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E. Brugnoli7, J. Esperscḧutz8,9, O. Gavrichkova7, J. Ghashghaie10, N. Gomez-Casanovas11, C. Keitel12, A. Knohl5,13,
D. Kuptz14, S. Palacio15, Y. Salmon16, Y. Uchida17, and M. Bahn18
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Paris-Sud (XI), 91405 Orsay Cedex, France
11University of Illinois at Chicago, Department of Biological Sciences, 845 West Taylor St, Chicago, IL 60607, USA
12University of Sydney, Faculty of Agriculture, Food & Natural Resources, 107 Cobbitty Rd., Cobbitty 2570, NSW, Australia
13Georg-August-University G̈ottingen, B̈usgen Institute, Chair of Bioclimatology, Büsgenweg 2, 37077 G̈ottingen, Germany
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Abstract. The terrestrial carbon (C) cycle has received in-
creasing interest over the past few decades, however, there
is still a lack of understanding of the fate of newly assimi-
lated C allocated within plants and to the soil, stored within
ecosystems and lost to the atmosphere. Stable carbon iso-
tope studies can give novel insights into these issues. In
this review we provide an overview of an emerging picture
of plant-soil-atmosphere C fluxes, as based on C isotope
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studies, and identify processes determining related C iso-
tope signatures. The first part of the review focuses on iso-
topic fractionation processes within plants during and after
photosynthesis. The second major part elaborates on plant-
internal and plant-rhizosphere C allocation patterns at dif-
ferent time scales (diel, seasonal, interannual), including the
speed of C transfer and time lags in the coupling of assim-
ilation and respiration, as well as the magnitude and con-
trols of plant-soil C allocation and respiratory fluxes. Plant
responses to changing environmental conditions, the func-
tional relationship between the physiological and phenolog-
ical status of plants and C transfer, and interactions between
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C, water and nutrient dynamics are discussed. The role of
the C counterflow from the rhizosphere to the aboveground
parts of the plants, e.g. via CO2 dissolved in the xylem water
or as xylem-transported sugars, is highlighted. The third part
is centered around belowground C turnover, focusing espe-
cially on above- and belowground litter inputs, soil organic
matter formation and turnover, production and loss of dis-
solved organic C, soil respiration and CO2 fixation by soil
microbes. Furthermore, plant controls on microbial commu-
nities and activity via exudates and litter production as well
as microbial community effects on C mineralization are re-
viewed. A further part of the paper is dedicated to physi-
cal interactions between soil CO2 and the soil matrix, such
as CO2 diffusion and dissolution processes within the soil
profile. Finally, we highlight state-of-the-art stable isotope
methodologies and their latest developments. From the pre-
sented evidence we conclude that there exists a tight coupling
of physical, chemical and biological processes involved in C
cycling and C isotope fluxes in the plant-soil-atmosphere sys-
tem. Generally, research using information from C isotopes
allows an integrated view of the different processes involved.
However, complex interactions among the range of processes
complicate or currently impede the interpretation of isotopic
signals in CO2 or organic compounds at the plant and ecosys-
tem level. This review tries to identify present knowledge
gaps in correctly interpreting carbon stable isotope signals
in the plant-soil-atmosphere system and how future research
approaches could contribute to closing these gaps.

1 Introduction

The flux of carbon dioxide between the atmosphere and the
terrestrial biosphere and back is approx. 15–20 times larger
than the anthropogenic release of CO2 (IPCC, 2007). This
large bidirectional biogenic CO2 flux has a significant im-
print on the carbon isotope signature of atmospheric CO2
(Randerson et al., 2002), which in turn helps to understand
the controls of CO2 fluxes and to predict how they will re-
spond to global change. There is a lack of knowledge on
how plant physiological as well as soil biological, physical
and chemical processes interact with and affect ecosystem
processes, such as net ecosystem primary production and car-
bon sequestration as well as the larger scale carbon balance.
The vegetation is not only the primary source of soil organic
matter, thus contributing to long-term carbon accumulation
in the organic soil layers, but it also determines belowground
processes such as soil respiration over the short term through
transport of photosynthates to the roots and to the soil (Bahn
et al., 2010; Mencuccini and Ḧolttä, 2010; Ḧogberg et al.,
2010). For an assessment of the adaptability of stands and
ecosystems as well as for the development of strategies for
forest and landscape management that aims at minimizing
the negative effects of the predicted climate and atmospheric

composition changes and maintaining the carbon sequestra-
tion potential, we have to deepen our knowledge on the pro-
cesses determining plant-arbon relations.

Due to the slight difference in atomic mass, physical and
chemical properties of substances containing different sta-
ble isotopes (isotopologues, such as12CO2 and13CO2) vary,
resulting in different reaction kinetics and thermodynamic
properties. These result in the “preference” of chemical and
physical processes for one isotopologue, usually the lighter
one, over the other (e.g. preference for12CO2 over 13CO2)

and hence in so-calledfractionation events, which change
the isotopic composition of compounds involved in such pro-
cesses. The carbon isotope composition is usually expressed
in δ notation (in ‰ units), relative to the international stan-
dard Vienna Pee Dee Belemnite (VPDB) (Hut, 1987). The
carbon isotopic compositionδ13C of any sample is thus ex-
pressed as deviation from VPDB as shown in Eq. (1):

δ13C=
Rsample

RVPDB
−1 (1)

whereR is the isotope (abundance) ratio (13C/12C) of a given
sample (Rsample) and of VPDB (RVPDB = 0.0111802; from
Werner and Brand, 2001), respectively.

The notation for isotope fractionation is the capital Greek
letter1. Carbon isotope discrimination (113C) is defined as
the depletion of13C during any process preferring the lighter
isotopologue:

113C=
δ13Cs−δ13Cp

1+δ13Cp
(2)

whereδ13Cs is the carbon isotope signature of the source (or
the substrate entering a reaction; e.g. CO2 when photosyn-
thetic fractionation is considered) andδ13Cp is the isotopic
signature of the product of a process (Farquhar et al., 1982).

Two major fractionation types can be distinguished, which
arekinetic fractionationand equilibrium fractionation. Ki-
netic fractionationoccurs during an irreversible process, ei-
ther during physical events, like diffusion of CO2 in air or
phase transitions with constant removal of one phase, or dur-
ing chemical reactions, like the conversion of a substance to
another, e.g. CO2 into plant carbohydrates.Equilibrium frac-
tionationoccurs when a chemical reaction or a physical pro-
cess is reversible and continues to occur in both directions,
and the different isotopes accumulate on either side of the re-
action or process according to their mass-dependent binding
energies in substrate(s) and product(s) or aggregate states,
e.g. evaporation and condensation of H2O.

As a result of the different isotope fractionation processes
along the pathway of carbon from the atmosphere through
the plant into the soil – associated with diffusion, phase tran-
sition and enzyme activities in leaves, non-green plant parts
and soil – the natural abundance of carbon isotopes at dif-
ferent stages of the pathway is the key to understanding and
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integrating the complexity of atmosphere-plant-soil interac-
tions in the global terrestrial carbon cycle and to predict-
ing future atmospheric carbon dioxide levels under global
change. The physiological information encoded in the iso-
tope signature due to fractionation processes allows in prin-
ciple to link changes in carbon metabolism on the biochem-
ical scale with whole ecosystem carbon dynamics. In ad-
dition, the analysis of temporal variations in the isotopic
composition of different chemical compounds in different
ecosystem compartments provides a tool to assess the fate
of carbon in plant, soil and atmosphere. However, as the
isotopic signatures of carbon compounds transported in the
plant-soil-atmosphere system do not necessarily remain un-
changed during transport, it is important to know all rele-
vant processes involved in generating and altering theses sig-
natures. The aim of this review is to aggregate the state-
of-the-art knowledge of carbon isotope fluxes and fractiona-
tion patterns in terrestrial ecosystems with a special empha-
sis on plant-soil interactions and their impact on soil carbon
turnover and storage capacity.

2 Carbon isotope fractionation in plants

Mainly due to historical reasons carbon isotope fractionation
in plants has been separated into photosynthetic carbon iso-
tope fractionation, including CO2 diffusion, carboxylation,
as well as dark and photorespiration (Farquhar et al., 1982),
and into post-photosynthetic fractionation (von Caemmerer
et al., 1997). However, if the distinction between the main
fractionation step by Rubisco activity and all downstream
fractionation steps should be made, the latter can be collec-
tively addressed as post-carboxylation fractionation (Gessler
et al., 2008), the terminology applied in the following. Fig-
ure 1 summarises photosynthetic and post-carboxylation car-
bon isotope fractionations (and some other processes such
as mixing of sugars during phloem transport), which affect
the carbon isotope composition of plant organic matter and
respired CO2. In the following sections we will explore these
particular processes, their effects onδ13C as well as the envi-
ronmental and physiological information encoded in the iso-
topic signals.

2.1 Photosynthetic carbon isotope fractionation and
its temporal variation

Generally, carbon isotope fractionation during photosynthe-
sis (1 in Fig. 1) in C3 plants is described according to the
following equation (Farquhar et al., 1982):

113C = ab
pa−ps

pa
+ a

ps−pi

pa
+ (es + al)

pi −pc

pa
(3)

+ b
pc

pa
−

(
eRd/k

pa
+

f 0∗

pa

)
wherepa, ps, pi andpc are the CO2 partial pressures in am-
bient air, at the leaf surface, in the leaf intercellular airspace

CO2 

primary assimilates 

phloem 

sugars 

sugars 

Photosynthetic C-isotope fractionation 

 

Post-carboxylation C-isotope fractionation in 

autotrophic tissues related to transitory starch 

metabolism (aldolase and transketolase 

fractionation)  

root exudates 

respired  

CO2 

Respiratory fractionation 
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6 7 9 + + 
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Fig. 1. Summary of the plant-related processes that potentially in-
fluence the carbon isotopic composition of organic matter and CO2.
Carbon isotope fractionation and other processes (i.e. mixing of
pools), which influence the isotope composition are listed on the
right side of the figure. In addition to the listed fractionation pro-
cesses, the carbon isotope composition of atmospheric CO2 influ-
encesδ13C of organic matter. The figure is adapted from Gessler et
al. (2009b).

and in the chloroplasts, respectively.ab and a describe
the carbon isotope fractionation during diffusion through the
boundary layer (2.9 ‰) and into the leaves through the stom-
ata (4.4 ‰), respectively.es is the fractionation occurring
as CO2 enters an aqueous solution (1.1 ‰ at 25◦C) andal
the fractionation during diffusion through the liquid phase
(0.7 ‰ at 25◦C), k is the carboxylation efficiency andb the
net fractionation during carboxylation.Rd is the respiration
rate in the light,0∗ is the CO2 compensation point in the
absence of day respiration, ande and f are the fractiona-
tion factors during day respiration and photorespiration. The
mechanisms of photosynthetic carbon isotope fractionation
have been reviewed elsewhere (Farquhar et al., 1989; Brug-
noli and Farquhar, 2000), so that only some central points are
discussed here.

In literature, often a simplified version of the model pre-
sented in Eq. (3), assuming a two-stage model (diffusion
through the stomata followed by carboxylation, is applied to
estimate photosynthetic carbon isotope fractionation:

1i = a + (b−a)
pi

pa
(4)

Due to the relationship between photosynthetic carbon iso-
tope fractionation and the ratio of intercellular airspace
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and ambient CO2 partial pressures (pi/pa), which is of-
ten expressed as a CO2 concentration ratio (ci/ca), newly
assimilated organic matter can be generally used to charac-
terise environmental effects on the physiology of photosyn-
thesis. Stomatal closure due to water deficit generally re-
ducesci , leading to an increase inδ13C (e.g. Farquhar et al.,
1982; Korol et al., 1999). As light limitation of photosynthe-
sis increasesci , δ13C can also depend on radiation (Leavitt
and Long, 1986; McCarroll and Pawellek, 2001) under par-
ticular conditions, but also combined influences of water and
light availability have been observed (Gessler et al., 2001).

Von Caemmerer and Evans (1991) established the relation
between assimilation rate (A) and mesophyll (internal) CO2
transfer conductance (gm) as follows:

A =
gm(pi −pc)

P
(5)

whereP is the atmospheric pressure. However, only recently
it was observed thatgm and its reaction to environmental
conditions can vary among functional plant groups (War-
ren, 2008), and also within cultivars of a particular species
(Flexas et al., 2008), not strictly related toA. In addition,gm
of a given species and/or cultivar might change with plant
and leaf age. Such changes ingm might partially constrain
the application of the simplified carbon isotope fractiona-
tion models (Warren and Adams, 2006; Gessler et al., 2008).
Since mesophyll conductance is not included in the widely
used two-step model (Eq. 4) for photosynthetic carbon iso-
tope fractionation (Farquhar et al., 1982), andpi and not
the CO2 partial pressure inside the chloroplast (pc) is used
as a basis for calculation, any variation ingm will constrain
the classical way of calculating carbon isotope fractionation
(Seibt et al., 2008) when the relationship betweengm and
assimilation rate is not constant (Warren and Adams, 2006).

Similarly, it has been shown by several authors (see Gillon
and Griffiths, 1997; Igamberdiev et al., 2004; Tcherkez,
2006) that the isotope effect associated with photorespiration
can be quite high (f≈10 ‰) and thus can have a significant
impact given that0*/pa equals approx. 0.1. In contrast, the
day respiratory fractionation,e, is thought to be less signif-
icant because the factorRd/(kpa) is much smaller (typically
0.02).

Carbon isotope discrimination related to C4 photosynthe-
sis is much smaller and less variable compared to the C3
pathway. Net fractionation of the CO2 fixation by the en-
zyme phosphoenolpyruvate carboxylase (PEPc) in the meso-
phyll cell is−5.7 ‰, i.e. there is a discrimination against the
lighter carbon,12C (Farquhar, 1983). This is mainly due to
the fact that PEPc uses HCO−

3 as substrate and the dissolu-
tion plus hydration of CO2 enriches13C in HCO−

3 by 7.9 ‰
(at 25◦C; Mook et al., 1974), and that PEPc discriminates
by only 2.2 ‰ against13C. The PEPc-fixed CO2 will be re-
leased again in the bundle sheath cells, where it is re-fixed by
Rubisco. Since part of the CO2 released in the bundle sheath
tissue leaks out to the mesophyll (Hatch, 1995), a (metabolic)

branching point is formed, which allows13C discrimination
by Rubisco (Farquhar, 1983). Farquhar (1983) developed the
following (simplified) equation to describe the carbon iso-
tope discrimination of C4 photosynthesis:

1 = a+(b4+b3φ−a)
pi

pa
(6)

where b4 describes the discrimination of the fixation of
gaseous CO2 in equilibrium with HCO−

3 (at 25◦C) by PEPc
(for details see Farquhar, 1983 and Farquhar et al., 1989),φ

is the relative proportion of the carbon fixed by PEPc that
leaks out of the bundle sheath (“bundle sheath leakiness”;
Farquhar, 1983) and b3 describes the discrimination by Ru-
bisco.

The Crassulacean acid metabolism (CAM) as a particu-
lar modification of the photosynthetic carbon fixation also
imprints a specific carbon isotope signal on the assimilates
(O’Leary, 1988). The most simple description of the CAM
according to L̈uttge (2004) is that there is nocturnal uptake
of CO2 via open stomata, CO2 fixation by PEPc and vac-
uolar storage of organic acid assimilates, mainly malic acid
(phase I; Osmond, 1978), and daytime remobilization of vac-
uolar organic acids, decarboxylation and re-fixation of the
released CO2 behind closed stomata by Rubisco (phase III).
The malate stored at night will show the same discrimina-
tion as for C4 species without bundle sheath leakiness and
since CO2 evolution during phase III is assumed to be neg-
ligible, the carbon isotope discrimination in phase I and III
might be described by Eq. 6 assumingφ to be 0 (Farquhar et
al., 1989). In the early light period (phase II) and in the late
light period, when organic acids are exhausted (phase VI),
however, stomata are open and external CO2 can be fixed by
Rubisco (Osmond, 1978; Farquhar et al., 1989). Both, phase
II and phase IV are very sensitive to environmental parame-
ters (L̈uttge 2004) and thus the relative contribution of PEPc-
(phase II and III) and Rubisco-driven (mainly phase IV) dis-
crimination might also vary with the environment.

High variations of photosynthetic carbon isotope fraction-
ation in C3 species over the day, between days and over
the growing season were recently revealed by direct on-
line isotope measurements under field conditions, which al-
low data acquisition with high temporal resolution by ap-
plying novel laser spectroscopy techniques (Wingate et al.,
2010). Over the whole growing season, photosynthetic car-
bon isotope fractionation for branches of maritime pine at
a field site in France amounted to 10 to 35 ‰. These val-
ues agree well with the range of photosynthetic carbon iso-
tope fractionation under various light conditions determined
for wheat and bean under controlled conditions (Gillon and
Griffiths, 1997). The highest values typically occurred at
dusk throughout the growing season, but also in the early
morning of June and July and throughout the day during the
winter months. During summer, diel variations of photosyn-
thetic fractionation amounted to more than 15 ‰ (Wingate et
al., 2010). Changes in weather conditions among days also
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caused clear variations inδ13C, which then could be traced
in the newly produced organic matter transported through the
plant. On the basis of day-to-day variations in the photosyn-
thetic carbon isotope fractionation as occurring in C3 plants,
the transport of new assimilates through the plant and within
the ecosystem has been tracked as soil respired CO2 (Ek-
blad and Ḧogberg, 2001; Knohl et al., 2005; Mortazavi et al.,
2005; Brandes et al., 2006; Gessler et al., 2007) and transport
times have been assessed (Mencuccini and Hölttä, 2010) (see
3.4). As demonstrated by Brandes et al. (2007) and Wingate
et al. (2010), such techniques can be applied throughout the
whole growing season and have the additional advantage –
compared to13C pulse labeling experiments – that the infor-
mation on leaf physiology encoded inδ13C can be addition-
ally analysed. As mentioned above and discussed by War-
ren and Adams (2006), it might, however, not be possible to
directly relateδ13C to pi/pa or water-use efficiency in C3
species due to potential variations ingm. Despite this po-
tential constraint,δ13C of basipetally transported assimilates
have been successfully applied to characterise variation in
stomatal conductance in different tree species (e.g. Cernusak
et al., 2003; Scartazza et al., 2004; Keitel et al., 2006).

However, it also has to be stated that the natural abundance
technique failed tracking the fate of new assimilates in par-
ticular species mainly when environmental conditions were
not very different among days (Kodama et al., 2008, 2011).
It has been suggested that post-carboxylation fractionation
and mixing of sugars of different metabolic history during
phloem transport might blur the rather weak initial isotopic
signal from photosynthetic fractionation in these cases.

2.2 Post-carboxylation fractionation

Post-carboxylation isotopic fractionation is defined as all iso-
tope effects associated with the metabolic pathways down-
stream Rubisco carboxylation and with export of organic
matter out of particular tissues (Hobbie and Werner, 2004;
Badeck et al., 2005). Fractionation due to equilibrium and
kinetic isotope effects results in differences in isotopic sig-
natures between metabolites and in intramolecular isotopic
distribution (Schmidt, 2003; Tcherkez and Farquhar, 2005).
Post-carboxylation fractionation is also thought to be respon-
sible for differences inδ13C between plant organs (for a re-
cent review see Cernusak et al., 2009). Beside photosyn-
thetic also post-carboxylation carbon isotope fractionation
might account for diel variations in the isotopic composition
of carbon exported from the leaves to heterotrophic tissues
(Tcherkez et al., 2004; Brandes et al., 2006) and of respired
CO2 (Tcherkez et al., 2003; Werner and Gessler, 2011). The
following section will give an overview of the main fraction-
ation mechanisms and the consequences for research on plant
and ecosystem carbon balances.

One of the first post-carboxylation fractionation steps
occurs in the Calvin cycle during aldolase condensation
(i.e. synthesis of fructose 1,6-bisphosphate from triose

phosphates), enriching13C in the C-3 and C-4 atom posi-
tions of hexoses while leaving behind the light triose phos-
phates (Rossmann et al., 1991; Gleixner and Schmidt, 1997).
A model developed by Tcherkez et al. (2004) and based on
the isotope effects of both aldolase, reported by Gleixner
and Schmidt (1997), and transketolase (estimated values),
fits well the reproducible non-statistical13C distribution in
hexose molecules reported by Rossmann et al. (1991). The
intra-molecular carbon isotope distribution in Calvin cycle
hexoses also depends on the relative activity of the gly-
oxylate cycle (photorespiration) because of decarboxylation
of a 13C-rich carbon atom position and fractionation dur-
ing glycine decarboxylation (Tcherkez et al., 2004). This
intra-molecular13C pattern in hexose and thus in pyruvate
molecules is considered to be the main origin of the so-called
“fragmentation fractionation” (see Tcherkez et al., 2004)
during dark respiration, which will be discussed below.

Another effect of the fractionation by aldolase and trans-
ketolase is the13C-enrichment in transitory starch in the
chloroplasts (2 in Fig. 1) and13C-depletion in cytosolic su-
crose (Schmidt and Gleixner, 1998). Indeed, as explained
above, the fractionations of these enzymes in the Calvin cy-
cle favour 13C in hexoses and thus in transitory starch in
the chloroplasts while leaving behind13C-depleted trioses,
which will form sucrose in the cytosol. Accordingly, the
phloem sugars are13C-enriched during night-time (originat-
ing from transitory starch degradation), while the daytime
sugars in the phloem originating from the trioses left behind
by aldolase/transketolase reactions are13C-depleted. Such
a diel change in13C content of phloem sugars modelled
by Tcherkez et al. (2004) was observed experimentally by
Gessler et al. (2008) inRicinusplants.

Data available in the literature on the carbon isotope differ-
ence between starch and sugars (mainly sucrose) are scarce,
and experimental protocols for their determination still need
to be scrutinized (Richter et al., 2009). However, expected
technical progress will open new avenues for studies of the
variability of fractionation due to transitory starch synthesis
with the rate of starch synthesis and with environmental con-
ditions (Tcherkez et al., 2004). Thus, measurements of intra-
molecular patterns ofδ13C and diel variation in sugarδ13C
can potentially be used in ecological studies as indicators of
assimilate allocation.

Carbon isotope fractionation during plant respiration (3
and 7 in Fig. 1) is a widely observed phenomenon (see re-
views by Ghashghaie et al., 2003; Badeck et al., 2005; Bowl-
ing et al., 2008; Werner and Gessler, 2011). There are
several enzyme-catalyzed reactions involved in respiratory
metabolism that can lead to isotope fractionation.

Due to the non-statistical13C distribution in glucose, the
δ13C of respired CO2 highly depends on the intra-molecular
position of the C atom used for decarboxylation. Conse-
quently, CO2 produced during different respiratory processes
is often relatively enriched or depleted in13C compared to
the associated substrate (Ghashghaie et al., 2003). This
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fragmentation fractionation (Tcherkez et al., 2004) may oc-
cur at a number of metabolic branching points along plant
respiratory pathways (Barbour and Hanson, 2009).

Decarboxylation of pyruvate by the pyruvate dehydroge-
nase complex (PDH), coupled to the glycolysis pathway, re-
leases relatively13C-enriched CO2, using the C-3 and C-4
atoms of glucose (DeNiro and Epstein, 1977; Melzer and
Schmidt, 1987). Consequently, acetyl-CoA is relatively de-
pleted in13C, as are fatty acids or CO2 released during the tri-
carboxylic acid cycle (TCA). Partitioning acetyl-CoA to fatty
acid synthesis and TCA leads to an overall higher contribu-
tion of PDH than TCA activity to total CO2 efflux, which
may explain the often-observed13C-enrichment of CO2 ef-
flux compared to respiratory substrate (Ghashghaie et al.,
2003). Imbalances between TCA and PDH may also account
for diel changes inδ13C of plant respiration (Kodama et al.,
2008; Priault et al., 2009; Kodama et al., 2011). In addition,
fractionation by PDH and TCA cycle enzymes may further
change the isotopic signature of respired CO2 (Tcherkez and
Farquhar, 2005). These effects depend on the relative flux
strengths at the associated metabolic branching points, and
only recently Werner et al. (2011) argued that the imperme-
ability of the inner chloroplast membrane for acetyl-CoA as
well as the channeling principle of the TCA cycle enzymes
prevent the enzymatic reactions in the TCA cycle to effec-
tively fractionate against13C in vivo.

Another decarboxylation reaction of glucose takes place
within plastids during the oxidative stage of the pentose
phosphate pathway (PPP). The PPP releases13C-depleted C-
1 atoms of glucose as CO2 (Dieuaide-Noubhani et al., 1995;
Bathellier et al., 2009). Moreover, this decarboxylation re-
action fractionates against13C by about 9.6 ‰ (kinetic iso-
tope effect; Rendina et al., 1984) or against12C by 4 ‰
(equilibrium isotope effect; Rendina et al., 1984). Accord-
ingly, theδ13C of CO2 produced during PPP is relatively de-
pleted in13C compared to respiratory substrate. High PPP
activity reported for roots could explain the13C depletion
in root-respired CO2 (Bathellier et al., 2008) compared to
13C-enriched CO2 respired by leaves (Duranceau et al., 1999;
Tcherkez et al., 2003).

High activity of PEPc is also known to occur in roots (8
in Fig. 1) and has also been detected also in aboveground C3
plant tissues (Berveiller and Damesin, 2008; Gessler et al.,
2009a). PEPc carboxylates PEP using HCO−

3 as substrate
(stemming either from respiratory or external CO2) to malic
acid (via oxaloacetate), which may enter the mitochondria to
sustain TCA activity. This so-called “anaplerotic” supply is
assumed to refill the TCA when citrate intermediates of the
TCA are used, e.g. for amino acid synthesis (Tcherkez and
Hodges, 2008; Bathellier et al., 2009). Net discrimination
of PEPc against12C of 5.7 ‰ (including the equilibrium hy-
dration of CO2) (Farquhar, 1983), enriches organic matter in
13C and leaves13C-depleted CO2 molecules behind (Gessler
et al., 2009a), as long as malic acid is not immediately de-
carboxylated again (Cernusak et al., 2009). Consequently,

the high13C enrichment of respiratory CO2 evolved from
leaves shortly after darkening may be explained by rapid de-
carboxylation of highly13C-enriched malic acid pools, de-
rived from PEPc during illumination (light-enhanced dark
respiration – LEDR; see Barbour et al., 2007). However, the
overall quantitative effect of the before-mentioned fractiona-
tion processes in combination with temporal changes in the
respiratory substrates onδ13C of plant CO2 efflux is still a
matter of debate (Tcherkez, 2010; Werner, 2010; Werner et
al., 2011).

It is now well established that plant organs differ in their
isotopic signature. Several recent reviews (Badeck et al.,
2005; Bowling et al., 2008; Cernusak et al., 2009) have
shown that heterotrophic organs (branches, stems and roots)
are enriched in13C compared to autotrophic organs, which
supply them with carbon. Branches and woody stems of C3
species are on average 1.9 ‰ enriched in13C compared to
leaves (Badeck et al., 2005), whereas roots show an average
enrichment varying between 1.1 ‰ (Badeck et al., 2005) and
2 ‰ (Bowling et al., 2008). Several mechanisms have been
proposed to explain these differences in isotopic signatures
of plant organs (cf. Badeck et al., 2005, and Cernusak et al.,
2009, for detailed review of these processes). One of the rea-
sons for differences in13C content between different plant or-
gans is that the metabolites used for export (e.g. sucrose) are
enriched in13C with respect to the photosynthetic products,
leading to differences in13C content of heterotrophic tissues
compared with leaves. Fragmentation of molecules with het-
erogeneous intra-molecular13C distribution and kinetic iso-
tope effects at metabolic branching points associated with the
enzymatic reactions leading to the respective products are
known to cause compound-specific differences (4 and 9 in
Fig. 1). When compounds, which become13C-depleted as
a consequence of such processes (e.g. lipids), remain in the
leaves, whereas relatively13C-enriched compounds are ex-
ported, the inter-organ differences will then be related to the
chemical composition of organs.

Other potential reasons for organ-specific differences in
δ13C might be seasonal asynchrony of growth of photosyn-
thetic and heterotrophic tissues, with corresponding variation
in photosynthetic discrimination against13C due to differ-
ent environmental and ontogenetic conditions (Bathellier et
al., 2008; Salmon et al., 2011), and developmental varia-
tion in photosynthetic fractionation against13C during leaf
expansion. In addition, seasonal variations in starch stor-
age and remobilisation (6 in Fig. 1) and the preferential use
of 13C-enriched, starch-derived organic matter in a particu-
lar organ might be responsible for more positiveδ13C val-
ues. As, however, also13C enrichment of particular com-
pounds (e.g. phloem sucrose) was detected in basipetal di-
rection (Gessler et al., 2009b), independent of ontogeny or
development, other additional factors must be responsible
for this observation. These might include differential use
of daytime vs. night-time sucrose between leaves and sink
tissues, with daytime sucrose being relatively13C-depleted
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and night-time sucrose13C-enriched (Tcherkez et al., 2004),
as well as fractionation associated with the transport of as-
similates (see 3.1). In addition, differences in fractionation
during dark respiration in heterotrophic vs. autotrophic tis-
sues (Bathellier et al., 2008), and higher carbon fixation by
PEP carboxylase in roots might explain the inter-organ dif-
ferences. The organ-specific spatial variation of the carbon
isotope signal, i.e. the basipetal enrichment, which is not
necessarily constant over the growing season (Gessler et al.,
2009b), challenges the calculation of intrinsic water-use effi-
ciency orpi/pa from organic material of heterotrophic or-
gans (e.g. in tree rings). However, temporal variations in
δ13C of organic matter and respired CO2 as a consequence
of post-carboxylation isotope fractionation have been related
to starch synthesis and remobilization (e.g. Tcherkez et al.,
2004) and other switches between metabolic pathways (Pri-
ault et al., 2009) and may, therefore, provide a way to identify
changes in metabolic processes related to changes in carbon
allocation patterns in plants and ecosystems.

In conclusion, post-carboxylation fractionation produces
additional changes and variations in carbon isotope signals
on top of the original photosynthetic signal. On the one hand,
this complicates the tracking of the fate of carbon within
the plant-soil system and might partially uncouple the iso-
tope composition in heterotrophic tissues from leaf level pro-
cesses. On the other hand, the post-carboxylation isotope
fractionation processes are likely to give additional informa-
tion on processes in heterotrophic tissues. It is, however, cru-
cial to disentangle particular processes as well as their depen-
dency on environmental and plant physiological processes
and to quantify their contribution to post-carboxylation iso-
tope fractionation. Moreover it is urgently needed to link the
plant-level processes, assessed with isotope techniques, with
processes at the ecosystem level.

3 Carbon allocation in the plant-soil system

As reviewed in Sect. 2, stable carbon isotope ratios of re-
cently assimilated C contain valuable information about en-
vironmental conditions, which can be tracked through the
plant-soil system and are imprinted in respired CO2. The
process of C transport in the plant itself is not assumed to
fractionate against the13C-isotopologues of the transported
compounds. However, temporal changes in C allocation
and metabolic processes along the transport pathways can
strongly affect this relationship between environmental con-
ditions andδ13C. For example, it has been observed that
phloem sucrose is13C-enriched in the trunk compared to
the twig phloem of trees (e.g. Brandes et al., 2006, 2007).
It is likely that metabolic processes associated with phloem
transport (such as phloem loading, unloading and mixing;
5 in Fig. 1) but not the transport itself is responsible for
these patterns. Since phloem-allocated sucrose is the main
carbon source for all processes in non-green plant parts,

spatial variations inδ13C along the plant axis and the pro-
cesses involved need to be taken into account when inter-
preting respiratory isotope signals. Moreover, transport dy-
namics determine the coupling of the isotope signals above-
and belowground and thus an understanding of the underly-
ing processes is crucial to interpret carbon isotope signals on
the ecosystem scale. In the following section, studies are re-
viewed and discussed that document how C allocation in the
plant-soil system varies on diel, seasonal and annual to in-
terannual time scales and how these variations can influence
isotope signals in plant biomass and soil respiration.

3.1 Plant-internal C allocation

Carbon transport through the phloem and xylem, and the un-
derlying physiological mechanisms as affected by environ-
mental and plant-internal factors, are a major point of un-
certainty in understanding the patterns of assimilate distribu-
tion within plants and of plant-soil C coupling. Partitioning
of the newly assimilated carbohydrates within the plant oc-
curs via loading of sugars into the phloem, transport in the
sieve tube system and unloading at the sites of demand. The
pressure-driven mass flow system of the phloem allows C
compounds to be transported over long distances in the plant
from source to sink tissues (Van Bel, 2003). Consequently,
the C partitioning is controlled by the supply of assimilates
via photosynthesis, but also depends on the ability of differ-
ent organs to utilise the available supply (Wardlaw, 1969).
While these general principles are well known, the molecu-
lar background of the regulation of carbohydrate partitioning
and of the transporters involved is less understood (Slewin-
ski and Braun, 2010). Redox control of sugar transport and
sugar plus phytohormone signalling seem to be at least in-
volved in coordinating carbohydrate partitioning (Rolland et
al., 2006). In such a manner, whole plant physiology can
also exert a feedback sink control over leaf level photosyn-
thesis, even overriding direct control by light and CO2 (Paul
and Foyer, 2001).

Considering the phloem just as a static tube for organic
matter transport is inappropriately simplified (Fisher, 2002).
The modified dynamic version of the M̈unch mass flow
model (Münch, 1930), as reviewed by Van Bel (2003), as-
sumes that assimilates are translocated in the plant via the
phloem through “leaky pipes” – a metaphor for the sieve
tube-companion cell complexes. According to this model,
the solute content in the phloem and, as a consequence, the
pressure are controlled by release/retrieval mechanisms in
the sieve element/companion cell complexes. During trans-
port, sugars are released from the sieve tubes and part of them
are retrieved again (Minchin and Thorpe, 1987). This mecha-
nism of carbon release and partial retrieval might also explain
the often observed13C enrichment of phloem sugars during
transport in basipetal direction (Gessler et al., 2009b). Part
of the sugars released might undergo metabolic conversion
in reactions fractionating against the heavier isotopologue.
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Due to mass balance reasons the unreacted sugars, which are
reloaded in the phloem, will be13C-enriched (Hobbie and
Werner, 2004).

The differential release/retrieval balances in the phloem
not only control the net influx or efflux of sugars, but also
the flux of water in different phloem zones. In the collec-
tion phloem in source tissues, the influx of sugars and water
will dominate, whereas in the release phloem in the sink tis-
sues the efflux of sugars and water will prevail. In summary,
as in the original M̈unch model, the driving force to control
phloem transport is the source-sink turgor difference. In con-
trast, Thompson (2006) assumes that the “inability of decen-
tralized organisms such as plants to control phloem translo-
cation centrally disqualifies such [pressure] differentials as
control variables”. In addition, the author argues that the
maximum efficiency of phloem transport is achieved if the
pressure differentials are small, and that homogeneous tur-
gor and rapid long-distance distribution of local disturbances
in turgor and solute concentration are a prerequisite for the
sieve element/companion cell complexes to operate in a non-
centralized manner and to serve both long distance transport
and local supply of surrounding tissues.

Mencuccini and Ḧolttä (2010) advanced towards a mech-
anistic understanding of the phloem as a “bottleneck” to C
flow below ground. They provide evidence that specific
phloem properties (path length, specific conductivity and tur-
gor pressure differences) and transport velocities are crucial
to explain the linkage between canopy photosynthesis and
belowground processes. Furthermore, they put forward the
hypothesis of Ferrier et al. (1975) and Thompson and Hol-
brook (2004) that pressure/concentration waves travelling
through the phloem are responsible for a very fast transfer
of information, coupling assimilation to belowground pro-
cesses. Pressure wave fronts are assumed to travel several
orders of magnitude faster than the phloem solution and the
solutes within, thus creating a signal that is rapidly trans-
ferred through the plant via the phloem. If pressure con-
centration waves completely mediated the coupling between
(canopy) carbon assimilation and soil respiration, the track-
ing of isotope signals – either as natural abundance isotope
composition or as highly enriched13C label – would not
be suited to characterize this link (Mencuccini and Hölttä,
2010). Soil respiration as an example would already be up-
regulated hours or days before the newly assimilated sub-
strate arrives belowground and could imprint itsδ13C sig-
nature upon the respired CO2. Kayler et al. (2010a) postu-
lated, however, that the time of arrival of carbon molecules
belowground conveys more important information than a hy-
pothetic pressure concentration wave. This is because the
time it takes for a carbon molecule to pass through the plant
indicates the status of plant storage pools, the impact of wa-
ter availability on biological activity and plant nutrient status.
The authors thus concluded that the time-lag between car-
bon fixation during photosynthesis and its loss through res-
piration belowground carries real physiological information

about the carbon use within plants as well as about the degree
to which plants and soil are coupled and that this information
is exactly the one derived from studies of the isotopic compo-
sition of recent assimilates, other short- or long-lived carbon
pools and respired CO2.

The time lag caused by C translocation from leaves to be-
lowground sites of respiration has been extensively reviewed
(Davidson and Holbrook, 2009; Kuzyakov and Gavrichkova,
2010; Mencuccini and Ḧolttä, 2010) since photosynthe-
sis has been identified as a key driver of soil respiration
(Högberg et al., 2001). Generally, time lags determined as
propagation of fluctuations inδ13C at natural abundance in-
crease with tree height, with transport rates between 0.07 and
0.5 m h−1 (Kuzyakov and Gavrichkova, 2010; Mencuccini
and Ḧolttä, 2010), although carbon translocation velocities
are often higher in tall plants (Lang, 1979; Thompson and
Holbrook, 2003; Van Bel and Hafke, 2005; Mencuccini and
Hölttä, 2010), potentially due to stronger root C sinks asso-
ciated with a larger belowground biomass. In certain stud-
ies, seasonal changes in belowground C allocation had no
effect on the time lag between assimilation and use of as-
similates in belowground respiration (Horwath et al., 1994;
Högberg et al., 2010), suggesting that phloem path length
and structural differences were the main determinants of C
transfer velocity. In contrast, other studies reported consid-
erable variation of the time lag during the growing season in
the same trees (Plain et al., 2009; Wingate et al. 2010; Dan-
noura et al., 2011; Epron et al., 2011; Kuptz et al., 2011a)
(Fig. 2). However, the mechanisms behind such variability
are still unknown even though seasonal variations of carbon
storage and remobilization in the trunk are the most likely
mechanisms to affect the transfer of carbon as well as the
conveyance of the carbon isotope signal from the canopy in
basipetal direction over the growing season (Offermann et
al., 2011).

Carbon isotope labeling experiments suggest a longer
transport time in gymnosperms compared to angiosperm
trees (Kuzyakov and Gavrichkova, 2010), due to structural
differences in the phloem. The differences between the two
groups can be considerable, despite the heterogeneity in en-
vironmental conditions the experiments were conducted at.
The observed patterns suggest a separate consideration of
gymnosperm and angiosperm tree species in the future. Fur-
thermore, also time lag studies in grasses need to be con-
sidered independently, as – in contrast to tree species – time
lags may even decrease with increasing plant height as has
been shown forLolium perenne(Kuzyakov and Gavrichkova,
2010).

Recently Vargas et al. (2011) observed multi-temporal cor-
relation between photosynthesis and soil respiration across
different ecosystems with time periods between 1 and 16
days. Based on a comprehensive time series analysis of
flux data they concluded that multiple biophysical drivers are
likely to coexist for the regulation of allocation and transport
speed of carbon. Strong correlations both within a 1-day
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N. Brüggemann et al.: Plant-soil-atmosphere C fluxes 3465

Fig. 2. Seasonal changes in time lag measured by tracing variations
in δ13C at natural abundance level (Wingate et al., 2010; Kuptz et
al., 2011a) or after13CO2 pulse-labeling (Plain et al., 2009) in soil
respiration and trunk respiration (at 1 m height; Kuptz et al., 2011a).
Average values were calculated based on monthly ranges reported
in Wingate et al. (2010).

period and within periods>1d for forests suggest that the
link between assimilation and soil respiration might poten-
tially involve both the propagation of pressure-concentration
waves in the phloem and the actual transport of new assim-
ilates from the leaves to belowground tissues. In addition,
the correlations with longer time periods might be a result
of transient storage and remobilisation of carbon in the plant
tissues. Moreover, Heinemeyer et al. (2011) reported dif-
ferences for particular components of soil respiration (root
and mycorrhizal respiration) in their temporal relation and
response to gross primary production. The authors assume
that carbon storage in roots and/or fungi over days to weeks
and later allocation to mycorrhizae might explain the corre-
lation between photosynthesis and mycorrhizal respiration at
longer temporal scales.

As a consequence, not only phloem transport but also
short-term storage/remobilisation and transfer to rhizosphere
biota (see 3.2) have to be considered for the interpretation
of the speed of link or degree of coupling (cf. Kayler et al.,
2010a) between above- and belowground processes.

3.2 Carbon transfer to soil biota

A large fraction of C fixed by plant photosynthesis is al-
located belowground, where C can be: (1) invested into
biomass or respired by roots; (2) released as exudates and al-
located to soil microorganisms in the rhizosphere (Kuzyakov
and Domanski, 2000; Kuzyakov et al., 2000; Walker et al.,
2003); or (3) incorporated as litter into soil organic matter
that may be respired by heterotrophic soil microorganisms.
In this section we focus on pathways (1) and (2). Pathway
(3) will be discussed in 4.2.

Carbon allocated to roots can stimulate exudation, which
in turn increases microbial respiration in the rhizosphere

(Kuzyakov and Cheng, 2001; Bowling et al., 2002; Tang
et al., 2005). Up to 40 % of photosynthates are exudated
by roots and are rapidly respired or invested in biomass by
rhizosphere microorganisms (Whipps, 1990; Meharg, 1994;
Kuzyakov and Cheng, 2001). The rhizosphere is a narrow
zone in the vicinity of the roots characterized by the presence
of mycorrhizal fungi and other rhizosphere microorganisms
that depend on root exudates as a C substrate source (Cheng
et al., 1996; Jones et al., 2009).

Among rhizosphere microorganisms, mycorrhizal fungi
are of great relevance to plant-soil C interactions (Finlay and
Söderstr̈om, 1992; Stuart et al., 2009; Jones et al., 2009).
Several studies indicate that mycorrhizal fungi can use up to
30 % of recent plant photosynthates (Högberg and Ḧogberg,
2002; Johnson et al., 2002; Leake et al., 2006; Heinemeyer
et al., 2007; Chapin et al., 2009). It has been shown that
plant-derived C flux into (Vandenkoornhuyse et al., 2007)
and through arbuscular mycorrhizal hyphae (Staddon et al.,
2003; Goldbold et al., 2006) is rapid, i.e. in the range of only
a few days. Also for ectomycorrhizal hyphae a fast turnover
of freshly assimilated C was found (Godbold et al., 2006),
which has been confirmed recently also on the basis of sev-
eral years of respiration data at high temporal resolution from
a deciduous oak forest in southeastern England (Heinemeyer
et al., 2011). However, in forests dominated by ectomycor-
rhiza this linkage seems to vary considerably during seasons
and years, suggesting alternative C sources for ectomycor-
rhizal metabolism such as litter decomposition (Heinemeyer
et al., 2011), but there are too few high temporal resolution
flux data available to allow a generalization. The C turnover
in microbial biomass ranges from 7 to 95 days, indicating a
slower turnover compared to mycorrhizal fungi (Ocio et al.,
1991; Ostle et al., 2003; Kaštovsḱa andS̆antr̂uc̆ková, 2007).
The large variability in C turnover times of soil microor-
ganisms could be associated with a switch between different
functional groups of microbes, as e.g. rhizosphere bacteria
and mycorrhizal mycelium can be used as C substrates by
other soil microorganisms (Jones et al., 2009).

It has been shown with13C-pulse labeling that also soil
macrofauna (e.g. earthworms) may quickly incorporate plant
exudates as a C source in addition to above- and belowground
plant litter inputs, probably by incorporating13C-labeled mi-
croorganisms (Ostle et al., 2007). Turnover times of C in
earthworms range from 12 to 37 days (Bouche, 1984; Dyck-
mans et al., 2005). Also collembola (springtails) were found
to feed on very recently assimilated C in contrast to Acari
(e.g. mites) and Enchytraeidae (Högberg et al., 2010).

Overall, the C flux to soil biota in the rhizosphere is large
and C is typically lost from the system within days to months.
Environmental conditions imprinted inδ13C of photosyn-
thates are thus translated through organisms in the rhizo-
sphere and remain detectable in the autotrophic part of soil
respiration (Ra; see 3.3).
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3.3 Carbon losses via plant respiration and BVOC
emissions

Respiration of plant tissues and rhizosphere microorganisms
constitutes a major C loss in terrestrial ecosystems and can
make up to 80 % of gross primary production (Janssens et
al., 2001). Plant respiration is not fuelled by a homogeneous
substrate, but by several C pools with different turnover times
and metabolic histories (Schnyder et al., 2003; Ghirardo et
al., 2011; Kuptz et al., 2011a). Lehmeier et al. (2008) iden-
tified three major C pools distinguishable by their half-life,
which fed dark respiration in shoots and roots of perennial
rye grass. Only 43 % of respiration was directly driven by
current photosynthates, thus pointing to the importance of
short-term storage pools with half-lives of a few hours to
more than a day. This finding is in agreement with observa-
tions made by Nogúes et al. (2004) for French bean, showing
that the leaf respiratory substrate is a mixture in which cur-
rent photosynthates are not the main components. Changes
in the N supply (Lehmeier et al., 2010), but presumably
also in other environmental conditions, can change the mean
residence time of the respiratory substrate pool mainly due
to different contributions from storage. In summary, plant
respiratory CO2 losses are largely, but not exclusively fu-
elled by recently assimilated C. Temporal changes in sub-
strate use (e.g. Hymus et al., 2005; Nogués et al., 2006) and
post-carboxylation isotope fractionation in leaves and het-
erotrophic tissues can partially uncouple the isotope compo-
sition of respired CO2 from assimilates (see also 2.2), and
imprint valuable information in itsδ13C. However, as mea-
surements in tall stature plants are technically challenging,
data on plant respiration and its isotopic composition from
field studies, especially from forests, are scarce.

Also the emission of biogenic volatile organic compounds
(BVOC) can constitute a considerable loss of C from veg-
etation in the range of a few percent of the current net as-
similation rate under non-stress conditions, but can reach or
even exceed net assimilation rates under stress conditions,
such as drought, and continue even when net assimilation
has ceased (e.g., Brüggemann and Schnitzler, 2002), using
alternative carbon sources like xylem-transported sugars and
breakdown of starch (Loreto and Schnitzler, 2010). However,
BVOC emission rates differ strongly among plant species
and genera, and thus only play a role for the C budget of
particular species, e.g. for isoprene-emitting poplar, oak and
willow species (Sharkey et al., 2008). In view of the pre-
dicted future increases in temperature and drought periods,
BVOC might play an increasing role in determining the C
budget of ecosystems that are dominated by BVOC-emitting
plant species, although elevated atmospheric CO2 has been
found to counteract temperature effects on BVOC emission
(cf. Pẽnuelas and Staudt, 2010, for a review).

The carbon isotopic signature of isoprene has been found
moderately13C-depleted by 2 to 3 ‰ as compared to recently
fixed carbon (Sharkey et al., 1991; Rudolph et al., 2003)

or stronger depleted by 4 to 11 ‰ (Affek and Yakir, 2003).
The reason for this observation might be fractionation along
the isoprene biosynthesis pathway, but also the fact that iso-
prene biosynthesis is, like plant respiration, not solely fuelled
from recent assimilates, but also from alternative sources,
such as xylem-transported sugars (Kreuzwieser et al., 2002;
Ghirardo et al., 2011), which might be13C-depleted as com-
pared to recent assimilates at the time of their use in isoprene
biosynthesis. Once released to the atmosphere, isoprene does
not preserve its original13C signature, as it is highly reactive
and undergoes fast oxidation reactions with ozone and hy-
droxyl radicals, leading to a13C-enrichment in the remain-
ing isoprene (Iannone et al., 2010). This has to be consid-
ered when interpreting atmospheric isoprene carbon isotope
signals.

Most other BVOC are also characterized by13C signa-
tures close to that of the leaf material they were emitted from
(Goldstein and Shaw, 2003). The only major exception are
methyl halides, which are derived in plants from the methoxy
groups of pectin, which themselves are already significantly
13C-depleted as compared to the bulk leaf material (Keppler
et al., 2004).

3.4 Temporal C allocation patterns

Also theδ13C of soil CO2 efflux has been shown to exhibit
diel variations (e.g. Kodama et al., 2008; Bahn et al., 2009;
but see Betson et al., 2007). However, from correlation-based
flux studies it is not consistently clear to which extent they
are temperature- (and moisture-) independent and thus possi-
bly related to rapid allocation of C from recent photosynthe-
sis to respiration (Tang et al., 2005; Bahn et al., 2008; Subke
and Bahn, 2010; Vargas et al., 2010; Philipps et al., 2011).
It is also not clear to which extent these diel variations of
δ13C of soil CO2 efflux reflect the number of processes po-
tentially involved, including changes in vapor pressure deficit
that affect photosynthetic discrimination against13C (Brug-
noli et al., 1988; Farquhar et al., 1989; see 2.1), changes in
respiratory C isotope fractionation as demonstrated for CO2
respired by leaves (Hymus et al., 2005) as well as trunks
(Kodama et al., 2008), diurnal changes in respiratory car-
bon source (Tcherkez et al., 2004; Gessler et al., 2007; Bahn
et al., 2009; Barthel et al. 2011) and diffusion processes
(Moyes et al., 2010). For a detailed mechanistic analysis
of the origin of diel variations in theδ13C see Werner and
Gessler (2011).

Initial growth and respiration are supplied from storage
C in seeds in both annual and perennial plants (Bathellier
et al., 2008). Carbon isotope ratios of young plants will
thus be dominated by storage compounds (e.g.13C-depleted
lipids or13C-enriched carbohydrates; see 2.2). Similarly, leaf
growth in deciduous trees relies on stored C (mainly starch)
during the first phase of leaf development (Lacointe et al.,
2004; Kagawa et al., 2006a; Asaeda et al., 2008), which in
some species can be rather short (Keel and Schädel, 2010).
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Damesin and Lelarge (2003) have documented the switch
from 13C-enriched starch to more13C-depleted assimilates
for young beech leaves. In contrast, new foliage of evergreen
species is typically considered to be made almost entirely of
recent assimilates (Hansen and Beck, 1994; Cerasoli et al.,
2004).

Early radial growth of stems is often supplied by reserves
as well (Helle and Schleser, 2004; Kagawa et al., 2006b; Sko-
markova et al., 2006). However, distinct differences in the
use of recent vs. stored C for radial growth have been docu-
mented for deciduous trees, with some species incorporating
negligible amounts of reserves (Keel et al., 2006). During
summer, photosynthates are allocated mainly above ground
(Mordacq et al., 1986; Olsrud and Christensen, 2004), sup-
plying shoot elongation (Schier, 1970; Hansen and Beck,
1994), radial growth (Gordon and Larson, 1968), further
foliage development (Dickson et al., 2000; Lamade et al.,
2009) and flowering and fruiting (Mor and Halevy, 1979;
Hoch and Keel, 2006). Possibly as a result of rapid mixing
between old and new C (Keel et al., 2007) there is a carry-
over of stores for wood growth in most species (Kagawa et
al., 2006b; Keel et al., 2006; von Felten et al., 2007; Palacio
et al, 2011), which may impair the use of isotope tree-ring
data as proxy for environmental processes.

Changes in the relative contributions of different C sources
throughout phenological plant development entail remark-
able seasonal variations in theδ13C of different plant or-
gans (Damesin and Lelarge, 2003; Helle and Schleser, 2004).
Such variations may hinder the interpretation ofδ13C in
plants as indicator for environmental conditions (Cavender-
Bares and Bazzaz, 2000; Helle and Schleser, 2004). The
contribution of new C to foliage production is highly vari-
able in deciduous species (Keel et al., 2006), but on average
close to the c. 70 % reported for evergreenPinus uncinata
trees (von Felten et al., 2007). The amount of new C used for
stem growth ranges from 35 % (Quercus petraeasaplings;
Palacio et al., 2011) to 71 % (average of 5 deciduous tree
species, Keel et al., 2006). Within deciduous plants, diffuse
porous species allocate significantly higher amounts of new
C to wood than ring-porous species (52 % vs. 35 %, respec-
tively; Palacio et al., 2011). Thus, differences between ev-
ergreen and deciduous species may be smaller than initially
thought and, in some cases, overridden by inter-species vari-
ability.

Carbon allocation patterns are known to vary not only
throughout the life cycle of plants but also with the age of the
different plant organs (Kozlowski, 1992). These changes are
particularly relevant for long-lived perennial species. In gen-
eral, older plants tend to decrease allocation belowground,
and to increase allocation to maintenance (increased standing
biomass and respiration) (Kozlowski, 1971), storage pools
(Lusk and Piper, 2007; Genet et al., 2010), defense mech-
anisms (Boege, 2005; Boege and Marquis, 2005) and re-
production (Genet et al., 2010). Changes in C allocation
to plant organs entail quantitative and qualitative differences

in their C composition with age. Consequently, the C iso-
tope composition of plant respiratory CO2 (Maunoury et al.,
2007; Kuptz et al., 2011b) or of bulk material (Helle and
Schleser, 2004; Skomarkova et al., 2006; Salmon et al.,
2011) may change with season and ontogeny. For exam-
ple, leaves of adult plants tend to be enriched in13C, show-
ing higherδ13C than leaves of young plants (Donovan and
Ehleringer, 1994; Cavender-Bares and Bazzaz, 2000; Fes-
senden and Ehleringer, 2002). Information on the age-related
variations ofδ13C in the different organs of plants (including
not only leaves but also roots or stems for which data are
mostly absent) is crucial for scalingδ13C results on young
plants to mature individuals.

Belowground plant parts are supplied by both recent pho-
tosynthates and C reserves (Joslin et al., 2006; Carbon and
Trumbore, 2007). Recent investigations estimated that up to
55 % of fine root C comes from storage, although such stored
C seems of young age (approx. 0.4 years) (Gaudinski et al.,
2009). Belowground allocation of newly fixed C increases
dramatically towards the end of the growing season (Smith
and Paul, 1988; Stewart and Metherell, 1999, Högberg et
al., 2010; Epron et al., 2011), competing with storage ac-
cumulation in aboveground parts for winter dormancy and
frost hardiness (Hansen and Beck, 1990; Skomarkova et al.,
2006; Kuptz et al., 2011a). In evergreen species, a second
maximum of belowground allocation of recent C is often ob-
served in early spring, shortly before bud break (Shiroya et
al., 1966; Ziemer, 1971). During winter, deciduous species
maintain their living tissue mainly from reserve pools (Dick-
son, 1989; Maunoury et al., 2007), whereas evergreen trees
may produce new substrate for respiration (mainly mainte-
nance respiration) by active photosynthesis during warmer
periods within the cold season (Hansen et al., 1996; Hu et al.,
2010; Kuptz et al., 2011b). Similar to the cold season, sum-
mer drought might induce a seasonal allocation pattern with
regularly occurring favorable and unfavorable growth condi-
tions, leading to seasonal changes in growth and in the con-
tribution of growth and maintenance respiration toRa. Such
phases are likely to be associated with variations inδ13C
of plant respired CO2. If assimilate supply decreases,13C-
enriched stores can serve as substrates for respiration leading
to increases inδ13C of released CO2.

Relatively little is known about interannual variations
compared to the wealth of studies on seasonal changes in
C allocation. Carbon allocation to radial stem growth is typ-
ically correlated with climatic conditions such as precipita-
tion and air temperature, a relationship used for climate re-
constructions by dendrochronologists. Interestingly, Rocha
et al. (2006) found no correlation between gross ecosystem
production (a measure for photosynthesis at the stand scale)
with tree ring width, suggesting that radial growth is not di-
rectly related to the availability of recent C, but also depends
on the amount of carbohydrate stored.

Although significant advances have been made in re-
cent years to characterize the use of stored C in plants
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(represented by “Starch” in Fig. 4), there are still important
knowledge gaps to fill. For example, the relationship be-
tween the age of plant stores and remobilization is still not
fully understood, raising the question of how much of the C
stored by plants can actually be remobilized (Millard et al.,
2007), and how long these stores can be remobilized before
they are ultimately sequestered in plant tissues or lost as CO2
or BVOC. It is also not known how stores are mobilized in re-
lation to the time (phenology and age) they were built up (but
see initial results by Lacointe et al., 1993), or how these pro-
cesses are affected by environmental stress and disturbance.
These key questions have to be answered before the role of
plants in ecosystem C cycling can be fully understood.

3.5 Bi-directional C transport processes

Efflux of CO2 from the soil to the atmosphere is not the only
escape way of carbon out of the soil. It has been shown with
isotopically labeled CO2 that roots can take up CO2 and de-
liver it to aboveground parts of the plant via the transpiration
stream (Ford et al., 2007; Moore et al., 2008). It is known
since many years that CO2 concentrations in the xylem sap
of plants can be up to three orders of magnitude higher than
in the atmosphere (Eklund, 1990; Hari et al., 1991; Levy et
al., 1999; Teskey et al., 2008 and citations therein). In ad-
dition to root uptake of soil CO2, root respiration adds CO2
to the xylem water, followed by stem respiration, i.e. in the
inner bark (consisting of the periderm and the phloem), in
the cambium and in the ray cells of the xylem (Teskey et al.,
2008). As especially the cambium, but also the cell walls of
the xylem are strong diffusion barriers, very high CO2 partial
pressure (pCO2) can build up inside the stem.

The high xylempCO2 has significant effects on stem,
branch and leaf CO2 exchange. Martin et al. (1994) found
temperature-independent fluctuations in stem CO2 efflux in
loblolly pine (Pinus taedaL.) seedlings, with flux rates be-
ing 6.7 % lower during periods of high transpiration asso-
ciated with high temperatures, as compared with periods of
low transpiration. They could identify transport of respira-
tory CO2 in and diffusive loss from the transpiration stream
as the most likely cause of this unexpected observation. Levy
et al. (1999) calculated a contribution of xylem-transported
CO2 to leaf photosynthetic rates of 0.5 to 7.1 %, and a con-
tribution of up to 12 % to apparent stem respiration rates.
Teskey and McGuire (2002, 2005) observed a linear relation-
ship between stem CO2 efflux and xylem sap CO2 concen-
trations. They could evoke rapid and reversible changes of
stem CO2 efflux by manipulating xylem sap CO2 concen-
trations, explaining up to 77 % of the stem efflux variation.
The negative relationship of xylem sappCO2 with xylem
sap velocities or volume flow presents an explanation for
the frequently observed midday depression of stem CO2 ef-
flux, when xylem sap flow is highest and, hence, xylem CO2
concentration is lowest (Teskey and McGuire, 2002; Aubrey
and Teskey, 2009). Overall, it has to be acknowledged that

xylem-mediated CO2 transport from the soil to the atmo-
sphere can be substantial, in some cases equaling soil CO2
efflux (Aubrey and Teskey, 2009).

By far not all of the xylem CO2, be it soil-, root- or stem-
derived, is released via stem efflux. It was shown already
a long time ago that not only leaves, but also woody tissue
can assimilate CO2 via photosynthesis (e.g., Wiebe, 1975;
Foote and Schaedle, 1976; Pfanz et al., 2002). Albeit this
corticular photosynthesis usually does not lead to a net CO2
uptake, it can compensate for most of the respiratory loss
during the light period (Foote and Schaedle, 1976; Pfanz et
al., 2002; Cernusak and Marshall, 2000; Wittmann et al.,
2006). Given the high xylempCO2, it is likely that most
of the CO2 fixed by the woody tissue is derived from the
stem-internal CO2 pool, as could be shown in a13CO2 la-
beling study with sycamore (McGuire et al., 2009). How-
ever, as the transpiration stream ends in the leaves of a plant,
the remaining CO2 will be subject to photosynthetic fixa-
tion here, which was demonstrated in a labeling study with a
1 mM14C-bicarbonate solution fed to excised leaves ofPop-
ulus deltoides(Stringer and Kimmerer, 1993). If soil CO2
taken up by the roots is fixed during photosynthesis, this will
have implications for the carbon isotopic signature of pho-
tosynthates due to the much lowerδ13C of the soil-derived
CO2, depending on the amount of CO2 transported with the
transpiration stream.

Beside phloem transport, large amounts of C can also be
transported via the transpiration stream, even in periods when
leaves are fully developed and re-mobilization of C from
storage pools is unlikely to occur. In pedunculate oak (Quer-
cus roburL.) saplings, Heizmann et al. (2001) found a contri-
bution of xylem-transported carbohydrates, mainly sucrose,
glucose and fructose, to the total C budget of leaves of up
to 91 %, with the highest values occurring during midday
depression of photosynthesis at high temperature. In grey
poplar, xylem transport of carbohydrates contributed 9 % to
28 % to the total C delivered to the leaves (Mayrhofer et
al., 2004). This xylem-transported C can form a major con-
stituent of leaf C metabolism, as was shown in labeling ex-
periments with13C-glucose in pedunculate oak (Kreuzwieser
et al., 2002) and in grey poplar (Schnitzler et al., 2004; Ghi-
rardo et al., 2011). The cycling of C within the plant through
the phloem down to the roots and back to the aboveground
parts of the plants via the xylem makes the supply of carbo-
hydrates to heterotrophic tissues independent of short-term
fluctuations of photosynthetic performance of the plants, as
hypothesized by Heizmann et al. (2001), but also leads to
a dampening of photosynthetic carbon isotope signals sent
from the leaves down to the roots.

3.6 Sensitivity of C allocation to environmental stress

The general responses of plant ecophysiological processes
to environmental stress (e.g. resource limitations in light,
water or nutrients) have been well known for many years
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(Larcher, 2003). Ecophysiological responses often involve
changes at different organizational levels, ranging from cel-
lular mechanisms to whole plant carbon-water or carbon-
nutrient relations to sustain plant performance and plant fit-
ness under stress. Stable carbon isotopes have been shown
to be sensitive indicators of leaf stress responses involving
stomatal regulations, changes in mesophyll conductance and
(photo)respiration (Farquhar et al., 1989; Dawson and Sieg-
wolf, 2007, and references therein). For example, leaf car-
bon discrimination was shown to increase under light stress
for C3 (Brugnoli and Farquhuar, 2000) and C4 plants (Buch-
mann et al., 1996), but decrease under water limitations
(Dawson et al., 2002).

Recently, it was demonstrated that drought stress not only
reduced C assimilation but often also increased the mean res-
idence time of recently assimilated C in leaf biomass; fur-
thermore, the C transfer velocity was reduced in saplings and
the trunk of some tree species, leading to a reduced coupling
between canopy photosynthesis and belowground processes
under water stress (Ruehr et al., 2009; Barthel et al. 2011;
Dannoura et al., 2011). Similarly, shading has been shown to
reduce the speed of link between photosynthesis and soil res-
piration in grassland (Bahn et al., 2009). Mechanisms under-
lying these short-term responses to stress are possibly related
to source-sink relationships, as at low photosynthetic rates a
decrease of phloem loading at the collection phloem end will
lower the pressure gradient and hence decrease the down-
ward transport rates (Lee, 1981). Furthermore, soil mois-
ture influences the quantity of water supplied by the xylem
to the collection phloem, affecting the turgor pressure dif-
ferences between two phloem ends. Potentially, all environ-
mental factors which affect photosynthesis (vapor pressure
deficit, radiation, CO2 concentration, etc.) might have sim-
ilar consequences. However, more studies, including also
compound-specific carbon isotope analyses, are needed to
further elucidate the biochemical and physiological mecha-
nisms responsible for these patterns.

4 Belowground C turnover

Stable isotopes have proven to be a technique to address the
complex carbon transformations in the soil (Kuzyakov et al.,
2000; Bowling et al., 2008; Paterson et al., 2009; Kayler
et al., 2010a). Here, we extend the view of isotopes in be-
lowground research beyond methodology, but limit the scope
of our discussion of carbon isotopes to the investigation of
plant-soil interactions with a specific emphasis on plant di-
rect and indirect controls on rhizosphere respiration, micro-
bial metabolism, organo-mineral interactions, dynamic soil
carbon pools, and microbial markers.

4.1 Rhizosphere respiration

Soil CO2 efflux is dominated by two major sources of soil
respiration: an autotrophic component (Ra, roots, mycor-
rhizal fungi and other root-associated microbes dependent
on recent C photosynthates) and a heterotrophic component
(Rh, organisms decomposing soil organic matter). A large
array of methods for partitioningRa andRh exists, the ad-
vantages and disadvantages of which have been extensively
reviewed elsewhere (Hanson et al., 2000; Kuzyakov, 2006;
Subke et al., 2006; Trumbore, 2006). On average,Ra and
Rh contribute equal amounts to total soil respiration, ranging
from 10 to 90 % in single studies (Hanson et al., 2000), with
the contribution ofRa increasing with annual soil CO2 efflux
(Subke et al., 2006; Bond-Lamberty and Thomson, 2010).

While many experiments suggest thatRa strongly de-
pends on recent photosynthates as indicated by rapid and pro-
nounced declines in soil respiration after clipping, shading or
phloem girdling (Craine et al., 1999; Högberg et al., 2001;
Wan and Luo, 2003), other studies have reported only mi-
nor effects (Hibbard et al., 2005; Zhou et al., 2007; Bahn et
al., 2009; Bond-Lamberty and Thomson, 2010). These latter
studies indicate that root C stores might serve as respiratory
substrates forRa and allow to maintain respiration rates at
least temporarily (Bahn et al., 2006). This is supported by ra-
diocarbon analysis of root respired CO2, which showed that
roots partly respire older C (Cisneros-Dozal et al., 2006; Cz-
imczik et al., 2006; Schuur and Trumbore, 2006). In contrast,
respiration by microbes in the rhizosphere is not buffered by
carbohydrate reserves and may decline more rapidly after in-
terruption of assimilate supply (Bahn et al., 2006).

Dramatic increases inRa have been found in strongly sea-
sonal ecosystems at high latitudes in late as opposed to early
summer (Ḧogberg et al., 2010), indicating thatRa is de-
pendent on plant phenology and/or the season. HigherRa
is likely dominated by increased growth respiration, while
maintenance respiration is assumed to undergo less seasonal
change (Wieser and Bahn, 2004). Although higher tempera-
tures in late summer undoubtedly play a role in the observed
increase inRa, the occurrence of hysteresis, expressed as dif-
ferent respiration rates measured at the same soil tempera-
tures in different seasons (Högberg et al., 2009), suggests that
additional factors, such as phenology, controlRa. At shorter
time scales, changes in physical transport processes of CO2
and heat hold an alternative explanation for the occurrence of
hysteresis (Subke and Bahn, 2010; Phillips et al., 2011).

Nutrient availability can also exert a strong control on
Ra. In N-poor systems, addition of N fertilizer reducesRa
(Högberg et al., 2010), associated with an increase in above-
ground C allocation (Olsson et al., 2005). Responses in total
soil respiration rates have been found to increase, decrease
or remain unaltered as reviewed by Janssens et al. (2010).
The discrepancy in these results may reflect the combined
responses of plants and soil to N fertilization.
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Many studies show a pronounced effect of soil moisture
onRa relative to total soil respiration. During a dry summer,
the amount of recent C respired decreased in an evergreen
forest (Andrews et al., 1999), possibly as a result of a re-
duction in C supply from above ground. Similarly, Ruehr et
al. (2009) found less labeled C respired in drought experi-
ments (see also 3.6). In contrast, an increase in the fraction
of recent C was measured in soil CO2 during an exception-
ally dry summer in a temperate deciduous forest (Keel et al.,
2006). These different results might be explained by inter-
acting effects of soil moisture and temperature on C supply
for respiration (Davidson et al., 2006), different contributions
of the individual component fluxes to total soil respiration,
or changes in CO2 transport rates in the soil (Phillips et al.,
2011).

Little is known about the biotic and abiotic factors that reg-
ulate rhizosphere respiration despite its importance for the
terrestrial C cycle (Ḧogberg and Read, 2006; Chapin et al.,
2009). Carbone et al. (2007) showed that14C-labeled assim-
ilates respired by rhizosphere microorganisms had a mean
residence time of 15 days, but 30 days after the labeling,
the signal was still detectable in soil respiration. Moyano
et al. (2008) suggested that factors controlling mycorrhizal
respiration are similar to those that control root respiration.
However, recent studies indicate that mycorrhizal respiration
may be less sensitive to temperature than root respiration
(Heinemeyer et al., 2007; Moyano et al., 2007; Nottingham
et al., 2010).

Overall, the autotrophic component of soil respiration is
closely coupled to assimilate supply and is sensitive to fac-
tors that control C uptake (e.g. phenology, N availability, and
shading) and C allocation patterns. Root respiration can also
be supplied by stored C, if assimilate supply is interrupted.
How C stores contribute toRa under normal conditions will
affect the plant-soil respiratoryδ13C linkage. It can be con-
cluded that the link should be tightest during periods of high
C supply and in plant species with small C stores.

Heterotrophic soil respiration (Rh) is mainly affected by
soil temperature and moisture. However, recent studies have
shown the importance of soil C availability as a driver of
heterotrophic respiration (Vance and Chapin, 2001; True-
man and Gonzalez-Meler, 2005; Scott-Denton et al., 2006).
There is evidence that fresh C input into soil can increase,
decrease or have little or no effect onRh (Kuzyakov et al.,
2000; Fontaine et al., 2007). This variability of theRh re-
sponse to soil C availability may arise in part because soil
organic matter (SOM) consists of several functional C pools
with different levels of protection and recalcitrance (Six and
Jastrow, 2002). Furthermore, the diversity found in soil mi-
crobial communities may result in different preferential us-
age of soil organic carbon (SOC) sources contributing to the
difficulty in correlating changes inRh in response to soil C
availability. Details on SOM turnover and isotopic discrimi-
nation associated with it will be given in the following chap-
ters.

4.2 Patterns of SOMδ13C isotopic enrichment with
soil depth

Bulk SOM is a large-scale representation of belowground
biogeochemistry in that isotopic values of SOM integrate
processes over a large scale of both space and time. Across
many ecosystems SOM becomes increasingly13C-enriched
(1 to 3 ‰) with depth. Ehleringer et al. (2000) offered four
hypotheses to describe this pattern: (1) the Suess effect –
i.e. the decrease inδ13C of atmospheric CO2 due to the ad-
mixture of anthropogenic, isotopically depleted CO2 – which
accounts for about 1 ‰ from the litter to about 6 cm depth
(Bostr̈om et al., 2007); (2) microbial fractionation; (3) pref-
erential microbial decomposition of litter and SOM; and
(4) soil carbon mixing. Wynn et al. (2005) included microbes
as precursors of SOM and variable mobility and sorption of
DOC with variable isotopic values. Identification of which
of these hypotheses correctly explains the variation ofδ13C
with depth will potentially reveal important biogeochemical
mechanisms of carbon flow that are common to all ecosys-
tems. Yet, part of the difficulty in validating these different
hypotheses is the relatively small change of the vast pool of
SOM over a short period of time. However, recent experi-
ments have been carried out that provide direct and indirect
evidence of the importance of each process in describing pat-
terns of SOM enrichment with depth.

Studies using the Rayleigh distillation equation (Fry,
2008) have shown some success towards explaining the pat-
terns in SOMδ13C enrichment (Accoe et al., 2002; Wynn
et al., 2005, 2006; Diochon and Kellman, 2008). In this
case, the Rayleigh distillation equation describes kinetic iso-
tope fractionation (i.e. unidirectional reactions) in an open
substrate reservoir and a product (Wynn et al., 2006). The
Rayleigh distillation equation from Wynn et al. (2006) is a
first order reaction model described by the isotopic

F =

[
δ13Cf
1000 +1
δ13Ci
1000 +1

]( 1[
α(1+e)(t−1)

[α(e−1)(t−1)]+t

]
−1

)
(7)

signature of SOM (δ13Cf), the isotopic composition of
biomass input (δ13Ci), the fractionation factor between SOM
and respired CO2 (α), and the SOM fraction remaining. The
Rayleigh distillation equation is a function of fractionation
resulting from two processes: microbial metabolism or dif-
ferential sorption of organic components to mineral surfaces.
From these studies (Wynn et al., 2005, 2006; Diochon and
Kellman, 2008), it is apparent that the pattern of13C enrich-
ment of SOM with depth is dependent on the fractionation
parameter in the Rayleigh model which is limited in the abil-
ity to distinguish between the two fractionation mechanisms.

4.3 Fractionation due to microbial metabolism

The carbon metabolism of microbes is crucial to under-
standing autotrophic and heterotrophic contributions of soil
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Fig. 3. Estimates of apparent fractionation associated with soil mi-
crobial respiration determined by different experimental approaches
(grey bars: from C3 plants; dark grey bars: Rayleigh distillation
methods, black bars: C4 plants). The dashed line is the mean of all
estimates. Data sources: Werth and Kuzyakov, 2010; Wynn et al.,
2005, 2006; Diochon and Kellman, 2008.

respiration. Thus, if isotopes are to be an effective tool to
estimate heterotrophic respiration then we need to quantify
the fractionation by microbes to back-calculate the isotopic
source that is respired (i.e. old vs. new carbon sources or,
more precisely, soil organic matter or root exudates). Mi-
crobial 13C fractionation is a challenge to measure, but is
nonetheless very important to accurately quantify because it
can confound the interpretation of results from experiments
using13C pulse labeling or natural13C abundance. Fraction-
ation is commonly calculated by quantifying the difference
between the isotopic signature of microbial biomass and the
isotopic signature of the substrate (i.e. SOM, DOC, culture)
and products (i.e. CO2) (Fry, 2008). There is a wide range
of estimates of fractionation by microbes from studies imple-
menting this approach (Fig. 3). However, Lerch et al. (2011)
found fractionation to vary over time when calculated in this
manner, and while changes in substrate could account for this
pattern it is also likely that the active microbial community is
changing. Fast changes in microbial composition have been
documented after addition of labile substrate (Cleveland et
al., 2007), rapidly changing environmental conditions (Gor-
don et al., 2008), and other environmental stresses (Schimel
et al., 2007). The question arises whether this variation in
microbial fractionation is real, or whether estimates of frac-
tionation are possibly confounded by different soil substrates
or microbial community composition.

A recent review of belowground fractionation (Werth and
Kuzyakov, 2010) suggests that fractionation occurs during

both microbial uptake and respiration of carbon. The spe-
cific processes associated with each are: (1) uptake, associ-
ated with enzymatic breakdown of organic matter and trans-
port of monomers into cell walls; and (2) respiration associ-
ated with kinetic13C fractionation. The authors listed vari-
ation in the availability and molecular composition of sub-
strates as a possible fractionation mechanism during uptake,
but this is better defined by mixing processes and microbial
community dynamics. Mixing, because soil organic matter
is a mixture of chemical compounds, representing different
stages of decomposition and availability, which is dependent
on the activity and the composition of the microbial com-
munity present (see below). They also suggested that pref-
erential substrate utilization of easily degraded compounds
results in fractionation during respiration, which may well
result in differences between the13C signature of substrate
and products (microbial biomass, remaining SOC or CO2).
However, the mechanisms behind this are not well defined
or understood. Perhaps, microbial substrate selectivity is a
function of the enzymes available to break down substrate.

As discussed above, organic matter sources that contain
multiple carbon moieties confound accurate estimates of
fractionation resulting from microbial metabolism. Exper-
iments that observe biochemical pathways within microbes
by utilizing a controlled substrate provide a more precise
picture of fractionation. Hayes (2001) compiled a compre-
hensive review of carbon fractionation in biosynthetic pro-
cesses. In this review, he shows how fractionation occurring
in chemical reactions, pathways and branch points within
a cell results in the isotopic composition of carbohydrates,
amino acids, nucleic acids, and lipids among different organ-
isms. The often cited study onEscherichia coliby Blair et
al. (1985) documented fractionation between the acetate and
fatty acid synthesis, most likely with the conversion of acetyl
phosphate to acetyl-CoA as regulated by phosphotransacety-
lase. Building on previous studies on plants (Ghashghaie et
al., 2003), two mechanisms of fractionation that lead toδ13C
values of CO2 that are different from the initial substrate or
microbial biomass were hypothesized: (1) the non-uniform
distribution of 13C within hexose molecules (or other sub-
strate) (Hobbie and Werner, 2004), which leads to13C-
enriched CO2; and (2) fractionation during the pyruvate de-
hydrogenase reaction (Blair et al., 1985), which leads to13C
depletion of CO2.

Microbial metabolism type will also affect the magni-
tude and direction of isotopic fractionation. Differences in
biosynthetic pathways result in a diverse isotopic composi-
tion of extracted soil microbial biomass. For example, oxy-
gen availability determines in part the level of anaerobic ver-
sus aerobic respiration by microbes, which in turn affects the
isotopic composition of microbial biomass and fatty acids
(Teece et al., 1999; Cifuentes and Salata, 2001). Carbon fix-
ation by heterotrophs, which is estimated to be 4 % to 7 %
of net microbial respiration (Miltner et al., 2004, 2005), is
another pathway that leads to different isotopic composition
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Fig. 4. Overview of processes and factors determining the isotope signature of C pools and fluxes in space and time in the plant-soil-
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of the involved compounds, and orange boxes depict control factors. The numbers in parentheses refer to the respective chapters of the review.

of amino acids and fatty acids (Feisthauer et al., 2008) and
could have a significant impact on the overall isotopic signal
of microbial biomass and the CO2 respired. Furthermore,
autotrophic and photoautotrophic CO2-fixation must be con-
sidered in terms of C fractionation. On the one hand, the
3-hydroxypropionate pathway causes smaller isotopic frac-
tionation (−13 to 14 ‰) compared to the Calvin cycle (−20
to −25 ‰, van der Meer et al., 2007, and references therein),
which is of special importance in systems where microbial
mats and cyanobacteria play a large role in C translocation
to soil and soil microbial biomass. On the other hand, au-
totrophic organisms may express a high level of isotopic frac-
tionation, and fractionation has been reported to be interest-
ingly high within the context of inorganic C fixation (Cowie
et al., 2009).

Methodologies to study microbial biosynthesis and
metabolomics are becoming increasingly more sophisticated

(Tang et al., 2009), and studies using these techniques may
provide a clear basis from which isotopic differences be-
tween substrate and microbial biomass and overall microbial
fractionation could be understood. For example, the use of
positional labeling of carbon in glucose has given metabolic
insight into carbon pathways in mycorrizhae (Scandellari
et al., 2009). Studies that assess the isotopic composi-
tion of soil microbial biomass usually treat soil microbes
as a single C pool without differentiating between metabol-
ically active and dormant microorganisms (S̆antr̂uc̆ková et
al., 2000; Lerch et al., 2011). Soil microbial biomass is
composed of both active and dormant microorganisms, yet,
CO2 respired from microorganisms derives solely from those
that are metabolically active (Stenstrom et al., 2001; Werth
and Kuzyakov, 2008, 2009; Millard et al., 2010; Werth and
Kuzyakov, 2010). Hence, comparing isotopic composition of
soil microorganisms as a single C pool to soil CO2 respired
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could lead to a misinterpretation of the real isotopic effects
of fractionation during soil respiration. Furthermore, soil mi-
croorganisms as well as roots accumulate C reserves (Plateau
and Blanquet, 1994; Ekblad and Högberg, 2000; Sylvia et
al., 2005). This is especially true as soil microorganisms
have the capacity to undergo dormancy in sudden adverse
environmental conditions. To cope with these conditions, ac-
cumulated C in soil microorganisms can be replaced and re-
leased by adding readily available C (Bremer and van Kessel,
1990; Wu et al., 1993; Ekblad and Högberg, 2000; Ekblad et
al., 2002). Therefore, due to the internal C reserves of mi-
crobes, a mixing occurs between available and stored C res-
piratory substrate, and, consequently, a flawed interpretation
of kinetic fractionation during soil microbial respiration may
result.

When fractionation of belowground carbon pools is cal-
culated, the uncertainty increases with an increasing degree
of metabolic separation between the actual substrate respired
and the specific organism respiring. In fact, researchers have
already recognized the limitation in defining fractionation as
the difference between SOC and microbial biomass by refer-
ring to the estimate as “apparent fractionation”. This term
implies an unknown level of ambiguity and perhaps it is best
to avoid its use in favor of discussing potential fractiona-
tion due to biogeochemistry and microbial metabolism. Ul-
timately, the research question asked will drive the level of
detail to which fractionation is discussed. For example, in
research describing patterns at the ecosystem scale the differ-
ence inδ13C between the actual C respired (detected inδ13C
of CO2) and SOM may suffice to understand belowground C
dynamics in soils at larger scales. However, if the research
requires a high degree of precision in estimating microbial
fractionation, in partitioning studies for example, then a more
sophisticated methodology and quantification is required.

4.4 Interactions with mineral surfaces

As found in studies of SOMδ13C patterns with depth, iso-
topic enrichment occurs with an increase in fine soil particles
(Solomon et al. 2002; Bird et al., 2003). Moreover, Wynn et
al. (2005) found that in coarse textured soils Rayleigh frac-
tionation did not account for patterns of SOM13C enrich-
ment with depth, raising the question of the effect of soil tex-
ture, soil mineralogy and chemistry on the pattern of SOM
13C enrichment with depth. Soil texture also plays a pre-
dominant role in carbon stabilization in soil for which the
mechanisms are not entirely understood (Plante et al., 2006).
However, stabilization studies usingδ13C have shed light on
the carbon dynamics of organo-mineral association (Kayler
et al., 2011) and the role plants play in carbon stabilization
below ground.

Analysis of stable isotopes in soil fractions has given
some insight into the mechanisms behind SOM stabiliza-
tion. Studies that have analyzed the isotopic signature of
SOM fractions (beyond C3/C4 labeling techniques) have

found patterns of enrichment ofδ13C andδ15N with increas-
ing density of sequentially separated SOM fractions (Huy-
gens et al., 2008; Sollins et al., 2009; Marin-Spiotta et al.,
2009). Using several chemical techniques including iso-
topes, Mikutta et al. (2006) showed that organo-mineral in-
teractions accounted for over 70 % of the carbon stabilized
in the soils they analyzed. Organo-mineral interactions re-
fer to the bonding of organic matter via polyvalent cations to
mineral surfaces (von L̈utzow et al., 2006). Using isotopes,
Mikutta et al. (2006) also substantiated the role of microbial
exudates and biomass providing coatings over minerals al-
lowing for more efficient sorption (Kleber et al., 2005) as
well creating chemically resistant organic matter. The au-
thors also found that recently deposited organic material can
be stabilized with mineral surfaces, suggesting that plant-
soil interactions can also directly lead to carbon stabilization,
long thought of as a slow process driven by decomposition
only.

While changes in soil organic matter appear slow, because
the pool is so vast, the processes of carbon loss and stabi-
lization occur relatively rapidly. Questions still remain con-
cerning how strongly organic matter is bonded to the min-
eral surface and to surrounding layers of the organo-mineral
complex (Kleber et al., 2005). However, this research does
suggest that plants may play a pivotal role in the fast cycles
of carbon stabilization (Trumbore, 2006). Isotopes used to-
ward identification of carbon stabilization mechanisms be-
lowground are just in their infancy, and with the help of mod-
els (Kleber et al., 2007) and soil properties, we will be able
to explain not only patterns of theδ13C of SOM with depth,
but also questions regarding carbon accumulation and stabi-
lization (Kleber et al., 2011).

4.5 Transfer of C from leaf litter and DOC to soil and
microbes

Apart from the primary flux of C from plant assimilates into
soil, plant litter degradation and the subsequent C distribu-
tion into soil carbon pools and microbial communities pro-
vide an important secondary flow of carbon into the soil (Elf-
strand et al., 2008). For example, soil microbial dynamics are
controlled through complex interactions with plants and are
influenced by a range of organic compounds added to soils
from plants as root exudates and as litter inputs (Butler et
al., 2004; Bardgett et al., 2005; Kaštovsḱa andS̆antr̂uc̆ková,
2007; Elfstrand et al., 2008; Denef et al., 2009; Esperschütz
et al., 2009). Thus, a key issue in studies investigating soil
carbon dynamics has been tracing the carbon input into soil
from leaf litter decomposition (Liski et al., 2002; Dungait et
al., 2010).

Leaf litter decomposition is the breakdown of highly or-
ganized plant tissue to complex organic compounds that is
regulated by both biotic and abiotic processes. Since decom-
position is slow, the aboveground litter layer of an ecosys-
tem is composed of a continuum of fresh litter to completely
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humified organic matter and serves as a bottleneck for a sig-
nificant portion of primary productivity sent belowground.
But there still remain a series of questions of (i) how the car-
bon in the aboveground litter layer reaches the mineral soil,
(ii) how the biogeochemical processes determine the fate of
organic matter, either remaining in the aboveground litter
layer or being transported into the soil profile, and (iii) which
mechanisms control leaf litter-microbe interactions and dy-
namics. These questions have important ramifications for the
carbon cycling of ecosystems and for the use of isotopes to
elucidate the complex chemical nature of litter decomposi-
tion and incorporation into soil organic matter.

To a large extent, the isotopic composition of leaf lit-
ter is determined by the plant organs and tissues deposited
as well as the post-carboxylation fractionation that occurred
during their synthesis (see Sect. 2.2). For example, roots and
woody stems are generally enriched in13C when compared
to leaves, and the isotopic signature of organic matter in the
litter layer is often close in value to the isotopic composition
of aboveground plant organs (Badeck et al., 2005). Thus, the
different 13C signals of heterotrophic and autotrophic plant
organs and their turnover times may affect the isotopic com-
position of the litter layer. Scartazza et al. (2004) found no
significant variation inδ13C of the litter layer in a beech for-
est in the central Apennine Mountains, Italy, when there was
a significant seasonal change inδ13C values in leaves and in
phloem sap sugar. In the study by Scartazza et al. (2004),
there was a significant relationship between leaf sugarδ13C
and ecosystem-respired13CO2. Thus, the different13C sig-
nals of heterotrophic and autotrophic plant organs may con-
trol 13CO2 produced from the ecosystem for some extent, but
in terms of litter layer13C, other C sources may be determin-
ing theδ13C of litter layer (e.g. lipids), and C with a short
turn over time (e.g. sugars) may not influence theδ13C of
litter layer.

Beyond the initial composition of litter, mechanisms be-
hind the isotopic patterns in leaf litter are considered to be
(1) selective preservation of recalcitrant compounds that are
depleted in13C, (2) preferential consumption of12C by mi-
crobes, (3) incorporation of exogenous organic matter, and
(4) transport of dissolved organic matter within the soil pro-
file (Nadelhoffer and Fry, 1988). Preston et al. (2009) found
that patterns in the isotopic signal of leaf litter located on
the soil surface depend on the degree of decomposition. The
decomposing leaf litter tended to become more13C-depleted
with a decrease in the amount of the original litter mass. Only
after about<30 % of the original litter material was remain-
ing, the isotopic composition shifted towards an enriched sig-
nal. They attributed this shift to sorption of older soil organic
carbon to the remaining leaf litter. Osono et al. (2008), found
a similar depletion of litter over a three-year period of de-
composition. However, they inferred isotopic patterns of leaf
litter were a result of selective C loss as a function of lignin
concentration. Thus, patterns in the isotopic signature of leaf
litter are a function of decomposition and the degree to which

it is integrated with mineral soil, an important consideration
when using litter carbon as a tracer source for studies of car-
bon belowground.

Isotopic studies of the role of leaf litter input into the min-
eral soil has yielded a better understanding of carbon cycling
and stabilization at the soil surface and carbon transported
to deeper soil horizons. Bird et al. (2008) found more than
half of the needle carbon had been lost from the top 5 cm of
soil after 1.5 years, similar to loss rates reported by Müller
et al. (2009). Furthermore, the13C of decomposed leaf litter
remained in the light fraction of pools and was not physi-
cally protected within soil aggregates. Similarly, Rubino et
al. (2010) found in a decomposition experiment with13C-
labeled litter that up to one third of the litter mass was lost
as CO2, while the rest was transported into the mineral soil.
Within the mineral soil, Kramer et al. (2010) found that mi-
crobes used<10 % of leaf litter carbon for respiration or
growth and did not utilize dissolved organic carbon (DOC)
from the organic horizon as a carbon source.

The carbon in the leaf litter can be characterized to have
three fates: initial mineralization by microbes and soil fauna,
stored as readily available substrate in the upper mineral
horizons, and transported to deeper horizons (Froegberg et
al., 2007; Sanderman and Amundson, 2008; Kindler et al.,
2011).

Carbon compounds from aboveground litter are one source
of DOC (Kindler et al., 2011), and roots are a significant,
if not the predominant, contributor as well (Kramer et al.,
2010). Up to 70 % of the DOC originating from leaf litter can
be degraded within four weeks (M̈uller et al., 2009), which
illustrates how fast this pool turns over and supports the no-
tion that DOC production is the rate-limiting step of soil res-
piration (Bengtson and Bengtsson, 2007; Cleveland et al.,
2007). Because of the high turnover of DOC (2 to 3 times
per day; Kalbitz et al., 2000; Bengtson and Bengtsson, 2007;
Giesler et al., 2007) it is difficult to measure concentrations
and isotopic composition in the litter layer, though general
patterns have been observed. Sanderman et al. (2008) found
a pattern of DOC13C enrichment with depth. Using batch
adsorption experiments, they found that the13C enrichment
of DOC with depth was best explained by exchange of or-
ganic matter between the liquid and the solid phase, as the
soil solution moves through the soil profile, independent of
net adsorption or net desorption of DOC. This finding sub-
stantiates the hypothesis that the mechanism behind DOC
13C enrichment with depth is a continuous exchange of car-
bon in the soil solution and older organic matter in the soil.
Regardless whether the carbon originates from aboveground
or belowground litter, DOC is an important driver of rapid
carbon cycling belowground and also a fast moving pool of
old and new carbon that contributes to the isotopic signature
of stabilized soil carbon.

Microbial communities are also regulated by litter input
(Eilers et al., 2010), and communities can change rapidly de-
pending on the available substrate (Cleveland et al., 2007).
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Through stable isotope probing (SIP), i.e. detecting and
quantifying isotopic tracers in DNA of the organisms of in-
terest, it is now possible to characterize microbial commu-
nities utilizing carbon from13C-labeled litter or continuous
13C-labeling. Using13C-enriched litter in a poplar planta-
tion, Rubino et al. (2010) have shown that Gram-positive
bacteria are primarily involved in litter degradation compared
to other microbial groups (Gram-negative bacteria, actino-
mycetes and fungi). This finding was based on detection
of significant levels of13C in all PLFAs, indicating high
amounts of litter C incorporated into the whole soil microbial
biomass. Gram-positive bacteria were the dominant group in
the soil and contained around 75 % litter-derived C assimi-
lated by the soil microbial biomass after one year. However,
after 11 months, similarδ13C values across all the microor-
ganisms illustrated either (1) a similar litter C incorporation
by all microbial communities, or (2) that the system had been
at steady state after 11 months such that incorporated litter C
was being recycled within the soil microbial biomass.

Uncertainty still remains in microbial community analy-
sis and potential carbon sources. For example, Kramer et
al. (2010) showed that the source of carbon in the biomark-
ers present in their incubation studies did not originate from
litter or SOM, leaving only roots as the primary source. Us-
ing fatty acid methyl ester isotopic composition, Lerch et
al. (2011) found a switch in the active microbial commu-
nity from Gram-negative bacteria initially, which consumed
the easily degradable and water-soluble substrates, to Gram-
positive bacteria and fungi later. Based on their isotopic mea-
surements, Lerch et al. (2011) also suggested that there is a
potential lag between changes in the bacteria actually con-
suming carbon belowground, and the community structure
as a whole.

Leaf and root litter are important links coupling the short-
and long-term carbon cycles belowground, and many open
questions remain in resolving their dynamics. Of particular
interest will be the fate of organic molecules derived from
plant litter as they travel through the many branching points
belowground. How these molecules vary spatially and tem-
porally and whether or not they are available as substrate or
physically occluded in the soil matrix are other challenges to
elucidating plant-soil interactions. Isotopes will remain an
important tool in tracing the carbon continuum, especially
with the advent of new tools that give higher resolution spa-
tially, for example nanoSIMS, and temporally, for example
infrared laser absorption spectroscopy (Sect. 6).

5 Physical interactions in soil-atmosphere CO2
exchange

Section 4 illustrates the complexity of carbon sources be-
lowground; yet, understanding how C is released from a
stabilized state in soil and released as CO2 is a priority to
determine soil as a net source or sink of C to the global

greenhouse budget. Measuring soil respiration is arguably
the best method to quantify the release of active C from these
belowground organic and mineral sources. Thus, the C iso-
topic signature of soil respiration (δ13CR−s) can be a promis-
ing tool to partition C sources of soil respiration, monitor
belowground biological activity, and potentially identify and
quantify the mechanisms of C stabilization and release. One
of the inherent limitations of isotopic partitioning of respira-
tion is the similar isotopic composition of potential sources,
thus, achieving precise estimates of theδ13C of soil CO2
efflux (δ13CR−s) requires the reduction of measurement ar-
tifacts as well as validation of measurement assumptions.
This is why it is important to recognize the potential phys-
ical interactions ofδ13CR−s with the soil and the potential
outcomes which can manifest in isotopic fractionation, time
lags from production sources, and non-steady-state events.

There are several physical processes that occur along the
pathway of soil CO2 from soil to surface which can lead to
fractionation including physical and chemical effects on gas
transport as well as CO2 production rates and near-surface
atmospheric boundary conditions (Severinghaus et al., 1996;
Bowling et al., 2009; Nickerson and Risk 2009a,b; Kayler
et al., 2010b; Moyes et al., 2010; Gamnitzer et al., 2011).
Gaseous diffusion of CO2 can lead to the most13C-enriched
signal when Knudsen diffusion (where diffusive transport is
dominated by the collision of CO2 molecules with pore walls
instead of other gas molecules) dominates, or it can lead
to incorrect estimates of fractionation if transport is not at
steady state (Bowling et al., 2009; Kayler et al., 2010b). Cor-
rectly or not (Clifford and Hillel, 1986), gaseous diffusion
is assumed to dominate soil gas transport. However, esti-
mates of the diffusion coefficient (Ds) are often a parameter
of high uncertainty. In a detailed analysis of soil production
estimates made from profile CO2 measurements, Koehler et
al. (2010) demonstrated that the models used to interpolate
diffusion over soil depth are highly dependent on the func-
tions used to describe the distribution of Ds. Furthermore,
they suggest that water within soil aggregates may result
in CO2 storage that is not accounted for in current models.
Models of diffusion that incorporate the van Genuchten func-
tion of soil hydraulic conductivity (van Genuchten, 1980)
have shown initial success in accounting for soil moisture ef-
fects on diffusion (Resurreccion et al., 2008). However, these
strategies have yet to be developed for isotopic fractionation
and mixing.

Transport of CO2 to the soil surface induced by pres-
sure pumping during fluctuations in wind speed or back-
ground atmospheric conditions can be a considerable com-
ponent of total surface flux (Lewicki et al., 2003; Takle et
al., 2003, 2004; Poulsen and Møldrup, 2006). Only a few
studies exist that describeδ13C behavior of CO2 during ad-
vective gas transport. A sustained bulk flow, due to advec-
tion, will transport13CO2 and12CO2 at the same rate lead-
ing to a δ13C of CO2 at the surface that is similar to the
soil gas (Camarda et al., 2007). However, advection due to
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small pressure perturbations associated with chamber place-
ment on the surface could also result in a higher represen-
tation of 13C-enriched CO2 from the soil pore space in the
mixture that arrives in the surface chamber leading to biased
estimates ofδ13CR−s (Kayler et al,. 2010b; Phillips et al.,
2010). A difficult challenge is quantifying and modeling soil
surface concentrations (Moyes et al., 2010). The dynamics
at the surface can be attributed to potential evening concen-
tration build-up, or fluctuations in surface wind speed. In-
deed, in a well-controlled study, Moyes et al. (2010) found
the physical dynamics at the soil surface to drive the diel fluc-
tuations at their site. Evidence also exists of bias in estimates
of δ13CR−s due to advection from wind events in snow in
a subalpine forest (Bowling et al., 2009). However, there
are very few isotopic studies that have observed and quan-
tified the effects of alternative gas transport mechanisms in
soil nor, for that matter, have corrections been developed.

It is clear that gas transport can have a strong impact on
the relative gradient between13CO2 and 12CO2 in the soil
profile, but gradients in soil temperature and water vapor can
also result in changes in the concentration gradient, indepen-
dent of diffusive or advective transport mechanisms. In the
case of temperature, the lighter isotope tends to move toward
the warmer end of the gradient, while the heavier isotope
moves toward the cooler end (Grew and Ibbs, 1952). Like-
wise, an enrichment in soil gas isotopic composition occurs
with an increase in water vapor flux from soil (Severinghaus
et al., 1996) and has been calculated to13C fractionation of
CO2 of 0.12 ‰. Moreover, in the same study, several esti-
mates ofδ13CR−s were driven out of steady state by the soil
temperature gradient, which can be corrected for (Severing-
haus et al., 1996). These findings are based on discrete mea-
surement ofδ13CR−s and the dominant factors that impact
isotope fractionation during13CO2 efflux may be further re-
solved when continuous measurements of bothδ13CR−s and
soil physical factors are analyzed.

Although it has been known that these fractionation mech-
anisms exist, the problem remains how to recognize them in
the field. This is difficult to overcome when relying solely
on the flux off the soil surface, as with chamber measure-
ments, because the information contained in this flux is the
end-product of many processes occurring belowground, pro-
cesses that are assumed to be at steady-state during the mea-
surement period (Livingston et al., 2005). To account for
this black box approach, dynamic production-transport mod-
els are used, but these do not account for most of the po-
tential fractionation mechanisms described previously, nor
do they include the uncertainty surrounding the parameters
(e.g. diffusion) used to model soil gas isotopic fractionation
and transport. Subsurface gas measurements have shown
promise for achieving robust estimates ofδ13CR−s, and al-
lowing analysis of fractionation and validation of steady-
state assumptions (Andrews et al., 2000; Steinmann et al.,
2004; Kayler et al., 2008, 2010b; Moyes et al., 2010). How-
ever, questions still remain concerning this approach. Is, for

instance, the flux from the litter layer well represented? Or,
is the assumption of a homogenously mixed source gas real-
istic? Related to this latter point is the use of isotopic mixing
models. Kayler et al. (2010c) have shown that respiration
measurements, such as from soil, tend to be more accurate
and precise when the Miller-Tans model used with the geo-
metric mean regression is applied to the data, because of the
relatively large measurement error that occurs with measur-
ing high CO2 concentration gas. The Keeling mixing mod-
els used with chambers have also been shown to have a bias
that results in enriched estimates ofδ13CR−s with increas-
ing sampling time (Nickerson and Risk, 2009b). Therefore,
until a robust method for measuringδ13CR−s is developed
that accounts for these physical processes, future studies will
need to incorporate all three approaches: soil chamber, CO2
profile and transport-production models (e.g. Moyes et al.,
2010).

Physical isotopic fractionation and mixing processes do
not occur independently, and they often interact with changes
in soil biological processes posing a further challenge to
studies ofδ13CR−s. For example, changes in rates of pro-
duction also alter the isotopic signal at the soil surface, the
faster diffusing12CO2 isotopologue arrives at equilibrium
first, thus, an increase in production results in a depleted sig-
nal and a decrease in production results in an enriched signal
(Amundson et al., 1998; Nickerson and Risk, 2009a). The
way forward inδ13CR−s research is to account for these ef-
fects associated with soil physical properties, so that biolog-
ical phenomena related to the soil-plant-atmosphere contin-
uum can be characterized accurately.

6 Stable isotope methodologies for characterizing C
fluxes in the plant-soil-atmosphere continuum

Steady-state13C isotope labeling techniques have been suc-
cessfully applied to assessing C fluxes in metabolic networks
on a cell or on tissue level. Carbon fluxes are determined
by measuring the redistribution of label after the system has
reached an isotopic steady state (Allen et al., 2009). Steady-
state13CO2 labeling in combination with the application of
compartmental models have been used to characterize dif-
ferent metabolic pools with distinct turnover times, feeding
growth (Lattanzi et al., 2005) or respiration (Lehmeier et al.,
2008) of leaves or heterotrophic plant parts.

A more detailed analysis ofδ13C in particular metabo-
lites – going beyond the separation into different C pools
(e.g. Xu et al., 2004; Gessler et al., 2009a) – is possible with
modern continuous-flow coupling of liquid chromatography
(LC-IRMS; cf. Godin et al., 2007) or gas chromatography
(GC-IRMS; cf. Sessions, 2006) with isotope-ratio mass spec-
trometry and, when high levels of13C label are applied, also
with LC-MS/MS (LC coupled to tandem mass spectrome-
ter) systems. These techniques may be combined with pulse
or steady-state labeling and metabolic flux analysis models
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(e.g. N̈oh et al., 2007) to provide deeper insights into cellular
to whole-plant partitioning and transport of metabolites. In
addition, compound-specific analyses of the C isotope com-
position at natural abundance levels over time might give in-
sights into the turnover times and partitioning of C between
metabolites and metabolite groups (e.g. leaf waxes; Gessler
et al., 2007)

The natural variation of stable isotope signatures has
been tracked through different plant organic matter pools
(e.g. starch, water-soluble organic matter) in order to char-
acterize the short-term partitioning of recent assimilates
(e.g. Barbour et al., 2005; Brandes et al., 2006; Gessler et
al., 2007; Kodama et al., 2008; see also 2.1). On an ecosys-
tem scale, the interpretation of isotopic signals at the nat-
ural abundance level is challenging, as too many processes
affect the isotopic signatures of the compounds of interest.
Therefore, partitioning and transport of newly assimilated C
within the plant-soil system have been mainly determined
with pulse labeling experiments. In these experiments, plants
are exposed to13C-enriched CO2 for a short time period
(minutes to a few hours), and the fate of the assimilated C
tracer is tracked in various plant organs and/or in plant- and
soil-respired CO2 over time (Bahn et al., 2009; Plain et al.,
2009; Ruehr et al., 2009; Ghirardo et al., 2011). In addition,
nanoSIMS, i.e. secondary ion mass spectrometry, which al-
lows determination of stable isotope ratios at the nanometer
scale, could contribute to understanding carbon allocation in
the rhizosphere.

While application of the widespread isotope ratio mass
spectrometry technique for analyzing time series of carbon
isotopic signatures in plant materials and respired CO2 is
costly and labor-intensive, isotope-specific infrared laser ab-
sorption spectroscopy, e.g. for the analysis of13C and18O in
CO2, which equals or even exceeds the performance of iso-
tope ratio mass spectrometry, provides great opportunities to
measure changes in carbon and oxygen isotopic signatures
in CO2 at the chamber and ecosystem level at high temporal
resolution in situ (Bowling et al., 2003; Bahn et al., 2009;
Plain et al., 2009). The continuous and simultaneous analy-
sis of photosynthetic fractionation in the canopy (e.g. carried
out with leaf or twig chambers) or its proxies and ofδ13C
of CO2 respired from heterotrophic plant parts and the soil
with laser-based isotope analyzers provides information on
the time lag between above- and belowground processes and
the magnitude of C fluxes between canopy and soil as well
as on their variability during the growing season or as in-
fluenced by environmental factors. This will help improve
our understanding of environmental effects on C uptake and
storage capacity of terrestrial ecosystems, which will be par-
ticularly important in the future with higher frequency and
magnitude of extreme events (IPCC, 2007).

7 Conclusions and outlook

This review has provided a comprehensive overview of
the complex network of interlinked carbon transformation
and transport processes in the plant-soil-atmosphere contin-
uum and their implications for carbon isotopic signatures
of the different compounds at different stages and locations
(Fig. 4). It has given evidence of the tight coupling of pro-
cesses in the plant-soil system, which calls for more inte-
grated multidisciplinary approaches towards understanding
plant and ecosystem C dynamics, combining the fields of
(eco)physiology, microbiology and soil sciences. Further-
more, this review has demonstrated that research using infor-
mation from C isotopes is a powerful tool permitting both
tracing of C molecules and an integrated view of physi-
cal, chemical and biological processes in ecosystems across
space and time. However, the review has also shown the cur-
rent limitations and frontiers in the field, indicating that mul-
tiple interactions between biochemical processes at the cellu-
lar level, whole-plant physiology including plant-internal C
translocation, biotic interactions as well as physiological and
physical fractionation steps may complicate the interpreta-
tion of isotopic signatures at the plant and ecosystem scale.

Amongst the emerging research questions that may need
to be addressed in the near future we highlight the following:

– How do environmental factors and plant physiology af-
fect post-carboxylation C isotope fractionation? How
do changes in these fractionation processes translate
into metabolic flux information?

– How do changes in metabolic fluxes scale to ecosystem
C fluxes?

– What is the relationship between the age of plant C
stores and their remobilization potential, and how is it
affected by plant age, phenology, and environmental
conditions?

– What processes determine the coupling of photosynthe-
sis and respiration, especially between canopy and soil?
What is the role of the transfer of C via sugars in the
phloem versus indirect signaling effects (including pres-
sure concentration waves)? Are such effects universal
or do they differ between plant species/ functional types
and seasons?

– What is the role of physical (diffusion, dissolution) and
physiological (re-fixation) processes as co-determinants
of δ13C measured in plant- and soil-respired CO2 and
how do these processes affect isotopic time lags be-
tween photosynthesis and respiration?

– How does environmental stress affect C fluxes in the
plant-soil system?

– How pronounced is the upward CO2 transport from
roots to aboveground plant organs across plant species/
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functional types and seasons, and how does it affect
plant and ecosystem C dynamics and C isotope signa-
tures?

– How strongly do plant-microbe interactions and related
priming effects influence SOM turnover, C retention in
microbial biomass and SOC isotope composition? How
much are they determined by vegetation composition
and how are they modified by changing environmental
conditions?

Addressing these questions with the emerging technologies
will likely permit major progress towards our understanding
of environmental effects on C uptake, allocation, storage and
release in the plant-soil system and thereby contribute to im-
proving our projections of the C cycle in a rapidly changing
environment.
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and Rennenberg, H.: Assimilate transport in the xylem sap of
pedunculate oak (Quercus robur) saplings, Plant Biol., 3, 132–
138, 2001.

Helle, G. and Schleser, G. H.: Beyond CO2-fixation by Rubisco ?
an interpretation of13C/12C variations in tree rings from novel
intra-seasonal studies on broad-leaf trees, Plant Cell Environ.,
27, 367–380, 2004.

Hibbard, K. A., Law, B. E., Reichstein, M., and Sulzman, J.: An
analysis of soil respiration across northern hemisphere temperate
ecosystems, Biogeochemistry, 73, 29–70, 2005.

Hobbie, E. A. and Werner, R. A.: Intramolecular, compound-
specific, and bulk carbon isotope patterns in C-3 and C-4 plants:
A review and synthesis, New Phytol., 161, 371–385, 2004.

Hoch, G. and Keel, S. G.: C-13 labelling reveals different contribu-
tions of photoassimilates from infructescences for fruiting in two
temperate forest tree species, Plant Biol., 8, 606–614, 2006.
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