-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Reconciling Compressive Sampling Systems for Spectrally
Sparse Continuous-Time Signals

Citation for published version:

Lexa, MA, Davies, ME & Thompson, JS 2012, 'Reconciling Compressive Sampling Systems for Spectrally
Sparse Continuous-Time Signals' IEEE Transactions on Signal Processing, vol. 60, no. 1, pp. 155-171.
DOI: 10.1109/TSP.2011.2169408

Digital Object Identifier (DOI):
10.1109/TSP.2011.2169408

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
IEEE Transactions on Signal Processing

Publisher Rights Statement:

(c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 05. Apr. 2019


https://core.ac.uk/display/28964496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TSP.2011.2169408
https://www.research.ed.ac.uk/portal/en/publications/reconciling-compressive-sampling-systems-for-spectrally-sparse-continuoustime-signals(1648af6c-e650-42e4-b581-6237c146772f).html

1

Reconciling Compressive Sampling Systems

for Spectrally-sparse Continuous-time Signals

Michael A. Lexa* Member, IEEE Mike E. DaviesMember, IEEEand
John S. ThompsoMember, IEEE

Abstract

The Random Demodulator (RD) and the Modulated Wideband &term(MWC) are two recently
proposed compressed sensing (CS) techniques for the ditopuis continuous-time spectrally-sparse
signals. They extend the standard CS paradigm from samgigugete, finite dimensional signals to
sampling continuous and possibly infinite dimensional paes thus establish the ability to capture
these signals at sub-Nyquist sampling rates. The RD and WWEMave remarkably similar structures
(similar block diagrams), but their reconstruction altfumis and signal models strongly differ. To
date, few results exist that compare these systems, andydwithe potential impacts they could
have on spectral estimation in applications like electrgnegic scanning and cognitive radio, we
more fully investigate their relationship in this paper.eSifically, we show that the RD and the
MWC are both based on the general concept of random filtebaogthat the sampling functions
characterising the systems differ significantly. We nexndestrate a previously unreported model
sensitivity the MWC has to short duration signals that rddesithe known sensitivity the RD has
to nonharmonic tones. We also show that block convolutioa fandamental aspect of the MWC,
allowing it to successfully sample and reconstruct blogrse (multiband) signals. This aspect is
lacking in the RD, but we use it to propose a new CS based atignisystem for continuous-time
signals whose amplitudes are block sparse. The paper exldetailed time and frequency domain

analyses of the RD and the MWC that differ, sometimes subatign from published results.

I. INTRODUCTION

The theory of compressed sensing (CS) says that if a sigralfiiciently sparse with respect to
some basis or frame, then it can be faithfully reconstruétech a small set of linear, nonadaptive

measurements, even if the support of the signal is unknop4i3[L When the signal belongs to a finite
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dimensional space, this statement means that it can bestegoted from a set of measurements whose
cardinality may be significantly less than the space’s dsimn It also implies that the measurement
process is described by an underdetermined linear systamguations, or equivalently, a rectangular
matrix with more columns than rows. The fundamental work ah@es, Romberg, and Tao [4] and
Donoho [1] established sufficient conditions upon such isgnsatrices, that if satisfied, allow the
stable inversion of the linear system. A key aspect of CS,@malwhich plays an important role in
this paper, is that sensing matrices drawn at raridoften satisfy these conditions.

Conceptually, CS theory has three main thrusts: (1) theldpieent of recovery methods that effi-
ciently and faithfully reconstruct the original signalfinats compressed samples, (2) the investigation
of new signal models that effectively represent signal sipaor other signal structure, and (3) the
creation of new sampling (measurement) mechanisms thafiracsjgnals in a compressed manner.
All three lines of research are intertwined and all need tadresidered when designing a sampling
system. The first concerns the reconstruction process &kl famv one specifically reconstructs
the original signal from the CS measurements (see, e.g.,[41] [5]). The second concerns the
examination of different signal classes of interest ands alsthere exists a structured representation
that can be exploited [6]-[8]. The third concerns the desifjine physical sampling system and asks
how one devises a system to acquire CS measurements [7[L1®]Fhis paper concerns sampling
systems and signal models.

Several CS based signal acquisition systems have beengapar both continuous (analogue) and
discrete signals. For example, the single-pixel camerdifl2 novel compressive imaging system,
where light is projected onto a random basis using a mictwemdevice, and then the projected image
is captured by a single photo-diode (the single “pixel")h&@texamples include random filtering [13]
and random convolution [9] that advocate random linearriiiteand low rate sampling as a means to
collect CS measurements. In these cases, “random” filteréirerar filters whose impulse responses
are realisations of particular random processes.

Along the same lines, thRandom DemodulatqiRD) [10], [14], [15] and theModulated Wideband
Converter(MWC) [11], [16]-[18] have recently been proposed as CS dmmmsystems that target
continuous-time spectrally-sparse signals. The RD is glsichannel, uniform sub-Nyquist sampling
strategy for acquiringsparse multitone signglghe MWC is a multi-channel, uniform sub-Nyquist
sampling strategy for acquiringparse multiband signalgPrecise definitions for these two signal
classes are provided in Section Ill.) The RD and the MWC hesraéndous potential impact because

of the longstanding, proven usefulness of spectral sigradeis in many engineering and scientific

There are several ways to construct viable random sensitiices For example, its entries could simply be indepenhden

and identically distributed realisations of a a zero meauit, wariance Gaussian random variable.



applications (e.g. electromagnetic scanning, cognitagia, radar, and medical imaging). Perhaps
owing to the near coincidental emergence of these systeowseuer, few results exist to date
that reconcile their remarkably similar structures (segufé 1) with their different reconstruction
algorithms. In fact, the current literature paints a somawdrtificial dividing line between the RD
and the MWC, this works preferring to focus primarily on osbame rather than drawing connections
between them.

In this paper, we offer new insights into the relationshipwsen the RD and the MWC that
complement the original works of Tropp et al. [10] and Mistzadd Eldar [11]. We apply tools from
modern sampling theory and classical Fourier analysis aond/ shat the RD and the MWC are two
manifestations of the same CS sampling approach, namedpnafiltering/convolution [9], [13]. This
fact reflects the systems’ similar structure. At the same time show that the sampling functions
characterising the systems strongly distinguish the tweesws. For example, the RD’s sampling
functions have finite support in time and infinite supportrieguency, whereas the MWC’s sampling
functions have infinite support in time and finite support ieguency. In Section Ill, we discuss
two signal model sensitivities exhibited by the RD and the ®IWn particular, we demonstrate
the MWC'’s sensitivity to short duration multiband signaat is the counterpart to the known RD
sensitivity to nonharmonic multitone signals. In each ¢casgerturbation to the signal model triggers
a possible loss in signal sparsity and endangers CS reaotistr. In Section 1V, we highlight the
MW(C'’s use of block convolution as a principle processing gteat enables it to successfully sample
and recover “block” sparse signals, i.e. signals whose @mmneomponents are grouped together. The
RD does not use block convolution, hence signal reconstrudor it can become computationally
expensive for these types of signals. Extending the idedasily propose a new CS based sampling
system and show through an example that it can successéutiple and reconstruct continuous-time
signals that are block sparse in the time domain.

The main contribution of this paper is the recognition thathtsystems are based on the underlying
concept of random filtering, yet each implements the condifierently because of the different signal
classes they target. The insights regarding model seitisitivthe differences in sampling functions,
and the MWC's use of block convolution build a better undmnding of these systems and allows
further application of these ideas to new signal classks, the new acquisition system for time
block-sparse signals proposed in Section V.

To be clear, we do not discuss the conditions of successfahsdruction, nor implementation issues
in this paper. The original works of Tropp et al. [10] and Mishand Eldar [11], and even some
subsequent scholarship [16]-[18], extensively investighese issues. Some of the reconstruction
conditions will be tacitly stated in the descriptions of thestems in Section Il, but the presumption

throughout the paper is that the RD and the MWC are theotigtipeoven CS based techniques to
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Fig. 1. Time domain block diagrams of the random demodulé@®&®) and the modulated wideband converter (MWC).
The RD is characterised by, the duration of the observation interval and, a sampling rate parameter. The MWC is
similarly characterised byV, the bandwidth of the input signal(¢) and M’, a sampling rate parameter. Note that the
primary difference in the sampling structures is the typdiloér prior to the sampling operation—the RD uses a ideal

integrator and the MWC uses ideal low pass filters.

sample and reconstruct continuous-time spectrally-spsignals.

[I. SAMPLING MECHANISMS AND SIGNAL MODELS

In this section, we examine the sampling mechanisms of theaRiDthe MWC from a modern
sampling theory perspective. We show the output sampleddtr systems are equal to the inner
products of the input signal with a set of sampling functitmat arise from the systems’ designs. We
observe that unlike typical sampling functions, these demggunctions involve random waveforms,
a central component in many CS sampling systems. If the ipratucts are interpreted as analogue
filtering operations, we show that the samples result froneegalised random filtering or random
convolution as described by Romberg [9] and Tropp et al. §s3h means to acquire CS samples. This
analysis suggests that the RD and the MWC are two manifestatf the same sampling approach,
but differ in the specific form of the sampling functions. Ttiéerence in sampling functions also
reflects the difference in the assumed sighal models for heaRd the MWC.

We do not introduce the notion of signal sparsity in this isecbecause the conclusions reached

do not depend on this aspect. Signal sparsity and its corsega are discussed in Section IlI.

A. Sampling with the random demodulator

Let x(¢) be a continuous-time, complex-valued signal defined on ¢a Ime. The RD acquires
samples of:(t) on a finite observation interval where here, we assume, witloss of generality, that
the samples are collected in the inter{@&I7"] seconds. In [10], Tropp et al. adopt a particular signal
model forz(t) on this interval. They assume in part that) has a Fourier series (FS) expansion

on [0, 7] which has bounded harmonics, il < % < W Hz for n € Z. On this interval,z(t) is



therefore modeled as
N/2—1

z(t) = Z X(n)e T, tel0,T), (1)
n=—N/2

where {X(n)} denotes the FS coefficients a{t) and N = TW. For ease of expositiony is
assumed to be an even positive integer. This signal moddtes called amultitonemodel.

To acquire the samples, a RD first multiplie¢) by a waveformp(t) and then filters and samples
the producte(¢)p(t) on [0, T] (see Figure 1(a)). The signa(t) is taken to be a realisation of a contin-
uous random process derived from a vector of Bernoulli ram@ariables. LetZ = [Z,..., Z1 1]
be a vector of independent and identically distributed camd/ariablesZ; taking valuest1 with

equal probability and lep(¢; Z) denote the random process

I 1+1
t;4) =2 t —_— {=0,...,N —1. 2
p(a ) Iy €|:W> W)a ) ) ()

A realisationZ, of Z produces a single realisatigiit; Z) of p(t; Z). Here, we abbreviatg(t; Z) by

p(t) and thus consider(t) to be a deterministic quantity, although its randomnesgspéa important
role in proving performance guarantees [10]. In this papersometimes refer tp(¢) as a random
waveform in deference to this point. We stress that whenigogusamples o0, 7], the RD uses
a single realisation op(¢; Z), but different realisations may be used for other obsesaaititervals.

Note also thap(t) has the FS representation,

o0

pit)= > Pm)e 7™, te(0,T) 3)

n=—oo

where{P(n)} is the set of FS coefficients ¢ft).
The analogue filter in the RD design is taken to be an ideabiater with impulse response
h(t) = rect(24t — 1), where

1 for —1<2<1
recz) = ; (4)

0 otherwise
and M € Z*. The sampling period, is taken to be)M times shorter than the observation window
(Ts = T/M). The system therefore samples at the rateVHfl" Hz. The multitone signal model
and the RD sampling system are therefore parameteriself ,bthe parameter equal to the time-
frequency product' W and M, the parameter that controls the RD’s sampling rate. Heeeasgsume
that M < N.

The goal of the RD is to sample(¢) at low rates while retaining the ability to reconstruct it
in the interval [0, T]. Reconstruction entails the discovery of the active fregies (the signal’s
spectral support) and the amplitude of the correspondingdefficients. Ifz(t) is spectrally sparse
on [0, T, then reconstruction is possible using CS algorithms [ID}his case, we note that signal

reconstruction only implies the recovery of the spectraitent of z(¢) in the observation interval.



In other words, the samplegk),k = 0,..., M — 1, do not convey information about the spectral
content ofz(t) outside of this interval. To obtain spectral informatiortde of[0, 7], the RD must
be applied to other intervals (of possibly different duyas). If the RD is applied to consecutive
intervals, a time-frequency decompositionzdf) similar to the short-time Fourier transform can be
obtained for multitone signals.

Time domain description. By inspection of Figure 1(a), the output sampigs) can be expressed

as

T
yk)=g((k+1)L) = / z(T)p(r)rect 24 (t — 7) — 1) dr , k=0,...,M—1. (5)
0 t=(k+1) 27
By substituting (1) into this expression and evaluating ititegral, the following equation relating
the time domain sampleg k) to the FS coefficients((n) results:

N/2—-1 (k+1) ]\/j 2n

BJWn—l ‘2_7"1
Z Z pl%eanX(n)a k=0,...,.M—1, (6)

Sy P kk j2mn
wherep; = p(I/W). Tropp et al. derived (6) in [10] by analysing an equivaleigfitdl system. In
Appendix VI-A, we provide an alternate derivation that égitly shows the analogue processing
inherent in sampling with the RD.
Because sampling is a linear operation with the RD, the sesnglk) can be viewed as inner

products ofz(t) with the set of sampling function§p(r)rect2k + 1 — 247)} where
y(k) = g((k+ L) = (a(r), plrrect(2k + 1 — 247)), k=0,...,M —1, (7)

and

for two continuous functions(t), s(¢) on [0, T']. These sampling functions have finite duration in time
(T'/M seconds), but because their Fourier transforms involve fsinctions, they extend infinitely in
frequency. In the time-frequency plane, their supportifi@ants the space into vertical strips of equal
width (see Figure 2, left panel). We note that unlike modeamgling theory [19], the sampling
functions in (7) contain the random wavefom(t), and the conditions they must satisfy to ensure
stable recovery is governed by CS theory and not Shannoniblygased sampling theory. (Refer
to [19] and [7] for details regarding the conditions that gding functions typically must satisfy.)
From (5), it is clear the samplegk) can be thought of pointwise evaluations of the convolution
betweenz(¢)p(t) and an ideal integrator. Equally valid, however, is the vilat the samples are
pointwise evaluations of a random, linear filtering openatinvolving z(¢) and the time-varying

analogue filteri(t,7) = p(r)rect 24 (t — 1) — 1),

T
y(k) = /0 x(T)h(t,T) dr k=0,...,M—1. (8)

t=(k+1) 2
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Fig. 2. The output samples of both the RD and the MWC can berittescas inner products of the input signdl) with

certain sets of sampling functions. The panel on the lefiaiephe time-frequency support of the RD sampling function
where each vertical strip represents the support of one Isanfunction. Similarly, the panel on the right depicts the
support of the MWC sampling functions where each horizostap represents the support of one sampling function. For
the RD and the MWC, the support characteristics of the samgflinctions directly derive from the type of analogue fdter
used prior to sampling. The RD and the MWC represent two mdreases: The RD has perfectly localised support in time

but completely unlocalized support in frequency. The MWG@Ghis exact opposite.

Here, the impulse responaé, 7) is considered random because at each time instance it istoweéud
portion of a signal that randomly alternates betweleh The samples)(k) can therefore can be
thought of as the result of a random filtering operation, eghaally similar to the random filtering
schemes proposed in [9] and [13]. In [13], Tropp et al. preggoa CS sampling scheme where a
sparse discrete-time signal is first filtered by a digita¢filvhose impulse response is a realisation of
a sequence of independent and identically distributedaneariables, and then subsampled at a low
rate. They illustrated through examples that with the us€®frecovery algorithms random filtering
is a potential sampling structure to acquire CS measureniensparse discrete time signals. In [9],
Romberg proposed and examined a similar idea but consigdespecific digital filter that randomly
changes the phase of the input signal. Interestingly, Rogntensidered the RD as a separate, follow-
on processing step to his approach instead of considerasgyatgeneralisation to his notion of random
convolution. Here, (8) shows that the sampling mechanisrthefRD can be viewed as a random
filtering operation applied to continuous-time signals. ki¢ge, however, that the filtering operation
in (8) is not a convolution because of the time-varying matof 2 (¢, 7). Strictly speaking then (8)
is distinct from the systems proposed in [13] and [9], altjiowandom filtering remains a common
thread.

Frequency domain description.An equivalent frequency domain expression to (5) can beve@ri

(see Appendix VI-A) that relates the discrete Fourier tfams (DFT) of y(k), denoted byY (n), to



the FS coefficients{(n),

n+%

Y(n)=T > P(m)e 7 sind&n)X(n—m), n=0,...,M—1, 9)
N
m:n—?—f—l

where sin€z) = sin (x)/z,2 € R. This equation clearly shows the frequency domain coniaiut
caused by the multiplication witp(¢) and the effect of filtering with an ideal integrator, indiedt
by the presence of the‘j%””sino(%n) term. Thus, one can also interprg{n) as the output of a
random, frequency-varying filter with impulse resporf$én, m) = P(m)e‘jz?”"sinc(%n). We see
therefore that the RD’s output in either the time or freqyedomains can be viewed as the output

of a random filter or convolution.

B. Sampling with the modulated wideband converter
We now letz(t) be a bandlimited, continuous-time, finite energy signale Bpectral content of
z(t) on R is thus appropriately given by its Fourier transform (F¥jw),

X(w) = /OO z(t) et dt.

Here, z(t) is bandlimited in the usual sense, i.&(w) is assumed to be bounded:(w) = 0 for
lw| > #W’ radians per secondy’ € R*, wherexW’ is the bandwidth ofr(¢) and 27’ is the
Nyquist frequency in radians per second. We adopt the faligvdefinition from [20]. The class
of multibandsignalsB(F,W’) is then the set of bandlimited, continuous-time, finite ggesignals

whose spectral support is a finite union of bounded inteyvals

B(FW') = {z(t) e *(R)NC(R) : X(w) =0,w ¢ F} (10)
where
K
F= U[ai,bi), la;|, |b;] < W' radians per second, for all (11)

=1

In the following description of the MWC, primes are addedhe parameters to distinguish them
from the parameters of the RD. The same letters are, howesed, for similar quantities. For example,
W denotes the bound on the harmonics of multitone signalsewhil’ denotes the bandwidth of
the multiband signals.

Like the RD, theith channel of the MWC multiplieg(¢) by a random signad;(¢), then filters and
samples the produat(t)p;(t) at a sub-Nyquist rate (see Figure 1(b)). As in the originainigation,
we assume each channel’s filter is an ideal low pass filtdroagth it has been shown that the MWC
can operate with non-ideal low pass filters [17]. Here, wengRra its original formulation to make a

clearer comparison to the RD. The signal&),i =0, ...,¢ — 1, are periodic extensions of different



realisations of a continuous random process similar toukatl for the RD. Formally, | = {Z;},
be a sequence of independent and identically distributadom variables taking values1 with

equal probability and lep(¢; Z) denote the random process

7, te [Wl;—l) 1=0,... L] -1,

Zi1, te [LLJ 1,Tp)
whereT, = L'/W'. The signalsp;(t) are then periodic extensions of the realisatipiis Z;) of
p(t; Z):

p(t;Z) = (12)

pi(t + mT,) = p(t;Z;), forte€[0,T,), meZ, i=0,...,¢ —1, (13)

whereZ; denotes a particular realisation &f

Wising W t), M’ € R,

The impulse response of the ideal low pass analogue filtéftis= = o

M’
M’ > 1 and thus has a cut-off frequency 637\4— radians per second, Whe% = AW—I is each
channel’'s sampling rate (in Hertz). Every channel thus dasngt a rate that i3/’ times slower than
the Nyquist rate. The system’s average sampling rag&¥i8 /M’ Hz. Mishali and Eldar [11] showed
that a necessary condition for successful reconstrucsigh< M’ < L’ which implies thatl; < T,.
We assume this condition holds for the MWC throughout theepap

Time domain description. By inspection of Figure 1(b), we obtain the following timerdain

expression for a single channel of the MWC:

, W’ [
yi(k) = gi (k95 = iV /_OO 2 (7)p;(T)sing( 2" (t — 7)) dr o forall keZ.  (14)

W/
This expression corresponds to the analogous time domagiression in (5) for the RD. Like

the RD, the sampleg;(k) can be interpreted as inner products with a set of samplingtifons

- pi(r)sinc(n(k — 17))} where
yi(k) = g;(k35) = (a(r), B pi(r)sinc(n (k — {2 1))),  for all k € Z. (15)

In contrast to the RD, however, these sampling functions Hiite frequency support and infinite
support in time. In the time-frequency plane, their suppartitions the space into horizontal strips of
width W’ /M’ Hz (see Figure 2, right panel). This particular set of sangpfunctions represents one
instance of a general theory put forth by Eldar [7] to comgiredy sample continuous-time signals
from unions of shift-invariant spaces, of which multibangnsls are members. The theory combines
modern sampling theory with CS theory in such a way that sasngte acquired in a typical manner
by projecting the signal onto a set of sampling functionsifagls)), but CS theory is needed to
reconstruct it. We do not review the details of this theoryeheecause it does not apply to the RD.

Interpreting (14) as a random filtering, we identify the tiwegy impulse response dgt, ) =

W]\‘j[[/,/pl( )sing( 2 ‘(t—7)). Because the MWC employs an ideal low pass filter, the impesponse



10

contains a sinc function instead of a rectangular functisrseen in (5). Consequently, the impulse
response has infinite temporal extent in this (ideal) sgttifor the MWC,A(t, 7) is random in the
same general sense as the RD’s time-varying impulse respdhe sinc function is multiplied by a
realisation of a random process.

Frequency domain description.Using standard Fourier analysis techniques, Mishali addEL1]

derived the following frequency domain description for atannel of the MWC,

L (M +1)]

i W/ e ! !

Yi(e™ W)Lz awry = 75 > P(mjrect;yw) X (w —m#7=),  (16)
m=—| 557 (M'+1)]+1

2M/

fori =0,...,¢ — 1, where1;, denotes the indicator function arjd| denotes the floor rounding
operation. Appendix VI-B contains a slightly different dtion of (16) than that presented in [11].
Comparing (16) to (9), we observe that the DTFT of the outmguencesy;(k) can again be
interpreted as the result of a random convolution, whereftbguency-varying impulse response
is given by H(m,w) = P(m)rec(%w). The spectral content of the samplgsk) is expressed
by the DTFT, as opposed to the DFT, becau$® is defined on the entire real line for the MWC
instead of on an interval. An implication of this modelindfelience is explored in Section III.

Single channel MWC. There are two ways to collapse the MWC into an equivalentisiobgannel
system. One can either lengthen the observation intervalfagtor ofq’ (keeping all other parameters
fixed), or one can consider increasing the sampling rateemmiéintaining the same observation
interval. If the observation interval is lengthened, thguance of samples from a single channel
MWC can be partitioned intq’ groups of W'T'/M’, where each group of samples is thought of as
the output from an individual channel in the multi-channehfiguration. Alternatively, one can set
the sampling rate of a single channel MWC equal to the averatgeof a multi-channel MWC, i.e.,
set the sampling rate tgW’/M’ Hz, and accordingly adjust the low pass filter's cut-off freqcy
to ¢'W’/M' Hz since it acts as an anti-aliasing filter (see Figure 3).hia tase, we still maintain
the requiremenf//’ < L/, but assume specifically thdl = ¢’M’ or thatT, is ¢’ times larger than
Ts. The frequency domain description of this single channel ®@an now be obtained from (16)
by substitutingh/’ /¢’ for M’ and ¢’ M’ for L’
|4 (M +q)]

> P(m)rec{ =24 —w) X (w — mZW) (17)

/ !

oM. qwW

Y(Gj aw )1 g’ W g/ W’ g W' q M’
m=— | (M) 1

M M/ )_ M,

Summary. Equations (5), (9), (14), and (16) all indicate that the slimypmechanisms for the
RD and the MWC are based on analogue random filtering/cotisaluHowever, the RD’s integrator
and the MWC's low pass filter induce significant differencasthe specific form of the random
convolutions, or equivalently, in their sampling functionn fact, the different filters induce bipolar

time-frequency characterisations that make them wetedufor the signal models they target—an
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o MW
x(t) —>®—>| g WM’ sinc(rq"W'yM) '—»

p(t)

Fig. 3. Block diagram of a single channel MWC as describedlit].[ To be equivalent to the multi-channel system
depicted in Figure 1(b), this system samples at a gatémes faster and has a low pass filter with a cut-off frequegicy
times greater. Additional digital processing is also reegiito form the linear system in (19).

ideal integrator with a finite impulse response is welladito signals modeled on a finite interval
and an ideal low pass filter with a finite frequency responsedl-suited to signals modeled on a

finite frequency band.

I11. M ODEL SENSITIVITIES FOR SPARSE SIGNAL MODELS

In this section, we introduce the notion of sparsity into theltitone and multiband models and
discuss two model sensitivities—one for the RD, one for th&® These sensitivities are a set of
circumstances in which the sparsity of the assumed the mateild potentially be lost, jeopardising
the ability of any algorithm to correctly recover the unkmowignal from a set of compressed
measurements. The model sensitivity of the RD is alreadydifa limitation that was first mentioned
by Tropp et al. in [10] and later studied by others [21], [ZRhe MWC model sensitivity presented
here is new and ultimately derives from the fact that muitdbaignals have infinite duration. The
analysis also shows that in practice, when only a finite nunolbesamples are acquired, the MWC
can at best recover an approximation of the input multibaglas instead of perfectly reconstructing

it.

A. Sparse multitone signals for the RD

In the original formulation of the RD, the input signal wag waly modeled as a multitone signal
on the observation interval, but was also assumed to berafigcparse [10]. Recall the multitone

signal model on the observation interyal 7'] (equation (1)):

N/2—1
z(t)= > X(n)edT™ te0,T].
n=—N/2

A spectrally sparse multitonsignal is then a multitone signal that has a small number ozem
FS coefficients out of thév + 1 possible. More precisely, lettingg denote the number of nonzero
coefficients (or equivalently the number of nonzero freques), a spectrally sparse multitone signal

is one that satisfie& < N.
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Signal reconstruction. The reconstruction of a sparse multitone sign@) from the sampleg(k)
hinges on the matrix form of (6),
y(k) = S x(n) (18)

whereX is aM x N matrix of the form

Po ... pﬁ_l 0
M
0 PN ... D2y _y
M

> = ) M

Pym-1n --- PN-1

and
y(k) = [y(0),...,y(M — 1), (apostrophe denotes transpose)
27
lIlr,l = e_jWnTl>

zr(n) = . X (n,),
T

N j2mn, (ej%nr —1), a=

N 1

r W
forr=0,...,N—-1,n, = —=N/2+r,andl = 0,..., N — 1. We explicitly write the arguments
k andn in (18) to indicate the time domain and the frequency dom@spectively. The notational
distinction becomes more important in later sections arsingly made for clarity.

By construction, (18) is an underdetermined linear systénequations EW¥ is M x N with
M < N; see Section II-A) and underdetermined systems do not, frergé have unique solutions.
However, CS theory has shown that because of the presumesitgmd x(n), (18) can be solved by
a direct application of a number of recently developed recpalgorithms, e.g4; minimisation [4],
orthogonal matching pursuit [5], or iterative hard thrddimg [23], [24]. In the CS literature, solv-
ing (18) is termed theingle measurement vect(®MV) problem. Theoretical guarantees regarding
the successful recovery af(n) is provided in [10] in terms of the degree of sparsity and thmber
of samples (measurements) collected.

RD model sensitivity. The ability of CS recovery algorithms to recover the FS cogdfits in (18)
depends in part on the sparsityxfn), or equivalently, on whether(t) has a sparse FS representation
in the observation windovw0, 7']. A multitone signal that has a sparse FS representatiofd,Gf
(with fundamental frequency/T’) will not in general have a sparse expansion if the fundaaient
frequency changes slightly. In other words, the FS expanefoa nonharmonic tone is generally
not spectrally sparse [25, p.379-380]. The implicationtfe¥ RD is that in a blind sensing scenario,
where the frequencies of the tones are not known, there isuapagtee that there will not be a
mismatch between the fundamental ton¢7() and the observation interval, which may be slightly

larger or smaller tha". Thus, in practice there is no guarantee that the FS repeggen of x(¢)
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on [0, 7] is sparse. Since successful reconstruction is conditiometthe spectral sparsity af(¢) on
[0,77], a possible mismatch jeopardises reconstruction. Thisitbéty was acknowledged by Tropp
et al. in [10], highlighted in [16] and studied in [21], [22h particular in [22], Duarte and Baraniuk
propose a heuristic solution that marries model-based (Sd@undant DFT frames, and standard
spectral estimation techniques, but it remains an opernigueshether this method extends to infinite

dimensional signal classes such as multiband signals.

B. Sparse multiband signals for MWC

Recall that mulitband signals are bandlimited, contindtbme, finite energy signals whose spectral
supportF is a union of bounded intervals (see (10) and (11)3paArse multibandignal is a multiband
signal whose support has Lebesgue measure that is smadiveeia the overall signal bandwidth,
i.e., A\(F) < W' [26]. If, for instance, all the occupied bands (intervalsivé equal bandwidtiB
Hz and the signhal is composed &f disjoint frequency bands, then a sparse multiband signahés
satisfying KB < W’. In the CS literature, signals having this type of “blockfusture have been
studied in various settings in which the central questiomwlether the additional signal structure
(sparsity plus block structure) reduces the minimum nunabesamples required to reconstruct the
original signal (see e.g., [6], [27], [28]).

Signal reconstruction and linear approximations. MWC signal reconstruction centres on the
matrix form of (16),

y(w) = BUs(w) (19)

where

P = pa
M _.2¢
¥,,.=—e Jgrime
TTW

sr(w) = Brrec(Aw) X (w — m, )

1— e dzrm

Br=———s fo=1/L,

72mm,

fori=0,...,¢=1,1=0,....L'=1,r=0,..., |1 (M'+1)| -1 andm, = — | 5% (M'+1)| +1+r.

Note that the scalars, are the complex conjugates of. in (18). Like (18), this linear system of

L’
Ml

equations is underdetermined since the mabnk has dimensiong x + (M’+1) and the assumption

¢ < L' < M’ (see Section II-B) implieg/ < ]@ (M'+1). If z(t) is a sparse multiband signal,

the vectors(w) is sparse in the sense that most of its elements (segmegwf) do not contain

occupied frequency bands that comprige). This fact is important because the CS methods used
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in the reconstruction process rely on a signal’s sparsitgtover the support cf(w). Equation (19)
can also be derived from the single channel MWC, although lmaeeto first extract’ lower rate
sample sequences from the single higher rate output segufecrefer the reader to [11] for details
regarding the extra processing steps.

We emphasise that in practice the linear system in (19) daimgeneral, be formulated because
it requires an infinite amount of data. To understand thigntland its consequences, we consider
the inverse DTFT of (19). From their definition, it immedigtéollows that the inverse DTFT of

the spectray;(w) = Yl-(ejw%)l _mw! awly (left hand side of (19)) are the time domain sequences

MM

{yi(k),k € Z};. To take the inverse DTFT of the right hand side of (19), onerprets the spectral

M’

segmentss, (w) = B rectqmw) X(w — mr%') as single periods of periodic spectra. By doing so,

it follows that their inverse DTFT are the sequenges(k), k € Z}, where

M’ W' /M’ Y
(k) = , IwT R doy. 20
) = g |y S (20)
and
- 7'Mkw / ! ! /
sr(w) = g Y(k)e W w e [—aW' /M W' /M]. (21)
k=—o00

The transform pair of (19) is therefore the linear system,
Y = ®¥S (22)

where ® and ¥ are as in (19),Y is aninfinite column matrix whoseth row is the sequence
yi(k),k € Z, andS is aninfinite column matrix whose-th row equalsy, (k),k € Z. The matrixS
is described as beingintly sparsebecause most of its rows are zero since the zero-valued eteme
of s(w) correspond to zero-valued sequengg&:) (rows of S). A matrix Z is said to beK joint
sparse if there are at mo&t rows in Z that contain nonzero elements. The recovensdfom the
measurementY in (22) is called aninfinite measurement vect¢fMV) problem [7], [11], [29] in
the CS literature because each columnYois viewed as a CS measurement (via the measurement
matrix ®¥) of a collection of vectors that share a common sparse stippor

In practice, this IMV problem can never be formulated beeaus can only ever obserugt) over
a finite duration window, and thus can only ever collect adimitimber of samples. This practicality
in effect truncates the rows & and causes (22) to become a so-cattmdtiple measurement vector
(MMV) problem [29]-[32], where the goal is to recover a finitember of the columns of the jointly
sparse matriXS corresponding to the finite number of acquired samples innatedetermined linear
system. Using existing CS methods, this MMV problem can beesbexactly, or with exceedingly
high probability, provided the matri®@ ¥ satisfies certain conditions and that enough samples are

collected. The solution, however, only provides a linegsragimation [25] to the true spectral slices

yi(w) = Yi(ej“%)l[ nw! xw!) because the solution only recovers a finite number of coeffisi

YR Y
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~-(k) in (21). In general, an infinite number of coefficients woukkd to be recovered to perfectly
reconstruct a multiband signal, or equivalently, an indinitumber of samples would need to be
acquired. This fact is in contrast to the sparse multitorgmadi model that is parameterised by a
finite number of parameters and thus only requires a finite bmunof samples for perfect signal
reconstruction. It is important to note that even though) can only be approximated in practice,
there is an advantage in applying CS theory—it allows oneetmver the same order of linear
approximation obtained by sampling at the Nyquist rate,diutates significantly below the Nyquist
rate.

In [11] and [29], Mishali and Eldar proposed a two step retmasion process termed the “contin-
uous to finite block” that provably recoverst) exactly given an infinite amount of data, or in other
words, recovers:(t) to an arbitrary precision given sufficient data. The firspstecovers the joint
support ofS by solving an associated MMV problem, and the second steg tiefound support
to reduce the dimension of the measurement mabik such that its pseudoinverse can be used to
find a unique solution to the MMV problem. We stress that efehis two step process perfectly
solves the MMV problem derived from (22), the solution calypm general, approximate(t) for
a finite number of samples.

MWC model sensitivity. We now discuss a model sensitivity of the MWC that is similarttie
RD’s model sensitivity discussed above. Recall that nambaic signals on the observation interval
[0, T] the signal vectok in (18) may not be sparse for the RD. Similar§/may become non-sparse
for short duration multiband signals. To be concretezlg) be a sparse multiband signal with a FT

X(w) and letz(t) be a windowed version of(t),
2(t) = z(t)w(?), (23)

where w(t) is an indicator function of some sub-interval of the obstovainterval. The signal
z(t) is thus a short duration multiband signal that has a specagoal to X (w) convolved with a
sinc function [33]. As is well-known, this convolution spids the original spectrumX (w). If it is
sufficiently spread (or equivalently iix(¢) is sufficiently short),s(w) and S are no longer sparse.
This situation violates one of the necessary and sufficientditions for successful reconstruction as
outlined by Mishali and Eldar in [11, Theorems 2 and 3, Cadadi]. Thus, as with the RD when
sampling nonharmonic multitone signals, the MWC exhibitsratation in recovering short duration
multiband signals because the sparsitys@b) and S is potentially lost. The following numerical
example illustrates the point.

Example. Consider the set of sparse multiband signals with maximejuencies of-1000 Hz
and a MWC with ten channels each sampling2@tHz with each channel using a wavefomy(t)

having a period 0f).05 seconds¥’’ = 1000 Hz, ¢’ = 10, L' = M’ = 50). We simulate a multiband
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Fig. 4. The plots show the results of an experiment that detnates the MWC’s sensitivity to short duration signals, or
equivalently, short observation intervals. The top rowgha simulated multiband signal bandlimited5@) Hz with three
occupied bands (six betweeh500 Hz). The left hand column shows time domain signals, thetrigiows the frequency
domain. The second row shows the reconstructed signal wigemput is sampled by a 10 channel MWC with an average
sampling rate of200 Hz over a one second interval{’ = 1000 Hz, ¢ = 10, M’L’ = 50). In this case, the MWC
faithfully reconstructs the input signal, save for the tid@main delay caused by the digital filter that simulates teali
analogue low pass filter. However, if the input signal is goto0.05 seconds (third row) and sampled by the same system,

the MWC fails to correctly recover the multiband signal’ppart and thus fails to reconstruct the signal.

signal z(t) by notch-filtering a discrete time white random noise precist has six active bands
each having bandwidth &0 Hz. In this example, the system average sampling ra28(sHz which

is 66% greater than the theoretical minimum sampling raté20f Hz [34]. The two top panels on the
right and left of Figure 4 show the reconstruction result®mi(t) persists over the entire 1 second
observation interval. In this case, the MWC correctly remsvthe support and yields an accurate
approximation ofz(t). However, if the signal model is shortened @d5 seconds while keeping
all other parameters fixed, the two bottom panels show tleaMWC fails to correctly recover the
signal. This short duration signal represents, in someesensignal that maximally mismatches the

multiband model and the MWC'’s sampling functions becaus dwve infinite support in time.

IV. EXCHANGING SIGNAL MODELS AND SAMPLING CONTINUOUSTIME BLOCK-SPARSE SIGNALS

We devote this section to a simple exercise that reveals thteresting aspects of the RD and the
MWC and suggests a new analogue CS sampling system. Fiesexdrcise plainly shows that the
MWC can successfully sample and recover sparse multitagreals without any modification to the
recovery algorithm originally proposed by Mishali and El@da[11]. Second, it leads to a special case
in which the MWC and the RD produce equivalent SMV problemd @irat underlines the fact that
the RD acquires samples sequentially while the MWC acquirem in parallel. Third, it highlights
a property of the MWC that differentiates it from the RD antbwak it to successfully sample and

recover “block” sparse signals (e.g. multiband signalsg #énclude the section by proposing a
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new CS sampling system that uses this property to sampleemader continuous-time block-sparse

signals.

A. MWC with sparse multitone inputs

Consider the problem of using a MWC to sample and recover esspaultitone signal instead
of sparse multiband signal. Let(t) be a sparse multitone signal on the observation inteffual]
with T' = % and letp;(t) be as described as in Section 1I-B. To make the problem mgaujrwe
assume the observation interval is greater than or equaktsampling periodI( > 7;) and assume,
for ease of exposition, that the period g@fit) equals the sampling period){ = 7). Equivalently,
we assumeV > L’ = M’, where we recall from Section II-B thdt’ = 7,,/W' and M’ = T,/W".

A parallel analysis to that given in Appendix VI-B, then ylsl an expression relating the FS

coefficients ofz(¢) to the DFT coefficients of the output samples,

;o LEes)
Yi(n) = % > Pi(m) X (n = £rm), (24)
m=—| 2 (L' +1) | +1
L%(L'-Fl)J L'—1 -
) 1—eJ™ om
_ = e by 1) _ N
N L Z J ZZ; bil 2mm € X(n L/m), (25)
m=—| 27 (L'+1)|+1 '~
forn = —|ZL],...,|£5 | — 1. This expression is analogous to the frequency domain iéiscr
2L 2L

of the RD given by (9) and is what (16) becomes assuming a spatstitone signal model and

L' = M'. In matrix form, (25) becomes the MMV problem,

Y = ®US, (26)
where
Yi,v :}/z(nv)
P, = pi
I 9
‘I’l,r = ge_jL_mmT
Srv =0y X(ny — %mr)
1—edimr
= = 1 L/
ar i2rm, o /L
fori=0,...,q—1,1=0,...,L' =1L, v=0,..., | & -Ln, ==& +v,r=0,.... [ZL +

1)J —landm, = — LQJZ (L’+1)J +1+r. In contrast to sampling a sparse multiband signal, this MWC
MMV problem does not result from truncation, rather its fniéss derives from the fact that multitone

signals are finitely parameterised. The Fourier componefintg¢) can be recovered by solving (26)
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using several existing CS algorithms including greedy @dilgos [35], mixed norm approaches [36],
MUSIC based recovery algorithms [32] and, in particulae #pproach proposed by Mishali and
Eldar in [11] and [29]. We conclude therefore that the MWC saiccessfully sample and recover
sparse multitone signals without any modification to Migbalnd Eldar's recovery algorithm.
Special caseNote that when the observation interval, the periogh©f), and the sampling period

are equal, i.e. whetN = L’ = M’, (26) collapses to the SMV problem,
y(n) = ®¥x(n), (27)

wherey (n) = [Yp(0), ..., Y,—1(0)] andx(n) = X (-m,), for m, = —| L |+ 147, r =0,..., L.
The FS coefficients(n) can thus be solved for using standard CS SMV recovery teabsign this
special circumstance, the MWC collects a single measurewettor in the observation interval
and thus each channel samples the produ¢lp;(¢) once at the end of the observation interval.
Comparing (27) to (18), one sees that in this case the RDatslles samples sequentially while the
MWC collects them in parallel. This special case presentexample where the MWC and the RD
produce equivalent SMV problems thus provides one way tectlir compare the RD and the MWC.

This example highlights a property of the MWC that diffeiatgs it from the RD and allows it
to successfully sample and recover multitone signals, dsasemultiband signals. Specifically, the
convolution in (25) involves shifts oK (n) by integer multiplies of% that, when greater than one,
yields a “block convolution”. By block-convolution, we mea&very DFT coefficient;(n) in (25) is
a linear combination of finite segments &f(n). Block-convolution is also seen in (16) where the FT
of a multiband signal is shifted by integer multiplies %ﬁ It is, however, in contrast to (9) where
the frequency shifts describing the RD are by one.

This aspect of the MWC allows the construction of a lineateysof equations like (19) and (26)
that describe the original spectra in terms of linear comtams of these blocks. The blocks them-
selves represent a partition of the frequency axis thattftdy discretised the block sparsity of
multiband signals. In Section IV-C below, we incorporatis throperty into a multi-channel random
convolution system that samples and approximately resos@ntinuous-time block-sparse signals
the time domain analogue of sparse multiband signals. In¢iésection, we consider the counterpart
of this section and examine the case where a sparse multdigndl is sampled by a RD. Because
the RD formulation does not rely on block convolution, we whibat the resulting SMV problem

can become computationally burdensome in certain circamasts.

B. RD with sparse multiband inputs

When a multiband signal is the assumed signal model for the tR® system fails to produce

a single measurement vector problem whose solution resavey. To be more concrete, let(t)
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be a sparse multiband signal bandlimited1td Hertz and with a fixed spectral occupansyF)
and consider a RD parameterised by that samplesc(¢) on [0,7]. Let p(¢t) be as described in

Section II-A. A similar analysis to that contained in Appen¥I-A then leads to the expression

N/M-1 W’ g ,
elwr —1 ’w(kﬁ—i—m)
y(k) = DN / X(w) ——“\" M dw, (28)
( ) mz:O kﬁ—’_m —7W’ ( ) Jw
where hereN’ represents the number of Nyquist periods within the obsiervavindow (N = V[T,,).

To construct a RD formulation, one could approximate thegrdal based on samples of the integrand:

y(k) ~ p N X(w)—— & \Fartm) g, (29)
D= 2 &P MO :

whered,, = 2Z5¥ for some positive integeb andw; = —7W +4,,(i+1/2). One can then see that in
comparison to (18), this expression describes a single uneent vector problem(k) = W x(w;)
where the vectok(w;) grows infinitely long as the integral is more and more closglproximated,
i.e., asD — oo. Here, the matriceX and ¥ are as in (18). Because the RD is designed to sample
and recover sparse multitone signals, this approximagsults if one uses a multitone signal as a
model for a multiband signal, or in essence, uses a FS to xippeite a FT. Clearly, in cases where
one wants a fine resolution approximation, the size of theioestin this SMV problem could grow

to become computationally unwieldy.

C. Sampling continuous-time block-sparse signals

The class otontinuous-time block signal(7, ¢) is the set of continuous-time, complex-valued,

finite energy signals whose support is a finite union of bodndeervals,

G(T, to) = {=(t) € L*([0,20]) N C([0, t0]) : x(t) = 0, ¢ T} (30)
where
K
T = U[ai,bi), 0<a;b <ty < oo. (31)
i=1

A continuous-time block-sparse sigriala continuous-time block signal whose support has Lelesgu
measure that is small relative to the signal's overall damati.e., A\(7) < to.

The proposed system we present in the following paragrapimbines block convolution with the
MWC multi-channel architecture and the random convolutd®as of Romberg to obtain a sampling
system for continuous-time block-sparse signals (seer€if(n)). The resulting system can also be
interpreted as the time domain analogue of the MWC.

Let z(t) be a continuous block-sparse signal on the inteival’] and let{p;(IZ)}; be an ensemble

of discrete time signals=1,...,L, L € Z" taking valuest1 with equal probability. The system
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has multiple channels and operates in parallel like the MW ith channel convolves(t) with

pi(IL), resulting in the continuous-time signal(t),

L-1

gt) =Y p(Ea(t—1%). (32)

I=—(L—1)
By construction, this convolution is a block-convolutidrhe corresponding filter is a standard digital-
to-analogue reconstruction filter [33], but is used herehm $ampling process. Restricting the time

axis to the interval0,7'/L] and with a change of variables, (32) becomes
1o/ = sz D)t — 1 5) 10 7)1 (33)

Representing the segmentg — lf)l[O,T/L} in an appropriate orthogonal basis, (32) may be written

as
Lor/z) = Z > pillE)ag(n)n(t), (34)
=0 n=—00
wherea;(n) = (x(t — 1)1 7/1), ¥n(t)). The signalg;(t) is then sampled at a rate &/ Hz over
the interval[ L1,
yi(k) = gi(k157) Z > pillD)aam)n(ksy), k=1,...,M, i=1,...q.  (35)
=0 n=—00

Given the samplegy;(k)} one can solve foL linear approximations of the segmem(s—l%)l[ojm

by truncating the summation oversuch thatjn| < D < oo and solving the matrix equation
Yo' =&X (36)
where
Y. =yi(k)
@ =pi(l%)
U, = Un, (kta7)
Xip = z(kthr —1F)

fori=1,...,¢, k=1,....M,r =0,...,2D, n, = —D + r and wheret denotes the pseudo-
inverse of a matrix. The conditions on whether a unique Boutan be found to (36) depends on
the properties of the measurement maudixand the degree to whicK is sparse. (Because(t)

is assumed to be a continuous-time block sparse signallloiv® that X is a joint sparse matrix.)
Notice that in this problem the CS measurements are not githplsampleg; (k) as they were in (18)
and (22), but are the elements of the prod¥alF. Consequently, the number of CS measurements

acquired isnot related to the sampling rateM /T, but to the number of channefsand the order
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Fig. 5. (a) Schematic diagram of sampling system for cootilsttime block sparse signals. The system is a generalizati
of random convolution as originally proposed in [9]. Eaclamhel convolves:(¢) with a random sequence and then samples
the result at a low rate. (b) Top panel: Simulated block sp&iree domain signal on the unit interval. The signal is a
modified version of the “bumps” test signal from the WaveLadllbox [37]. Middle panel: Overlay plot of the signajs(t)
resulting from the random convolution. Here(t) was sampled with a 6 channel system. Note that samples(of are
acquired on an interval shorter than the observation iat€fvl seconds versus.0 seconds). Bottom panel: Reconstructed

signal approximation. Eact.1 second duration segment is a linear approximation (Fobiasis) ofz(t¢) on that segment.

of the linear approximatiorD. The following example, however, shows that a good apprakion
of a continuous-time block sparse signal can be obtained avitelatively small number of samples.

Example. Consider the continuous-time block sparse signal depinotéte top panel of Figure 5(b).
Samples of the filtered signalg(t) (middle panel) are acquired by a 6 channel system=(6)
with a sampling rate ofl00 Hz (M = 40, LM/T = 400)where the time axis is partitioned into
10 segments{ = 10). Using a Fourier basigp,(t) = ejT/L the linear system (36) was solved
using the simultaneous orthogonal matching pursuit (S-P&IBorithm [35] resulting inL linear
approximations D = 41) of the segments:(t — l%)l[ojm. The reconstructed signal is shown in
the bottom panel of Figure 5(b). In this case, the recontdisignal is a faithful representation
of x(t). Clearly, the quality of the reconstruction depends on hosll Whe linear approximations
approximate the segments oft) and also on how well a particular CS algorithm solves (36). In
any given application, some bases will be more appropriate dthers. For example if(¢) contains
discontinuities, a wavelet basis would provide a betteraximation for a fixedD.

Strictly speaking continuous-time block sparse signaés reost bandlimited, but if one examines
the spectrum of the test signal in Figure 5(b), one would alisc that the signal is “essentially”
bandlimited to about 1000 Hz. Thus, it could be argued aéongrtb the Shannon-Nyquist sampling
theorem that a sampling rate of about 2000 Hz would be reduoeaccurately capture this signal.

Relative to 2000 Hz, 400 Hz represents a five fold savings inpéiag rate.
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V. CONCLUSION

In this paper, we showed that the sampling mechanisms of el the MWC can both be
thought of as being based on the underlying concept of ranfileening or random convolution.
The most substantial difference between the systems stemmsthe specific form of their sampling
functions (or random filters) and from the assumed signalatsodhe RD has sampling functions that
have finite temporal extent but infinite spectral suppor; KWC employs sampling functions that
have finite spectral support but infinite temporal suppdnte Tandomness in the sampling functions is
a hallmark of CS theory that is fundamental in guarantediegitvertibility of the underdetermined
linear systems that characterise the RD and the MWC.

Block convolution is also an important property that diffietiates the MWC from the RD because
it is one approach that effectively processes infinite disimmal signals that have a block structure.
The absence of this property is one primary reason the RDataimgeneral, reconstruct multiband
signals. We incorporated block convolution into a new samgpsystem that samples continuous-time
block-sparse signals.

In this paper, we also offered novel insights into the pcattreconstruction of sparse multiband
signals using the MWC. We showed that with a finite amount ¢& dlae MWC necessarily produces
linear approximations of the spectral slices «ft). We also showed that the MWC exhibits a
sensitivity to short duration signals that derives from faet that multiband signals are modeled
as extending infinitely in time.

From the perspective of this paper, one begins to consideerghsations to the RD and the
MWC that target different signal classes, in particular, €8npling systems that have different
time-frequency characterisations. For example, a sysk&n“tompressively” samples radar pulses
and chirps in an efficient time-frequency manner could fbgsffer a means to effectively detect
and classify these signals while avoiding the overhead wiptiag several bands simultaneously or
reconstructing the Nyquist equivalent signal. This pap&es a step towards this goal by reconciling

some of the core ideas behind these sampling systems.

VI. APPENDICES

The following analyses yield basic time and frequency domadéscriptions of the sampling/
measurement strategies. We employ standard Fourier oramgfroperties without explicit explanation
for the sake of conciseness. The notational style is thaB8}. [To denote transform pairs, we use
the shorthand notation,

FT

z(t) — X(w),

and use the abbrevations FT, FS, DTFT, and DFT when refetoitige Fourier transform, the Fourier

series, the discrete time Fourier transform, and the diséreurier transform, respectively. Also recall
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the definitions: singr) = sin (x)/x, x € R and

1 for —1<z<1
recx) =
0 otherwise

A. Random Demodulator
Time domain description. Let x(¢) be a sparse multitone signal ¢h 7] and recall the following
transform pairs from Section II:
x(t) AN X(n)

FS;1T
>

p(t)

h(t) = rect( 2t — 1) «—T— H(jw) = Lsing(kw)e .

P(n)

By inspection of Figure 1(a), the time domain descriptiorttaf RD is

oo

g(t) = 2(Op(0) < bit) = [ alr)p(r)h(e — 7) dr

—00

= /ttT x(1)p(r) dr

N/2—1

= X X [, e

n=—N/2 M
wherex denotes convolution. Sampling at= (k + 1)% for k=0,1,... yields

N/2—1 T

. / (k+1)37 .

yk) =g((k+ 1)) = >, X[ p(T)e’ ™" dr
n=—N/2 M

. o2 (, N
X(n) Xt K)o 20

N/2—1 N/M— 1
(1D Dali ) e

N/2—1 N/M— 1
%Zné—N/2Z / X(?’L), n=>0

Prgpm
(37)
where the first three steps follow from the additivity of tmeeigral and the specific nature pft).

Here,pk%er = p(kd; + &%) Lettingl = k4% + m, (37) may be rewritten as

k ,
LY e n 1

.27
o JN"X(n), fork=0,1,..., (38)

N/2
Z

b

%lz

:|2 Milz
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where this expression should be understood to be consisti#ét(37) for n = 0 above. For

k=0,...,M —1, (38) may in turn be written in matrix form,
y(k) = £Wx(n) (39)
wherey(k), 3, ¥, andx(n) are defined in (18).

Frequency domain description.We also have the following frequency domain descriptionhef t

RD. Multiplication/Convolution:

ln—%

e(Op(t) 10 ST P(m)X(n —m)

m=—|n—% |+1
Convolution (filtering)/Multiplication:
FS;UT )
g(t) = 2(B)p(t) * h(t) «——— G(n) = > P(m)X(n—m)H(j%Fn)

Sampling/Aliasing:

y(k) = g((k + 1) L) + 2

BecauseY (n) is M periodic, we can, without loss of information, restrict @ one period. This

means we need only consider one term in the summation/oWwtaining thd = 0 term yields

Y(n)=T Y P(m)e 7 Fsindn) X(n—m), n=0,...,M—1.

m=—0Q

B. Modulated Wideband Converter

We have the following frequency domain description for ifechannel;i = 0,...,¢ — 1 of the
MWC.

Multiplication/Convolution:

z(t)pit) = > Pi(m)X (w — mwp) (40)
(ot m W) e,
= Z Pi(m) X (w — muwy) (41)

m=[(w—mW") e, 1+1
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wherew, = 2r7W’/L’ radians per second. The summation limits are finite for argivéecause:(t)

is assumed to be bandlimited.

Convolution (filtering)/Multiplication:
[(wtmW’)/w,p ]
9i(t) = x(t)p;(t) * h(t) LN Gi(w) = Z Pi(m)X (w — mwp,)H (w) (42)
m=[(w—7W’)/w,]+1
Ly (et 27 W)

= Z P;(m)X (w — mwp)rect2w/wy)
m=— Lﬁ (ws+27W7) |41

(43)
where H (w) = rect2w/ws) is the transfer function of an ideal low-pass filter with ofitfrequency
ws/2, ws = 20W'/M’'. Note that the low pass filter windowX (w) and its translates (i.e., restricts

them to the interval—w,/2, ws/2]) and hence removes the dependence amthe summation limits.
Sampling/Aliasing:

1 DTFT; wy
’ , >
Yi(elwr) = G > Gilw+ nwy) (44)
W i (M+1)
=7 Z Z P;i(m)X (w — mwp + nws)rec2(w + nws) /ws)  (45)

=700 m=— | gk (MY 1) +1

2M’

where (45) results from substituting (43) into (44) and thmmation limits were rewritten using the

definition ofw, andws. Becausé@(ejw%) is periodic with periodv, = 27W'/M’, we can, without
loss of information, restric]fi(ej“v%) to one period. This means we need only consider one term in

the summation over in (45). We choose to retain the= 0 term and thus have the DTFT pair
okt (M'+1)]

oM w’ 2M7
(W) aws owy = 35 > Pi(m) X (w — muw,)rect2w/ws),
m=—| L5 (M'+1)|+1

2M’

where again]., denotes the indicator function. The Fourier series coefiisi ofp;(t) can now be

directly computed,

=0 j2mm

1 L'—1
g Zl:o pii, m = 07

I . _g2m _g2n
ZlL 1 pa (1—6 jL,m)e jL/ml7 m#o
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wherep;; = p;(t) for t € IT,/L’, (Il + 1)T,,/L"), to obtain

MHD)] g

/ oM’ 2T
.M W 1—e 71 27
Y. (7w, .wi oawr = — e S AT
(W ey = 75 2 D P (
m=—| L (M'+1)|+1 =0

2M’

W%,w)X(w—mZQV,V, ),

fori=0,...,¢'—1, where this expression should be understood to be consigitnthe expression
for P;(0) given above.

We can express thegg¢ linear equations in matrix form
y(w) = @¥s(w) (46)

wherey(w), ®, ¥, ands(w) are as in (19).
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