, were co-purified with

HDAC1/2 to form a protein complex called NuRD (nucleosomal

remodeling histone deactylase), and ATP-dependent remodeling

activity is required for deacetylation of oligonucleosomal histones

[43–45]. The S. pombe hrp1D mutant, like mcl1-101, shows

alleviation of silencing at both domains of the centromere and

the mat locus, and is defective in Cnp1 incorporation into the

central core region, concomitant with aberrant acetylation of

histone H3 and H4. Notably, Hrp1 localizes to the kinetochore

domain in early S-phase when centromeres are replicated [10],

suggesting that Hrp1 acts during DNA replication [47]. One

possibility is that Hrp1 may enhance histone deacetylation by

modulating chromatin structure at the central core region. It is

also possible that Mcl1 might control chromatin remodeling in

concert with Hrp1, or the HDACs Sir2 and Clr3, to enhance

subsequent histone deacetylation.

Histone deacetylation during DNA replication
Does the removal of histone acetylation during or soon after

replication have any importance for the epigenetic inheritance of

chromatin structures? This is the case in human cells. In

mammalian cells, DNA synthesis occurs at discrete sites in the

nucleus called replication foci or replication factories [39]. In early

S-phase, numerous foci of pulse labeled BrdU are distributed

throughout the nucleus except for nucleoli, and these foci

correspond to transcriptionally active chromatin. In late S-phase,

replication foci can be found along the nuclear periphery and

perinucleolar regions, and finally at a few larger sites, which

represent the replication of heterochromatic regions. Interestingly,

acetylation at K5 and K12 in histone H4, which is a hallmark of

newly synthesized histones, is removed within 20 min after DNA

synthesis at late replicating foci, but not early replicating foci, and

this immediate deacetylation is inhibited by Trichostatin A

treatment [48]. These findings suggest that certain HDAC(s) act(s)

only on late replicating foci to couple the incorporation of highly-

acetylated histones to subsequent deacetylation events.

Furthermore, in human cells it has been demonstrated that late

replication foci contain a HDAC and also that PCNA interacts

with the DNA methyltransferase DNMT1, which localizes to both

early and late replication foci [49]. Intriguingly, DNMT1 also

interacts with HDAC2, and they colocalize only in late replicating

foci, suggesting that HDAC activity is preferentially recruited to

late replication foci by the replication machinery. We have shown

here that Mcl1 colocalizes to S-phase nuclear foci of PCNA, which

might correspond to mammalian replication foci. Thus, Mcl1

might regulate the recruitment of a HDAC to the kinetochore

domain in certain replication foci, though fission yeast centro-

meres are known to be replicated early in S-phase. Since the level

of histone acetylation is determined by a balance between HDAC

and HAT activities, it remains possible that Mcl1 is essential to

prevent HAT activity from acting on kinetochore domain.

Mcl1 and the DNA replication fork
We demonstrate that the Mcl1 nuclear foci formed during S-

phase overlap with those of PCNA and Swi7. Although we

currently have no direct evidence, we suppose that Mcl1 localizes

to the progressing DNA replication fork for the following reasons.

Firstly, Mcl1 interacts physically with Swi7 in vivo and in vitro and

binds to chromatin tightly during S-phase [28,29,50]. Secondly,

the budding yeast homologue, Ctf4, moves along chromosomes

with the replication fork as revealed by ChIP-on-chip experiments

[51]. Finally Ctf4 is a component of replication progressive

complex (RPC) including other replication proteins such as the

MCM proteins and the GINS complex [52]. Because we were not

able to detect stable colocalization of Mcl1-GFP foci with ECFP-

Cnp1 foci in asynchronous culture (data not shown), Mcl1 might

localize to centromere chromatin only in a discrete window when

centromeric DNA is replicated.

We have previously shown that the mcl1 mutant shows genetic

interactions with mutations defective in Okazaki fragment

maturation such as rad2 (RAD27/FEN1) and dna2, and it

accumulates double strand breaks after completion of bulk DNA

synthesis, suggesting that Mcl1 is involved in lagging strand DNA

synthesis [29]. It is possible that defective centromere chromatin

Role of Mcl1 at Centromeres

PLoS ONE | www.plosone.org 11 May 2008 | Volume 3 | Issue 5 | e2221



structures observed in mcl1 and swi7 mutants might be a secondary

effect of an unstable DNA replication fork. However, the rad2D
mutant did not show any defect in kinetochore and heterochro-

matin silencing (data not shown), suggesting that Mcl1 and Swi7

might have a specific role in maintaining centromeric chromatin

structures.

An understanding of the roles of Mcl1 and Swi7 in the

maintenance of centromeric chromatin structures and how this

relates to their roles in DNA replication remains to be uncovered.

The swi7-H4 allele used in this study (G889D) is located within

homology box VI, which is in the conserved nucleotide binding

domain found in all DNA polymerases [30]. Another swi7

mutation, swi7-1, maps to the non-conserved C-terminal region

and shows a defect in heterochromatic silencing [53]. This

mutation also showed alleviation of kinetochore domain silencing

(data not shown), suggesting that Swi7 has a role in centromeric

chromatin assembly independent of its catalytic activity. All six

alleles of mcl1 show defects in centromeric silencing and we have

shown that mcl1-101 has defects in both DNA replication and

maintenance of chromatin structures (this study and [29,31]). To

understand the role of Mcl1 in kinetochore assembly, further

experiments such as isolation of separation of function mutations,

which show a defect in only maintenance of chromatin structures

or DNA replication, might be required. Alternatively, all

phenotypes observed in the mcl1-101 mutant could be attributable

to loss of the sole function of Mcl1 (for example, regulation of

histone deacetylation) and thus be inseparable.

Mcl1 and budding yeast Ctf4 have conserved functions in
chromosome metabolism

The budding yeast homologue of Mcl1, Ctf4, is required for

chromosome stability [54,55] It physically interacts with Pol1, a

catalytic subunit of Pola in budding yeast [56,57]. Ctf4 travels

along chromosomes with the replication fork [51]; deletion of

CTF4 results in premature separation of sister chromatids [58].

These findings suggest that Ctf4 is required for establishment of

sister chromatid cohesion during S-phase. Interestingly, deletion of

CTF4 also shows defects in transcriptional silencing at the cryptic

mating type locus, HMR, and at telomeric regions [59], suggesting

that Ctf4 is involved in the regulation of chromatin structures as

Mcl1 is. The molecular function of Ctf4, however, remains

unclear, and it is intriguing to address whether Ctf4 is implicated

in modulating the level of histone acetylation. In addition, Ctf4

competes for binding to Pol1 with the Spt16 subunit of FACT

complex, which removes H2A-H2B dimers during transcript

elongation and is also required for DNA replication [60]. Deletion

of the S. pombe FACT subunit Pob3 causes alleviation of silencing

at otr, although the effects at cnt are less clear-cut [61]. Therefore,

our observations reported here strengthen the importance of Pola
and its accessory proteins, such as FACT and Mcl1/Ctf4, in

faithful propagation of chromatin structures during DNA

replication.

Materials and Methods

Strains, plasmids, and growth conditions
S. pombe strains used in this study is listed in Table S1. S. pombe

cells were routinely grown in YES, EMM or PMG supplemented

with appropriate nutrients. Standard genetic manipulations were

used as previously described [62]. A LEU2+ S. pombe genomic

library was kindly provided by Chikashi Shimoda. The mis16+,

cnp1+, mcl1+, and swi7+ were tagged at their endogenous loci by

PCR-based tagging modules as described previously [63]. For C-

terminal tagging with the Venus gene, The PacI-AscI fragment

containing the gfp gene of pFA6a-GFP-kanMX6 was replaced with

the Venus gene (a gift from Atsushi Miyawaki) to give pFA6a-

Venus-kanMX6. The pFA6a-Flag His (FH)-kanMX6 was kindly

provided by Takashi Morishita. The nucleotide sequences of

primers used here are listed in Table S2.

For deletion of the ams2+ gene, the genomic SacI-HindIII

fragment containing the ams2+ gene was amplified from 972h- with

Ams2-F0 and Ams2-R0, and cloned into SacI and HindIII sites of

pUC19 to give pUC19-Ams2. The 1.4-kb fragment containing

was amplified from pFA6a-kanMX6 [63] with KanMX6-F0 and

KanMX6-R0, and digested with SmaI. The BstXI fragment

containing most ORF of ams2+ gene in pUC19-ams2 was replaced

with the 1.4-kb PTEF-kanr-TTEF fragment by blunt-end ligation to

give pUC19-ams2::kanr. To introduce multi-copy of HDAC

genes, the genomic fragments containing sir2+ and clr3+ genes

were amplified from 972 h2 strain with Sir2-F0 and Sir2-R0,

Clr3-F0 and Clr3-R0, respectively. These fragment were digested

with PstI (sir2+) and BamHI (clr3+), and cloned into PstI and BamHI

sites of pSP102 (ars2004, LEU2) [64] to give pSP102-Sir2 and

pSP102-Clr3, respectively. The 3.5-kb BamHI fragment contain-

ing the clr3+ gene was excised from pSP102-Clr3, blunt-ended

with T4 DNA polymerase, and cloned into the SmaI site of

pSP102-Sir2 to give pSP102-Sir2-Clr3. The nucleotide sequences

of primers used here are listed in Table S2.

Isolation and cloning of cos mutants
Wild-type strain (FY3027 h+) was plated either onto medium

lacking arginine (-Arg) and then onto medium lacking uracil (-Ura)

or directly on to double selection medium lacking both arginine

and uracil (-Arg, -Ura) and mutagenised by UV (3–5 mJ, 50–80%

killing). Plates were incubated at 25oC for 5–20 days and fast

growing colonies (184 colonies from –Arg plates, 54 colonies from

-Arg, -Ura plates) were picked and streaked onto –Arg plates to

retest for alleviation of silencing. Fast growing colonies were

subsequently picked from these –Arg plates and streaked onto –

Ura plates to assay alleviation of silencing at outer repeats (otr). In

total, 13 cos mutants that alleviate silencing at both the central core

and the outer repeat domains were isolated.

In order to clone the cos1+ gene, a LEU2+ S. pombe genomic

library (gift from Chikashi Shimoda) was transformed into cos1

mutants and cells were screened for rescue of their ts phenotype.

Transformants were plated on minimal medium lacking leucine

and containing phloxin (0.02% v/v). After 5 days growth at 25uC,

plates were shifted to 36uC for 1–2 days, to select for colonies that

were now capable of growing at this temperature. At 36uC, 1

single colony out of 18,000 cos1-86 colonies analysed was pale pink

in color and could grow at the restrictive temperature.

Micrococcal nuclease assay
Micrococcal nuclease assay was performed as described

previously [65]. MNase-digested samples were separated on

1.5% agarose gel and analyzed by Southern hybridization using

AlkPhos Direct Labelling and Detection System (Amersham).

Since the efficiency of MNase digestion varied among strains,

samples that show a similar digestion efficiency judged by EtBr

staining were used for analysis. The nucleotide sequences of

primers used for amplifying probe DNA are listed in Table S2.

Chromatin immunoprecipitation (ChIP)
ChIP was performed as described previously [66]. Antibodies

used were antiserum raised to N-terminal peptide of Cnp1, a-

acetyl-histone H4 antiserum (Upstate), a-acetyl-histone H4 (Lys16)

antiserum (Upstate), and a-histone H4 pan antibody (Upstate),

respectively. Quantification of ChIPed DNA was performed by
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real-time PCR. The nucleotide sequences of primers used in real-

time PCR are listed in Table S2.

ChIP-on-chip was carried out using IVT amplification method

as described previously [67]. All the array data are available at

GEO database (http://www.ncbi.nlm.nih.gov/projects/geo/)

through the accession number of GSE11102.

Fluorescence microscopy
Cells were grown to mid-log phase and washed with DW and

adhered to glass bottom dish coated with lectin. Z-stack images

were captured at intervals of 0.3 mm using DeltaVison (Applied

Precision). After 3D deconvolution, projected images were used for

judging colocalization of two differently tagged proteins. To stain

nucleus and septum, cells were treated with 1 mg/ml of Hoechst

33432 for 30 min.

Supporting Information

Figure S1 The mcl1-101 mutant interacts with kinetochore

mutants genetically. (A) The mcl1-101 mutation is synthetically

lethal with cnp1-FH. The mcl1-101 mutant (NYSPC40) was crossed

with cnp1-FH (TN705). Resultant asci were dissected and

incubated at 25 uC. Open squares indicate locations of double

mutant spores. (B) Permissive growth temperature of mcl1-101

mutant is decreased by the mis6-302 mutation. Cells were grown at

25 uC and ten-fold serial dilutions were plated onto YES plates.

Plates were incubated at indicated temperature for 3 days. Strains

were derived from a cross between mcl1-101 (NYSPC41) and mis6-

302 (NYSPL58). (C) The mcl1-101 mutation is synthetically lethal

with ams2D mutation. The mcl1-101 mutant (NYSPC40) was

crossed with ams2D (NYSPK66) as described in A. (D) Permissive

growth temperature of mcl1-101 mutant is decreased by the mis16-

13myc allele. Strains were wild-type (TN212), mis16-13myc

(TN968), mcl1-101 (NYSPC41), mis16-13myc mcl1-101 (TN1035).

Found at: doi:10.1371/journal.pone.0002221.s001 (0.70 MB TIF)

Figure S2 Histone H3 is aberrantly incorporated into kineto-

chore domain. ChIP was performed using antibody against C-

terminal part of human histone H3. The ratio of immunoprecip-

itated DNA to input DNA was calculated and normalized to that

of euchromatic lys1 locus. Fold enrichment compared to wild-type

is shown. Open bars and shaded bars indicate results of 25 uC and

37 uC, respectively. Strains were wild-type (JY879), mcl1-101

(NYSPC52), swi7-H4 (TN403).

Found at: doi:10.1371/journal.pone.0002221.s002 (0.10 MB TIF)

Figure S3 The mcl1 and swi7 mutants are sensitive to an HDAC

inhibitor, Trichostatin. A(TSA)Ten-fold serial dilutions of wild-

type (JY746), mcl1-101 (NYSPC41), and swi7-H4 (TN310) were

plated onto YES containing 0 or 30 mg/ml of TSA and incubated

for 4 days at the permissive (25 uC) or semi-permissive (33 uC)

temperature.

Found at: doi:10.1371/journal.pone.0002221.s003 (0.51 MB TIF)

Figure S4 Comparison of acetylation level between wild-type

strain and mcl1 mutant. ChIP-on-chip was performed as described

in Materials and Methods. Values obtained from AcH4-KN were

normalized to those obtained from the antibody that recognizes

amino acid 25-28 of histone H4 in wild-type strain (A) or mcl1-101

mutant (B), respectively. Similar results were observed in all

chromosomes and the representative results in subtelomeric and

centromeric regions of chromosome I were shown.

Found at: doi:10.1371/journal.pone.0002221.s004 (1.63 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0002221.s005 (0.12 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0002221.s006 (0.05 MB

DOC)
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