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Reconciling Compressive Sampling Systems

for Spectrally-sparse Continuous-time Signals
Michael A. Lexa* Member, IEEE, Mike E. DaviesMember, IEEEand

John S. ThompsonMember, IEEE

Abstract

The Random Demodulator (RD) and the Modulated Wideband Converter (MWC) are two recently

proposed compressed sensing (CS) techniques for the acquisition of continuous-time spectrally-sparse

signals. They extend the standard CS paradigm from samplingdiscrete, finite dimensional signals to

sampling continuous and possibly infinite dimensional ones, and thus establish the ability to capture

these signals at sub-Nyquist sampling rates. The RD and the MWC have remarkably similar structures

(similar block diagrams), but their reconstruction algorithms and signal models strongly differ. To

date, few results exist that compare these systems, and owing to the potential impacts they could

have on spectral estimation in applications like electromagnetic scanning and cognitive radio, we

more fully investigate their relationship in this paper. Specifically, we show that the RD and the

MWC are both based on the general concept of random filtering,but that the sampling functions

characterising the systems differ significantly. We next demonstrate a previously unreported model

sensitivity the MWC has to short duration signals that resembles the known sensitivity the RD has

to nonharmonic tones. We also show that block convolution isa fundamental aspect of the MWC,

allowing it to successfully sample and reconstruct block-sparse (multiband) signals. This aspect is

lacking in the RD, but we use it to propose a new CS based acquisition system for continuous-time

signals whose amplitudes are block sparse. The paper includes detailed time and frequency domain

analyses of the RD and the MWC that differ, sometimes substantially, from published results.

I. INTRODUCTION

The theory of compressed sensing (CS) says that if a signal issufficiently sparse with respect to

some basis or frame, then it can be faithfully reconstructedfrom a small set of linear, nonadaptive

measurements, even if the support of the signal is unknown [1]–[3]. When the signal belongs to a finite
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dimensional space, this statement means that it can be reconstructed from a set of measurements whose

cardinality may be significantly less than the space’s dimension. It also implies that the measurement

process is described by an underdetermined linear system ofequations, or equivalently, a rectangular

matrix with more columns than rows. The fundamental work of Candes, Romberg, and Tao [4] and

Donoho [1] established sufficient conditions upon such sensing matrices, that if satisfied, allow the

stable inversion of the linear system. A key aspect of CS, andone which plays an important role in

this paper, is that sensing matrices drawn at random1 often satisfy these conditions.

Conceptually, CS theory has three main thrusts: (1) the development of recovery methods that effi-

ciently and faithfully reconstruct the original signal from its compressed samples, (2) the investigation

of new signal models that effectively represent signal sparsity or other signal structure, and (3) the

creation of new sampling (measurement) mechanisms that acquire signals in a compressed manner.

All three lines of research are intertwined and all need to beconsidered when designing a sampling

system. The first concerns the reconstruction process and asks how one specifically reconstructs

the original signal from the CS measurements (see, e.g., [1], [4], [5]). The second concerns the

examination of different signal classes of interest and asks if there exists a structured representation

that can be exploited [6]–[8]. The third concerns the designof the physical sampling system and asks

how one devises a system to acquire CS measurements [7], [9]–[11]. This paper concerns sampling

systems and signal models.

Several CS based signal acquisition systems have been proposed for both continuous (analogue) and

discrete signals. For example, the single-pixel camera [12] is a novel compressive imaging system,

where light is projected onto a random basis using a micro-mirror device, and then the projected image

is captured by a single photo-diode (the single “pixel”). Other examples include random filtering [13]

and random convolution [9] that advocate random linear filtering and low rate sampling as a means to

collect CS measurements. In these cases, “random” filters are linear filters whose impulse responses

are realisations of particular random processes.

Along the same lines, theRandom Demodulator(RD) [10], [14], [15] and theModulated Wideband

Converter(MWC) [11], [16]–[18] have recently been proposed as CS sampling systems that target

continuous-time spectrally-sparse signals. The RD is a single channel, uniform sub-Nyquist sampling

strategy for acquiringsparse multitone signals; the MWC is a multi-channel, uniform sub-Nyquist

sampling strategy for acquiringsparse multiband signals. (Precise definitions for these two signal

classes are provided in Section III.) The RD and the MWC have tremendous potential impact because

of the longstanding, proven usefulness of spectral signal models in many engineering and scientific

1There are several ways to construct viable random sensing matrices. For example, its entries could simply be independent

and identically distributed realisations of a a zero mean, unit variance Gaussian random variable.
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applications (e.g. electromagnetic scanning, cognitive radio, radar, and medical imaging). Perhaps

owing to the near coincidental emergence of these systems, however, few results exist to date

that reconcile their remarkably similar structures (see Figure 1) with their different reconstruction

algorithms. In fact, the current literature paints a somewhat artificial dividing line between the RD

and the MWC, this works preferring to focus primarily on one scheme rather than drawing connections

between them.

In this paper, we offer new insights into the relationship between the RD and the MWC that

complement the original works of Tropp et al. [10] and Mishali and Eldar [11]. We apply tools from

modern sampling theory and classical Fourier analysis and show that the RD and the MWC are two

manifestations of the same CS sampling approach, namely random filtering/convolution [9], [13]. This

fact reflects the systems’ similar structure. At the same time, we show that the sampling functions

characterising the systems strongly distinguish the two schemes. For example, the RD’s sampling

functions have finite support in time and infinite support in frequency, whereas the MWC’s sampling

functions have infinite support in time and finite support in frequency. In Section III, we discuss

two signal model sensitivities exhibited by the RD and the MWC. In particular, we demonstrate

the MWC’s sensitivity to short duration multiband signals that is the counterpart to the known RD

sensitivity to nonharmonic multitone signals. In each case, a perturbation to the signal model triggers

a possible loss in signal sparsity and endangers CS reconstruction. In Section IV, we highlight the

MWC’s use of block convolution as a principle processing step that enables it to successfully sample

and recover “block” sparse signals, i.e. signals whose nonzero components are grouped together. The

RD does not use block convolution, hence signal reconstruction for it can become computationally

expensive for these types of signals. Extending the idea, welastly propose a new CS based sampling

system and show through an example that it can successfully sample and reconstruct continuous-time

signals that are block sparse in the time domain.

The main contribution of this paper is the recognition that both systems are based on the underlying

concept of random filtering, yet each implements the conceptdifferently because of the different signal

classes they target. The insights regarding model sensitivities, the differences in sampling functions,

and the MWC’s use of block convolution build a better understanding of these systems and allows

further application of these ideas to new signal classes, like the new acquisition system for time

block-sparse signals proposed in Section IV.

To be clear, we do not discuss the conditions of successful reconstruction, nor implementation issues

in this paper. The original works of Tropp et al. [10] and Mishali and Eldar [11], and even some

subsequent scholarship [16]–[18], extensively investigate these issues. Some of the reconstruction

conditions will be tacitly stated in the descriptions of thesystems in Section II, but the presumption

throughout the paper is that the RD and the MWC are theoretically proven CS based techniques to
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g(t)

rect(2Mt/T-1)x(t)

p(t)

y(k)

t=(k+1)T/M

(a) Random demodulator

x(t)

p1(t)

pi(t)

pq'(t)
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πW'/M' sinc(πW't/M')

t=k M'/W'

gi(t)

g1(t)

gq(t)

(b) Modulated wideband converter

Fig. 1. Time domain block diagrams of the random demodulator(RD) and the modulated wideband converter (MWC).

The RD is characterised byT , the duration of the observation interval andM , a sampling rate parameter. The MWC is

similarly characterised byW , the bandwidth of the input signalx(t) andM ′, a sampling rate parameter. Note that the

primary difference in the sampling structures is the type offilter prior to the sampling operation—the RD uses a ideal

integrator and the MWC uses ideal low pass filters.

sample and reconstruct continuous-time spectrally-sparse signals.

II. SAMPLING MECHANISMS AND SIGNAL MODELS

In this section, we examine the sampling mechanisms of the RDand the MWC from a modern

sampling theory perspective. We show the output samples forboth systems are equal to the inner

products of the input signal with a set of sampling functionsthat arise from the systems’ designs. We

observe that unlike typical sampling functions, these sampling functions involve random waveforms,

a central component in many CS sampling systems. If the innerproducts are interpreted as analogue

filtering operations, we show that the samples result from a generalised random filtering or random

convolution as described by Romberg [9] and Tropp et al. [13]as a means to acquire CS samples. This

analysis suggests that the RD and the MWC are two manifestations of the same sampling approach,

but differ in the specific form of the sampling functions. Thedifference in sampling functions also

reflects the difference in the assumed signal models for the RD and the MWC.

We do not introduce the notion of signal sparsity in this section because the conclusions reached

do not depend on this aspect. Signal sparsity and its consequences are discussed in Section III.

A. Sampling with the random demodulator

Let x(t) be a continuous-time, complex-valued signal defined on the real line. The RD acquires

samples ofx(t) on a finite observation interval where here, we assume, without loss of generality, that

the samples are collected in the interval[0, T ] seconds. In [10], Tropp et al. adopt a particular signal

model forx(t) on this interval. They assume in part thatx(t) has a Fourier series (FS) expansion

on [0, T ] which has bounded harmonics, i.e.−W ≤ n
T < W Hz for n ∈ Z. On this interval,x(t) is
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therefore modeled as

x(t) =

N/2−1
∑

n=−N/2

X(n)ej
2π

T
nt, t ∈ [0, T ], (1)

where {X(n)} denotes the FS coefficients ofx(t) andN = TW . For ease of exposition,N is

assumed to be an even positive integer. This signal model is often called amultitonemodel.

To acquire the samples, a RD first multipliesx(t) by a waveformp(t) and then filters and samples

the productx(t)p(t) on [0, T ] (see Figure 1(a)). The signalp(t) is taken to be a realisation of a contin-

uous random process derived from a vector of Bernoulli random variables. LetZ = [Z0, . . . , ZL−1]

be a vector of independent and identically distributed random variablesZl taking values±1 with

equal probability and letp(t;Z) denote the random process

p(t;Z) = Zl, t ∈

[

l

W
,
l + 1

W

)

, l = 0, . . . , N − 1. (2)

A realisationZ0 of Z produces a single realisationp(t;Z0) of p(t;Z). Here, we abbreviatep(t;Z0) by

p(t) and thus considerp(t) to be a deterministic quantity, although its randomness plays an important

role in proving performance guarantees [10]. In this paper,we sometimes refer top(t) as a random

waveform in deference to this point. We stress that when acquiring samples on[0, T ], the RD uses

a single realisation ofp(t;Z), but different realisations may be used for other observation intervals.

Note also thatp(t) has the FS representation,

p(t) =

∞
∑

n=−∞

P (n)ej
2π

T
nt, t ∈ [0, T ] (3)

where{P (n)} is the set of FS coefficients ofp(t).

The analogue filter in the RD design is taken to be an ideal integrator with impulse response

h(t) = rect
(

2M
T t− 1

)

, where

rect(x) =











1 for − 1 ≤ x ≤ 1

0 otherwise
, (4)

andM ∈ Z
+. The sampling periodTs is taken to beM times shorter than the observation window

(Ts = T/M ). The system therefore samples at the rate ofM/T Hz. The multitone signal model

and the RD sampling system are therefore parameterised byN , the parameter equal to the time-

frequency productTW andM , the parameter that controls the RD’s sampling rate. Here, we assume

thatM < N .

The goal of the RD is to samplex(t) at low rates while retaining the ability to reconstruct it

in the interval [0, T ]. Reconstruction entails the discovery of the active frequencies (the signal’s

spectral support) and the amplitude of the corresponding FScoefficients. Ifx(t) is spectrally sparse

on [0, T ], then reconstruction is possible using CS algorithms [10].In this case, we note that signal

reconstruction only implies the recovery of the spectral content ofx(t) in the observation interval.
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In other words, the samplesy(k), k = 0, . . . ,M − 1, do not convey information about the spectral

content ofx(t) outside of this interval. To obtain spectral information outside of [0, T ], the RD must

be applied to other intervals (of possibly different durations). If the RD is applied to consecutive

intervals, a time-frequency decomposition ofx(t) similar to the short-time Fourier transform can be

obtained for multitone signals.

Time domain description.By inspection of Figure 1(a), the output samplesy(k) can be expressed

as

y(k) = g
(

(k + 1) T
M

)

=

∫ T

0
x(τ)p(τ)rect(2MT (t− τ)− 1) dτ

∣

∣

∣

∣

∣

t=(k+1)
T
M

, k = 0, . . . ,M − 1. (5)

By substituting (1) into this expression and evaluating theintegral, the following equation relating

the time domain samplesy(k) to the FS coefficientsX(n) results:

y(k) =
N

W

N/2−1
∑

n=−N/2

(k+1)
N
M −1

∑

l=k
N
M

pl
ej

2π

N
n − 1

j2πn
ej

2π
N nlX(n), k = 0, . . . ,M − 1, (6)

wherepl = p(l/W ). Tropp et al. derived (6) in [10] by analysing an equivalent digital system. In

Appendix VI-A, we provide an alternate derivation that explicitly shows the analogue processing

inherent in sampling with the RD.

Because sampling is a linear operation with the RD, the samples y(k) can be viewed as inner

products ofx(t) with the set of sampling functions
{

p(τ)rect(2k + 1− 2M
T τ)

}

where

y(k) = g
(

(k + 1) T
M

)

=
〈

x(τ), p(τ)rect
(

2k + 1− 2M
T τ

)〉

, k = 0, . . . ,M − 1, (7)

and
〈

s(t), x(t)
〉

=

∫ T

0
s∗(t)x(t) dt,

for two continuous functionsx(t), s(t) on [0, T ]. These sampling functions have finite duration in time

(T/M seconds), but because their Fourier transforms involve sinc functions, they extend infinitely in

frequency. In the time-frequency plane, their support partitions the space into vertical strips of equal

width (see Figure 2, left panel). We note that unlike modern sampling theory [19], the sampling

functions in (7) contain the random waveformp(t), and the conditions they must satisfy to ensure

stable recovery is governed by CS theory and not Shannon-Nyquist based sampling theory. (Refer

to [19] and [7] for details regarding the conditions that sampling functions typically must satisfy.)

From (5), it is clear the samplesy(k) can be thought of pointwise evaluations of the convolution

betweenx(t)p(t) and an ideal integrator. Equally valid, however, is the viewthat the samples are

pointwise evaluations of a random, linear filtering operation involving x(t) and the time-varying

analogue filterh(t, τ) = p(τ)rect(2MT (t− τ)− 1),

y(k) =

∫ T

0
x(τ)h(t, τ) dτ

∣

∣

∣

∣

∣

t=(k+1)
T
M

k = 0, . . . ,M − 1. (8)
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Frequency

Time
T/M

0 T 2T

Frequency

Time

W/M 

0 T 2T

Fig. 2. The output samples of both the RD and the MWC can be described as inner products of the input signalx(t) with

certain sets of sampling functions. The panel on the left depicts the time-frequency support of the RD sampling functions

where each vertical strip represents the support of one sampling function. Similarly, the panel on the right depicts the

support of the MWC sampling functions where each horizontalstrip represents the support of one sampling function. For

the RD and the MWC, the support characteristics of the sampling functions directly derive from the type of analogue filters

used prior to sampling. The RD and the MWC represent two extreme cases: The RD has perfectly localised support in time

but completely unlocalized support in frequency. The MWC isthe exact opposite.

Here, the impulse responseh(t, τ) is considered random because at each time instance it is a windowed

portion of a signal that randomly alternates between±1. The samplesy(k) can therefore can be

thought of as the result of a random filtering operation, conceptually similar to the random filtering

schemes proposed in [9] and [13]. In [13], Tropp et al. proposed a CS sampling scheme where a

sparse discrete-time signal is first filtered by a digital filter whose impulse response is a realisation of

a sequence of independent and identically distributed random variables, and then subsampled at a low

rate. They illustrated through examples that with the use ofCS recovery algorithms random filtering

is a potential sampling structure to acquire CS measurements for sparse discrete time signals. In [9],

Romberg proposed and examined a similar idea but considereda specific digital filter that randomly

changes the phase of the input signal. Interestingly, Romberg considered the RD as a separate, follow-

on processing step to his approach instead of considering itas a generalisation to his notion of random

convolution. Here, (8) shows that the sampling mechanism ofthe RD can be viewed as a random

filtering operation applied to continuous-time signals. Wenote, however, that the filtering operation

in (8) is not a convolution because of the time-varying nature of h(t, τ). Strictly speaking then (8)

is distinct from the systems proposed in [13] and [9], although random filtering remains a common

thread.

Frequency domain description.An equivalent frequency domain expression to (5) can be derived

(see Appendix VI-A) that relates the discrete Fourier transform (DFT) of y(k), denoted byY (n), to
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the FS coefficientsX(n),

Y (n) = T

n+
N
2

∑

m=n−
N
2 +1

P (m)e−j 2π

T
nsinc( π

M n)X(n−m), n = 0, . . . ,M − 1, (9)

where sinc(x) = sin (x)/x, x ∈ R. This equation clearly shows the frequency domain convolution

caused by the multiplication withp(t) and the effect of filtering with an ideal integrator, indicated

by the presence of thee−j 2π

T
nsinc( π

M n) term. Thus, one can also interpretY (n) as the output of a

random, frequency-varying filter with impulse responseH(n,m) = P (m)e−j 2π

T
nsinc( π

M n). We see

therefore that the RD’s output in either the time or frequency domains can be viewed as the output

of a random filter or convolution.

B. Sampling with the modulated wideband converter

We now letx(t) be a bandlimited, continuous-time, finite energy signal. The spectral content of

x(t) on R is thus appropriately given by its Fourier transform (FT)X(ω),

X(ω) =

∫ ∞

−∞
x(t) ejωt dt.

Here,x(t) is bandlimited in the usual sense, i.e.,X(ω) is assumed to be bounded:X(ω) = 0 for

|ω| ≥ πW ′ radians per second,W ′ ∈ R
+, whereπW ′ is the bandwidth ofx(t) and 2πW ′ is the

Nyquist frequency in radians per second. We adopt the following definition from [20]. The class

of multibandsignalsB(F ,W ′) is then the set of bandlimited, continuous-time, finite energy signals

whose spectral support is a finite union of bounded intervals,

B(F ,W ′) =
{

x(t) ∈ L2(R) ∩ C(R) : X(ω) = 0, ω /∈ F
}

(10)

where

F =

K
⋃

i=1

[ai, bi), |ai|, |bi| ≤ πW
′ radians per second, for alli. (11)

In the following description of the MWC, primes are added to the parameters to distinguish them

from the parameters of the RD. The same letters are, however,used for similar quantities. For example,

W denotes the bound on the harmonics of multitone signals while πW ′ denotes the bandwidth of

the multiband signals.

Like the RD, theith channel of the MWC multipliesx(t) by a random signalpi(t), then filters and

samples the productx(t)pi(t) at a sub-Nyquist rate (see Figure 1(b)). As in the original formulation,

we assume each channel’s filter is an ideal low pass filter, although it has been shown that the MWC

can operate with non-ideal low pass filters [17]. Here, we examine its original formulation to make a

clearer comparison to the RD. The signalspi(t), i = 0, . . . , q′−1, are periodic extensions of different
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realisations of a continuous random process similar to thatused for the RD. Formally, letZ = {Zl},

be a sequence of independent and identically distributed random variables taking values±1 with

equal probability and letp(t;Z) denote the random process

p(t;Z) =











Zl, t ∈
[

l
W ′
, l+1
W ′

)

, l = 0, . . . , ⌊L′⌋ − 1,

Z⌊L′⌋−1, t ∈
[

⌊L′⌋−1
W ′

, Tp

)

(12)

whereTp = L′/W ′. The signalspi(t) are then periodic extensions of the realisationsp(t;Zi) of

p(t;Z):

pi(t+mTp) = p(t;Zi), for t ∈ [0, Tp], m ∈ Z, i = 0, . . . , q′ − 1, (13)

whereZi denotes a particular realisation ofZ.

The impulse response of the ideal low pass analogue filter ish(t) = πW ′

M ′
sinc(πW

′

M ′
t), M ′ ∈ R

+,

M ′ > 1 and thus has a cut-off frequency of2πW
′

M ′
radians per second, where1Ts

= W ′

M ′
is each

channel’s sampling rate (in Hertz). Every channel thus samples at a rate that isM ′ times slower than

the Nyquist rate. The system’s average sampling rate isq′W ′/M ′ Hz. Mishali and Eldar [11] showed

that a necessary condition for successful reconstruction is q′ ≤M ′ ≤ L′ which implies thatTs ≤ Tp.

We assume this condition holds for the MWC throughout the paper.

Time domain description. By inspection of Figure 1(b), we obtain the following time-domain

expression for a single channel of the MWC:

yi(k) = gi
(

kM ′

W ′

)

=
πW ′

M ′

∫ ∞

−∞
x(τ)pi(τ)sinc(πW

′

M ′
(t− τ)) dτ

∣

∣

∣

∣

∣

t=k
M ′

W ′

, for all k ∈ Z. (14)

This expression corresponds to the analogous time domain expression in (5) for the RD. Like

the RD, the samplesyi(k) can be interpreted as inner products with a set of sampling functions

{πW
′

M ′
pi(τ)sinc

(

π(k − W ′

M ′
τ)
)

} where

yi(k) = gi
(

kM ′

W ′

)

=
〈

x(τ), πW
′

M ′
pi(τ)sinc

(

π(k − W ′

M ′
τ)
)〉

, for all k ∈ Z. (15)

In contrast to the RD, however, these sampling functions have finite frequency support and infinite

support in time. In the time-frequency plane, their supportpartitions the space into horizontal strips of

width W ′/M ′ Hz (see Figure 2, right panel). This particular set of sampling functions represents one

instance of a general theory put forth by Eldar [7] to compressively sample continuous-time signals

from unions of shift-invariant spaces, of which multiband signals are members. The theory combines

modern sampling theory with CS theory in such a way that samples are acquired in a typical manner

by projecting the signal onto a set of sampling functions (asin (15)), but CS theory is needed to

reconstruct it. We do not review the details of this theory here because it does not apply to the RD.

Interpreting (14) as a random filtering, we identify the time-vary impulse response ash(t, τ) =

πW ′

M ′
pi(τ)sinc(πW

′

M ′
(t− τ)). Because the MWC employs an ideal low pass filter, the impulseresponse
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contains a sinc function instead of a rectangular function as seen in (5). Consequently, the impulse

response has infinite temporal extent in this (ideal) setting. For the MWC,h(t, τ) is random in the

same general sense as the RD’s time-varying impulse response—the sinc function is multiplied by a

realisation of a random process.

Frequency domain description.Using standard Fourier analysis techniques, Mishali and Eldar [11]

derived the following frequency domain description for onechannel of the MWC,

Yi(e
jω M′

W ′ )1[−πW ′

M′
, πW ′

M′
) =

W ′

M ′

⌊ L′

2M′
(M ′+1)⌋
∑

m=−⌊ L′

2M′
(M ′+1)⌋+1

P (m)rect( M ′

πW ′
ω)X(ω −m2πW ′

L′
), (16)

for i = 0, . . . , q′ − 1, where1[·) denotes the indicator function and⌊·⌋ denotes the floor rounding

operation. Appendix VI-B contains a slightly different derivation of (16) than that presented in [11].

Comparing (16) to (9), we observe that the DTFT of the output sequencesyi(k) can again be

interpreted as the result of a random convolution, where thefrequency-varying impulse response

is given byH(m,ω) = P (m)rect( M ′

πW ′
ω). The spectral content of the samplesyi(k) is expressed

by the DTFT, as opposed to the DFT, becausex(t) is defined on the entire real line for the MWC

instead of on an interval. An implication of this modeling difference is explored in Section III.

Single channel MWC.There are two ways to collapse the MWC into an equivalent single channel

system. One can either lengthen the observation interval bya factor ofq′ (keeping all other parameters

fixed), or one can consider increasing the sampling rate while maintaining the same observation

interval. If the observation interval is lengthened, the sequence of samples from a single channel

MWC can be partitioned intoq′ groups ofW ′T/M ′, where each group of samples is thought of as

the output from an individual channel in the multi-channel configuration. Alternatively, one can set

the sampling rate of a single channel MWC equal to the averagerate of a multi-channel MWC, i.e.,

set the sampling rate toq′W ′/M ′ Hz, and accordingly adjust the low pass filter’s cut-off frequency

to q′W ′/M ′ Hz since it acts as an anti-aliasing filter (see Figure 3). In this case, we still maintain

the requirementM ′ ≤ L′, but assume specifically thatL′ = q′M ′ or thatTp is q′ times larger than

Ts. The frequency domain description of this single channel MWC can now be obtained from (16)

by substitutingM ′/q′ for M ′ andq′M ′ for L′:

Y (ejω
M′

q′W ′ )1[−πq′W ′

M′
, πq′W ′

M′
) =

q′W ′

M ′

⌊ q′

2
(M ′+q′)⌋
∑

m=−⌊ q′

2
(M ′+q′)⌋+1

P (m)rect( M ′

πq′W ′
ω)X(ω −m2πW ′

q′M ′
). (17)

Summary. Equations (5), (9), (14), and (16) all indicate that the sampling mechanisms for the

RD and the MWC are based on analogue random filtering/convolution. However, the RD’s integrator

and the MWC’s low pass filter induce significant differences in the specific form of the random

convolutions, or equivalently, in their sampling functions. In fact, the different filters induce bipolar

time-frequency characterisations that make them well-suited for the signal models they target—an
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g(t)

πq'W'/M' sinc(πq'W't/M')x(t)

p(t)

t=kM'/q'W'

Fig. 3. Block diagram of a single channel MWC as described in [11]. To be equivalent to the multi-channel system

depicted in Figure 1(b), this system samples at a rateq′ times faster and has a low pass filter with a cut-off frequencyq′

times greater. Additional digital processing is also required to form the linear system in (19).

ideal integrator with a finite impulse response is well-suited to signals modeled on a finite interval

and an ideal low pass filter with a finite frequency response iswell-suited to signals modeled on a

finite frequency band.

III. M ODEL SENSITIVITIES FOR SPARSE SIGNAL MODELS

In this section, we introduce the notion of sparsity into themultitone and multiband models and

discuss two model sensitivities—one for the RD, one for the MWC. These sensitivities are a set of

circumstances in which the sparsity of the assumed the models could potentially be lost, jeopardising

the ability of any algorithm to correctly recover the unknown signal from a set of compressed

measurements. The model sensitivity of the RD is already a familiar limitation that was first mentioned

by Tropp et al. in [10] and later studied by others [21], [22].The MWC model sensitivity presented

here is new and ultimately derives from the fact that multiband signals have infinite duration. The

analysis also shows that in practice, when only a finite number of samples are acquired, the MWC

can at best recover an approximation of the input multiband signal instead of perfectly reconstructing

it.

A. Sparse multitone signals for the RD

In the original formulation of the RD, the input signal was not only modeled as a multitone signal

on the observation interval, but was also assumed to be spectrally sparse [10]. Recall the multitone

signal model on the observation interval[0, T ] (equation (1)):

x(t) =

N/2−1
∑

n=−N/2

X(n)ej
2π

T
nt, t ∈ [0, T ].

A spectrally sparse multitonesignal is then a multitone signal that has a small number of nonzero

FS coefficients out of theN + 1 possible. More precisely, lettingK denote the number of nonzero

coefficients (or equivalently the number of nonzero frequencies), a spectrally sparse multitone signal

is one that satisfiesK ≪ N .
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Signal reconstruction.The reconstruction of a sparse multitone signalx(t) from the samplesy(k)

hinges on the matrix form of (6),

y(k) = ΣΨx(n) (18)

whereΣ is aM ×N matrix of the form

Σ =

















p0 . . . p N

M
−1 0 . . .

0 p N

M

. . . p 2N

M
−1

...
. . .

p(M−1) N

M

. . . pN−1

















,

and

y(k) = [y(0), . . . , y(M − 1)]′, (apostrophe denotes transpose)

Ψr,l = e−j
2π
N nrl,

xr(n) = αrX(nr),

αr =
T

j2πnr

(

ej
2π

N
nr − 1

)

, α0 =
1

W
,

for r = 0, . . . , N − 1, nr = −N/2 + r, and l = 0, . . . , N − 1. We explicitly write the arguments

k andn in (18) to indicate the time domain and the frequency domain,respectively. The notational

distinction becomes more important in later sections and issimply made for clarity.

By construction, (18) is an underdetermined linear system of equations (ΣΨ is M × N with

M < N ; see Section II-A) and underdetermined systems do not, in general, have unique solutions.

However, CS theory has shown that because of the presumed sparsity of x(n), (18) can be solved by

a direct application of a number of recently developed recovery algorithms, e.g.,ℓ1 minimisation [4],

orthogonal matching pursuit [5], or iterative hard thresholding [23], [24]. In the CS literature, solv-

ing (18) is termed thesingle measurement vector(SMV) problem. Theoretical guarantees regarding

the successful recovery ofx(n) is provided in [10] in terms of the degree of sparsity and the number

of samples (measurements) collected.

RD model sensitivity.The ability of CS recovery algorithms to recover the FS coefficients in (18)

depends in part on the sparsity ofx(n), or equivalently, on whetherx(t) has a sparse FS representation

in the observation window[0, T ]. A multitone signal that has a sparse FS representation on[0, T ]

(with fundamental frequency1/T ) will not in general have a sparse expansion if the fundamental

frequency changes slightly. In other words, the FS expansion of a nonharmonic tone is generally

not spectrally sparse [25, p.379-380]. The implication forthe RD is that in a blind sensing scenario,

where the frequencies of the tones are not known, there is no guarantee that there will not be a

mismatch between the fundamental tone (1/T ) and the observation interval, which may be slightly

larger or smaller thanT . Thus, in practice there is no guarantee that the FS representation of x(t)
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on [0, T ] is sparse. Since successful reconstruction is conditionedon the spectral sparsity ofx(t) on

[0, T ], a possible mismatch jeopardises reconstruction. This sensitivity was acknowledged by Tropp

et al. in [10], highlighted in [16] and studied in [21], [22].In particular in [22], Duarte and Baraniuk

propose a heuristic solution that marries model-based CS [6], redundant DFT frames, and standard

spectral estimation techniques, but it remains an open question whether this method extends to infinite

dimensional signal classes such as multiband signals.

B. Sparse multiband signals for MWC

Recall that mulitband signals are bandlimited, continuous-time, finite energy signals whose spectral

supportF is a union of bounded intervals (see (10) and (11)). Asparse multibandsignal is a multiband

signal whose support has Lebesgue measure that is small relative to the overall signal bandwidth,

i.e., λ(F) ≪ W ′ [26]. If, for instance, all the occupied bands (intervals) have equal bandwidthB

Hz and the signal is composed ofK disjoint frequency bands, then a sparse multiband signal isone

satisfyingKB ≪ W ′. In the CS literature, signals having this type of “block” structure have been

studied in various settings in which the central question iswhether the additional signal structure

(sparsity plus block structure) reduces the minimum numberof samples required to reconstruct the

original signal (see e.g., [6], [27], [28]).

Signal reconstruction and linear approximations. MWC signal reconstruction centres on the

matrix form of (16),

y(ω) = ΦΨs(ω) (19)

where

yi(ω) = Yi(e
jω M′

W ′ )1[−πW ′

M′
, πW ′

M′
)

Φi,l = pil

Ψl,r =
M ′

W ′
e−j

2π
L′

lmr

sr(ω) = βrrect( M ′

πW ′
ω)X(ω −mr

W ′

L′
)

βr =
1− e−j 2π

L′
mr

j2πmr
, β0 = 1/L′,

for i = 0, . . . , q′−1, l = 0, . . . , L′−1, r = 0, . . . ,
⌊

L′

M ′
(M ′+1)

⌋

−1 andmr = −
⌊

L′

2M ′
(M ′+1)

⌋

+1+r.

Note that the scalarsβr are the complex conjugates ofαr in (18). Like (18), this linear system of

equations is underdetermined since the matrixΦΨ has dimensionsq′× L′

M ′
(M ′+1) and the assumption

q′ ≤ L′ < M ′ (see Section II-B) impliesq′ < L′

M ′
(M ′ + 1). If x(t) is a sparse multiband signal,

the vectors(ω) is sparse in the sense that most of its elements (segments ofX(ω)) do not contain

occupied frequency bands that comprisex(t). This fact is important because the CS methods used
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in the reconstruction process rely on a signal’s sparsity torecover the support ofs(ω). Equation (19)

can also be derived from the single channel MWC, although onehas to first extractq′ lower rate

sample sequences from the single higher rate output sequence. We refer the reader to [11] for details

regarding the extra processing steps.

We emphasise that in practice the linear system in (19) cannot, in general, be formulated because

it requires an infinite amount of data. To understand this claim and its consequences, we consider

the inverse DTFT of (19). From their definition, it immediately follows that the inverse DTFT of

the spectrayi(ω) = Yi(e
jωM′

W ′ )1[−πW ′

M′
, πW ′

M′
) (left hand side of (19)) are the time domain sequences

{yi(k), k ∈ Z}i. To take the inverse DTFT of the right hand side of (19), one interprets the spectral

segmentssr(ω) = βrrect( M ′

πW ′
ω)X(ω −mr

W ′

L′
) as single periods of periodic spectra. By doing so,

it follows that their inverse DTFT are the sequences{γr(k), k ∈ Z}r where

γr(k) =
M ′

2πW ′

∫ πW ′/M ′

−πW ′/M ′

sr(ω)e
j M′

W ′
kω dω. (20)

and

sr(ω) =

∞
∑

k=−∞

γr(k)e
−j

M ′

W ′
kω, ω ∈ [−πW ′/M ′, πW ′/M ′]. (21)

The transform pair of (19) is therefore the linear system,

Y = ΦΨS (22)

where Φ and Ψ are as in (19),Y is an infinite column matrix whoseith row is the sequence

yi(k), k ∈ Z, andS is an infinite column matrix whoserth row equalsγr(k), k ∈ Z. The matrixS

is described as beingjointly sparsebecause most of its rows are zero since the zero-valued elements

of s(ω) correspond to zero-valued sequencesγr(k) (rows of S). A matrix Z is said to beK joint

sparse if there are at mostK rows inZ that contain nonzero elements. The recovery ofS from the

measurementsY in (22) is called aninfinite measurement vector(IMV) problem [7], [11], [29] in

the CS literature because each column ofY is viewed as a CS measurement (via the measurement

matrix ΦΨ) of a collection of vectors that share a common sparse support.

In practice, this IMV problem can never be formulated because we can only ever observex(t) over

a finite duration window, and thus can only ever collect a finite number of samples. This practicality

in effect truncates the rows ofY and causes (22) to become a so-calledmultiple measurement vector

(MMV) problem [29]–[32], where the goal is to recover a finitenumber of the columns of the jointly

sparse matrixS corresponding to the finite number of acquired samples in an underdetermined linear

system. Using existing CS methods, this MMV problem can be solved exactly, or with exceedingly

high probability, provided the matrixΦΨ satisfies certain conditions and that enough samples are

collected. The solution, however, only provides a linear approximation [25] to the true spectral slices

yi(ω) = Yi(e
jωM′

W ′ )1[−πW ′

M′
, πW ′

M′
) because the solution only recovers a finite number of coefficients
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γr(k) in (21). In general, an infinite number of coefficients would need to be recovered to perfectly

reconstruct a multiband signal, or equivalently, an infinite number of samples would need to be

acquired. This fact is in contrast to the sparse multitone signal model that is parameterised by a

finite number of parameters and thus only requires a finite number of samples for perfect signal

reconstruction. It is important to note that even thoughx(t) can only be approximated in practice,

there is an advantage in applying CS theory—it allows one to recover the same order of linear

approximation obtained by sampling at the Nyquist rate, butat rates significantly below the Nyquist

rate.

In [11] and [29], Mishali and Eldar proposed a two step reconstruction process termed the “contin-

uous to finite block” that provably recoversx(t) exactly given an infinite amount of data, or in other

words, recoversx(t) to an arbitrary precision given sufficient data. The first step recovers the joint

support ofS by solving an associated MMV problem, and the second step uses the found support

to reduce the dimension of the measurement matrixΦΨ such that its pseudoinverse can be used to

find a unique solution to the MMV problem. We stress that even if this two step process perfectly

solves the MMV problem derived from (22), the solution can only, in general, approximatex(t) for

a finite number of samples.

MWC model sensitivity. We now discuss a model sensitivity of the MWC that is similar to the

RD’s model sensitivity discussed above. Recall that nonharmonic signals on the observation interval

[0, T ] the signal vectorx in (18) may not be sparse for the RD. Similarly,S may become non-sparse

for short duration multiband signals. To be concrete, letx(t) be a sparse multiband signal with a FT

X(ω) and letz(t) be a windowed version ofx(t),

z(t) = x(t)w(t), (23)

wherew(t) is an indicator function of some sub-interval of the observation interval. The signal

z(t) is thus a short duration multiband signal that has a spectrumequal toX(ω) convolved with a

sinc function [33]. As is well-known, this convolution spreads the original spectrumX(ω). If it is

sufficiently spread (or equivalently ifw(t) is sufficiently short),s(ω) andS are no longer sparse.

This situation violates one of the necessary and sufficient conditions for successful reconstruction as

outlined by Mishali and Eldar in [11, Theorems 2 and 3, Condition 2]. Thus, as with the RD when

sampling nonharmonic multitone signals, the MWC exhibits alimitation in recovering short duration

multiband signals because the sparsity ofs(ω) and S is potentially lost. The following numerical

example illustrates the point.

Example. Consider the set of sparse multiband signals with maximal frequencies of±1000 Hz

and a MWC with ten channels each sampling at20 Hz with each channel using a waveformpi(t)

having a period of0.05 seconds (W ′ = 1000 Hz, q′ = 10, L′ =M ′ = 50). We simulate a multiband
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Fig. 4. The plots show the results of an experiment that demonstrates the MWC’s sensitivity to short duration signals, or

equivalently, short observation intervals. The top row shows a simulated multiband signal bandlimited to500 Hz with three

occupied bands (six between±500 Hz). The left hand column shows time domain signals, the right shows the frequency

domain. The second row shows the reconstructed signal when the input is sampled by a 10 channel MWC with an average

sampling rate of200 Hz over a one second interval (W ′ = 1000 Hz, q′ = 10, M ′L′ = 50). In this case, the MWC

faithfully reconstructs the input signal, save for the timedomain delay caused by the digital filter that simulates the ideal

analogue low pass filter. However, if the input signal is shorten to0.05 seconds (third row) and sampled by the same system,

the MWC fails to correctly recover the multiband signal’s support and thus fails to reconstruct the signal.

signalx(t) by notch-filtering a discrete time white random noise process that has six active bands

each having bandwidth of20 Hz. In this example, the system average sampling rate is200 Hz which

is 66% greater than the theoretical minimum sampling rate of120 Hz [34]. The two top panels on the

right and left of Figure 4 show the reconstruction results whenx(t) persists over the entire 1 second

observation interval. In this case, the MWC correctly recovers the support and yields an accurate

approximation ofx(t). However, if the signal model is shortened to0.05 seconds while keeping

all other parameters fixed, the two bottom panels show that the MWC fails to correctly recover the

signal. This short duration signal represents, in some sense, a signal that maximally mismatches the

multiband model and the MWC’s sampling functions because each have infinite support in time.

IV. EXCHANGING SIGNAL MODELS AND SAMPLING CONTINUOUS-TIME BLOCK-SPARSE SIGNALS

We devote this section to a simple exercise that reveals three interesting aspects of the RD and the

MWC and suggests a new analogue CS sampling system. First, the exercise plainly shows that the

MWC can successfully sample and recover sparse multitone signals without any modification to the

recovery algorithm originally proposed by Mishali and Eldar in [11]. Second, it leads to a special case

in which the MWC and the RD produce equivalent SMV problems and that underlines the fact that

the RD acquires samples sequentially while the MWC acquiresthem in parallel. Third, it highlights

a property of the MWC that differentiates it from the RD and allows it to successfully sample and

recover “block” sparse signals (e.g. multiband signals). We conclude the section by proposing a
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new CS sampling system that uses this property to sample and recover continuous-time block-sparse

signals.

A. MWC with sparse multitone inputs

Consider the problem of using a MWC to sample and recover a sparse multitone signal instead

of sparse multiband signal. Letx(t) be a sparse multitone signal on the observation interval[0, T ]

with T = N
W and letpi(t) be as described as in Section II-B. To make the problem meaningful, we

assume the observation interval is greater than or equal to the sampling period (T ≥ Ts) and assume,

for ease of exposition, that the period ofpi(t) equals the sampling period (Tp = Ts). Equivalently,

we assumeN ≥ L′ =M ′, where we recall from Section II-B thatL′ = Tp/W
′ andM ′ = Ts/W

′.

A parallel analysis to that given in Appendix VI-B, then yields an expression relating the FS

coefficients ofx(t) to the DFT coefficients of the output samples,

Yi(n) =
L′

N

⌊

N

2L′
(L′+1)

⌋

∑

m=−
⌊

N

2L′
(L′+1)

⌋

+1

Pi(m)X(n − N
L′
m), (24)

=
L′

N

⌊

N

2L′
(L′+1)

⌋

∑

m=−
⌊

N

2L′
(L′+1)

⌋

+1

L′−1
∑

l=0

pil
1− e−j 2π

L′
m

j2πm
e−j 2π

L′
lmX(n− N

L′
m), (25)

for n = −
⌊

N
2L′

⌋

, . . . ,
⌊

N
2L′

⌋

− 1. This expression is analogous to the frequency domain description

of the RD given by (9) and is what (16) becomes assuming a sparse multitone signal model and

L′ =M ′. In matrix form, (25) becomes the MMV problem,

Y = ΦΨS, (26)

where

Yi,v = Yi(nv)

Φi,l = pil

Ψl,r =
L′

N
e−j

2π
L′

lmr

Sr,v = αrX(nv −
N
L′
mr)

αr =
1− e−j 2π

L′
mr

j2πmr
, α0 = 1/L′,

for i = 0, . . . , q − 1, l = 0, . . . , L′ − 1, v = 0, . . . ,
⌊

N
L′

⌋

− 1, nv = −
⌊

N
2L′

⌋

+ v, r = 0, . . . ,
⌊

N
L′
(L′ +

1)
⌋

−1 andmr = −
⌊

N
2L′

(L′+1)
⌋

+1+r. In contrast to sampling a sparse multiband signal, this MWC

MMV problem does not result from truncation, rather its finiteness derives from the fact that multitone

signals are finitely parameterised. The Fourier componentsof x(t) can be recovered by solving (26)
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using several existing CS algorithms including greedy algorithms [35], mixed norm approaches [36],

MUSIC based recovery algorithms [32] and, in particular, the approach proposed by Mishali and

Eldar in [11] and [29]. We conclude therefore that the MWC cansuccessfully sample and recover

sparse multitone signals without any modification to Mishali’s and Eldar’s recovery algorithm.

Special case.Note that when the observation interval, the period ofpi(t), and the sampling period

are equal, i.e. whenN = L′ =M ′, (26) collapses to the SMV problem,

y(n) = ΦΨx(n), (27)

wherey(n) = [Y0(0), . . . , Yq−1(0)]
′

andx(n) = X(−mr), for mr = −
⌊

L′+1
2

⌋

+1+r, r = 0, . . . , L′.

The FS coefficientsx(n) can thus be solved for using standard CS SMV recovery techniques. In this

special circumstance, the MWC collects a single measurement vector in the observation interval

and thus each channel samples the productx(t)pi(t) once at the end of the observation interval.

Comparing (27) to (18), one sees that in this case the RD collects its samples sequentially while the

MWC collects them in parallel. This special case presents anexample where the MWC and the RD

produce equivalent SMV problems thus provides one way to directly compare the RD and the MWC.

This example highlights a property of the MWC that differentiates it from the RD and allows it

to successfully sample and recover multitone signals, as well as multiband signals. Specifically, the

convolution in (25) involves shifts ofX(n) by integer multiplies ofNL′
that, when greater than one,

yields a “block convolution”. By block-convolution, we mean every DFT coefficientYi(n) in (25) is

a linear combination of finite segments ofX(n). Block-convolution is also seen in (16) where the FT

of a multiband signal is shifted by integer multiplies ofW ′

L′
. It is, however, in contrast to (9) where

the frequency shifts describing the RD are by one.

This aspect of the MWC allows the construction of a linear system of equations like (19) and (26)

that describe the original spectra in terms of linear combinations of these blocks. The blocks them-

selves represent a partition of the frequency axis that effectively discretised the block sparsity of

multiband signals. In Section IV-C below, we incorporate this property into a multi-channel random

convolution system that samples and approximately recovers continuous-time block-sparse signals,

the time domain analogue of sparse multiband signals. In thenext section, we consider the counterpart

of this section and examine the case where a sparse multibandsignal is sampled by a RD. Because

the RD formulation does not rely on block convolution, we show that the resulting SMV problem

can become computationally burdensome in certain circumstances.

B. RD with sparse multiband inputs

When a multiband signal is the assumed signal model for the RD, the system fails to produce

a single measurement vector problem whose solution recovers x(t). To be more concrete, letx(t)
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be a sparse multiband signal bandlimited toW ′ Hertz and with a fixed spectral occupancyλ(F)

and consider a RD parameterised byM that samplesx(t) on [0, T ]. Let p(t) be as described in

Section II-A. A similar analysis to that contained in Appendix VI-A then leads to the expression

y(k) =

N/M−1
∑

m=0

p
k
N ′

M +m

∫ πW ′

−πW ′

X(ω)
ej

ω

W ′ − 1

jω
ejω

(

k
N ′

M +m
)

dω, (28)

where hereN ′ represents the number of Nyquist periods within the observation window (N ′ = T
W ′

).

To construct a RD formulation, one could approximate the integral based on samples of the integrand:

y(k) ≈

N ′/M−1
∑

m=0

D−1
∑

i=0

p
k
N ′

M +m
X(ωi)

ej
ωi

W ′ − 1

jωi
ejωi

(

k
N ′

M +m
)

δω, (29)

whereδω = 2πW
D for some positive integerD andωi = −πW +δω(i+1/2). One can then see that in

comparison to (18), this expression describes a single measurement vector problemy(k) = ΣΨx(ωi)

where the vectorx(ωi) grows infinitely long as the integral is more and more closelyapproximated,

i.e., asD →∞. Here, the matricesΣ andΨ are as in (18). Because the RD is designed to sample

and recover sparse multitone signals, this approximation results if one uses a multitone signal as a

model for a multiband signal, or in essence, uses a FS to approximate a FT. Clearly, in cases where

one wants a fine resolution approximation, the size of the matrices in this SMV problem could grow

to become computationally unwieldy.

C. Sampling continuous-time block-sparse signals

The class ofcontinuous-time block signalsG(T , t0) is the set of continuous-time, complex-valued,

finite energy signals whose support is a finite union of bounded intervals,

G(T , t0) =
{

x(t) ∈ L2([0, t0]) ∩ C([0, t0]) : x(t) = 0, t /∈ T
}

(30)

where

T =

K
⋃

i=1

[ai, bi), 0 ≤ ai, bi ≤ t0 <∞. (31)

A continuous-time block-sparse signalis a continuous-time block signal whose support has Lebesgue

measure that is small relative to the signal’s overall duration, i.e.,λ(T )≪ t0.

The proposed system we present in the following paragraphs combines block convolution with the

MWC multi-channel architecture and the random convolutionideas of Romberg to obtain a sampling

system for continuous-time block-sparse signals (see Figure 5(a)). The resulting system can also be

interpreted as the time domain analogue of the MWC.

Let x(t) be a continuous block-sparse signal on the interval[0, T ] and let{pi(lTL )}i be an ensemble

of discrete time signalsl = 1, . . . , L, L ∈ Z
+ taking values±1 with equal probability. The system
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has multiple channels and operates in parallel like the MWC.The ith channel convolvesx(t) with

pi(l
T
L ), resulting in the continuous-time signalgi(t),

gi(t) =

L−1
∑

l=−(L−1)

pi(l
T
L )x(t− l

T
L ). (32)

By construction, this convolution is a block-convolution.The corresponding filter is a standard digital-

to-analogue reconstruction filter [33], but is used here in the sampling process. Restricting the time

axis to the interval[0, T/L] and with a change of variables, (32) becomes

gi(t)1[0,T/L] =

L−1
∑

l=0

pi(l
T
L )x(t− l

T
L )1[0,T/L]. (33)

Representing the segmentsx(t− lTL )1[0,T/L] in an appropriate orthogonal basis, (32) may be written

as

gi(t)1[0,T/L] =

L−1
∑

l=0

∞
∑

n=−∞

pi(l
T
L )αl(n)ψn(t), (34)

whereαl(n) =
〈

x(t− lTL )1[0,T/L], ψn(t)
〉

. The signalgi(t) is then sampled at a rate ofLMT Hz over

the interval[0, TL ],

yi(k) = gi(k
T

LM ) =

L−1
∑

l=0

∞
∑

n=−∞

pi(l
T
L )αl(n)ψn(k

T
LM ), k = 1, . . . ,M, i = 1, . . . q. (35)

Given the samples{yi(k)} one can solve forL linear approximations of the segmentsx(t−lTL )1[0,T/L]

by truncating the summation overn such that|n| ≤ D <∞ and solving the matrix equation

YΨ† = ΦX (36)

where

Yi,k = yi(k)

Φi,l = pi(l
T
L )

Ψr,k = ψnr
(k T

LM )

Xl,k = x(k T
LM − l

T
L )

for i = 1, . . . , q, k = 1, . . . ,M , r = 0, . . . , 2D, nr = −D + r and where† denotes the pseudo-

inverse of a matrix. The conditions on whether a unique solution can be found to (36) depends on

the properties of the measurement matrixΦ and the degree to whichX is sparse. (Becausex(t)

is assumed to be a continuous-time block sparse signal, it follows thatX is a joint sparse matrix.)

Notice that in this problem the CS measurements are not simply the samplesyi(k) as they were in (18)

and (22), but are the elements of the productYΨ†. Consequently, the number of CS measurements

acquired isnot related to the sampling rateLM/T , but to the number of channelsq and the order
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Fig. 5. (a) Schematic diagram of sampling system for continuous-time block sparse signals. The system is a generalization

of random convolution as originally proposed in [9]. Each channel convolvesx(t) with a random sequence and then samples

the result at a low rate. (b) Top panel: Simulated block sparse time domain signal on the unit interval. The signal is a

modified version of the “bumps” test signal from the WaveLab toolbox [37]. Middle panel: Overlay plot of the signalsgi(t)

resulting from the random convolution. Here,x(t) was sampled with a 6 channel system. Note that samples ofgi(t) are

acquired on an interval shorter than the observation interval (0.1 seconds versus1.0 seconds). Bottom panel: Reconstructed

signal approximation. Each0.1 second duration segment is a linear approximation (Fourierbasis) ofx(t) on that segment.

of the linear approximationD. The following example, however, shows that a good approximation

of a continuous-time block sparse signal can be obtained with a relatively small number of samples.

Example.Consider the continuous-time block sparse signal depictedin the top panel of Figure 5(b).

Samples of the filtered signalsgi(t) (middle panel) are acquired by a 6 channel system (q = 6)

with a sampling rate of400 Hz (M = 40, LM/T = 400)where the time axis is partitioned into

10 segments (L = 10). Using a Fourier basis,ψn(t) = e
j

2π
T/L , the linear system (36) was solved

using the simultaneous orthogonal matching pursuit (S-OMP) algorithm [35] resulting inL linear

approximations (D = 41) of the segmentsx(t − lTL )1[0,T/L]. The reconstructed signal is shown in

the bottom panel of Figure 5(b). In this case, the reconstructed signal is a faithful representation

of x(t). Clearly, the quality of the reconstruction depends on how well the linear approximations

approximate the segments ofx(t) and also on how well a particular CS algorithm solves (36). In

any given application, some bases will be more appropriate than others. For example ifx(t) contains

discontinuities, a wavelet basis would provide a better approximation for a fixedD.

Strictly speaking continuous-time block sparse signals are not bandlimited, but if one examines

the spectrum of the test signal in Figure 5(b), one would discover that the signal is “essentially”

bandlimited to about 1000 Hz. Thus, it could be argued according to the Shannon-Nyquist sampling

theorem that a sampling rate of about 2000 Hz would be required to accurately capture this signal.

Relative to 2000 Hz, 400 Hz represents a five fold savings in sampling rate.
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V. CONCLUSION

In this paper, we showed that the sampling mechanisms of the RD and the MWC can both be

thought of as being based on the underlying concept of randomfiltering or random convolution.

The most substantial difference between the systems stems from the specific form of their sampling

functions (or random filters) and from the assumed signal models. The RD has sampling functions that

have finite temporal extent but infinite spectral support; the MWC employs sampling functions that

have finite spectral support but infinite temporal support. The randomness in the sampling functions is

a hallmark of CS theory that is fundamental in guaranteeing the invertibility of the underdetermined

linear systems that characterise the RD and the MWC.

Block convolution is also an important property that differentiates the MWC from the RD because

it is one approach that effectively processes infinite dimensional signals that have a block structure.

The absence of this property is one primary reason the RD cannot, in general, reconstruct multiband

signals. We incorporated block convolution into a new sampling system that samples continuous-time

block-sparse signals.

In this paper, we also offered novel insights into the practical reconstruction of sparse multiband

signals using the MWC. We showed that with a finite amount of data the MWC necessarily produces

linear approximations of the spectral slices ofx(t). We also showed that the MWC exhibits a

sensitivity to short duration signals that derives from thefact that multiband signals are modeled

as extending infinitely in time.

From the perspective of this paper, one begins to consider generalisations to the RD and the

MWC that target different signal classes, in particular, CSsampling systems that have different

time-frequency characterisations. For example, a system that “compressively” samples radar pulses

and chirps in an efficient time-frequency manner could possibly offer a means to effectively detect

and classify these signals while avoiding the overhead of sampling several bands simultaneously or

reconstructing the Nyquist equivalent signal. This paper takes a step towards this goal by reconciling

some of the core ideas behind these sampling systems.

VI. A PPENDICES

The following analyses yield basic time and frequency domain descriptions of the sampling/

measurement strategies. We employ standard Fourier transform properties without explicit explanation

for the sake of conciseness. The notational style is that of [33]. To denote transform pairs, we use

the shorthand notation,

x(t)
FT

←−−→ X(ω),

and use the abbrevations FT, FS, DTFT, and DFT when referringto the Fourier transform, the Fourier

series, the discrete time Fourier transform, and the discrete Fourier transform, respectively. Also recall
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the definitions: sinc(x) = sin (x)/x, x ∈ R and

rect(x) =











1 for − 1 ≤ x ≤ 1

0 otherwise
.

A. Random Demodulator

Time domain description. Let x(t) be a sparse multitone signal on[0, T ] and recall the following

transform pairs from Section II:

x(t)
FS;1/T
←−−−−→ X(n)

p(t)
FS;1/T
←−−−−→ P (n)

h(t) = rect
(

2M
T t− 1

) FT
←−−−−→ H(jω) = T

M sinc( T
2M ω)e−jω.

By inspection of Figure 1(a), the time domain description ofthe RD is

g(t) = x(t)p(t) ∗ h(t) =

∫ ∞

−∞
x(τ)p(τ)h(t − τ) dτ

=

∫ t

t−
T
M

x(τ)p(τ) dτ

=

N/2−1
∑

n=−N/2

X(n)

∫ t

t−
T
M

p(τ)ej
2π

T
nτ dτ,

where∗ denotes convolution. Sampling att = (k + 1) T
M for k = 0, 1, . . . yields

y(k) = g
(

(k + 1) T
M

)

=

N/2−1
∑

n=−N/2

X(n)

∫ (k+1)
T
M

k
T
M

p(τ)ej
2π

T
nτ dτ

=

N/2−1
∑

n=−N/2

X(n)

N/M−1
∑

m=0

∫ k
T
M +

m+1
W

k
T
M +

m
W

p(τ)ej
2π

T
nτ dτ

=

N/2−1
∑

n=−N/2

N/M−1
∑

m=0

p
k
N
M +m

X(n)

∫ k
T
M +

m+1
W

k
T
M +

m
W

ej
2π

T
nτ dτ

=















T
∑N/2−1

n=−N/2

∑N/M−1
m=0 p

k
N
M +m

X(n) ej
2π
N

n−1
j2πn ej

2π
N n

(

k
N
M +m

)

, n 6= 0

1
W

∑N/2−1
n=−N/2

∑N/M−1
m=0 p

k
N
M+m

X(n), n = 0

(37)

where the first three steps follow from the additivity of the integral and the specific nature ofp(t).

Here,p
k
N
M +m

= p(k T
M + m

W ). Letting l = k N
M +m, (37) may be rewritten as

y(k) =
N

W

N/2−1
∑

n=−N/2

(k+1)
N
M −1

∑

l=k
N
M

pl
ej

2π

N
n − 1

j2πn
ej

2π
N nlX(n), for k = 0, 1, . . . , (38)
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where this expression should be understood to be consistentwith (37) for n = 0 above. For

k = 0, . . . ,M − 1, (38) may in turn be written in matrix form,

y(k) = ΣΨx(n) (39)

wherey(k), Σ, Ψ, andx(n) are defined in (18).

Frequency domain description.We also have the following frequency domain description of the

RD. Multiplication/Convolution:

x(t)p(t)
FS;1/T

←−−−−→

⌊n−N

2
⌋

∑

m=−⌊n−N

2
⌋+1

P (m)X(n −m)

Convolution (filtering)/Multiplication:

g(t) = x(t)p(t) ∗ h(t)
FS;1/T

←−−−−→ G(n) =

⌊n−N

2
⌋

∑

m=−⌊n−N

2
⌋+1

P (m)X(n −m)H(j 2πT n)

=
T

M

⌊n−N

2
⌋

∑

m=−⌊n−N

2
⌋+1

P (m)X(n −m)e−j 2π

T
nsinc( π

M n)

Sampling/Aliasing:

y(k) = g
(

(k + 1) T
M

) DFT;M
←−−−−→ Y (n) =M

∞
∑

l=−∞

G(n− lM)

BecauseY (n) is M periodic, we can, without loss of information, restrict it to one period. This

means we need only consider one term in the summation overl. Retaining thel = 0 term yields

Y (n) = T

∞
∑

m=−∞

P (m)e−j 2π

T
nsinc( π

M n)X(n −m), n = 0, . . . ,M − 1.

B. Modulated Wideband Converter

We have the following frequency domain description for theith channel,i = 0, . . . , q′ − 1 of the

MWC.

Multiplication/Convolution:

x(t)pi(t)
FT

←−−→
∞
∑

m=−∞

Pi(m)X(ω −mωp) (40)

=

⌊(ω+πW ′)/ωp⌋
∑

m=⌈(ω−πW ′)/ωp⌉+1

Pi(m)X(ω −mωp) (41)
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whereωp = 2πW ′/L′ radians per second. The summation limits are finite for a given ω becausex(t)

is assumed to be bandlimited.

Convolution (filtering)/Multiplication:

gi(t) = x(t)pi(t) ∗ h(t)
FT

←−−→ Gi(ω) =

⌊(ω+πW ′)/ωp⌋
∑

m=⌈(ω−πW ′)/ωp⌉+1

Pi(m)X(ω −mωp)H(ω) (42)

=

⌊ 1

2ωp
(ωs+2πW ′)⌋
∑

m=−⌊ 1

2ωp
(ωs+2πW ′)⌋+1

Pi(m)X(ω −mωp)rect(2ω/ωs)

(43)

whereH(ω) = rect(2ω/ωs) is the transfer function of an ideal low-pass filter with cut-off frequency

ωs/2, ωs = 2πW ′/M ′. Note that the low pass filter windowsX(ω) and its translates (i.e., restricts

them to the interval[−ωs/2, ωs/2]) and hence removes the dependence onω in the summation limits.

Sampling/Aliasing:

yi(k) = gi(kTs)

l DTFT;ωs

Yi(e
jωM′

W ′ ) =
W ′

M ′

∞
∑

n=−∞

Gi(ω + nωs) (44)

=
W ′

M ′

∞
∑

n=−∞

⌊ L′

2M′
(M ′+1)⌋
∑

m=−⌊ L′

2M′
(M ′+1)⌋+1

Pi(m)X(ω −mωp + nωs)rect(2(ω + nωs)/ωs) (45)

where (45) results from substituting (43) into (44) and the summation limits were rewritten using the

definition ofωp andωs. BecauseYi(ejω
M′

W ′ ) is periodic with periodωs = 2πW ′/M ′, we can, without

loss of information, restrictYi(ejω
M′

W ′ ) to one period. This means we need only consider one term in

the summation overn in (45). We choose to retain then = 0 term and thus have the DTFT pair

Yi(e
jω M′

W ′ )1[−πW ′

M′
, πW ′

M′
) =

W ′

M ′

⌊ L′

2M′
(M ′+1)⌋
∑

m=−⌊ L′

2M′
(M ′+1)⌋+1

Pi(m)X(ω −mωp)rect(2ω/ωs),

where again,1[·) denotes the indicator function. The Fourier series coefficients ofpi(t) can now be

directly computed,

Pi(m) =
1

TP

∫ Tp

0
pi(t) e

−j 2π

Tp
mt

dt

=
1

TP

L′−1
∑

l=0

∫ (l+1)
Tp

L′

l
Tp

L′

pil e
−j 2π

Tp
mt

dt

=











∑L′−1
l=0

pil

j2πm

(

1− e−j 2π

L′
m
)

e−j 2π

L′
ml, m 6= 0

1
L′

∑L′−1
l=0 pil, m = 0,
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wherepil = pi(t) for t ∈ [lTp/L
′, (l + 1)Tp/L

′), to obtain

Yi(e
jωM′

W ′ )1[−πW ′

M′
, πW ′

M′
) =

W ′

M ′

⌊ L′

2M′
(M ′+1)⌋
∑

m=−⌊ L′

2M′
(M ′+1)⌋+1

L′−1
∑

l=0

pil
1− e−j 2π

L′
m

j2πm
e−j 2π

L′
mlrect( M ′

πW ′
ω)X(ω−m2πW ′

L′
),

for i = 0, . . . , q′−1, where this expression should be understood to be consistent with the expression

for Pi(0) given above.

We can express theseq′ linear equations in matrix form

y(ω) = ΦΨs(ω) (46)

wherey(ω),Φ,Ψ, ands(ω) are as in (19).
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